1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
|
// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_HEAP_INL_H_
#define V8_HEAP_INL_H_
#include "log.h"
#include "v8-counters.h"
namespace v8 {
namespace internal {
int Heap::MaxObjectSizeInPagedSpace() {
return Page::kMaxHeapObjectSize;
}
Object* Heap::AllocateSymbol(Vector<const char> str,
int chars,
uint32_t hash_field) {
unibrow::Utf8InputBuffer<> buffer(str.start(),
static_cast<unsigned>(str.length()));
return AllocateInternalSymbol(&buffer, chars, hash_field);
}
Object* Heap::AllocateRaw(int size_in_bytes,
AllocationSpace space,
AllocationSpace retry_space) {
ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
ASSERT(space != NEW_SPACE ||
retry_space == OLD_POINTER_SPACE ||
retry_space == OLD_DATA_SPACE ||
retry_space == LO_SPACE);
#ifdef DEBUG
if (FLAG_gc_interval >= 0 &&
!disallow_allocation_failure_ &&
Heap::allocation_timeout_-- <= 0) {
return Failure::RetryAfterGC(size_in_bytes, space);
}
Counters::objs_since_last_full.Increment();
Counters::objs_since_last_young.Increment();
#endif
Object* result;
if (NEW_SPACE == space) {
result = new_space_.AllocateRaw(size_in_bytes);
if (always_allocate() && result->IsFailure()) {
space = retry_space;
} else {
return result;
}
}
if (OLD_POINTER_SPACE == space) {
result = old_pointer_space_->AllocateRaw(size_in_bytes);
} else if (OLD_DATA_SPACE == space) {
result = old_data_space_->AllocateRaw(size_in_bytes);
} else if (CODE_SPACE == space) {
result = code_space_->AllocateRaw(size_in_bytes);
} else if (LO_SPACE == space) {
result = lo_space_->AllocateRaw(size_in_bytes);
} else if (CELL_SPACE == space) {
result = cell_space_->AllocateRaw(size_in_bytes);
} else {
ASSERT(MAP_SPACE == space);
result = map_space_->AllocateRaw(size_in_bytes);
}
if (result->IsFailure()) old_gen_exhausted_ = true;
return result;
}
Object* Heap::NumberFromInt32(int32_t value) {
if (Smi::IsValid(value)) return Smi::FromInt(value);
// Bypass NumberFromDouble to avoid various redundant checks.
return AllocateHeapNumber(FastI2D(value));
}
Object* Heap::NumberFromUint32(uint32_t value) {
if ((int32_t)value >= 0 && Smi::IsValid((int32_t)value)) {
return Smi::FromInt((int32_t)value);
}
// Bypass NumberFromDouble to avoid various redundant checks.
return AllocateHeapNumber(FastUI2D(value));
}
void Heap::FinalizeExternalString(String* string) {
ASSERT(string->IsExternalString());
v8::String::ExternalStringResourceBase** resource_addr =
reinterpret_cast<v8::String::ExternalStringResourceBase**>(
reinterpret_cast<byte*>(string) +
ExternalString::kResourceOffset -
kHeapObjectTag);
delete *resource_addr;
// Clear the resource pointer in the string.
*resource_addr = NULL;
}
Object* Heap::AllocateRawMap() {
#ifdef DEBUG
Counters::objs_since_last_full.Increment();
Counters::objs_since_last_young.Increment();
#endif
Object* result = map_space_->AllocateRaw(Map::kSize);
if (result->IsFailure()) old_gen_exhausted_ = true;
#ifdef DEBUG
if (!result->IsFailure()) {
// Maps have their own alignment.
CHECK((OffsetFrom(result) & kMapAlignmentMask) == kHeapObjectTag);
}
#endif
return result;
}
Object* Heap::AllocateRawCell() {
#ifdef DEBUG
Counters::objs_since_last_full.Increment();
Counters::objs_since_last_young.Increment();
#endif
Object* result = cell_space_->AllocateRaw(JSGlobalPropertyCell::kSize);
if (result->IsFailure()) old_gen_exhausted_ = true;
return result;
}
bool Heap::InNewSpace(Object* object) {
return new_space_.Contains(object);
}
bool Heap::InFromSpace(Object* object) {
return new_space_.FromSpaceContains(object);
}
bool Heap::InToSpace(Object* object) {
return new_space_.ToSpaceContains(object);
}
bool Heap::ShouldBePromoted(Address old_address, int object_size) {
// An object should be promoted if:
// - the object has survived a scavenge operation or
// - to space is already 25% full.
return old_address < new_space_.age_mark()
|| (new_space_.Size() + object_size) >= (new_space_.Capacity() >> 2);
}
void Heap::RecordWrite(Address address, int offset) {
if (new_space_.Contains(address)) return;
ASSERT(!new_space_.FromSpaceContains(address));
SLOW_ASSERT(Contains(address + offset));
Page::SetRSet(address, offset);
}
OldSpace* Heap::TargetSpace(HeapObject* object) {
InstanceType type = object->map()->instance_type();
AllocationSpace space = TargetSpaceId(type);
return (space == OLD_POINTER_SPACE)
? old_pointer_space_
: old_data_space_;
}
AllocationSpace Heap::TargetSpaceId(InstanceType type) {
// Heap numbers and sequential strings are promoted to old data space, all
// other object types are promoted to old pointer space. We do not use
// object->IsHeapNumber() and object->IsSeqString() because we already
// know that object has the heap object tag.
// These objects are never allocated in new space.
ASSERT(type != MAP_TYPE);
ASSERT(type != CODE_TYPE);
ASSERT(type != ODDBALL_TYPE);
ASSERT(type != JS_GLOBAL_PROPERTY_CELL_TYPE);
if (type < FIRST_NONSTRING_TYPE) {
// There are three string representations: sequential strings, cons
// strings, and external strings. Only cons strings contain
// non-map-word pointers to heap objects.
return ((type & kStringRepresentationMask) == kConsStringTag)
? OLD_POINTER_SPACE
: OLD_DATA_SPACE;
} else {
return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE;
}
}
void Heap::CopyBlock(Object** dst, Object** src, int byte_size) {
ASSERT(IsAligned(byte_size, kPointerSize));
// Use block copying memcpy if the segment we're copying is
// enough to justify the extra call/setup overhead.
static const int kBlockCopyLimit = 16 * kPointerSize;
if (byte_size >= kBlockCopyLimit) {
memcpy(dst, src, byte_size);
} else {
int remaining = byte_size / kPointerSize;
do {
remaining--;
*dst++ = *src++;
} while (remaining > 0);
}
}
void Heap::ScavengeObject(HeapObject** p, HeapObject* object) {
ASSERT(InFromSpace(object));
// We use the first word (where the map pointer usually is) of a heap
// object to record the forwarding pointer. A forwarding pointer can
// point to an old space, the code space, or the to space of the new
// generation.
MapWord first_word = object->map_word();
// If the first word is a forwarding address, the object has already been
// copied.
if (first_word.IsForwardingAddress()) {
*p = first_word.ToForwardingAddress();
return;
}
// Call the slow part of scavenge object.
return ScavengeObjectSlow(p, object);
}
int Heap::AdjustAmountOfExternalAllocatedMemory(int change_in_bytes) {
ASSERT(HasBeenSetup());
int amount = amount_of_external_allocated_memory_ + change_in_bytes;
if (change_in_bytes >= 0) {
// Avoid overflow.
if (amount > amount_of_external_allocated_memory_) {
amount_of_external_allocated_memory_ = amount;
}
int amount_since_last_global_gc =
amount_of_external_allocated_memory_ -
amount_of_external_allocated_memory_at_last_global_gc_;
if (amount_since_last_global_gc > external_allocation_limit_) {
CollectAllGarbage(false);
}
} else {
// Avoid underflow.
if (amount >= 0) {
amount_of_external_allocated_memory_ = amount;
}
}
ASSERT(amount_of_external_allocated_memory_ >= 0);
return amount_of_external_allocated_memory_;
}
void Heap::SetLastScriptId(Object* last_script_id) {
roots_[kLastScriptIdRootIndex] = last_script_id;
}
#define GC_GREEDY_CHECK() \
ASSERT(!FLAG_gc_greedy || v8::internal::Heap::GarbageCollectionGreedyCheck())
// Calls the FUNCTION_CALL function and retries it up to three times
// to guarantee that any allocations performed during the call will
// succeed if there's enough memory.
// Warning: Do not use the identifiers __object__ or __scope__ in a
// call to this macro.
#define CALL_AND_RETRY(FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY) \
do { \
GC_GREEDY_CHECK(); \
Object* __object__ = FUNCTION_CALL; \
if (!__object__->IsFailure()) RETURN_VALUE; \
if (__object__->IsOutOfMemoryFailure()) { \
v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_0"); \
} \
if (!__object__->IsRetryAfterGC()) RETURN_EMPTY; \
Heap::CollectGarbage(Failure::cast(__object__)->requested(), \
Failure::cast(__object__)->allocation_space()); \
__object__ = FUNCTION_CALL; \
if (!__object__->IsFailure()) RETURN_VALUE; \
if (__object__->IsOutOfMemoryFailure()) { \
v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_1"); \
} \
if (!__object__->IsRetryAfterGC()) RETURN_EMPTY; \
Counters::gc_last_resort_from_handles.Increment(); \
Heap::CollectAllGarbage(false); \
{ \
AlwaysAllocateScope __scope__; \
__object__ = FUNCTION_CALL; \
} \
if (!__object__->IsFailure()) RETURN_VALUE; \
if (__object__->IsOutOfMemoryFailure() || \
__object__->IsRetryAfterGC()) { \
/* TODO(1181417): Fix this. */ \
v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_2"); \
} \
RETURN_EMPTY; \
} while (false)
#define CALL_HEAP_FUNCTION(FUNCTION_CALL, TYPE) \
CALL_AND_RETRY(FUNCTION_CALL, \
return Handle<TYPE>(TYPE::cast(__object__)), \
return Handle<TYPE>())
#define CALL_HEAP_FUNCTION_VOID(FUNCTION_CALL) \
CALL_AND_RETRY(FUNCTION_CALL, return, return)
#ifdef DEBUG
inline bool Heap::allow_allocation(bool new_state) {
bool old = allocation_allowed_;
allocation_allowed_ = new_state;
return old;
}
#endif
void ExternalStringTable::AddString(String* string) {
ASSERT(string->IsExternalString());
if (Heap::InNewSpace(string)) {
new_space_strings_.Add(string);
} else {
old_space_strings_.Add(string);
}
}
void ExternalStringTable::Iterate(ObjectVisitor* v) {
if (!new_space_strings_.is_empty()) {
Object** start = &new_space_strings_[0];
v->VisitPointers(start, start + new_space_strings_.length());
}
if (!old_space_strings_.is_empty()) {
Object** start = &old_space_strings_[0];
v->VisitPointers(start, start + old_space_strings_.length());
}
}
// Verify() is inline to avoid ifdef-s around its calls in release
// mode.
void ExternalStringTable::Verify() {
#ifdef DEBUG
for (int i = 0; i < new_space_strings_.length(); ++i) {
ASSERT(Heap::InNewSpace(new_space_strings_[i]));
ASSERT(new_space_strings_[i] != Heap::raw_unchecked_null_value());
}
for (int i = 0; i < old_space_strings_.length(); ++i) {
ASSERT(!Heap::InNewSpace(old_space_strings_[i]));
ASSERT(old_space_strings_[i] != Heap::raw_unchecked_null_value());
}
#endif
}
void ExternalStringTable::AddOldString(String* string) {
ASSERT(string->IsExternalString());
ASSERT(!Heap::InNewSpace(string));
old_space_strings_.Add(string);
}
void ExternalStringTable::ShrinkNewStrings(int position) {
new_space_strings_.Rewind(position);
Verify();
}
} } // namespace v8::internal
#endif // V8_HEAP_INL_H_
|