1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
|
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_HEAP_INL_H_
#define V8_HEAP_INL_H_
#include "heap.h"
#include "isolate.h"
#include "list-inl.h"
#include "objects.h"
#include "platform.h"
#include "v8-counters.h"
#include "store-buffer.h"
#include "store-buffer-inl.h"
namespace v8 {
namespace internal {
void PromotionQueue::insert(HeapObject* target, int size) {
if (emergency_stack_ != NULL) {
emergency_stack_->Add(Entry(target, size));
return;
}
if (NewSpacePage::IsAtStart(reinterpret_cast<Address>(rear_))) {
NewSpacePage* rear_page =
NewSpacePage::FromAddress(reinterpret_cast<Address>(rear_));
ASSERT(!rear_page->prev_page()->is_anchor());
rear_ = reinterpret_cast<intptr_t*>(rear_page->prev_page()->area_end());
ActivateGuardIfOnTheSamePage();
}
if (guard_) {
ASSERT(GetHeadPage() ==
Page::FromAllocationTop(reinterpret_cast<Address>(limit_)));
if ((rear_ - 2) < limit_) {
RelocateQueueHead();
emergency_stack_->Add(Entry(target, size));
return;
}
}
*(--rear_) = reinterpret_cast<intptr_t>(target);
*(--rear_) = size;
// Assert no overflow into live objects.
#ifdef DEBUG
SemiSpace::AssertValidRange(HEAP->new_space()->top(),
reinterpret_cast<Address>(rear_));
#endif
}
void PromotionQueue::ActivateGuardIfOnTheSamePage() {
guard_ = guard_ ||
heap_->new_space()->active_space()->current_page()->address() ==
GetHeadPage()->address();
}
MaybeObject* Heap::AllocateStringFromUtf8(Vector<const char> str,
PretenureFlag pretenure) {
// Check for ASCII first since this is the common case.
const char* start = str.start();
int length = str.length();
int non_ascii_start = String::NonAsciiStart(start, length);
if (non_ascii_start >= length) {
// If the string is ASCII, we do not need to convert the characters
// since UTF8 is backwards compatible with ASCII.
return AllocateStringFromOneByte(str, pretenure);
}
// Non-ASCII and we need to decode.
return AllocateStringFromUtf8Slow(str, non_ascii_start, pretenure);
}
template<>
bool inline Heap::IsOneByte(Vector<const char> str, int chars) {
// TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported?
// ASCII only check.
return chars == str.length();
}
template<>
bool inline Heap::IsOneByte(String* str, int chars) {
return str->IsOneByteRepresentation();
}
MaybeObject* Heap::AllocateInternalizedStringFromUtf8(
Vector<const char> str, int chars, uint32_t hash_field) {
if (IsOneByte(str, chars)) {
return AllocateOneByteInternalizedString(
Vector<const uint8_t>::cast(str), hash_field);
}
return AllocateInternalizedStringImpl<false>(str, chars, hash_field);
}
template<typename T>
MaybeObject* Heap::AllocateInternalizedStringImpl(
T t, int chars, uint32_t hash_field) {
if (IsOneByte(t, chars)) {
return AllocateInternalizedStringImpl<true>(t, chars, hash_field);
}
return AllocateInternalizedStringImpl<false>(t, chars, hash_field);
}
MaybeObject* Heap::AllocateOneByteInternalizedString(Vector<const uint8_t> str,
uint32_t hash_field) {
if (str.length() > SeqOneByteString::kMaxLength) {
return Failure::OutOfMemoryException(0x2);
}
// Compute map and object size.
Map* map = ascii_internalized_string_map();
int size = SeqOneByteString::SizeFor(str.length());
// Allocate string.
Object* result;
{ MaybeObject* maybe_result = (size > Page::kMaxNonCodeHeapObjectSize)
? lo_space_->AllocateRaw(size, NOT_EXECUTABLE)
: old_data_space_->AllocateRaw(size);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
// String maps are all immortal immovable objects.
reinterpret_cast<HeapObject*>(result)->set_map_no_write_barrier(map);
// Set length and hash fields of the allocated string.
String* answer = String::cast(result);
answer->set_length(str.length());
answer->set_hash_field(hash_field);
ASSERT_EQ(size, answer->Size());
// Fill in the characters.
OS::MemCopy(answer->address() + SeqOneByteString::kHeaderSize,
str.start(), str.length());
return answer;
}
MaybeObject* Heap::AllocateTwoByteInternalizedString(Vector<const uc16> str,
uint32_t hash_field) {
if (str.length() > SeqTwoByteString::kMaxLength) {
return Failure::OutOfMemoryException(0x3);
}
// Compute map and object size.
Map* map = internalized_string_map();
int size = SeqTwoByteString::SizeFor(str.length());
// Allocate string.
Object* result;
{ MaybeObject* maybe_result = (size > Page::kMaxNonCodeHeapObjectSize)
? lo_space_->AllocateRaw(size, NOT_EXECUTABLE)
: old_data_space_->AllocateRaw(size);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
reinterpret_cast<HeapObject*>(result)->set_map(map);
// Set length and hash fields of the allocated string.
String* answer = String::cast(result);
answer->set_length(str.length());
answer->set_hash_field(hash_field);
ASSERT_EQ(size, answer->Size());
// Fill in the characters.
OS::MemCopy(answer->address() + SeqTwoByteString::kHeaderSize,
str.start(), str.length() * kUC16Size);
return answer;
}
MaybeObject* Heap::CopyFixedArray(FixedArray* src) {
return CopyFixedArrayWithMap(src, src->map());
}
MaybeObject* Heap::CopyFixedDoubleArray(FixedDoubleArray* src) {
return CopyFixedDoubleArrayWithMap(src, src->map());
}
MaybeObject* Heap::AllocateRaw(int size_in_bytes,
AllocationSpace space,
AllocationSpace retry_space) {
ASSERT(AllowHandleAllocation::IsAllowed() && gc_state_ == NOT_IN_GC);
ASSERT(space != NEW_SPACE ||
retry_space == OLD_POINTER_SPACE ||
retry_space == OLD_DATA_SPACE ||
retry_space == LO_SPACE);
#ifdef DEBUG
if (FLAG_gc_interval >= 0 &&
!disallow_allocation_failure_ &&
Heap::allocation_timeout_-- <= 0) {
return Failure::RetryAfterGC(space);
}
isolate_->counters()->objs_since_last_full()->Increment();
isolate_->counters()->objs_since_last_young()->Increment();
#endif
MaybeObject* result;
if (NEW_SPACE == space) {
result = new_space_.AllocateRaw(size_in_bytes);
if (always_allocate() && result->IsFailure()) {
space = retry_space;
} else {
return result;
}
}
if (OLD_POINTER_SPACE == space) {
result = old_pointer_space_->AllocateRaw(size_in_bytes);
} else if (OLD_DATA_SPACE == space) {
result = old_data_space_->AllocateRaw(size_in_bytes);
} else if (CODE_SPACE == space) {
result = code_space_->AllocateRaw(size_in_bytes);
} else if (LO_SPACE == space) {
result = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
} else if (CELL_SPACE == space) {
result = cell_space_->AllocateRaw(size_in_bytes);
} else if (PROPERTY_CELL_SPACE == space) {
result = property_cell_space_->AllocateRaw(size_in_bytes);
} else {
ASSERT(MAP_SPACE == space);
result = map_space_->AllocateRaw(size_in_bytes);
}
if (result->IsFailure()) old_gen_exhausted_ = true;
return result;
}
MaybeObject* Heap::NumberFromInt32(
int32_t value, PretenureFlag pretenure) {
if (Smi::IsValid(value)) return Smi::FromInt(value);
// Bypass NumberFromDouble to avoid various redundant checks.
return AllocateHeapNumber(FastI2D(value), pretenure);
}
MaybeObject* Heap::NumberFromUint32(
uint32_t value, PretenureFlag pretenure) {
if (static_cast<int32_t>(value) >= 0 &&
Smi::IsValid(static_cast<int32_t>(value))) {
return Smi::FromInt(static_cast<int32_t>(value));
}
// Bypass NumberFromDouble to avoid various redundant checks.
return AllocateHeapNumber(FastUI2D(value), pretenure);
}
void Heap::FinalizeExternalString(String* string) {
ASSERT(string->IsExternalString());
v8::String::ExternalStringResourceBase** resource_addr =
reinterpret_cast<v8::String::ExternalStringResourceBase**>(
reinterpret_cast<byte*>(string) +
ExternalString::kResourceOffset -
kHeapObjectTag);
// Dispose of the C++ object if it has not already been disposed.
if (*resource_addr != NULL) {
(*resource_addr)->Dispose();
*resource_addr = NULL;
}
}
MaybeObject* Heap::AllocateRawMap() {
#ifdef DEBUG
isolate_->counters()->objs_since_last_full()->Increment();
isolate_->counters()->objs_since_last_young()->Increment();
#endif
MaybeObject* result = map_space_->AllocateRaw(Map::kSize);
if (result->IsFailure()) old_gen_exhausted_ = true;
return result;
}
MaybeObject* Heap::AllocateRawCell() {
#ifdef DEBUG
isolate_->counters()->objs_since_last_full()->Increment();
isolate_->counters()->objs_since_last_young()->Increment();
#endif
MaybeObject* result = cell_space_->AllocateRaw(Cell::kSize);
if (result->IsFailure()) old_gen_exhausted_ = true;
return result;
}
MaybeObject* Heap::AllocateRawPropertyCell() {
#ifdef DEBUG
isolate_->counters()->objs_since_last_full()->Increment();
isolate_->counters()->objs_since_last_young()->Increment();
#endif
MaybeObject* result =
property_cell_space_->AllocateRaw(PropertyCell::kSize);
if (result->IsFailure()) old_gen_exhausted_ = true;
return result;
}
bool Heap::InNewSpace(Object* object) {
bool result = new_space_.Contains(object);
ASSERT(!result || // Either not in new space
gc_state_ != NOT_IN_GC || // ... or in the middle of GC
InToSpace(object)); // ... or in to-space (where we allocate).
return result;
}
bool Heap::InNewSpace(Address address) {
return new_space_.Contains(address);
}
bool Heap::InFromSpace(Object* object) {
return new_space_.FromSpaceContains(object);
}
bool Heap::InToSpace(Object* object) {
return new_space_.ToSpaceContains(object);
}
bool Heap::InOldPointerSpace(Address address) {
return old_pointer_space_->Contains(address);
}
bool Heap::InOldPointerSpace(Object* object) {
return InOldPointerSpace(reinterpret_cast<Address>(object));
}
bool Heap::InOldDataSpace(Address address) {
return old_data_space_->Contains(address);
}
bool Heap::InOldDataSpace(Object* object) {
return InOldDataSpace(reinterpret_cast<Address>(object));
}
bool Heap::OldGenerationAllocationLimitReached() {
if (!incremental_marking()->IsStopped()) return false;
return OldGenerationSpaceAvailable() < 0;
}
bool Heap::ShouldBePromoted(Address old_address, int object_size) {
// An object should be promoted if:
// - the object has survived a scavenge operation or
// - to space is already 25% full.
NewSpacePage* page = NewSpacePage::FromAddress(old_address);
Address age_mark = new_space_.age_mark();
bool below_mark = page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
(!page->ContainsLimit(age_mark) || old_address < age_mark);
return below_mark || (new_space_.Size() + object_size) >=
(new_space_.EffectiveCapacity() >> 2);
}
void Heap::RecordWrite(Address address, int offset) {
if (!InNewSpace(address)) store_buffer_.Mark(address + offset);
}
void Heap::RecordWrites(Address address, int start, int len) {
if (!InNewSpace(address)) {
for (int i = 0; i < len; i++) {
store_buffer_.Mark(address + start + i * kPointerSize);
}
}
}
OldSpace* Heap::TargetSpace(HeapObject* object) {
InstanceType type = object->map()->instance_type();
AllocationSpace space = TargetSpaceId(type);
return (space == OLD_POINTER_SPACE)
? old_pointer_space_
: old_data_space_;
}
AllocationSpace Heap::TargetSpaceId(InstanceType type) {
// Heap numbers and sequential strings are promoted to old data space, all
// other object types are promoted to old pointer space. We do not use
// object->IsHeapNumber() and object->IsSeqString() because we already
// know that object has the heap object tag.
// These objects are never allocated in new space.
ASSERT(type != MAP_TYPE);
ASSERT(type != CODE_TYPE);
ASSERT(type != ODDBALL_TYPE);
ASSERT(type != CELL_TYPE);
ASSERT(type != PROPERTY_CELL_TYPE);
if (type <= LAST_NAME_TYPE) {
if (type == SYMBOL_TYPE) return OLD_POINTER_SPACE;
ASSERT(type < FIRST_NONSTRING_TYPE);
// There are four string representations: sequential strings, external
// strings, cons strings, and sliced strings.
// Only the latter two contain non-map-word pointers to heap objects.
return ((type & kIsIndirectStringMask) == kIsIndirectStringTag)
? OLD_POINTER_SPACE
: OLD_DATA_SPACE;
} else {
return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE;
}
}
bool Heap::AllowedToBeMigrated(HeapObject* object, AllocationSpace dst) {
// Object migration is governed by the following rules:
//
// 1) Objects in new-space can be migrated to one of the old spaces
// that matches their target space or they stay in new-space.
// 2) Objects in old-space stay in the same space when migrating.
// 3) Fillers (two or more words) can migrate due to left-trimming of
// fixed arrays in new-space, old-data-space and old-pointer-space.
// 4) Fillers (one word) can never migrate, they are skipped by
// incremental marking explicitly to prevent invalid pattern.
//
// Since this function is used for debugging only, we do not place
// asserts here, but check everything explicitly.
if (object->map() == one_pointer_filler_map()) return false;
InstanceType type = object->map()->instance_type();
MemoryChunk* chunk = MemoryChunk::FromAddress(object->address());
AllocationSpace src = chunk->owner()->identity();
switch (src) {
case NEW_SPACE:
return dst == src || dst == TargetSpaceId(type);
case OLD_POINTER_SPACE:
return dst == src && (dst == TargetSpaceId(type) || object->IsFiller());
case OLD_DATA_SPACE:
return dst == src && dst == TargetSpaceId(type);
case CODE_SPACE:
return dst == src && type == CODE_TYPE;
case MAP_SPACE:
case CELL_SPACE:
case PROPERTY_CELL_SPACE:
case LO_SPACE:
return false;
}
UNREACHABLE();
return false;
}
void Heap::CopyBlock(Address dst, Address src, int byte_size) {
CopyWords(reinterpret_cast<Object**>(dst),
reinterpret_cast<Object**>(src),
static_cast<size_t>(byte_size / kPointerSize));
}
void Heap::MoveBlock(Address dst, Address src, int byte_size) {
ASSERT(IsAligned(byte_size, kPointerSize));
int size_in_words = byte_size / kPointerSize;
if ((dst < src) || (dst >= (src + byte_size))) {
Object** src_slot = reinterpret_cast<Object**>(src);
Object** dst_slot = reinterpret_cast<Object**>(dst);
Object** end_slot = src_slot + size_in_words;
while (src_slot != end_slot) {
*dst_slot++ = *src_slot++;
}
} else {
OS::MemMove(dst, src, static_cast<size_t>(byte_size));
}
}
void Heap::ScavengePointer(HeapObject** p) {
ScavengeObject(p, *p);
}
void Heap::ScavengeObject(HeapObject** p, HeapObject* object) {
ASSERT(HEAP->InFromSpace(object));
// We use the first word (where the map pointer usually is) of a heap
// object to record the forwarding pointer. A forwarding pointer can
// point to an old space, the code space, or the to space of the new
// generation.
MapWord first_word = object->map_word();
// If the first word is a forwarding address, the object has already been
// copied.
if (first_word.IsForwardingAddress()) {
HeapObject* dest = first_word.ToForwardingAddress();
ASSERT(HEAP->InFromSpace(*p));
*p = dest;
return;
}
// Call the slow part of scavenge object.
return ScavengeObjectSlow(p, object);
}
MaybeObject* Heap::AllocateEmptyJSArrayWithAllocationSite(
ElementsKind elements_kind,
Handle<AllocationSite> allocation_site) {
return AllocateJSArrayAndStorageWithAllocationSite(elements_kind, 0, 0,
allocation_site, DONT_INITIALIZE_ARRAY_ELEMENTS);
}
bool Heap::CollectGarbage(AllocationSpace space, const char* gc_reason) {
const char* collector_reason = NULL;
GarbageCollector collector = SelectGarbageCollector(space, &collector_reason);
return CollectGarbage(space, collector, gc_reason, collector_reason);
}
MaybeObject* Heap::PrepareForCompare(String* str) {
// Always flatten small strings and force flattening of long strings
// after we have accumulated a certain amount we failed to flatten.
static const int kMaxAlwaysFlattenLength = 32;
static const int kFlattenLongThreshold = 16*KB;
const int length = str->length();
MaybeObject* obj = str->TryFlatten();
if (length <= kMaxAlwaysFlattenLength ||
unflattened_strings_length_ >= kFlattenLongThreshold) {
return obj;
}
if (obj->IsFailure()) {
unflattened_strings_length_ += length;
}
return str;
}
intptr_t Heap::AdjustAmountOfExternalAllocatedMemory(
intptr_t change_in_bytes) {
ASSERT(HasBeenSetUp());
intptr_t amount = amount_of_external_allocated_memory_ + change_in_bytes;
if (change_in_bytes > 0) {
// Avoid overflow.
if (amount > amount_of_external_allocated_memory_) {
amount_of_external_allocated_memory_ = amount;
} else {
// Give up and reset the counters in case of an overflow.
amount_of_external_allocated_memory_ = 0;
amount_of_external_allocated_memory_at_last_global_gc_ = 0;
}
intptr_t amount_since_last_global_gc = PromotedExternalMemorySize();
if (amount_since_last_global_gc > external_allocation_limit_) {
CollectAllGarbage(kNoGCFlags, "external memory allocation limit reached");
}
} else {
// Avoid underflow.
if (amount >= 0) {
amount_of_external_allocated_memory_ = amount;
} else {
// Give up and reset the counters in case of an underflow.
amount_of_external_allocated_memory_ = 0;
amount_of_external_allocated_memory_at_last_global_gc_ = 0;
}
}
if (FLAG_trace_external_memory) {
PrintPID("%8.0f ms: ", isolate()->time_millis_since_init());
PrintF("Adjust amount of external memory: delta=%6" V8_PTR_PREFIX "d KB, "
"amount=%6" V8_PTR_PREFIX "d KB, since_gc=%6" V8_PTR_PREFIX "d KB, "
"isolate=0x%08" V8PRIxPTR ".\n",
change_in_bytes / KB,
amount_of_external_allocated_memory_ / KB,
PromotedExternalMemorySize() / KB,
reinterpret_cast<intptr_t>(isolate()));
}
ASSERT(amount_of_external_allocated_memory_ >= 0);
return amount_of_external_allocated_memory_;
}
Isolate* Heap::isolate() {
return reinterpret_cast<Isolate*>(reinterpret_cast<intptr_t>(this) -
reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(4)->heap()) + 4);
}
#ifdef DEBUG
#define GC_GREEDY_CHECK() \
if (FLAG_gc_greedy) HEAP->GarbageCollectionGreedyCheck()
#else
#define GC_GREEDY_CHECK() { }
#endif
// Calls the FUNCTION_CALL function and retries it up to three times
// to guarantee that any allocations performed during the call will
// succeed if there's enough memory.
// Warning: Do not use the identifiers __object__, __maybe_object__ or
// __scope__ in a call to this macro.
#define CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY, OOM)\
do { \
GC_GREEDY_CHECK(); \
MaybeObject* __maybe_object__ = FUNCTION_CALL; \
Object* __object__ = NULL; \
if (__maybe_object__->ToObject(&__object__)) RETURN_VALUE; \
if (__maybe_object__->IsOutOfMemory()) { \
OOM; \
} \
if (!__maybe_object__->IsRetryAfterGC()) RETURN_EMPTY; \
ISOLATE->heap()->CollectGarbage(Failure::cast(__maybe_object__)-> \
allocation_space(), \
"allocation failure"); \
__maybe_object__ = FUNCTION_CALL; \
if (__maybe_object__->ToObject(&__object__)) RETURN_VALUE; \
if (__maybe_object__->IsOutOfMemory()) { \
OOM; \
} \
if (!__maybe_object__->IsRetryAfterGC()) RETURN_EMPTY; \
ISOLATE->counters()->gc_last_resort_from_handles()->Increment(); \
ISOLATE->heap()->CollectAllAvailableGarbage("last resort gc"); \
{ \
AlwaysAllocateScope __scope__; \
__maybe_object__ = FUNCTION_CALL; \
} \
if (__maybe_object__->ToObject(&__object__)) RETURN_VALUE; \
if (__maybe_object__->IsOutOfMemory()) { \
OOM; \
} \
if (__maybe_object__->IsRetryAfterGC()) { \
/* TODO(1181417): Fix this. */ \
v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_LAST", true); \
} \
RETURN_EMPTY; \
} while (false)
#define CALL_AND_RETRY_OR_DIE( \
ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY) \
CALL_AND_RETRY( \
ISOLATE, \
FUNCTION_CALL, \
RETURN_VALUE, \
RETURN_EMPTY, \
v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY", true))
#define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE) \
CALL_AND_RETRY_OR_DIE(ISOLATE, \
FUNCTION_CALL, \
return Handle<TYPE>(TYPE::cast(__object__), ISOLATE), \
return Handle<TYPE>()) \
#define CALL_HEAP_FUNCTION_VOID(ISOLATE, FUNCTION_CALL) \
CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL, return, return)
#define CALL_HEAP_FUNCTION_PASS_EXCEPTION(ISOLATE, FUNCTION_CALL) \
CALL_AND_RETRY(ISOLATE, \
FUNCTION_CALL, \
return __object__, \
return __maybe_object__, \
return __maybe_object__)
void ExternalStringTable::AddString(String* string) {
ASSERT(string->IsExternalString());
if (heap_->InNewSpace(string)) {
new_space_strings_.Add(string);
} else {
old_space_strings_.Add(string);
}
}
void ExternalStringTable::Iterate(ObjectVisitor* v) {
if (!new_space_strings_.is_empty()) {
Object** start = &new_space_strings_[0];
v->VisitPointers(start, start + new_space_strings_.length());
}
if (!old_space_strings_.is_empty()) {
Object** start = &old_space_strings_[0];
v->VisitPointers(start, start + old_space_strings_.length());
}
}
// Verify() is inline to avoid ifdef-s around its calls in release
// mode.
void ExternalStringTable::Verify() {
#ifdef DEBUG
for (int i = 0; i < new_space_strings_.length(); ++i) {
Object* obj = Object::cast(new_space_strings_[i]);
// TODO(yangguo): check that the object is indeed an external string.
ASSERT(heap_->InNewSpace(obj));
ASSERT(obj != HEAP->the_hole_value());
}
for (int i = 0; i < old_space_strings_.length(); ++i) {
Object* obj = Object::cast(old_space_strings_[i]);
// TODO(yangguo): check that the object is indeed an external string.
ASSERT(!heap_->InNewSpace(obj));
ASSERT(obj != HEAP->the_hole_value());
}
#endif
}
void ExternalStringTable::AddOldString(String* string) {
ASSERT(string->IsExternalString());
ASSERT(!heap_->InNewSpace(string));
old_space_strings_.Add(string);
}
void ExternalStringTable::ShrinkNewStrings(int position) {
new_space_strings_.Rewind(position);
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) {
Verify();
}
#endif
}
void Heap::ClearInstanceofCache() {
set_instanceof_cache_function(the_hole_value());
}
Object* Heap::ToBoolean(bool condition) {
return condition ? true_value() : false_value();
}
void Heap::CompletelyClearInstanceofCache() {
set_instanceof_cache_map(the_hole_value());
set_instanceof_cache_function(the_hole_value());
}
MaybeObject* TranscendentalCache::Get(Type type, double input) {
SubCache* cache = caches_[type];
if (cache == NULL) {
caches_[type] = cache = new SubCache(type);
}
return cache->Get(input);
}
Address TranscendentalCache::cache_array_address() {
return reinterpret_cast<Address>(caches_);
}
double TranscendentalCache::SubCache::Calculate(double input) {
switch (type_) {
case ACOS:
return acos(input);
case ASIN:
return asin(input);
case ATAN:
return atan(input);
case COS:
return fast_cos(input);
case EXP:
return exp(input);
case LOG:
return fast_log(input);
case SIN:
return fast_sin(input);
case TAN:
return fast_tan(input);
default:
return 0.0; // Never happens.
}
}
MaybeObject* TranscendentalCache::SubCache::Get(double input) {
Converter c;
c.dbl = input;
int hash = Hash(c);
Element e = elements_[hash];
if (e.in[0] == c.integers[0] &&
e.in[1] == c.integers[1]) {
ASSERT(e.output != NULL);
isolate_->counters()->transcendental_cache_hit()->Increment();
return e.output;
}
double answer = Calculate(input);
isolate_->counters()->transcendental_cache_miss()->Increment();
Object* heap_number;
{ MaybeObject* maybe_heap_number =
isolate_->heap()->AllocateHeapNumber(answer);
if (!maybe_heap_number->ToObject(&heap_number)) return maybe_heap_number;
}
elements_[hash].in[0] = c.integers[0];
elements_[hash].in[1] = c.integers[1];
elements_[hash].output = heap_number;
return heap_number;
}
AlwaysAllocateScope::AlwaysAllocateScope() {
// We shouldn't hit any nested scopes, because that requires
// non-handle code to call handle code. The code still works but
// performance will degrade, so we want to catch this situation
// in debug mode.
ASSERT(HEAP->always_allocate_scope_depth_ == 0);
HEAP->always_allocate_scope_depth_++;
}
AlwaysAllocateScope::~AlwaysAllocateScope() {
HEAP->always_allocate_scope_depth_--;
ASSERT(HEAP->always_allocate_scope_depth_ == 0);
}
#ifdef VERIFY_HEAP
NoWeakEmbeddedMapsVerificationScope::NoWeakEmbeddedMapsVerificationScope() {
HEAP->no_weak_embedded_maps_verification_scope_depth_++;
}
NoWeakEmbeddedMapsVerificationScope::~NoWeakEmbeddedMapsVerificationScope() {
HEAP->no_weak_embedded_maps_verification_scope_depth_--;
}
#endif
void VerifyPointersVisitor::VisitPointers(Object** start, Object** end) {
for (Object** current = start; current < end; current++) {
if ((*current)->IsHeapObject()) {
HeapObject* object = HeapObject::cast(*current);
CHECK(HEAP->Contains(object));
CHECK(object->map()->IsMap());
}
}
}
double GCTracer::SizeOfHeapObjects() {
return (static_cast<double>(HEAP->SizeOfObjects())) / MB;
}
DisallowAllocationFailure::DisallowAllocationFailure() {
#ifdef DEBUG
old_state_ = HEAP->disallow_allocation_failure_;
HEAP->disallow_allocation_failure_ = true;
#endif
}
DisallowAllocationFailure::~DisallowAllocationFailure() {
#ifdef DEBUG
HEAP->disallow_allocation_failure_ = old_state_;
#endif
}
} } // namespace v8::internal
#endif // V8_HEAP_INL_H_
|