summaryrefslogtreecommitdiff
path: root/deps/v8/src/fast-codegen.cc
blob: 455dd5fab42c2c2fc561ea0a712f22da06d63c1e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

#include "codegen-inl.h"
#include "compiler.h"
#include "fast-codegen.h"
#include "stub-cache.h"
#include "debug.h"

namespace v8 {
namespace internal {

#define __ ACCESS_MASM(masm())

Handle<Code> FastCodeGenerator::MakeCode(FunctionLiteral* fun,
                                         Handle<Script> script,
                                         bool is_eval) {
  CodeGenerator::MakeCodePrologue(fun);
  const int kInitialBufferSize = 4 * KB;
  MacroAssembler masm(NULL, kInitialBufferSize);
  FastCodeGenerator cgen(&masm, script, is_eval);
  cgen.Generate(fun);
  if (cgen.HasStackOverflow()) {
    ASSERT(!Top::has_pending_exception());
    return Handle<Code>::null();
  }
  Code::Flags flags = Code::ComputeFlags(Code::FUNCTION, NOT_IN_LOOP);
  return CodeGenerator::MakeCodeEpilogue(fun, &masm, flags, script);
}


int FastCodeGenerator::SlotOffset(Slot* slot) {
  ASSERT(slot != NULL);
  // Offset is negative because higher indexes are at lower addresses.
  int offset = -slot->index() * kPointerSize;
  // Adjust by a (parameter or local) base offset.
  switch (slot->type()) {
    case Slot::PARAMETER:
      offset += (function_->scope()->num_parameters() + 1) * kPointerSize;
      break;
    case Slot::LOCAL:
      offset += JavaScriptFrameConstants::kLocal0Offset;
      break;
    case Slot::CONTEXT:
    case Slot::LOOKUP:
      UNREACHABLE();
  }
  return offset;
}


void FastCodeGenerator::Apply(Expression::Context context, Register reg) {
  switch (context) {
    case Expression::kUninitialized:
      UNREACHABLE();
    case Expression::kEffect:
      break;
    case Expression::kValue:
      __ push(reg);
      break;
    case Expression::kTest:
      TestAndBranch(reg, true_label_, false_label_);
      break;
    case Expression::kValueTest: {
      Label discard;
      __ push(reg);
      TestAndBranch(reg, true_label_, &discard);
      __ bind(&discard);
      __ Drop(1);
      __ jmp(false_label_);
      break;
    }
    case Expression::kTestValue: {
      Label discard;
      __ push(reg);
      TestAndBranch(reg, &discard, false_label_);
      __ bind(&discard);
      __ Drop(1);
      __ jmp(true_label_);
    }
  }
}


void FastCodeGenerator::VisitDeclarations(
    ZoneList<Declaration*>* declarations) {
  int length = declarations->length();
  int globals = 0;
  for (int i = 0; i < length; i++) {
    Declaration* decl = declarations->at(i);
    Variable* var = decl->proxy()->var();
    Slot* slot = var->slot();

    // If it was not possible to allocate the variable at compile
    // time, we need to "declare" it at runtime to make sure it
    // actually exists in the local context.
    if ((slot != NULL && slot->type() == Slot::LOOKUP) || !var->is_global()) {
      VisitDeclaration(decl);
    } else {
      // Count global variables and functions for later processing
      globals++;
    }
  }

  // Compute array of global variable and function declarations.
  // Do nothing in case of no declared global functions or variables.
  if (globals > 0) {
    Handle<FixedArray> array = Factory::NewFixedArray(2 * globals, TENURED);
    for (int j = 0, i = 0; i < length; i++) {
      Declaration* decl = declarations->at(i);
      Variable* var = decl->proxy()->var();
      Slot* slot = var->slot();

      if ((slot == NULL || slot->type() != Slot::LOOKUP) && var->is_global()) {
        array->set(j++, *(var->name()));
        if (decl->fun() == NULL) {
          if (var->mode() == Variable::CONST) {
            // In case this is const property use the hole.
            array->set_the_hole(j++);
          } else {
            array->set_undefined(j++);
          }
        } else {
          Handle<JSFunction> function =
              Compiler::BuildBoilerplate(decl->fun(), script_, this);
          // Check for stack-overflow exception.
          if (HasStackOverflow()) return;
          array->set(j++, *function);
        }
      }
    }
    // Invoke the platform-dependent code generator to do the actual
    // declaration the global variables and functions.
    DeclareGlobals(array);
  }
}


void FastCodeGenerator::SetFunctionPosition(FunctionLiteral* fun) {
  if (FLAG_debug_info) {
    CodeGenerator::RecordPositions(masm_, fun->start_position());
  }
}


void FastCodeGenerator::SetReturnPosition(FunctionLiteral* fun) {
  if (FLAG_debug_info) {
    CodeGenerator::RecordPositions(masm_, fun->end_position());
  }
}


void FastCodeGenerator::SetStatementPosition(Statement* stmt) {
  if (FLAG_debug_info) {
    CodeGenerator::RecordPositions(masm_, stmt->statement_pos());
  }
}


void FastCodeGenerator::SetSourcePosition(int pos) {
  if (FLAG_debug_info && pos != RelocInfo::kNoPosition) {
    masm_->RecordPosition(pos);
  }
}


void FastCodeGenerator::EmitLogicalOperation(BinaryOperation* expr) {
#ifdef DEBUG
  Expression::Context expected = Expression::kUninitialized;
  switch (expr->context()) {
    case Expression::kUninitialized:
      UNREACHABLE();
    case Expression::kEffect:
    case Expression::kTest:
      // The value of the left subexpression is not needed.
      expected = Expression::kTest;
      break;
    case Expression::kValue:
      // The value of the left subexpression is needed and its specific
      // context depends on the operator.
      expected = (expr->op() == Token::OR)
          ? Expression::kValueTest
          : Expression::kTestValue;
      break;
    case Expression::kValueTest:
      // The value of the left subexpression is needed for OR.
      expected = (expr->op() == Token::OR)
          ? Expression::kValueTest
          : Expression::kTest;
      break;
    case Expression::kTestValue:
      // The value of the left subexpression is needed for AND.
      expected = (expr->op() == Token::OR)
          ? Expression::kTest
          : Expression::kTestValue;
      break;
  }
  ASSERT_EQ(expected, expr->left()->context());
  ASSERT_EQ(expr->context(), expr->right()->context());
#endif

  Label eval_right, done;

  // Set up the appropriate context for the left subexpression based
  // on the operation and our own context.  Initially assume we can
  // inherit both true and false labels from our context.
  Label* if_true = true_label_;
  Label* if_false = false_label_;
  if (expr->op() == Token::OR) {
    // If we are not in some kind of a test context, we did not inherit a
    // true label from our context.  Use the end of the expression.
    if (expr->context() == Expression::kEffect ||
        expr->context() == Expression::kValue) {
      if_true = &done;
    }
    // The false label is the label of the right subexpression.
    if_false = &eval_right;
  } else {
    ASSERT_EQ(Token::AND, expr->op());
    // The true label is the label of the right subexpression.
    if_true = &eval_right;
    // If we are not in some kind of a test context, we did not inherit a
    // false label from our context.  Use the end of the expression.
    if (expr->context() == Expression::kEffect ||
        expr->context() == Expression::kValue) {
      if_false = &done;
    }
  }
  VisitForControl(expr->left(), if_true, if_false);

  __ bind(&eval_right);
  Visit(expr->right());

  __ bind(&done);
}


void FastCodeGenerator::VisitBlock(Block* stmt) {
  Comment cmnt(masm_, "[ Block");
  Breakable nested_statement(this, stmt);
  SetStatementPosition(stmt);
  VisitStatements(stmt->statements());
  __ bind(nested_statement.break_target());
}


void FastCodeGenerator::VisitExpressionStatement(ExpressionStatement* stmt) {
  Comment cmnt(masm_, "[ ExpressionStatement");
  SetStatementPosition(stmt);
  Visit(stmt->expression());
}


void FastCodeGenerator::VisitEmptyStatement(EmptyStatement* stmt) {
  Comment cmnt(masm_, "[ EmptyStatement");
  SetStatementPosition(stmt);
}


void FastCodeGenerator::VisitIfStatement(IfStatement* stmt) {
  Comment cmnt(masm_, "[ IfStatement");
  SetStatementPosition(stmt);
  Label then_part, else_part, done;

  // Do not worry about optimizing for empty then or else bodies.
  VisitForControl(stmt->condition(), &then_part, &else_part);

  __ bind(&then_part);
  Visit(stmt->then_statement());
  __ jmp(&done);

  __ bind(&else_part);
  Visit(stmt->else_statement());

  __ bind(&done);
}


void FastCodeGenerator::VisitContinueStatement(ContinueStatement* stmt) {
  Comment cmnt(masm_,  "[ ContinueStatement");
  SetStatementPosition(stmt);
  NestedStatement* current = nesting_stack_;
  int stack_depth = 0;
  while (!current->IsContinueTarget(stmt->target())) {
    stack_depth = current->Exit(stack_depth);
    current = current->outer();
  }
  __ Drop(stack_depth);

  Iteration* loop = current->AsIteration();
  __ jmp(loop->continue_target());
}


void FastCodeGenerator::VisitBreakStatement(BreakStatement* stmt) {
  Comment cmnt(masm_,  "[ BreakStatement");
  SetStatementPosition(stmt);
  NestedStatement* current = nesting_stack_;
  int stack_depth = 0;
  while (!current->IsBreakTarget(stmt->target())) {
    stack_depth = current->Exit(stack_depth);
    current = current->outer();
  }
  __ Drop(stack_depth);

  Breakable* target = current->AsBreakable();
  __ jmp(target->break_target());
}


void FastCodeGenerator::VisitReturnStatement(ReturnStatement* stmt) {
  Comment cmnt(masm_, "[ ReturnStatement");
  SetStatementPosition(stmt);
  Expression* expr = stmt->expression();
  // Complete the statement based on the type of the subexpression.
  if (expr->AsLiteral() != NULL) {
    __ Move(result_register(), expr->AsLiteral()->handle());
  } else {
    ASSERT_EQ(Expression::kValue, expr->context());
    Visit(expr);
    __ pop(result_register());
  }

  // Exit all nested statements.
  NestedStatement* current = nesting_stack_;
  int stack_depth = 0;
  while (current != NULL) {
    stack_depth = current->Exit(stack_depth);
    current = current->outer();
  }
  __ Drop(stack_depth);

  EmitReturnSequence(stmt->statement_pos());
}




void FastCodeGenerator::VisitWithEnterStatement(WithEnterStatement* stmt) {
  Comment cmnt(masm_, "[ WithEnterStatement");
  SetStatementPosition(stmt);

  Visit(stmt->expression());
  if (stmt->is_catch_block()) {
    __ CallRuntime(Runtime::kPushCatchContext, 1);
  } else {
    __ CallRuntime(Runtime::kPushContext, 1);
  }
  // Both runtime calls return the new context in both the context and the
  // result registers.

  // Update local stack frame context field.
  StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
}


void FastCodeGenerator::VisitWithExitStatement(WithExitStatement* stmt) {
  Comment cmnt(masm_, "[ WithExitStatement");
  SetStatementPosition(stmt);

  // Pop context.
  LoadContextField(context_register(), Context::PREVIOUS_INDEX);
  // Update local stack frame context field.
  StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
}


void FastCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
  UNREACHABLE();
}


void FastCodeGenerator::VisitDoWhileStatement(DoWhileStatement* stmt) {
  Comment cmnt(masm_, "[ DoWhileStatement");
  SetStatementPosition(stmt);
  Label body, stack_limit_hit, stack_check_success;

  Iteration loop_statement(this, stmt);
  increment_loop_depth();

  __ bind(&body);
  Visit(stmt->body());

  // Check stack before looping.
  __ StackLimitCheck(&stack_limit_hit);
  __ bind(&stack_check_success);

  __ bind(loop_statement.continue_target());
  VisitForControl(stmt->cond(), &body, loop_statement.break_target());

  __ bind(&stack_limit_hit);
  StackCheckStub stack_stub;
  __ CallStub(&stack_stub);
  __ jmp(&stack_check_success);

  __ bind(loop_statement.break_target());

  decrement_loop_depth();
}


void FastCodeGenerator::VisitWhileStatement(WhileStatement* stmt) {
  Comment cmnt(masm_, "[ WhileStatement");
  SetStatementPosition(stmt);
  Label body, stack_limit_hit, stack_check_success;

  Iteration loop_statement(this, stmt);
  increment_loop_depth();

  // Emit the test at the bottom of the loop.
  __ jmp(loop_statement.continue_target());

  __ bind(&body);
  Visit(stmt->body());

  __ bind(loop_statement.continue_target());
  // Check stack before looping.
  __ StackLimitCheck(&stack_limit_hit);
  __ bind(&stack_check_success);

  VisitForControl(stmt->cond(), &body, loop_statement.break_target());

  __ bind(&stack_limit_hit);
  StackCheckStub stack_stub;
  __ CallStub(&stack_stub);
  __ jmp(&stack_check_success);

  __ bind(loop_statement.break_target());
  decrement_loop_depth();
}


void FastCodeGenerator::VisitForStatement(ForStatement* stmt) {
  UNREACHABLE();
}


void FastCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
  UNREACHABLE();
}


void FastCodeGenerator::VisitTryCatchStatement(TryCatchStatement* stmt) {
  Comment cmnt(masm_, "[ TryCatchStatement");
  SetStatementPosition(stmt);
  // The try block adds a handler to the exception handler chain
  // before entering, and removes it again when exiting normally.
  // If an exception is thrown during execution of the try block,
  // control is passed to the handler, which also consumes the handler.
  // At this point, the exception is in a register, and store it in
  // the temporary local variable (prints as ".catch-var") before
  // executing the catch block. The catch block has been rewritten
  // to introduce a new scope to bind the catch variable and to remove
  // that scope again afterwards.

  Label try_handler_setup, catch_entry, done;

  __ Call(&try_handler_setup);
  // Try handler code, exception in result register.

  // Store exception in local .catch variable before executing catch block.
  {
    // The catch variable is *always* a variable proxy for a local variable.
    Variable* catch_var = stmt->catch_var()->AsVariableProxy()->AsVariable();
    ASSERT_NOT_NULL(catch_var);
    Slot* variable_slot = catch_var->slot();
    ASSERT_NOT_NULL(variable_slot);
    ASSERT_EQ(Slot::LOCAL, variable_slot->type());
    StoreToFrameField(SlotOffset(variable_slot), result_register());
  }

  Visit(stmt->catch_block());
  __ jmp(&done);

  // Try block code. Sets up the exception handler chain.
  __ bind(&try_handler_setup);
  {
    TryCatch try_block(this, &catch_entry);
    __ PushTryHandler(IN_JAVASCRIPT, TRY_CATCH_HANDLER);
    Visit(stmt->try_block());
    __ PopTryHandler();
  }
  __ bind(&done);
}


void FastCodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
  Comment cmnt(masm_, "[ TryFinallyStatement");
  SetStatementPosition(stmt);
  // Try finally is compiled by setting up a try-handler on the stack while
  // executing the try body, and removing it again afterwards.
  //
  // The try-finally construct can enter the finally block in three ways:
  // 1. By exiting the try-block normally. This removes the try-handler and
  //      calls the finally block code before continuing.
  // 2. By exiting the try-block with a function-local control flow transfer
  //    (break/continue/return). The site of the, e.g., break removes the
  //    try handler and calls the finally block code before continuing
  //    its outward control transfer.
  // 3. by exiting the try-block with a thrown exception.
  //    This can happen in nested function calls. It traverses the try-handler
  //    chain and consumes the try-handler entry before jumping to the
  //    handler code. The handler code then calls the finally-block before
  //    rethrowing the exception.
  //
  // The finally block must assume a return address on top of the stack
  // (or in the link register on ARM chips) and a value (return value or
  // exception) in the result register (rax/eax/r0), both of which must
  // be preserved. The return address isn't GC-safe, so it should be
  // cooked before GC.
  Label finally_entry;
  Label try_handler_setup;

  // Setup the try-handler chain. Use a call to
  // Jump to try-handler setup and try-block code. Use call to put try-handler
  // address on stack.
  __ Call(&try_handler_setup);
  // Try handler code. Return address of call is pushed on handler stack.
  {
    // This code is only executed during stack-handler traversal when an
    // exception is thrown. The execption is in the result register, which
    // is retained by the finally block.
    // Call the finally block and then rethrow the exception.
    __ Call(&finally_entry);
    __ push(result_register());
    __ CallRuntime(Runtime::kReThrow, 1);
  }

  __ bind(&finally_entry);
  {
    // Finally block implementation.
    Finally finally_block(this);
    EnterFinallyBlock();
    Visit(stmt->finally_block());
    ExitFinallyBlock();  // Return to the calling code.
  }

  __ bind(&try_handler_setup);
  {
    // Setup try handler (stack pointer registers).
    TryFinally try_block(this, &finally_entry);
    __ PushTryHandler(IN_JAVASCRIPT, TRY_FINALLY_HANDLER);
    Visit(stmt->try_block());
    __ PopTryHandler();
  }
  // Execute the finally block on the way out.
  __ Call(&finally_entry);
}


void FastCodeGenerator::VisitDebuggerStatement(DebuggerStatement* stmt) {
#ifdef ENABLE_DEBUGGER_SUPPORT
  Comment cmnt(masm_, "[ DebuggerStatement");
  SetStatementPosition(stmt);
  __ CallRuntime(Runtime::kDebugBreak, 0);
  // Ignore the return value.
#endif
}


void FastCodeGenerator::VisitFunctionBoilerplateLiteral(
    FunctionBoilerplateLiteral* expr) {
  UNREACHABLE();
}


void FastCodeGenerator::VisitConditional(Conditional* expr) {
  Comment cmnt(masm_, "[ Conditional");
  ASSERT_EQ(Expression::kTest, expr->condition()->context());
  ASSERT_EQ(expr->context(), expr->then_expression()->context());
  ASSERT_EQ(expr->context(), expr->else_expression()->context());


  Label true_case, false_case, done;
  VisitForControl(expr->condition(), &true_case, &false_case);

  __ bind(&true_case);
  Visit(expr->then_expression());
  // If control flow falls through Visit, jump to done.
  if (expr->context() == Expression::kEffect ||
      expr->context() == Expression::kValue) {
    __ jmp(&done);
  }

  __ bind(&false_case);
  Visit(expr->else_expression());
  // If control flow falls through Visit, merge it with true case here.
  if (expr->context() == Expression::kEffect ||
      expr->context() == Expression::kValue) {
    __ bind(&done);
  }
}


void FastCodeGenerator::VisitSlot(Slot* expr) {
  // Slots do not appear directly in the AST.
  UNREACHABLE();
}


void FastCodeGenerator::VisitLiteral(Literal* expr) {
  Comment cmnt(masm_, "[ Literal");
  Apply(expr->context(), expr);
}


void FastCodeGenerator::VisitAssignment(Assignment* expr) {
  Comment cmnt(masm_, "[ Assignment");

  // Record source code position of the (possible) IC call.
  SetSourcePosition(expr->position());

  // Left-hand side can only be a property, a global or a (parameter or local)
  // slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY.
  enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
  LhsKind assign_type = VARIABLE;
  Property* prop = expr->target()->AsProperty();
  // In case of a property we use the uninitialized expression context
  // of the key to detect a named property.
  if (prop != NULL) {
    assign_type = (prop->key()->context() == Expression::kUninitialized)
        ? NAMED_PROPERTY
        : KEYED_PROPERTY;
  }

  // Evaluate LHS expression.
  switch (assign_type) {
    case VARIABLE:
      // Nothing to do here.
      break;
    case NAMED_PROPERTY:
      Visit(prop->obj());
      ASSERT_EQ(Expression::kValue, prop->obj()->context());
      break;
    case KEYED_PROPERTY:
      Visit(prop->obj());
      ASSERT_EQ(Expression::kValue, prop->obj()->context());
      Visit(prop->key());
      ASSERT_EQ(Expression::kValue, prop->key()->context());
      break;
  }

  // If we have a compound assignment: Get value of LHS expression and
  // store in on top of the stack.
  // Note: Relies on kValue context being 'stack'.
  if (expr->is_compound()) {
    switch (assign_type) {
      case VARIABLE:
        EmitVariableLoad(expr->target()->AsVariableProxy()->var(),
                         Expression::kValue);
        break;
      case NAMED_PROPERTY:
        EmitNamedPropertyLoad(prop, Expression::kValue);
        break;
      case KEYED_PROPERTY:
        EmitKeyedPropertyLoad(prop, Expression::kValue);
        break;
    }
  }

  // Evaluate RHS expression.
  Expression* rhs = expr->value();
  ASSERT_EQ(Expression::kValue, rhs->context());
  Visit(rhs);

  // If we have a compount assignment: Apply operator.
  if (expr->is_compound()) {
    EmitCompoundAssignmentOp(expr->binary_op(), Expression::kValue);
  }

  // Store the value.
  switch (assign_type) {
    case VARIABLE:
      EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
                             expr->context());
      break;
    case NAMED_PROPERTY:
      EmitNamedPropertyAssignment(expr);
      break;
    case KEYED_PROPERTY:
      EmitKeyedPropertyAssignment(expr);
      break;
  }
}


void FastCodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* expr) {
  // Call runtime routine to allocate the catch extension object and
  // assign the exception value to the catch variable.
  Comment cmnt(masm_, "[ CatchExtensionObject");

  // Push key string.
  ASSERT_EQ(Expression::kValue, expr->key()->context());
  Visit(expr->key());
  ASSERT_EQ(Expression::kValue, expr->value()->context());
  Visit(expr->value());

  // Create catch extension object.
  __ CallRuntime(Runtime::kCreateCatchExtensionObject, 2);

  __ push(result_register());
}


void FastCodeGenerator::VisitThrow(Throw* expr) {
  Comment cmnt(masm_, "[ Throw");
  Visit(expr->exception());
  // Exception is on stack.
  __ CallRuntime(Runtime::kThrow, 1);
  // Never returns here.
}


int FastCodeGenerator::TryFinally::Exit(int stack_depth) {
  // The macros used here must preserve the result register.
  __ Drop(stack_depth);
  __ PopTryHandler();
  __ Call(finally_entry_);
  return 0;
}


int FastCodeGenerator::TryCatch::Exit(int stack_depth) {
  // The macros used here must preserve the result register.
  __ Drop(stack_depth);
  __ PopTryHandler();
  return 0;
}


#undef __


} }  // namespace v8::internal