summaryrefslogtreecommitdiff
path: root/deps/v8/src/codegen-ia32.h
blob: 24a57a074d4efdeb31fe4ebb7b088674f654cb15 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef V8_CODEGEN_IA32_H_
#define V8_CODEGEN_IA32_H_

namespace v8 { namespace internal {

// Forward declarations
class DeferredCode;
class RegisterAllocator;
class RegisterFile;

// Mode to overwrite BinaryExpression values.
enum OverwriteMode { NO_OVERWRITE, OVERWRITE_LEFT, OVERWRITE_RIGHT };

enum InitState { CONST_INIT, NOT_CONST_INIT };
enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };


// -------------------------------------------------------------------------
// Reference support

// A reference is a C++ stack-allocated object that keeps an ECMA
// reference on the execution stack while in scope. For variables
// the reference is empty, indicating that it isn't necessary to
// store state on the stack for keeping track of references to those.
// For properties, we keep either one (named) or two (indexed) values
// on the execution stack to represent the reference.

class Reference BASE_EMBEDDED {
 public:
  // The values of the types is important, see size().
  enum Type { ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 };
  Reference(CodeGenerator* cgen, Expression* expression);
  ~Reference();

  Expression* expression() const { return expression_; }
  Type type() const { return type_; }
  void set_type(Type value) {
    ASSERT(type_ == ILLEGAL);
    type_ = value;
  }

  // The size the reference takes up on the stack.
  int size() const { return (type_ == ILLEGAL) ? 0 : type_; }

  bool is_illegal() const { return type_ == ILLEGAL; }
  bool is_slot() const { return type_ == SLOT; }
  bool is_property() const { return type_ == NAMED || type_ == KEYED; }

  // Return the name.  Only valid for named property references.
  Handle<String> GetName();

  // Generate code to push the value of the reference on top of the
  // expression stack.  The reference is expected to be already on top of
  // the expression stack, and it is left in place with its value above it.
  void GetValue(TypeofState typeof_state);

  // Like GetValue except that the slot is expected to be written to before
  // being read from again.  Thae value of the reference may be invalidated,
  // causing subsequent attempts to read it to fail.
  void TakeValue(TypeofState typeof_state);

  // Generate code to store the value on top of the expression stack in the
  // reference.  The reference is expected to be immediately below the value
  // on the expression stack.  The stored value is left in place (with the
  // reference intact below it) to support chained assignments.
  void SetValue(InitState init_state);

 private:
  CodeGenerator* cgen_;
  Expression* expression_;
  Type type_;
};


// -------------------------------------------------------------------------
// Control destinations.

// A control destination encapsulates a pair of jump targets and a
// flag indicating which one is the preferred fall-through.  The
// preferred fall-through must be unbound, the other may be already
// bound (ie, a backward target).
//
// The true and false targets may be jumped to unconditionally or
// control may split conditionally.  Unconditional jumping and
// splitting should be emitted in tail position (as the last thing
// when compiling an expression) because they can cause either label
// to be bound or the non-fall through to be jumped to leaving an
// invalid virtual frame.
//
// The labels in the control destination can be extracted and
// manipulated normally without affecting the state of the
// destination.

class ControlDestination BASE_EMBEDDED {
 public:
  ControlDestination(JumpTarget* true_target,
                     JumpTarget* false_target,
                     bool true_is_fall_through)
      : true_target_(true_target),
        false_target_(false_target),
        true_is_fall_through_(true_is_fall_through),
        is_used_(false) {
    ASSERT(true_is_fall_through ? !true_target->is_bound()
                                : !false_target->is_bound());
  }

  // Accessors for the jump targets.  Directly jumping or branching to
  // or binding the targets will not update the destination's state.
  JumpTarget* true_target() const { return true_target_; }
  JumpTarget* false_target() const { return false_target_; }

  // True if the the destination has been jumped to unconditionally or
  // control has been split to both targets.  This predicate does not
  // test whether the targets have been extracted and manipulated as
  // raw jump targets.
  bool is_used() const { return is_used_; }

  // True if the destination is used and the true target (respectively
  // false target) was the fall through.  If the target is backward,
  // "fall through" included jumping unconditionally to it.
  bool true_was_fall_through() const {
    return is_used_ && true_is_fall_through_;
  }

  bool false_was_fall_through() const {
    return is_used_ && !true_is_fall_through_;
  }

  // Emit a branch to one of the true or false targets, and bind the
  // other target.  Because this binds the fall-through target, it
  // should be emitted in tail position (as the last thing when
  // compiling an expression).
  void Split(Condition cc) {
    ASSERT(!is_used_);
    if (true_is_fall_through_) {
      false_target_->Branch(NegateCondition(cc));
      true_target_->Bind();
    } else {
      true_target_->Branch(cc);
      false_target_->Bind();
    }
    is_used_ = true;
  }

  // Emit an unconditional jump in tail position, to the true target
  // (if the argument is true) or the false target.  The "jump" will
  // actually bind the jump target if it is forward, jump to it if it
  // is backward.
  void Goto(bool where) {
    ASSERT(!is_used_);
    JumpTarget* target = where ? true_target_ : false_target_;
    if (target->is_bound()) {
      target->Jump();
    } else {
      target->Bind();
    }
    is_used_ = true;
    true_is_fall_through_ = where;
  }

  // Mark this jump target as used as if Goto had been called, but
  // without generating a jump or binding a label (the control effect
  // should have already happened).  This is used when the left
  // subexpression of the short-circuit boolean operators are
  // compiled.
  void Use(bool where) {
    ASSERT(!is_used_);
    ASSERT((where ? true_target_ : false_target_)->is_bound());
    is_used_ = true;
    true_is_fall_through_ = where;
  }

  // Swap the true and false targets but keep the same actual label as
  // the fall through.  This is used when compiling negated
  // expressions, where we want to swap the targets but preserve the
  // state.
  void Invert() {
    JumpTarget* temp_target = true_target_;
    true_target_ = false_target_;
    false_target_ = temp_target;

    true_is_fall_through_ = !true_is_fall_through_;
  }

 private:
  // True and false jump targets.
  JumpTarget* true_target_;
  JumpTarget* false_target_;

  // Before using the destination: true if the true target is the
  // preferred fall through, false if the false target is.  After
  // using the destination: true if the true target was actually used
  // as the fall through, false if the false target was.
  bool true_is_fall_through_;

  // True if the Split or Goto functions have been called.
  bool is_used_;
};


// -------------------------------------------------------------------------
// Code generation state

// The state is passed down the AST by the code generator (and back up, in
// the form of the state of the jump target pair).  It is threaded through
// the call stack.  Constructing a state implicitly pushes it on the owning
// code generator's stack of states, and destroying one implicitly pops it.
//
// The code generator state is only used for expressions, so statements have
// the initial state.

class CodeGenState BASE_EMBEDDED {
 public:
  // Create an initial code generator state.  Destroying the initial state
  // leaves the code generator with a NULL state.
  explicit CodeGenState(CodeGenerator* owner);

  // Create a code generator state based on a code generator's current
  // state.  The new state may or may not be inside a typeof, and has its
  // own control destination.
  CodeGenState(CodeGenerator* owner,
               TypeofState typeof_state,
               ControlDestination* destination);

  // Destroy a code generator state and restore the owning code generator's
  // previous state.
  ~CodeGenState();

  // Accessors for the state.
  TypeofState typeof_state() const { return typeof_state_; }
  ControlDestination* destination() const { return destination_; }

 private:
  // The owning code generator.
  CodeGenerator* owner_;

  // A flag indicating whether we are compiling the immediate subexpression
  // of a typeof expression.
  TypeofState typeof_state_;

  // A control destination in case the expression has a control-flow
  // effect.
  ControlDestination* destination_;

  // The previous state of the owning code generator, restored when
  // this state is destroyed.
  CodeGenState* previous_;
};




// -------------------------------------------------------------------------
// CodeGenerator

class CodeGenerator: public AstVisitor {
 public:
  // Takes a function literal, generates code for it. This function should only
  // be called by compiler.cc.
  static Handle<Code> MakeCode(FunctionLiteral* fun,
                               Handle<Script> script,
                               bool is_eval);

#ifdef ENABLE_LOGGING_AND_PROFILING
  static bool ShouldGenerateLog(Expression* type);
#endif

  static void SetFunctionInfo(Handle<JSFunction> fun,
                              int length,
                              int function_token_position,
                              int start_position,
                              int end_position,
                              bool is_expression,
                              bool is_toplevel,
                              Handle<Script> script,
                              Handle<String> inferred_name);

  // Accessors
  MacroAssembler* masm() { return masm_; }

  VirtualFrame* frame() const { return frame_; }

  bool has_valid_frame() const { return frame_ != NULL; }

  // Set the virtual frame to be new_frame, with non-frame register
  // reference counts given by non_frame_registers.  The non-frame
  // register reference counts of the old frame are returned in
  // non_frame_registers.
  void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers);

  void DeleteFrame();

  RegisterAllocator* allocator() const { return allocator_; }

  CodeGenState* state() { return state_; }
  void set_state(CodeGenState* state) { state_ = state; }

  void AddDeferred(DeferredCode* code) { deferred_.Add(code); }

  bool in_spilled_code() const { return in_spilled_code_; }
  void set_in_spilled_code(bool flag) { in_spilled_code_ = flag; }

 private:
  // Construction/Destruction
  CodeGenerator(int buffer_size, Handle<Script> script, bool is_eval);
  virtual ~CodeGenerator() { delete masm_; }

  // Accessors
  Scope* scope() const { return scope_; }

  // Clearing and generating deferred code.
  void ClearDeferred();
  void ProcessDeferred();

  bool is_eval() { return is_eval_; }

  // State
  TypeofState typeof_state() const { return state_->typeof_state(); }
  ControlDestination* destination() const { return state_->destination(); }

  // Track loop nesting level.
  int loop_nesting() const { return loop_nesting_; }
  void IncrementLoopNesting() { loop_nesting_++; }
  void DecrementLoopNesting() { loop_nesting_--; }


  // Node visitors.
  void VisitStatements(ZoneList<Statement*>* statements);

#define DEF_VISIT(type) \
  void Visit##type(type* node);
  NODE_LIST(DEF_VISIT)
#undef DEF_VISIT

  // Visit a statement and then spill the virtual frame if control flow can
  // reach the end of the statement (ie, it does not exit via break,
  // continue, return, or throw).  This function is used temporarily while
  // the code generator is being transformed.
  void VisitAndSpill(Statement* statement);

  // Visit a list of statements and then spill the virtual frame if control
  // flow can reach the end of the list.
  void VisitStatementsAndSpill(ZoneList<Statement*>* statements);

  // Main code generation function
  void GenCode(FunctionLiteral* fun);

  // Generate the return sequence code.  Should be called no more than
  // once per compiled function, immediately after binding the return
  // target (which can not be done more than once).
  void GenerateReturnSequence(Result* return_value);

  // The following are used by class Reference.
  void LoadReference(Reference* ref);
  void UnloadReference(Reference* ref);

  Operand ContextOperand(Register context, int index) const {
    return Operand(context, Context::SlotOffset(index));
  }

  Operand SlotOperand(Slot* slot, Register tmp);

  Operand ContextSlotOperandCheckExtensions(Slot* slot,
                                            Result tmp,
                                            JumpTarget* slow);

  // Expressions
  Operand GlobalObject() const {
    return ContextOperand(esi, Context::GLOBAL_INDEX);
  }

  void LoadCondition(Expression* x,
                     TypeofState typeof_state,
                     ControlDestination* destination,
                     bool force_control);
  void Load(Expression* x, TypeofState typeof_state = NOT_INSIDE_TYPEOF);
  void LoadGlobal();
  void LoadGlobalReceiver();

  // Generate code to push the value of an expression on top of the frame
  // and then spill the frame fully to memory.  This function is used
  // temporarily while the code generator is being transformed.
  void LoadAndSpill(Expression* expression,
                    TypeofState typeof_state = NOT_INSIDE_TYPEOF);

  // Read a value from a slot and leave it on top of the expression stack.
  void LoadFromSlot(Slot* slot, TypeofState typeof_state);
  Result LoadFromGlobalSlotCheckExtensions(Slot* slot,
                                           TypeofState typeof_state,
                                           JumpTarget* slow);

  // Store the value on top of the expression stack into a slot, leaving the
  // value in place.
  void StoreToSlot(Slot* slot, InitState init_state);

  // Special code for typeof expressions: Unfortunately, we must
  // be careful when loading the expression in 'typeof'
  // expressions. We are not allowed to throw reference errors for
  // non-existing properties of the global object, so we must make it
  // look like an explicit property access, instead of an access
  // through the context chain.
  void LoadTypeofExpression(Expression* x);

  // Translate the value on top of the frame into control flow to the
  // control destination.
  void ToBoolean(ControlDestination* destination);

  void GenericBinaryOperation(
      Token::Value op,
      SmiAnalysis* type,
      const OverwriteMode overwrite_mode = NO_OVERWRITE);

  // If possible, combine two constant smi values using op to produce
  // a smi result, and push it on the virtual frame, all at compile time.
  // Returns true if it succeeds.  Otherwise it has no effect.
  bool FoldConstantSmis(Token::Value op, int left, int right);

  // Emit code to perform a binary operation on a constant
  // smi and a likely smi.  Consumes the Result *operand.
  void ConstantSmiBinaryOperation(Token::Value op,
                                  Result* operand,
                                  Handle<Object> constant_operand,
                                  SmiAnalysis* type,
                                  bool reversed,
                                  OverwriteMode overwrite_mode);

  // Emit code to perform a binary operation on two likely smis.
  // The code to handle smi arguments is produced inline.
  // Consumes the Results *left and *right.
  void LikelySmiBinaryOperation(Token::Value op,
                                Result* left,
                                Result* right,
                                OverwriteMode overwrite_mode);

  void Comparison(Condition cc,
                  bool strict,
                  ControlDestination* destination);

  // To prevent long attacker-controlled byte sequences, integer constants
  // from the JavaScript source are loaded in two parts if they are larger
  // than 16 bits.
  static const int kMaxSmiInlinedBits = 16;
  bool IsUnsafeSmi(Handle<Object> value);
  // Load an integer constant x into a register target using
  // at most 16 bits of user-controlled data per assembly operation.
  void LoadUnsafeSmi(Register target, Handle<Object> value);

  void CallWithArguments(ZoneList<Expression*>* arguments, int position);

  void CheckStack();

  bool CheckForInlineRuntimeCall(CallRuntime* node);
  Handle<JSFunction> BuildBoilerplate(FunctionLiteral* node);
  void ProcessDeclarations(ZoneList<Declaration*>* declarations);

  Handle<Code> ComputeCallInitialize(int argc);
  Handle<Code> ComputeCallInitializeInLoop(int argc);

  // Declare global variables and functions in the given array of
  // name/value pairs.
  void DeclareGlobals(Handle<FixedArray> pairs);

  // Instantiate the function boilerplate.
  void InstantiateBoilerplate(Handle<JSFunction> boilerplate);

  // Support for type checks.
  void GenerateIsSmi(ZoneList<Expression*>* args);
  void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args);
  void GenerateIsArray(ZoneList<Expression*>* args);

  // Support for arguments.length and arguments[?].
  void GenerateArgumentsLength(ZoneList<Expression*>* args);
  void GenerateArgumentsAccess(ZoneList<Expression*>* args);

  // Support for accessing the value field of an object (used by Date).
  void GenerateValueOf(ZoneList<Expression*>* args);
  void GenerateSetValueOf(ZoneList<Expression*>* args);

  // Fast support for charCodeAt(n).
  void GenerateFastCharCodeAt(ZoneList<Expression*>* args);

  // Fast support for object equality testing.
  void GenerateObjectEquals(ZoneList<Expression*>* args);

  void GenerateLog(ZoneList<Expression*>* args);


  // Methods and constants for fast case switch statement support.
  //
  // Only allow fast-case switch if the range of labels is at most
  // this factor times the number of case labels.
  // Value is derived from comparing the size of code generated by the normal
  // switch code for Smi-labels to the size of a single pointer. If code
  // quality increases this number should be decreased to match.
  static const int kFastSwitchMaxOverheadFactor = 5;

  // Minimal number of switch cases required before we allow jump-table
  // optimization.
  static const int kFastSwitchMinCaseCount = 5;

  // The limit of the range of a fast-case switch, as a factor of the number
  // of cases of the switch. Each platform should return a value that
  // is optimal compared to the default code generated for a switch statement
  // on that platform.
  int FastCaseSwitchMaxOverheadFactor();

  // The minimal number of cases in a switch before the fast-case switch
  // optimization is enabled. Each platform should return a value that
  // is optimal compared to the default code generated for a switch statement
  // on that platform.
  int FastCaseSwitchMinCaseCount();

  // Allocate a jump table and create code to jump through it.
  // Should call GenerateFastCaseSwitchCases to generate the code for
  // all the cases at the appropriate point.
  void GenerateFastCaseSwitchJumpTable(SwitchStatement* node,
                                       int min_index,
                                       int range,
                                       Label* fail_label,
                                       Vector<Label*> case_targets,
                                       Vector<Label> case_labels);

  // Generate the code for cases for the fast case switch.
  // Called by GenerateFastCaseSwitchJumpTable.
  void GenerateFastCaseSwitchCases(SwitchStatement* node,
                                   Vector<Label> case_labels,
                                   VirtualFrame* start_frame);

  // Fast support for constant-Smi switches.
  void GenerateFastCaseSwitchStatement(SwitchStatement* node,
                                       int min_index,
                                       int range,
                                       int default_index);

  // Fast support for constant-Smi switches. Tests whether switch statement
  // permits optimization and calls GenerateFastCaseSwitch if it does.
  // Returns true if the fast-case switch was generated, and false if not.
  bool TryGenerateFastCaseSwitchStatement(SwitchStatement* node);

  // Methods used to indicate which source code is generated for. Source
  // positions are collected by the assembler and emitted with the relocation
  // information.
  void CodeForFunctionPosition(FunctionLiteral* fun);
  void CodeForReturnPosition(FunctionLiteral* fun);
  void CodeForStatementPosition(Node* node);
  void CodeForSourcePosition(int pos);

#ifdef DEBUG
  // True if the registers are valid for entry to a block.  There should be
  // no frame-external references to eax, ebx, ecx, edx, or edi.
  bool HasValidEntryRegisters();
#endif

  bool is_eval_;  // Tells whether code is generated for eval.
  Handle<Script> script_;
  List<DeferredCode*> deferred_;

  // Assembler
  MacroAssembler* masm_;  // to generate code

  // Code generation state
  Scope* scope_;
  VirtualFrame* frame_;
  RegisterAllocator* allocator_;
  CodeGenState* state_;
  int loop_nesting_;

  // Jump targets.
  // The target of the return from the function.
  BreakTarget function_return_;

  // True if the function return is shadowed (ie, jumping to the target
  // function_return_ does not jump to the true function return, but rather
  // to some unlinking code).
  bool function_return_is_shadowed_;

  // True when we are in code that expects the virtual frame to be fully
  // spilled.  Some virtual frame function are disabled in DEBUG builds when
  // called from spilled code, because they do not leave the virtual frame
  // in a spilled state.
  bool in_spilled_code_;

  friend class VirtualFrame;
  friend class JumpTarget;
  friend class Reference;
  friend class Result;

  DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
};


} }  // namespace v8::internal

#endif  // V8_CODEGEN_IA32_H_