1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
|
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_ARM64_INSTRUCTIONS_ARM64_H_
#define V8_ARM64_INSTRUCTIONS_ARM64_H_
#include "src/arm64/constants-arm64.h"
#include "src/arm64/utils-arm64.h"
#include "src/globals.h"
#include "src/utils.h"
namespace v8 {
namespace internal {
// ISA constants. --------------------------------------------------------------
typedef uint32_t Instr;
// The following macros initialize a float/double variable with a bit pattern
// without using static initializers: If ARM64_DEFINE_FP_STATICS is defined, the
// symbol is defined as uint32_t/uint64_t initialized with the desired bit
// pattern. Otherwise, the same symbol is declared as an external float/double.
#if defined(ARM64_DEFINE_FP_STATICS)
#define DEFINE_FLOAT(name, value) extern const uint32_t name = value
#define DEFINE_DOUBLE(name, value) extern const uint64_t name = value
#else
#define DEFINE_FLOAT(name, value) extern const float name
#define DEFINE_DOUBLE(name, value) extern const double name
#endif // defined(ARM64_DEFINE_FP_STATICS)
DEFINE_FLOAT(kFP32PositiveInfinity, 0x7f800000);
DEFINE_FLOAT(kFP32NegativeInfinity, 0xff800000);
DEFINE_DOUBLE(kFP64PositiveInfinity, 0x7ff0000000000000UL);
DEFINE_DOUBLE(kFP64NegativeInfinity, 0xfff0000000000000UL);
// This value is a signalling NaN as both a double and as a float (taking the
// least-significant word).
DEFINE_DOUBLE(kFP64SignallingNaN, 0x7ff000007f800001);
DEFINE_FLOAT(kFP32SignallingNaN, 0x7f800001);
// A similar value, but as a quiet NaN.
DEFINE_DOUBLE(kFP64QuietNaN, 0x7ff800007fc00001);
DEFINE_FLOAT(kFP32QuietNaN, 0x7fc00001);
// The default NaN values (for FPCR.DN=1).
DEFINE_DOUBLE(kFP64DefaultNaN, 0x7ff8000000000000UL);
DEFINE_FLOAT(kFP32DefaultNaN, 0x7fc00000);
#undef DEFINE_FLOAT
#undef DEFINE_DOUBLE
enum LSDataSize {
LSByte = 0,
LSHalfword = 1,
LSWord = 2,
LSDoubleWord = 3
};
LSDataSize CalcLSPairDataSize(LoadStorePairOp op);
enum ImmBranchType {
UnknownBranchType = 0,
CondBranchType = 1,
UncondBranchType = 2,
CompareBranchType = 3,
TestBranchType = 4
};
enum AddrMode {
Offset,
PreIndex,
PostIndex
};
enum FPRounding {
// The first four values are encodable directly by FPCR<RMode>.
FPTieEven = 0x0,
FPPositiveInfinity = 0x1,
FPNegativeInfinity = 0x2,
FPZero = 0x3,
// The final rounding mode is only available when explicitly specified by the
// instruction (such as with fcvta). It cannot be set in FPCR.
FPTieAway
};
enum Reg31Mode {
Reg31IsStackPointer,
Reg31IsZeroRegister
};
// Instructions. ---------------------------------------------------------------
class Instruction {
public:
V8_INLINE Instr InstructionBits() const {
return *reinterpret_cast<const Instr*>(this);
}
V8_INLINE void SetInstructionBits(Instr new_instr) {
*reinterpret_cast<Instr*>(this) = new_instr;
}
int Bit(int pos) const {
return (InstructionBits() >> pos) & 1;
}
uint32_t Bits(int msb, int lsb) const {
return unsigned_bitextract_32(msb, lsb, InstructionBits());
}
int32_t SignedBits(int msb, int lsb) const {
int32_t bits = *(reinterpret_cast<const int32_t*>(this));
return signed_bitextract_32(msb, lsb, bits);
}
Instr Mask(uint32_t mask) const {
return InstructionBits() & mask;
}
V8_INLINE Instruction* following(int count = 1) {
return InstructionAtOffset(count * static_cast<int>(kInstructionSize));
}
V8_INLINE Instruction* preceding(int count = 1) {
return following(-count);
}
#define DEFINE_GETTER(Name, HighBit, LowBit, Func) \
int64_t Name() const { return Func(HighBit, LowBit); }
INSTRUCTION_FIELDS_LIST(DEFINE_GETTER)
#undef DEFINE_GETTER
// ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST),
// formed from ImmPCRelLo and ImmPCRelHi.
int ImmPCRel() const {
DCHECK(IsPCRelAddressing());
int const offset = ((ImmPCRelHi() << ImmPCRelLo_width) | ImmPCRelLo());
int const width = ImmPCRelLo_width + ImmPCRelHi_width;
return signed_bitextract_32(width - 1, 0, offset);
}
uint64_t ImmLogical();
float ImmFP32();
double ImmFP64();
LSDataSize SizeLSPair() const {
return CalcLSPairDataSize(
static_cast<LoadStorePairOp>(Mask(LoadStorePairMask)));
}
// Helpers.
bool IsCondBranchImm() const {
return Mask(ConditionalBranchFMask) == ConditionalBranchFixed;
}
bool IsUncondBranchImm() const {
return Mask(UnconditionalBranchFMask) == UnconditionalBranchFixed;
}
bool IsCompareBranch() const {
return Mask(CompareBranchFMask) == CompareBranchFixed;
}
bool IsTestBranch() const {
return Mask(TestBranchFMask) == TestBranchFixed;
}
bool IsImmBranch() const {
return BranchType() != UnknownBranchType;
}
bool IsLdrLiteral() const {
return Mask(LoadLiteralFMask) == LoadLiteralFixed;
}
bool IsLdrLiteralX() const {
return Mask(LoadLiteralMask) == LDR_x_lit;
}
bool IsPCRelAddressing() const {
return Mask(PCRelAddressingFMask) == PCRelAddressingFixed;
}
bool IsAdr() const {
return Mask(PCRelAddressingMask) == ADR;
}
bool IsLogicalImmediate() const {
return Mask(LogicalImmediateFMask) == LogicalImmediateFixed;
}
bool IsAddSubImmediate() const {
return Mask(AddSubImmediateFMask) == AddSubImmediateFixed;
}
bool IsAddSubShifted() const {
return Mask(AddSubShiftedFMask) == AddSubShiftedFixed;
}
bool IsAddSubExtended() const {
return Mask(AddSubExtendedFMask) == AddSubExtendedFixed;
}
// Match any loads or stores, including pairs.
bool IsLoadOrStore() const {
return Mask(LoadStoreAnyFMask) == LoadStoreAnyFixed;
}
// Match any loads, including pairs.
bool IsLoad() const;
// Match any stores, including pairs.
bool IsStore() const;
// Indicate whether Rd can be the stack pointer or the zero register. This
// does not check that the instruction actually has an Rd field.
Reg31Mode RdMode() const {
// The following instructions use csp or wsp as Rd:
// Add/sub (immediate) when not setting the flags.
// Add/sub (extended) when not setting the flags.
// Logical (immediate) when not setting the flags.
// Otherwise, r31 is the zero register.
if (IsAddSubImmediate() || IsAddSubExtended()) {
if (Mask(AddSubSetFlagsBit)) {
return Reg31IsZeroRegister;
} else {
return Reg31IsStackPointer;
}
}
if (IsLogicalImmediate()) {
// Of the logical (immediate) instructions, only ANDS (and its aliases)
// can set the flags. The others can all write into csp.
// Note that some logical operations are not available to
// immediate-operand instructions, so we have to combine two masks here.
if (Mask(LogicalImmediateMask & LogicalOpMask) == ANDS) {
return Reg31IsZeroRegister;
} else {
return Reg31IsStackPointer;
}
}
return Reg31IsZeroRegister;
}
// Indicate whether Rn can be the stack pointer or the zero register. This
// does not check that the instruction actually has an Rn field.
Reg31Mode RnMode() const {
// The following instructions use csp or wsp as Rn:
// All loads and stores.
// Add/sub (immediate).
// Add/sub (extended).
// Otherwise, r31 is the zero register.
if (IsLoadOrStore() || IsAddSubImmediate() || IsAddSubExtended()) {
return Reg31IsStackPointer;
}
return Reg31IsZeroRegister;
}
ImmBranchType BranchType() const {
if (IsCondBranchImm()) {
return CondBranchType;
} else if (IsUncondBranchImm()) {
return UncondBranchType;
} else if (IsCompareBranch()) {
return CompareBranchType;
} else if (IsTestBranch()) {
return TestBranchType;
} else {
return UnknownBranchType;
}
}
static int ImmBranchRangeBitwidth(ImmBranchType branch_type) {
switch (branch_type) {
case UncondBranchType:
return ImmUncondBranch_width;
case CondBranchType:
return ImmCondBranch_width;
case CompareBranchType:
return ImmCmpBranch_width;
case TestBranchType:
return ImmTestBranch_width;
default:
UNREACHABLE();
return 0;
}
}
// The range of the branch instruction, expressed as 'instr +- range'.
static int32_t ImmBranchRange(ImmBranchType branch_type) {
return
(1 << (ImmBranchRangeBitwidth(branch_type) + kInstructionSizeLog2)) / 2 -
kInstructionSize;
}
int ImmBranch() const {
switch (BranchType()) {
case CondBranchType: return ImmCondBranch();
case UncondBranchType: return ImmUncondBranch();
case CompareBranchType: return ImmCmpBranch();
case TestBranchType: return ImmTestBranch();
default: UNREACHABLE();
}
return 0;
}
bool IsBranchAndLinkToRegister() const {
return Mask(UnconditionalBranchToRegisterMask) == BLR;
}
bool IsMovz() const {
return (Mask(MoveWideImmediateMask) == MOVZ_x) ||
(Mask(MoveWideImmediateMask) == MOVZ_w);
}
bool IsMovk() const {
return (Mask(MoveWideImmediateMask) == MOVK_x) ||
(Mask(MoveWideImmediateMask) == MOVK_w);
}
bool IsMovn() const {
return (Mask(MoveWideImmediateMask) == MOVN_x) ||
(Mask(MoveWideImmediateMask) == MOVN_w);
}
bool IsNop(int n) {
// A marking nop is an instruction
// mov r<n>, r<n>
// which is encoded as
// orr r<n>, xzr, r<n>
return (Mask(LogicalShiftedMask) == ORR_x) &&
(Rd() == Rm()) &&
(Rd() == n);
}
// Find the PC offset encoded in this instruction. 'this' may be a branch or
// a PC-relative addressing instruction.
// The offset returned is unscaled.
ptrdiff_t ImmPCOffset();
// Find the target of this instruction. 'this' may be a branch or a
// PC-relative addressing instruction.
Instruction* ImmPCOffsetTarget();
static bool IsValidImmPCOffset(ImmBranchType branch_type, int32_t offset);
bool IsTargetInImmPCOffsetRange(Instruction* target);
// Patch a PC-relative offset to refer to 'target'. 'this' may be a branch or
// a PC-relative addressing instruction.
void SetImmPCOffsetTarget(Instruction* target);
// Patch a literal load instruction to load from 'source'.
void SetImmLLiteral(Instruction* source);
uint8_t* LiteralAddress() {
int offset = ImmLLiteral() << kLoadLiteralScaleLog2;
return reinterpret_cast<uint8_t*>(this) + offset;
}
enum CheckAlignment { NO_CHECK, CHECK_ALIGNMENT };
V8_INLINE Instruction* InstructionAtOffset(
int64_t offset,
CheckAlignment check = CHECK_ALIGNMENT) {
Address addr = reinterpret_cast<Address>(this) + offset;
// The FUZZ_disasm test relies on no check being done.
DCHECK(check == NO_CHECK || IsAddressAligned(addr, kInstructionSize));
return Cast(addr);
}
template<typename T> V8_INLINE static Instruction* Cast(T src) {
return reinterpret_cast<Instruction*>(src);
}
V8_INLINE ptrdiff_t DistanceTo(Instruction* target) {
return reinterpret_cast<Address>(target) - reinterpret_cast<Address>(this);
}
static const int ImmPCRelRangeBitwidth = 21;
static bool IsValidPCRelOffset(int offset) {
return is_int21(offset);
}
void SetPCRelImmTarget(Instruction* target);
void SetBranchImmTarget(Instruction* target);
};
// Where Instruction looks at instructions generated by the Assembler,
// InstructionSequence looks at instructions sequences generated by the
// MacroAssembler.
class InstructionSequence : public Instruction {
public:
static InstructionSequence* At(Address address) {
return reinterpret_cast<InstructionSequence*>(address);
}
// Sequences generated by MacroAssembler::InlineData().
bool IsInlineData() const;
uint64_t InlineData() const;
};
// Simulator/Debugger debug instructions ---------------------------------------
// Each debug marker is represented by a HLT instruction. The immediate comment
// field in the instruction is used to identify the type of debug marker. Each
// marker encodes arguments in a different way, as described below.
// Indicate to the Debugger that the instruction is a redirected call.
const Instr kImmExceptionIsRedirectedCall = 0xca11;
// Represent unreachable code. This is used as a guard in parts of the code that
// should not be reachable, such as in data encoded inline in the instructions.
const Instr kImmExceptionIsUnreachable = 0xdebf;
// A pseudo 'printf' instruction. The arguments will be passed to the platform
// printf method.
const Instr kImmExceptionIsPrintf = 0xdeb1;
// Most parameters are stored in ARM64 registers as if the printf
// pseudo-instruction was a call to the real printf method:
// x0: The format string.
// x1-x7: Optional arguments.
// d0-d7: Optional arguments.
//
// Also, the argument layout is described inline in the instructions:
// - arg_count: The number of arguments.
// - arg_pattern: A set of PrintfArgPattern values, packed into two-bit fields.
//
// Floating-point and integer arguments are passed in separate sets of registers
// in AAPCS64 (even for varargs functions), so it is not possible to determine
// the type of each argument without some information about the values that were
// passed in. This information could be retrieved from the printf format string,
// but the format string is not trivial to parse so we encode the relevant
// information with the HLT instruction.
const unsigned kPrintfArgCountOffset = 1 * kInstructionSize;
const unsigned kPrintfArgPatternListOffset = 2 * kInstructionSize;
const unsigned kPrintfLength = 3 * kInstructionSize;
const unsigned kPrintfMaxArgCount = 4;
// The argument pattern is a set of two-bit-fields, each with one of the
// following values:
enum PrintfArgPattern {
kPrintfArgW = 1,
kPrintfArgX = 2,
// There is no kPrintfArgS because floats are always converted to doubles in C
// varargs calls.
kPrintfArgD = 3
};
static const unsigned kPrintfArgPatternBits = 2;
// A pseudo 'debug' instruction.
const Instr kImmExceptionIsDebug = 0xdeb0;
// Parameters are inlined in the code after a debug pseudo-instruction:
// - Debug code.
// - Debug parameters.
// - Debug message string. This is a NULL-terminated ASCII string, padded to
// kInstructionSize so that subsequent instructions are correctly aligned.
// - A kImmExceptionIsUnreachable marker, to catch accidental execution of the
// string data.
const unsigned kDebugCodeOffset = 1 * kInstructionSize;
const unsigned kDebugParamsOffset = 2 * kInstructionSize;
const unsigned kDebugMessageOffset = 3 * kInstructionSize;
// Debug parameters.
// Used without a TRACE_ option, the Debugger will print the arguments only
// once. Otherwise TRACE_ENABLE and TRACE_DISABLE will enable or disable tracing
// before every instruction for the specified LOG_ parameters.
//
// TRACE_OVERRIDE enables the specified LOG_ parameters, and disabled any
// others that were not specified.
//
// For example:
//
// __ debug("print registers and fp registers", 0, LOG_REGS | LOG_FP_REGS);
// will print the registers and fp registers only once.
//
// __ debug("trace disasm", 1, TRACE_ENABLE | LOG_DISASM);
// starts disassembling the code.
//
// __ debug("trace rets", 2, TRACE_ENABLE | LOG_REGS);
// adds the general purpose registers to the trace.
//
// __ debug("stop regs", 3, TRACE_DISABLE | LOG_REGS);
// stops tracing the registers.
const unsigned kDebuggerTracingDirectivesMask = 3 << 6;
enum DebugParameters {
NO_PARAM = 0,
BREAK = 1 << 0,
LOG_DISASM = 1 << 1, // Use only with TRACE. Disassemble the code.
LOG_REGS = 1 << 2, // Log general purpose registers.
LOG_FP_REGS = 1 << 3, // Log floating-point registers.
LOG_SYS_REGS = 1 << 4, // Log the status flags.
LOG_WRITE = 1 << 5, // Log any memory write.
LOG_STATE = LOG_REGS | LOG_FP_REGS | LOG_SYS_REGS,
LOG_ALL = LOG_DISASM | LOG_STATE | LOG_WRITE,
// Trace control.
TRACE_ENABLE = 1 << 6,
TRACE_DISABLE = 2 << 6,
TRACE_OVERRIDE = 3 << 6
};
} } // namespace v8::internal
#endif // V8_ARM64_INSTRUCTIONS_ARM64_H_
|