1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
|
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "objects.h"
#include "elements.h"
#include "utils.h"
// Each concrete ElementsAccessor can handle exactly one ElementsKind,
// several abstract ElementsAccessor classes are used to allow sharing
// common code.
//
// Inheritance hierarchy:
// - ElementsAccessorBase (abstract)
// - FastElementsAccessor (abstract)
// - FastObjectElementsAccessor
// - FastDoubleElementsAccessor
// - ExternalElementsAccessor (abstract)
// - ExternalByteElementsAccessor
// - ExternalUnsignedByteElementsAccessor
// - ExternalShortElementsAccessor
// - ExternalUnsignedShortElementsAccessor
// - ExternalIntElementsAccessor
// - ExternalUnsignedIntElementsAccessor
// - ExternalFloatElementsAccessor
// - ExternalDoubleElementsAccessor
// - PixelElementsAccessor
// - DictionaryElementsAccessor
// - NonStrictArgumentsElementsAccessor
namespace v8 {
namespace internal {
ElementsAccessor** ElementsAccessor::elements_accessors_;
static bool HasKey(FixedArray* array, Object* key) {
int len0 = array->length();
for (int i = 0; i < len0; i++) {
Object* element = array->get(i);
if (element->IsSmi() && element == key) return true;
if (element->IsString() &&
key->IsString() && String::cast(element)->Equals(String::cast(key))) {
return true;
}
}
return false;
}
static Failure* ThrowArrayLengthRangeError(Heap* heap) {
HandleScope scope(heap->isolate());
return heap->isolate()->Throw(
*heap->isolate()->factory()->NewRangeError("invalid_array_length",
HandleVector<Object>(NULL, 0)));
}
// Base class for element handler implementations. Contains the
// the common logic for objects with different ElementsKinds.
// Subclasses must specialize method for which the element
// implementation differs from the base class implementation.
//
// This class is intended to be used in the following way:
//
// class SomeElementsAccessor :
// public ElementsAccessorBase<SomeElementsAccessor,
// BackingStoreClass> {
// ...
// }
//
// This is an example of the Curiously Recurring Template Pattern (see
// http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern). We use
// CRTP to guarantee aggressive compile time optimizations (i.e. inlining and
// specialization of SomeElementsAccessor methods).
template <typename ElementsAccessorSubclass, typename BackingStoreClass>
class ElementsAccessorBase : public ElementsAccessor {
protected:
ElementsAccessorBase() { }
virtual MaybeObject* Get(FixedArrayBase* backing_store,
uint32_t key,
JSObject* obj,
Object* receiver) {
return ElementsAccessorSubclass::GetImpl(
BackingStoreClass::cast(backing_store), key, obj, receiver);
}
static MaybeObject* GetImpl(BackingStoreClass* backing_store,
uint32_t key,
JSObject* obj,
Object* receiver) {
return (key < ElementsAccessorSubclass::GetCapacityImpl(backing_store))
? backing_store->get(key)
: backing_store->GetHeap()->the_hole_value();
}
virtual MaybeObject* SetLength(JSObject* obj,
Object* length) {
ASSERT(obj->IsJSArray());
return ElementsAccessorSubclass::SetLengthImpl(
BackingStoreClass::cast(obj->elements()), obj, length);
}
static MaybeObject* SetLengthImpl(BackingStoreClass* backing_store,
JSObject* obj,
Object* length);
virtual MaybeObject* SetCapacityAndLength(JSArray* array,
int capacity,
int length) {
return ElementsAccessorSubclass::SetFastElementsCapacityAndLength(
array,
capacity,
length);
}
static MaybeObject* SetFastElementsCapacityAndLength(JSObject* obj,
int capacity,
int length) {
UNIMPLEMENTED();
return obj;
}
virtual MaybeObject* Delete(JSObject* obj,
uint32_t key,
JSReceiver::DeleteMode mode) = 0;
virtual MaybeObject* AddElementsToFixedArray(FixedArrayBase* from,
FixedArray* to,
JSObject* holder,
Object* receiver) {
int len0 = to->length();
#ifdef DEBUG
if (FLAG_enable_slow_asserts) {
for (int i = 0; i < len0; i++) {
ASSERT(!to->get(i)->IsTheHole());
}
}
#endif
BackingStoreClass* backing_store = BackingStoreClass::cast(from);
uint32_t len1 = ElementsAccessorSubclass::GetCapacityImpl(backing_store);
// Optimize if 'other' is empty.
// We cannot optimize if 'this' is empty, as other may have holes.
if (len1 == 0) return to;
// Compute how many elements are not in other.
int extra = 0;
for (uint32_t y = 0; y < len1; y++) {
if (ElementsAccessorSubclass::HasElementAtIndexImpl(
backing_store, y, holder, receiver)) {
uint32_t key =
ElementsAccessorSubclass::GetKeyForIndexImpl(backing_store, y);
MaybeObject* maybe_value =
ElementsAccessorSubclass::GetImpl(backing_store, key,
holder, receiver);
Object* value;
if (!maybe_value->ToObject(&value)) return maybe_value;
ASSERT(!value->IsTheHole());
if (!HasKey(to, value)) {
extra++;
}
}
}
if (extra == 0) return to;
// Allocate the result
FixedArray* result;
MaybeObject* maybe_obj =
backing_store->GetHeap()->AllocateFixedArray(len0 + extra);
if (!maybe_obj->To<FixedArray>(&result)) return maybe_obj;
// Fill in the content
{
AssertNoAllocation no_gc;
WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
for (int i = 0; i < len0; i++) {
Object* e = to->get(i);
ASSERT(e->IsString() || e->IsNumber());
result->set(i, e, mode);
}
}
// Fill in the extra values.
int index = 0;
for (uint32_t y = 0; y < len1; y++) {
if (ElementsAccessorSubclass::HasElementAtIndexImpl(
backing_store, y, holder, receiver)) {
uint32_t key =
ElementsAccessorSubclass::GetKeyForIndexImpl(backing_store, y);
MaybeObject* maybe_value =
ElementsAccessorSubclass::GetImpl(backing_store, key,
holder, receiver);
Object* value;
if (!maybe_value->ToObject(&value)) return maybe_value;
if (!value->IsTheHole() && !HasKey(to, value)) {
result->set(len0 + index, value);
index++;
}
}
}
ASSERT(extra == index);
return result;
}
protected:
static uint32_t GetCapacityImpl(BackingStoreClass* backing_store) {
return backing_store->length();
}
virtual uint32_t GetCapacity(FixedArrayBase* backing_store) {
return ElementsAccessorSubclass::GetCapacityImpl(
BackingStoreClass::cast(backing_store));
}
static bool HasElementAtIndexImpl(BackingStoreClass* backing_store,
uint32_t index,
JSObject* holder,
Object* receiver) {
uint32_t key =
ElementsAccessorSubclass::GetKeyForIndexImpl(backing_store, index);
MaybeObject* element =
ElementsAccessorSubclass::GetImpl(backing_store, key, holder, receiver);
return !element->IsTheHole();
}
virtual bool HasElementAtIndex(FixedArrayBase* backing_store,
uint32_t index,
JSObject* holder,
Object* receiver) {
return ElementsAccessorSubclass::HasElementAtIndexImpl(
BackingStoreClass::cast(backing_store), index, holder, receiver);
}
static uint32_t GetKeyForIndexImpl(BackingStoreClass* backing_store,
uint32_t index) {
return index;
}
virtual uint32_t GetKeyForIndex(FixedArrayBase* backing_store,
uint32_t index) {
return ElementsAccessorSubclass::GetKeyForIndexImpl(
BackingStoreClass::cast(backing_store), index);
}
private:
DISALLOW_COPY_AND_ASSIGN(ElementsAccessorBase);
};
// Super class for all fast element arrays.
template<typename FastElementsAccessorSubclass,
typename BackingStore,
int ElementSize>
class FastElementsAccessor
: public ElementsAccessorBase<FastElementsAccessorSubclass, BackingStore> {
protected:
friend class ElementsAccessorBase<FastElementsAccessorSubclass, BackingStore>;
// Adjusts the length of the fast backing store or returns the new length or
// undefined in case conversion to a slow backing store should be performed.
static MaybeObject* SetLengthWithoutNormalize(BackingStore* backing_store,
JSArray* array,
Object* length_object,
uint32_t length) {
uint32_t old_capacity = backing_store->length();
// Check whether the backing store should be shrunk.
if (length <= old_capacity) {
if (array->HasFastTypeElements()) {
MaybeObject* maybe_obj = array->EnsureWritableFastElements();
if (!maybe_obj->To(&backing_store)) return maybe_obj;
}
if (2 * length <= old_capacity) {
// If more than half the elements won't be used, trim the array.
if (length == 0) {
array->initialize_elements();
} else {
backing_store->set_length(length);
Address filler_start = backing_store->address() +
BackingStore::OffsetOfElementAt(length);
int filler_size = (old_capacity - length) * ElementSize;
array->GetHeap()->CreateFillerObjectAt(filler_start, filler_size);
}
} else {
// Otherwise, fill the unused tail with holes.
int old_length = FastD2I(array->length()->Number());
for (int i = length; i < old_length; i++) {
backing_store->set_the_hole(i);
}
}
return length_object;
}
// Check whether the backing store should be expanded.
uint32_t min = JSObject::NewElementsCapacity(old_capacity);
uint32_t new_capacity = length > min ? length : min;
if (!array->ShouldConvertToSlowElements(new_capacity)) {
MaybeObject* result = FastElementsAccessorSubclass::
SetFastElementsCapacityAndLength(array, new_capacity, length);
if (result->IsFailure()) return result;
return length_object;
}
// Request conversion to slow elements.
return array->GetHeap()->undefined_value();
}
};
class FastObjectElementsAccessor
: public FastElementsAccessor<FastObjectElementsAccessor,
FixedArray,
kPointerSize> {
public:
static MaybeObject* DeleteCommon(JSObject* obj,
uint32_t key) {
ASSERT(obj->HasFastElements() ||
obj->HasFastSmiOnlyElements() ||
obj->HasFastArgumentsElements());
Heap* heap = obj->GetHeap();
FixedArray* backing_store = FixedArray::cast(obj->elements());
if (backing_store->map() == heap->non_strict_arguments_elements_map()) {
backing_store = FixedArray::cast(backing_store->get(1));
} else {
Object* writable;
MaybeObject* maybe = obj->EnsureWritableFastElements();
if (!maybe->ToObject(&writable)) return maybe;
backing_store = FixedArray::cast(writable);
}
uint32_t length = static_cast<uint32_t>(
obj->IsJSArray()
? Smi::cast(JSArray::cast(obj)->length())->value()
: backing_store->length());
if (key < length) {
backing_store->set_the_hole(key);
// If an old space backing store is larger than a certain size and
// has too few used values, normalize it.
// To avoid doing the check on every delete we require at least
// one adjacent hole to the value being deleted.
Object* hole = heap->the_hole_value();
const int kMinLengthForSparsenessCheck = 64;
if (backing_store->length() >= kMinLengthForSparsenessCheck &&
!heap->InNewSpace(backing_store) &&
((key > 0 && backing_store->get(key - 1) == hole) ||
(key + 1 < length && backing_store->get(key + 1) == hole))) {
int num_used = 0;
for (int i = 0; i < backing_store->length(); ++i) {
if (backing_store->get(i) != hole) ++num_used;
// Bail out early if more than 1/4 is used.
if (4 * num_used > backing_store->length()) break;
}
if (4 * num_used <= backing_store->length()) {
MaybeObject* result = obj->NormalizeElements();
if (result->IsFailure()) return result;
}
}
}
return heap->true_value();
}
static MaybeObject* SetFastElementsCapacityAndLength(JSObject* obj,
uint32_t capacity,
uint32_t length) {
JSObject::SetFastElementsCapacityMode set_capacity_mode =
obj->HasFastSmiOnlyElements()
? JSObject::kAllowSmiOnlyElements
: JSObject::kDontAllowSmiOnlyElements;
return obj->SetFastElementsCapacityAndLength(capacity,
length,
set_capacity_mode);
}
protected:
friend class FastElementsAccessor<FastObjectElementsAccessor,
FixedArray,
kPointerSize>;
virtual MaybeObject* Delete(JSObject* obj,
uint32_t key,
JSReceiver::DeleteMode mode) {
return DeleteCommon(obj, key);
}
};
class FastDoubleElementsAccessor
: public FastElementsAccessor<FastDoubleElementsAccessor,
FixedDoubleArray,
kDoubleSize> {
static MaybeObject* SetFastElementsCapacityAndLength(JSObject* obj,
uint32_t capacity,
uint32_t length) {
return obj->SetFastDoubleElementsCapacityAndLength(capacity, length);
}
protected:
friend class ElementsAccessorBase<FastDoubleElementsAccessor,
FixedDoubleArray>;
friend class FastElementsAccessor<FastDoubleElementsAccessor,
FixedDoubleArray,
kDoubleSize>;
virtual MaybeObject* Delete(JSObject* obj,
uint32_t key,
JSReceiver::DeleteMode mode) {
int length = obj->IsJSArray()
? Smi::cast(JSArray::cast(obj)->length())->value()
: FixedDoubleArray::cast(obj->elements())->length();
if (key < static_cast<uint32_t>(length)) {
FixedDoubleArray::cast(obj->elements())->set_the_hole(key);
}
return obj->GetHeap()->true_value();
}
static bool HasElementAtIndexImpl(FixedDoubleArray* backing_store,
uint32_t index,
JSObject* holder,
Object* receiver) {
return !backing_store->is_the_hole(index);
}
};
// Super class for all external element arrays.
template<typename ExternalElementsAccessorSubclass,
typename ExternalArray>
class ExternalElementsAccessor
: public ElementsAccessorBase<ExternalElementsAccessorSubclass,
ExternalArray> {
protected:
friend class ElementsAccessorBase<ExternalElementsAccessorSubclass,
ExternalArray>;
static MaybeObject* GetImpl(ExternalArray* backing_store,
uint32_t key,
JSObject* obj,
Object* receiver) {
return
key < ExternalElementsAccessorSubclass::GetCapacityImpl(backing_store)
? backing_store->get(key)
: backing_store->GetHeap()->undefined_value();
}
static MaybeObject* SetLengthImpl(ExternalArray* backing_store,
JSObject* obj,
Object* length) {
// External arrays do not support changing their length.
UNREACHABLE();
return obj;
}
virtual MaybeObject* Delete(JSObject* obj,
uint32_t key,
JSReceiver::DeleteMode mode) {
// External arrays always ignore deletes.
return obj->GetHeap()->true_value();
}
};
class ExternalByteElementsAccessor
: public ExternalElementsAccessor<ExternalByteElementsAccessor,
ExternalByteArray> {
};
class ExternalUnsignedByteElementsAccessor
: public ExternalElementsAccessor<ExternalUnsignedByteElementsAccessor,
ExternalUnsignedByteArray> {
};
class ExternalShortElementsAccessor
: public ExternalElementsAccessor<ExternalShortElementsAccessor,
ExternalShortArray> {
};
class ExternalUnsignedShortElementsAccessor
: public ExternalElementsAccessor<ExternalUnsignedShortElementsAccessor,
ExternalUnsignedShortArray> {
};
class ExternalIntElementsAccessor
: public ExternalElementsAccessor<ExternalIntElementsAccessor,
ExternalIntArray> {
};
class ExternalUnsignedIntElementsAccessor
: public ExternalElementsAccessor<ExternalUnsignedIntElementsAccessor,
ExternalUnsignedIntArray> {
};
class ExternalFloatElementsAccessor
: public ExternalElementsAccessor<ExternalFloatElementsAccessor,
ExternalFloatArray> {
};
class ExternalDoubleElementsAccessor
: public ExternalElementsAccessor<ExternalDoubleElementsAccessor,
ExternalDoubleArray> {
};
class PixelElementsAccessor
: public ExternalElementsAccessor<PixelElementsAccessor,
ExternalPixelArray> {
};
class DictionaryElementsAccessor
: public ElementsAccessorBase<DictionaryElementsAccessor,
SeededNumberDictionary> {
public:
// Adjusts the length of the dictionary backing store and returns the new
// length according to ES5 section 15.4.5.2 behavior.
static MaybeObject* SetLengthWithoutNormalize(SeededNumberDictionary* dict,
JSArray* array,
Object* length_object,
uint32_t length) {
if (length == 0) {
// If the length of a slow array is reset to zero, we clear
// the array and flush backing storage. This has the added
// benefit that the array returns to fast mode.
Object* obj;
MaybeObject* maybe_obj = array->ResetElements();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
} else {
uint32_t new_length = length;
uint32_t old_length = static_cast<uint32_t>(array->length()->Number());
if (new_length < old_length) {
// Find last non-deletable element in range of elements to be
// deleted and adjust range accordingly.
Heap* heap = array->GetHeap();
int capacity = dict->Capacity();
for (int i = 0; i < capacity; i++) {
Object* key = dict->KeyAt(i);
if (key->IsNumber()) {
uint32_t number = static_cast<uint32_t>(key->Number());
if (new_length <= number && number < old_length) {
PropertyDetails details = dict->DetailsAt(i);
if (details.IsDontDelete()) new_length = number + 1;
}
}
}
if (new_length != length) {
MaybeObject* maybe_object = heap->NumberFromUint32(new_length);
if (!maybe_object->To(&length_object)) return maybe_object;
}
// Remove elements that should be deleted.
int removed_entries = 0;
Object* the_hole_value = heap->the_hole_value();
for (int i = 0; i < capacity; i++) {
Object* key = dict->KeyAt(i);
if (key->IsNumber()) {
uint32_t number = static_cast<uint32_t>(key->Number());
if (new_length <= number && number < old_length) {
dict->SetEntry(i, the_hole_value, the_hole_value);
removed_entries++;
}
}
}
// Update the number of elements.
dict->ElementsRemoved(removed_entries);
}
}
return length_object;
}
static MaybeObject* DeleteCommon(JSObject* obj,
uint32_t key,
JSReceiver::DeleteMode mode) {
Isolate* isolate = obj->GetIsolate();
Heap* heap = isolate->heap();
FixedArray* backing_store = FixedArray::cast(obj->elements());
bool is_arguments =
(obj->GetElementsKind() == NON_STRICT_ARGUMENTS_ELEMENTS);
if (is_arguments) {
backing_store = FixedArray::cast(backing_store->get(1));
}
SeededNumberDictionary* dictionary =
SeededNumberDictionary::cast(backing_store);
int entry = dictionary->FindEntry(key);
if (entry != SeededNumberDictionary::kNotFound) {
Object* result = dictionary->DeleteProperty(entry, mode);
if (result == heap->true_value()) {
MaybeObject* maybe_elements = dictionary->Shrink(key);
FixedArray* new_elements = NULL;
if (!maybe_elements->To(&new_elements)) {
return maybe_elements;
}
if (is_arguments) {
FixedArray::cast(obj->elements())->set(1, new_elements);
} else {
obj->set_elements(new_elements);
}
}
if (mode == JSObject::STRICT_DELETION &&
result == heap->false_value()) {
// In strict mode, attempting to delete a non-configurable property
// throws an exception.
HandleScope scope(isolate);
Handle<Object> holder(obj);
Handle<Object> name = isolate->factory()->NewNumberFromUint(key);
Handle<Object> args[2] = { name, holder };
Handle<Object> error =
isolate->factory()->NewTypeError("strict_delete_property",
HandleVector(args, 2));
return isolate->Throw(*error);
}
}
return heap->true_value();
}
protected:
friend class ElementsAccessorBase<DictionaryElementsAccessor,
SeededNumberDictionary>;
virtual MaybeObject* Delete(JSObject* obj,
uint32_t key,
JSReceiver::DeleteMode mode) {
return DeleteCommon(obj, key, mode);
}
static MaybeObject* GetImpl(SeededNumberDictionary* backing_store,
uint32_t key,
JSObject* obj,
Object* receiver) {
int entry = backing_store->FindEntry(key);
if (entry != SeededNumberDictionary::kNotFound) {
Object* element = backing_store->ValueAt(entry);
PropertyDetails details = backing_store->DetailsAt(entry);
if (details.type() == CALLBACKS) {
return obj->GetElementWithCallback(receiver,
element,
key,
obj);
} else {
return element;
}
}
return obj->GetHeap()->the_hole_value();
}
static uint32_t GetKeyForIndexImpl(SeededNumberDictionary* dict,
uint32_t index) {
Object* key = dict->KeyAt(index);
return Smi::cast(key)->value();
}
};
class NonStrictArgumentsElementsAccessor
: public ElementsAccessorBase<NonStrictArgumentsElementsAccessor,
FixedArray> {
protected:
friend class ElementsAccessorBase<NonStrictArgumentsElementsAccessor,
FixedArray>;
static MaybeObject* GetImpl(FixedArray* parameter_map,
uint32_t key,
JSObject* obj,
Object* receiver) {
Object* probe = GetParameterMapArg(parameter_map, key);
if (!probe->IsTheHole()) {
Context* context = Context::cast(parameter_map->get(0));
int context_index = Smi::cast(probe)->value();
ASSERT(!context->get(context_index)->IsTheHole());
return context->get(context_index);
} else {
// Object is not mapped, defer to the arguments.
FixedArray* arguments = FixedArray::cast(parameter_map->get(1));
MaybeObject* maybe_result = ElementsAccessor::ForArray(arguments)->Get(
arguments, key, obj, receiver);
Object* result;
if (!maybe_result->ToObject(&result)) return maybe_result;
// Elements of the arguments object in slow mode might be slow aliases.
if (result->IsAliasedArgumentsEntry()) {
AliasedArgumentsEntry* entry = AliasedArgumentsEntry::cast(result);
Context* context = Context::cast(parameter_map->get(0));
int context_index = entry->aliased_context_slot();
ASSERT(!context->get(context_index)->IsTheHole());
return context->get(context_index);
} else {
return result;
}
}
}
static MaybeObject* SetLengthImpl(FixedArray* parameter_map,
JSObject* obj,
Object* length) {
// TODO(mstarzinger): This was never implemented but will be used once we
// correctly implement [[DefineOwnProperty]] on arrays.
UNIMPLEMENTED();
return obj;
}
virtual MaybeObject* Delete(JSObject* obj,
uint32_t key,
JSReceiver::DeleteMode mode) {
FixedArray* parameter_map = FixedArray::cast(obj->elements());
Object* probe = GetParameterMapArg(parameter_map, key);
if (!probe->IsTheHole()) {
// TODO(kmillikin): We could check if this was the last aliased
// parameter, and revert to normal elements in that case. That
// would enable GC of the context.
parameter_map->set_the_hole(key + 2);
} else {
FixedArray* arguments = FixedArray::cast(parameter_map->get(1));
if (arguments->IsDictionary()) {
return DictionaryElementsAccessor::DeleteCommon(obj, key, mode);
} else {
return FastObjectElementsAccessor::DeleteCommon(obj, key);
}
}
return obj->GetHeap()->true_value();
}
static uint32_t GetCapacityImpl(FixedArray* parameter_map) {
FixedArrayBase* arguments = FixedArrayBase::cast(parameter_map->get(1));
return Max(static_cast<uint32_t>(parameter_map->length() - 2),
ForArray(arguments)->GetCapacity(arguments));
}
static uint32_t GetKeyForIndexImpl(FixedArray* dict,
uint32_t index) {
return index;
}
static bool HasElementAtIndexImpl(FixedArray* parameter_map,
uint32_t index,
JSObject* holder,
Object* receiver) {
Object* probe = GetParameterMapArg(parameter_map, index);
if (!probe->IsTheHole()) {
return true;
} else {
FixedArrayBase* arguments = FixedArrayBase::cast(parameter_map->get(1));
ElementsAccessor* accessor = ElementsAccessor::ForArray(arguments);
return !accessor->Get(arguments, index, holder, receiver)->IsTheHole();
}
}
private:
static Object* GetParameterMapArg(FixedArray* parameter_map,
uint32_t key) {
uint32_t length = parameter_map->length();
return key < (length - 2 )
? parameter_map->get(key + 2)
: parameter_map->GetHeap()->the_hole_value();
}
};
ElementsAccessor* ElementsAccessor::ForArray(FixedArrayBase* array) {
switch (array->map()->instance_type()) {
case FIXED_ARRAY_TYPE:
if (array->IsDictionary()) {
return elements_accessors_[DICTIONARY_ELEMENTS];
} else {
return elements_accessors_[FAST_ELEMENTS];
}
case EXTERNAL_BYTE_ARRAY_TYPE:
return elements_accessors_[EXTERNAL_BYTE_ELEMENTS];
case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE:
return elements_accessors_[EXTERNAL_UNSIGNED_BYTE_ELEMENTS];
case EXTERNAL_SHORT_ARRAY_TYPE:
return elements_accessors_[EXTERNAL_SHORT_ELEMENTS];
case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE:
return elements_accessors_[EXTERNAL_UNSIGNED_SHORT_ELEMENTS];
case EXTERNAL_INT_ARRAY_TYPE:
return elements_accessors_[EXTERNAL_INT_ELEMENTS];
case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE:
return elements_accessors_[EXTERNAL_UNSIGNED_INT_ELEMENTS];
case EXTERNAL_FLOAT_ARRAY_TYPE:
return elements_accessors_[EXTERNAL_FLOAT_ELEMENTS];
case EXTERNAL_DOUBLE_ARRAY_TYPE:
return elements_accessors_[EXTERNAL_DOUBLE_ELEMENTS];
case EXTERNAL_PIXEL_ARRAY_TYPE:
return elements_accessors_[EXTERNAL_PIXEL_ELEMENTS];
default:
UNREACHABLE();
return NULL;
}
}
void ElementsAccessor::InitializeOncePerProcess() {
// First argument in list is the accessor class, the second argument is can
// be any arbitrary unique identifier, in this case chosen to be the
// corresponding enum. Use the fast element handler for smi-only arrays.
// The implementation is currently identical. Note that the order must match
// that of the ElementsKind enum for the |accessor_array[]| below to work.
#define ELEMENTS_LIST(V) \
V(FastObjectElementsAccessor, FAST_SMI_ONLY_ELEMENTS) \
V(FastObjectElementsAccessor, FAST_ELEMENTS) \
V(FastDoubleElementsAccessor, FAST_DOUBLE_ELEMENTS) \
V(DictionaryElementsAccessor, DICTIONARY_ELEMENTS) \
V(NonStrictArgumentsElementsAccessor, NON_STRICT_ARGUMENTS_ELEMENTS) \
V(ExternalByteElementsAccessor, EXTERNAL_BYTE_ELEMENTS) \
V(ExternalUnsignedByteElementsAccessor, EXTERNAL_UNSIGNED_BYTE_ELEMENTS) \
V(ExternalShortElementsAccessor, EXTERNAL_SHORT_ELEMENTS) \
V(ExternalUnsignedShortElementsAccessor, EXTERNAL_UNSIGNED_SHORT_ELEMENTS) \
V(ExternalIntElementsAccessor, EXTERNAL_INT_ELEMENTS) \
V(ExternalUnsignedIntElementsAccessor, EXTERNAL_UNSIGNED_INT_ELEMENTS) \
V(ExternalFloatElementsAccessor, EXTERNAL_FLOAT_ELEMENTS) \
V(ExternalDoubleElementsAccessor, EXTERNAL_DOUBLE_ELEMENTS) \
V(PixelElementsAccessor, EXTERNAL_PIXEL_ELEMENTS)
static struct ConcreteElementsAccessors {
#define ACCESSOR_STRUCT(Class, Name) Class* Name##_handler;
ELEMENTS_LIST(ACCESSOR_STRUCT)
#undef ACCESSOR_STRUCT
} element_accessors = {
#define ACCESSOR_INIT(Class, Name) new Class(),
ELEMENTS_LIST(ACCESSOR_INIT)
#undef ACCESSOR_INIT
};
static ElementsAccessor* accessor_array[] = {
#define ACCESSOR_ARRAY(Class, Name) element_accessors.Name##_handler,
ELEMENTS_LIST(ACCESSOR_ARRAY)
#undef ACCESSOR_ARRAY
};
#undef ELEMENTS_LIST
STATIC_ASSERT((sizeof(accessor_array) / sizeof(*accessor_array)) ==
kElementsKindCount);
elements_accessors_ = accessor_array;
}
template <typename ElementsAccessorSubclass, typename BackingStoreClass>
MaybeObject* ElementsAccessorBase<ElementsAccessorSubclass, BackingStoreClass>::
SetLengthImpl(BackingStoreClass* backing_store,
JSObject* obj,
Object* length) {
JSArray* array = JSArray::cast(obj);
// Fast case: The new length fits into a Smi.
MaybeObject* maybe_smi_length = length->ToSmi();
Object* smi_length = Smi::FromInt(0);
if (maybe_smi_length->ToObject(&smi_length) && smi_length->IsSmi()) {
const int value = Smi::cast(smi_length)->value();
if (value >= 0) {
Object* new_length;
MaybeObject* result = ElementsAccessorSubclass::
SetLengthWithoutNormalize(backing_store, array, smi_length, value);
if (!result->ToObject(&new_length)) return result;
ASSERT(new_length->IsSmi() || new_length->IsUndefined());
if (new_length->IsSmi()) {
array->set_length(Smi::cast(new_length));
return array;
}
} else {
return ThrowArrayLengthRangeError(array->GetHeap());
}
}
// Slow case: The new length does not fit into a Smi or conversion
// to slow elements is needed for other reasons.
if (length->IsNumber()) {
uint32_t value;
if (length->ToArrayIndex(&value)) {
SeededNumberDictionary* dictionary;
MaybeObject* maybe_object = array->NormalizeElements();
if (!maybe_object->To(&dictionary)) return maybe_object;
Object* new_length;
MaybeObject* result = DictionaryElementsAccessor::
SetLengthWithoutNormalize(dictionary, array, length, value);
if (!result->ToObject(&new_length)) return result;
ASSERT(new_length->IsNumber());
array->set_length(new_length);
return array;
} else {
return ThrowArrayLengthRangeError(array->GetHeap());
}
}
// Fall-back case: The new length is not a number so make the array
// size one and set only element to length.
FixedArray* new_backing_store;
MaybeObject* maybe_obj = array->GetHeap()->AllocateFixedArray(1);
if (!maybe_obj->To(&new_backing_store)) return maybe_obj;
new_backing_store->set(0, length);
{ MaybeObject* result = array->SetContent(new_backing_store);
if (result->IsFailure()) return result;
}
return array;
}
} } // namespace v8::internal
|