1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
|
// Copyright 2006-2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "bootstrapper.h"
#include "codegen-inl.h"
#include "debug.h"
#include "parser.h"
#include "register-allocator-inl.h"
#include "runtime.h"
#include "scopes.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm_)
static void EmitIdenticalObjectComparison(MacroAssembler* masm,
Label* slow,
Condition cc);
static void EmitSmiNonsmiComparison(MacroAssembler* masm,
Label* rhs_not_nan,
Label* slow,
bool strict);
static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc);
static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm);
static void MultiplyByKnownInt(MacroAssembler* masm,
Register source,
Register destination,
int known_int);
static bool IsEasyToMultiplyBy(int x);
// -------------------------------------------------------------------------
// Platform-specific DeferredCode functions.
void DeferredCode::SaveRegisters() {
for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
int action = registers_[i];
if (action == kPush) {
__ push(RegisterAllocator::ToRegister(i));
} else if (action != kIgnore && (action & kSyncedFlag) == 0) {
__ str(RegisterAllocator::ToRegister(i), MemOperand(fp, action));
}
}
}
void DeferredCode::RestoreRegisters() {
// Restore registers in reverse order due to the stack.
for (int i = RegisterAllocator::kNumRegisters - 1; i >= 0; i--) {
int action = registers_[i];
if (action == kPush) {
__ pop(RegisterAllocator::ToRegister(i));
} else if (action != kIgnore) {
action &= ~kSyncedFlag;
__ ldr(RegisterAllocator::ToRegister(i), MemOperand(fp, action));
}
}
}
// -------------------------------------------------------------------------
// CodeGenState implementation.
CodeGenState::CodeGenState(CodeGenerator* owner)
: owner_(owner),
typeof_state_(NOT_INSIDE_TYPEOF),
true_target_(NULL),
false_target_(NULL),
previous_(NULL) {
owner_->set_state(this);
}
CodeGenState::CodeGenState(CodeGenerator* owner,
TypeofState typeof_state,
JumpTarget* true_target,
JumpTarget* false_target)
: owner_(owner),
typeof_state_(typeof_state),
true_target_(true_target),
false_target_(false_target),
previous_(owner->state()) {
owner_->set_state(this);
}
CodeGenState::~CodeGenState() {
ASSERT(owner_->state() == this);
owner_->set_state(previous_);
}
// -------------------------------------------------------------------------
// CodeGenerator implementation
CodeGenerator::CodeGenerator(int buffer_size, Handle<Script> script,
bool is_eval)
: is_eval_(is_eval),
script_(script),
deferred_(8),
masm_(new MacroAssembler(NULL, buffer_size)),
scope_(NULL),
frame_(NULL),
allocator_(NULL),
cc_reg_(al),
state_(NULL),
function_return_is_shadowed_(false) {
}
// Calling conventions:
// fp: caller's frame pointer
// sp: stack pointer
// r1: called JS function
// cp: callee's context
void CodeGenerator::GenCode(FunctionLiteral* fun) {
ZoneList<Statement*>* body = fun->body();
// Initialize state.
ASSERT(scope_ == NULL);
scope_ = fun->scope();
ASSERT(allocator_ == NULL);
RegisterAllocator register_allocator(this);
allocator_ = ®ister_allocator;
ASSERT(frame_ == NULL);
frame_ = new VirtualFrame();
cc_reg_ = al;
{
CodeGenState state(this);
// Entry:
// Stack: receiver, arguments
// lr: return address
// fp: caller's frame pointer
// sp: stack pointer
// r1: called JS function
// cp: callee's context
allocator_->Initialize();
frame_->Enter();
// tos: code slot
#ifdef DEBUG
if (strlen(FLAG_stop_at) > 0 &&
fun->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
frame_->SpillAll();
__ stop("stop-at");
}
#endif
// Allocate space for locals and initialize them. This also checks
// for stack overflow.
frame_->AllocateStackSlots();
// Initialize the function return target after the locals are set
// up, because it needs the expected frame height from the frame.
function_return_.set_direction(JumpTarget::BIDIRECTIONAL);
function_return_is_shadowed_ = false;
VirtualFrame::SpilledScope spilled_scope;
if (scope_->num_heap_slots() > 0) {
// Allocate local context.
// Get outer context and create a new context based on it.
__ ldr(r0, frame_->Function());
frame_->EmitPush(r0);
frame_->CallRuntime(Runtime::kNewContext, 1); // r0 holds the result
#ifdef DEBUG
JumpTarget verified_true;
__ cmp(r0, Operand(cp));
verified_true.Branch(eq);
__ stop("NewContext: r0 is expected to be the same as cp");
verified_true.Bind();
#endif
// Update context local.
__ str(cp, frame_->Context());
}
// TODO(1241774): Improve this code:
// 1) only needed if we have a context
// 2) no need to recompute context ptr every single time
// 3) don't copy parameter operand code from SlotOperand!
{
Comment cmnt2(masm_, "[ copy context parameters into .context");
// Note that iteration order is relevant here! If we have the same
// parameter twice (e.g., function (x, y, x)), and that parameter
// needs to be copied into the context, it must be the last argument
// passed to the parameter that needs to be copied. This is a rare
// case so we don't check for it, instead we rely on the copying
// order: such a parameter is copied repeatedly into the same
// context location and thus the last value is what is seen inside
// the function.
for (int i = 0; i < scope_->num_parameters(); i++) {
Variable* par = scope_->parameter(i);
Slot* slot = par->slot();
if (slot != NULL && slot->type() == Slot::CONTEXT) {
ASSERT(!scope_->is_global_scope()); // no parameters in global scope
__ ldr(r1, frame_->ParameterAt(i));
// Loads r2 with context; used below in RecordWrite.
__ str(r1, SlotOperand(slot, r2));
// Load the offset into r3.
int slot_offset =
FixedArray::kHeaderSize + slot->index() * kPointerSize;
__ mov(r3, Operand(slot_offset));
__ RecordWrite(r2, r3, r1);
}
}
}
// Store the arguments object. This must happen after context
// initialization because the arguments object may be stored in the
// context.
if (scope_->arguments() != NULL) {
ASSERT(scope_->arguments_shadow() != NULL);
Comment cmnt(masm_, "[ allocate arguments object");
{ Reference shadow_ref(this, scope_->arguments_shadow());
{ Reference arguments_ref(this, scope_->arguments());
ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
__ ldr(r2, frame_->Function());
// The receiver is below the arguments, the return address,
// and the frame pointer on the stack.
const int kReceiverDisplacement = 2 + scope_->num_parameters();
__ add(r1, fp, Operand(kReceiverDisplacement * kPointerSize));
__ mov(r0, Operand(Smi::FromInt(scope_->num_parameters())));
frame_->Adjust(3);
__ stm(db_w, sp, r0.bit() | r1.bit() | r2.bit());
frame_->CallStub(&stub, 3);
frame_->EmitPush(r0);
arguments_ref.SetValue(NOT_CONST_INIT);
}
shadow_ref.SetValue(NOT_CONST_INIT);
}
frame_->Drop(); // Value is no longer needed.
}
// Generate code to 'execute' declarations and initialize functions
// (source elements). In case of an illegal redeclaration we need to
// handle that instead of processing the declarations.
if (scope_->HasIllegalRedeclaration()) {
Comment cmnt(masm_, "[ illegal redeclarations");
scope_->VisitIllegalRedeclaration(this);
} else {
Comment cmnt(masm_, "[ declarations");
ProcessDeclarations(scope_->declarations());
// Bail out if a stack-overflow exception occurred when processing
// declarations.
if (HasStackOverflow()) return;
}
if (FLAG_trace) {
frame_->CallRuntime(Runtime::kTraceEnter, 0);
// Ignore the return value.
}
// Compile the body of the function in a vanilla state. Don't
// bother compiling all the code if the scope has an illegal
// redeclaration.
if (!scope_->HasIllegalRedeclaration()) {
Comment cmnt(masm_, "[ function body");
#ifdef DEBUG
bool is_builtin = Bootstrapper::IsActive();
bool should_trace =
is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls;
if (should_trace) {
frame_->CallRuntime(Runtime::kDebugTrace, 0);
// Ignore the return value.
}
#endif
VisitStatementsAndSpill(body);
}
}
// Generate the return sequence if necessary.
if (has_valid_frame() || function_return_.is_linked()) {
if (!function_return_.is_linked()) {
CodeForReturnPosition(fun);
}
// exit
// r0: result
// sp: stack pointer
// fp: frame pointer
// cp: callee's context
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
function_return_.Bind();
if (FLAG_trace) {
// Push the return value on the stack as the parameter.
// Runtime::TraceExit returns the parameter as it is.
frame_->EmitPush(r0);
frame_->CallRuntime(Runtime::kTraceExit, 1);
}
// Add a label for checking the size of the code used for returning.
Label check_exit_codesize;
masm_->bind(&check_exit_codesize);
// Tear down the frame which will restore the caller's frame pointer and
// the link register.
frame_->Exit();
// Here we use masm_-> instead of the __ macro to avoid the code coverage
// tool from instrumenting as we rely on the code size here.
masm_->add(sp, sp, Operand((scope_->num_parameters() + 1) * kPointerSize));
masm_->Jump(lr);
// Check that the size of the code used for returning matches what is
// expected by the debugger.
ASSERT_EQ(kJSReturnSequenceLength,
masm_->InstructionsGeneratedSince(&check_exit_codesize));
}
// Code generation state must be reset.
ASSERT(!has_cc());
ASSERT(state_ == NULL);
ASSERT(!function_return_is_shadowed_);
function_return_.Unuse();
DeleteFrame();
// Process any deferred code using the register allocator.
if (!HasStackOverflow()) {
ProcessDeferred();
}
allocator_ = NULL;
scope_ = NULL;
}
MemOperand CodeGenerator::SlotOperand(Slot* slot, Register tmp) {
// Currently, this assertion will fail if we try to assign to
// a constant variable that is constant because it is read-only
// (such as the variable referring to a named function expression).
// We need to implement assignments to read-only variables.
// Ideally, we should do this during AST generation (by converting
// such assignments into expression statements); however, in general
// we may not be able to make the decision until past AST generation,
// that is when the entire program is known.
ASSERT(slot != NULL);
int index = slot->index();
switch (slot->type()) {
case Slot::PARAMETER:
return frame_->ParameterAt(index);
case Slot::LOCAL:
return frame_->LocalAt(index);
case Slot::CONTEXT: {
// Follow the context chain if necessary.
ASSERT(!tmp.is(cp)); // do not overwrite context register
Register context = cp;
int chain_length = scope()->ContextChainLength(slot->var()->scope());
for (int i = 0; i < chain_length; i++) {
// Load the closure.
// (All contexts, even 'with' contexts, have a closure,
// and it is the same for all contexts inside a function.
// There is no need to go to the function context first.)
__ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
// Load the function context (which is the incoming, outer context).
__ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset));
context = tmp;
}
// We may have a 'with' context now. Get the function context.
// (In fact this mov may never be the needed, since the scope analysis
// may not permit a direct context access in this case and thus we are
// always at a function context. However it is safe to dereference be-
// cause the function context of a function context is itself. Before
// deleting this mov we should try to create a counter-example first,
// though...)
__ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
return ContextOperand(tmp, index);
}
default:
UNREACHABLE();
return MemOperand(r0, 0);
}
}
MemOperand CodeGenerator::ContextSlotOperandCheckExtensions(
Slot* slot,
Register tmp,
Register tmp2,
JumpTarget* slow) {
ASSERT(slot->type() == Slot::CONTEXT);
Register context = cp;
for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) {
if (s->num_heap_slots() > 0) {
if (s->calls_eval()) {
// Check that extension is NULL.
__ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX));
__ tst(tmp2, tmp2);
slow->Branch(ne);
}
__ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
__ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset));
context = tmp;
}
}
// Check that last extension is NULL.
__ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX));
__ tst(tmp2, tmp2);
slow->Branch(ne);
__ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
return ContextOperand(tmp, slot->index());
}
// Loads a value on TOS. If it is a boolean value, the result may have been
// (partially) translated into branches, or it may have set the condition
// code register. If force_cc is set, the value is forced to set the
// condition code register and no value is pushed. If the condition code
// register was set, has_cc() is true and cc_reg_ contains the condition to
// test for 'true'.
void CodeGenerator::LoadCondition(Expression* x,
TypeofState typeof_state,
JumpTarget* true_target,
JumpTarget* false_target,
bool force_cc) {
ASSERT(!has_cc());
int original_height = frame_->height();
{ CodeGenState new_state(this, typeof_state, true_target, false_target);
Visit(x);
// If we hit a stack overflow, we may not have actually visited
// the expression. In that case, we ensure that we have a
// valid-looking frame state because we will continue to generate
// code as we unwind the C++ stack.
//
// It's possible to have both a stack overflow and a valid frame
// state (eg, a subexpression overflowed, visiting it returned
// with a dummied frame state, and visiting this expression
// returned with a normal-looking state).
if (HasStackOverflow() &&
has_valid_frame() &&
!has_cc() &&
frame_->height() == original_height) {
true_target->Jump();
}
}
if (force_cc && frame_ != NULL && !has_cc()) {
// Convert the TOS value to a boolean in the condition code register.
ToBoolean(true_target, false_target);
}
ASSERT(!force_cc || !has_valid_frame() || has_cc());
ASSERT(!has_valid_frame() ||
(has_cc() && frame_->height() == original_height) ||
(!has_cc() && frame_->height() == original_height + 1));
}
void CodeGenerator::Load(Expression* x, TypeofState typeof_state) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
JumpTarget true_target;
JumpTarget false_target;
LoadCondition(x, typeof_state, &true_target, &false_target, false);
if (has_cc()) {
// Convert cc_reg_ into a boolean value.
JumpTarget loaded;
JumpTarget materialize_true;
materialize_true.Branch(cc_reg_);
__ LoadRoot(r0, Heap::kFalseValueRootIndex);
frame_->EmitPush(r0);
loaded.Jump();
materialize_true.Bind();
__ LoadRoot(r0, Heap::kTrueValueRootIndex);
frame_->EmitPush(r0);
loaded.Bind();
cc_reg_ = al;
}
if (true_target.is_linked() || false_target.is_linked()) {
// We have at least one condition value that has been "translated"
// into a branch, thus it needs to be loaded explicitly.
JumpTarget loaded;
if (frame_ != NULL) {
loaded.Jump(); // Don't lose the current TOS.
}
bool both = true_target.is_linked() && false_target.is_linked();
// Load "true" if necessary.
if (true_target.is_linked()) {
true_target.Bind();
__ LoadRoot(r0, Heap::kTrueValueRootIndex);
frame_->EmitPush(r0);
}
// If both "true" and "false" need to be loaded jump across the code for
// "false".
if (both) {
loaded.Jump();
}
// Load "false" if necessary.
if (false_target.is_linked()) {
false_target.Bind();
__ LoadRoot(r0, Heap::kFalseValueRootIndex);
frame_->EmitPush(r0);
}
// A value is loaded on all paths reaching this point.
loaded.Bind();
}
ASSERT(has_valid_frame());
ASSERT(!has_cc());
ASSERT(frame_->height() == original_height + 1);
}
void CodeGenerator::LoadGlobal() {
VirtualFrame::SpilledScope spilled_scope;
__ ldr(r0, GlobalObject());
frame_->EmitPush(r0);
}
void CodeGenerator::LoadGlobalReceiver(Register scratch) {
VirtualFrame::SpilledScope spilled_scope;
__ ldr(scratch, ContextOperand(cp, Context::GLOBAL_INDEX));
__ ldr(scratch,
FieldMemOperand(scratch, GlobalObject::kGlobalReceiverOffset));
frame_->EmitPush(scratch);
}
// TODO(1241834): Get rid of this function in favor of just using Load, now
// that we have the INSIDE_TYPEOF typeof state. => Need to handle global
// variables w/o reference errors elsewhere.
void CodeGenerator::LoadTypeofExpression(Expression* x) {
VirtualFrame::SpilledScope spilled_scope;
Variable* variable = x->AsVariableProxy()->AsVariable();
if (variable != NULL && !variable->is_this() && variable->is_global()) {
// NOTE: This is somewhat nasty. We force the compiler to load
// the variable as if through '<global>.<variable>' to make sure we
// do not get reference errors.
Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX);
Literal key(variable->name());
// TODO(1241834): Fetch the position from the variable instead of using
// no position.
Property property(&global, &key, RelocInfo::kNoPosition);
LoadAndSpill(&property);
} else {
LoadAndSpill(x, INSIDE_TYPEOF);
}
}
Reference::Reference(CodeGenerator* cgen, Expression* expression)
: cgen_(cgen), expression_(expression), type_(ILLEGAL) {
cgen->LoadReference(this);
}
Reference::~Reference() {
cgen_->UnloadReference(this);
}
void CodeGenerator::LoadReference(Reference* ref) {
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ LoadReference");
Expression* e = ref->expression();
Property* property = e->AsProperty();
Variable* var = e->AsVariableProxy()->AsVariable();
if (property != NULL) {
// The expression is either a property or a variable proxy that rewrites
// to a property.
LoadAndSpill(property->obj());
// We use a named reference if the key is a literal symbol, unless it is
// a string that can be legally parsed as an integer. This is because
// otherwise we will not get into the slow case code that handles [] on
// String objects.
Literal* literal = property->key()->AsLiteral();
uint32_t dummy;
if (literal != NULL &&
literal->handle()->IsSymbol() &&
!String::cast(*(literal->handle()))->AsArrayIndex(&dummy)) {
ref->set_type(Reference::NAMED);
} else {
LoadAndSpill(property->key());
ref->set_type(Reference::KEYED);
}
} else if (var != NULL) {
// The expression is a variable proxy that does not rewrite to a
// property. Global variables are treated as named property references.
if (var->is_global()) {
LoadGlobal();
ref->set_type(Reference::NAMED);
} else {
ASSERT(var->slot() != NULL);
ref->set_type(Reference::SLOT);
}
} else {
// Anything else is a runtime error.
LoadAndSpill(e);
frame_->CallRuntime(Runtime::kThrowReferenceError, 1);
}
}
void CodeGenerator::UnloadReference(Reference* ref) {
VirtualFrame::SpilledScope spilled_scope;
// Pop a reference from the stack while preserving TOS.
Comment cmnt(masm_, "[ UnloadReference");
int size = ref->size();
if (size > 0) {
frame_->EmitPop(r0);
frame_->Drop(size);
frame_->EmitPush(r0);
}
}
// ECMA-262, section 9.2, page 30: ToBoolean(). Convert the given
// register to a boolean in the condition code register. The code
// may jump to 'false_target' in case the register converts to 'false'.
void CodeGenerator::ToBoolean(JumpTarget* true_target,
JumpTarget* false_target) {
VirtualFrame::SpilledScope spilled_scope;
// Note: The generated code snippet does not change stack variables.
// Only the condition code should be set.
frame_->EmitPop(r0);
// Fast case checks
// Check if the value is 'false'.
__ LoadRoot(ip, Heap::kFalseValueRootIndex);
__ cmp(r0, ip);
false_target->Branch(eq);
// Check if the value is 'true'.
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ cmp(r0, ip);
true_target->Branch(eq);
// Check if the value is 'undefined'.
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(r0, ip);
false_target->Branch(eq);
// Check if the value is a smi.
__ cmp(r0, Operand(Smi::FromInt(0)));
false_target->Branch(eq);
__ tst(r0, Operand(kSmiTagMask));
true_target->Branch(eq);
// Slow case: call the runtime.
frame_->EmitPush(r0);
frame_->CallRuntime(Runtime::kToBool, 1);
// Convert the result (r0) to a condition code.
__ LoadRoot(ip, Heap::kFalseValueRootIndex);
__ cmp(r0, ip);
cc_reg_ = ne;
}
void CodeGenerator::GenericBinaryOperation(Token::Value op,
OverwriteMode overwrite_mode,
int constant_rhs) {
VirtualFrame::SpilledScope spilled_scope;
// sp[0] : y
// sp[1] : x
// result : r0
// Stub is entered with a call: 'return address' is in lr.
switch (op) {
case Token::ADD: // fall through.
case Token::SUB: // fall through.
case Token::MUL:
case Token::DIV:
case Token::MOD:
case Token::BIT_OR:
case Token::BIT_AND:
case Token::BIT_XOR:
case Token::SHL:
case Token::SHR:
case Token::SAR: {
frame_->EmitPop(r0); // r0 : y
frame_->EmitPop(r1); // r1 : x
GenericBinaryOpStub stub(op, overwrite_mode, constant_rhs);
frame_->CallStub(&stub, 0);
break;
}
case Token::COMMA:
frame_->EmitPop(r0);
// simply discard left value
frame_->Drop();
break;
default:
// Other cases should have been handled before this point.
UNREACHABLE();
break;
}
}
class DeferredInlineSmiOperation: public DeferredCode {
public:
DeferredInlineSmiOperation(Token::Value op,
int value,
bool reversed,
OverwriteMode overwrite_mode)
: op_(op),
value_(value),
reversed_(reversed),
overwrite_mode_(overwrite_mode) {
set_comment("[ DeferredInlinedSmiOperation");
}
virtual void Generate();
private:
Token::Value op_;
int value_;
bool reversed_;
OverwriteMode overwrite_mode_;
};
void DeferredInlineSmiOperation::Generate() {
switch (op_) {
case Token::ADD: {
// Revert optimistic add.
if (reversed_) {
__ sub(r0, r0, Operand(Smi::FromInt(value_)));
__ mov(r1, Operand(Smi::FromInt(value_)));
} else {
__ sub(r1, r0, Operand(Smi::FromInt(value_)));
__ mov(r0, Operand(Smi::FromInt(value_)));
}
break;
}
case Token::SUB: {
// Revert optimistic sub.
if (reversed_) {
__ rsb(r0, r0, Operand(Smi::FromInt(value_)));
__ mov(r1, Operand(Smi::FromInt(value_)));
} else {
__ add(r1, r0, Operand(Smi::FromInt(value_)));
__ mov(r0, Operand(Smi::FromInt(value_)));
}
break;
}
// For these operations there is no optimistic operation that needs to be
// reverted.
case Token::MUL:
case Token::MOD:
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND: {
if (reversed_) {
__ mov(r1, Operand(Smi::FromInt(value_)));
} else {
__ mov(r1, Operand(r0));
__ mov(r0, Operand(Smi::FromInt(value_)));
}
break;
}
case Token::SHL:
case Token::SHR:
case Token::SAR: {
if (!reversed_) {
__ mov(r1, Operand(r0));
__ mov(r0, Operand(Smi::FromInt(value_)));
} else {
UNREACHABLE(); // Should have been handled in SmiOperation.
}
break;
}
default:
// Other cases should have been handled before this point.
UNREACHABLE();
break;
}
GenericBinaryOpStub stub(op_, overwrite_mode_, value_);
__ CallStub(&stub);
}
static bool PopCountLessThanEqual2(unsigned int x) {
x &= x - 1;
return (x & (x - 1)) == 0;
}
// Returns the index of the lowest bit set.
static int BitPosition(unsigned x) {
int bit_posn = 0;
while ((x & 0xf) == 0) {
bit_posn += 4;
x >>= 4;
}
while ((x & 1) == 0) {
bit_posn++;
x >>= 1;
}
return bit_posn;
}
void CodeGenerator::SmiOperation(Token::Value op,
Handle<Object> value,
bool reversed,
OverwriteMode mode) {
VirtualFrame::SpilledScope spilled_scope;
// NOTE: This is an attempt to inline (a bit) more of the code for
// some possible smi operations (like + and -) when (at least) one
// of the operands is a literal smi. With this optimization, the
// performance of the system is increased by ~15%, and the generated
// code size is increased by ~1% (measured on a combination of
// different benchmarks).
// sp[0] : operand
int int_value = Smi::cast(*value)->value();
JumpTarget exit;
frame_->EmitPop(r0);
bool something_to_inline = true;
switch (op) {
case Token::ADD: {
DeferredCode* deferred =
new DeferredInlineSmiOperation(op, int_value, reversed, mode);
__ add(r0, r0, Operand(value), SetCC);
deferred->Branch(vs);
__ tst(r0, Operand(kSmiTagMask));
deferred->Branch(ne);
deferred->BindExit();
break;
}
case Token::SUB: {
DeferredCode* deferred =
new DeferredInlineSmiOperation(op, int_value, reversed, mode);
if (reversed) {
__ rsb(r0, r0, Operand(value), SetCC);
} else {
__ sub(r0, r0, Operand(value), SetCC);
}
deferred->Branch(vs);
__ tst(r0, Operand(kSmiTagMask));
deferred->Branch(ne);
deferred->BindExit();
break;
}
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND: {
DeferredCode* deferred =
new DeferredInlineSmiOperation(op, int_value, reversed, mode);
__ tst(r0, Operand(kSmiTagMask));
deferred->Branch(ne);
switch (op) {
case Token::BIT_OR: __ orr(r0, r0, Operand(value)); break;
case Token::BIT_XOR: __ eor(r0, r0, Operand(value)); break;
case Token::BIT_AND: __ and_(r0, r0, Operand(value)); break;
default: UNREACHABLE();
}
deferred->BindExit();
break;
}
case Token::SHL:
case Token::SHR:
case Token::SAR: {
if (reversed) {
something_to_inline = false;
break;
}
int shift_value = int_value & 0x1f; // least significant 5 bits
DeferredCode* deferred =
new DeferredInlineSmiOperation(op, shift_value, false, mode);
__ tst(r0, Operand(kSmiTagMask));
deferred->Branch(ne);
__ mov(r2, Operand(r0, ASR, kSmiTagSize)); // remove tags
switch (op) {
case Token::SHL: {
if (shift_value != 0) {
__ mov(r2, Operand(r2, LSL, shift_value));
}
// check that the *unsigned* result fits in a smi
__ add(r3, r2, Operand(0x40000000), SetCC);
deferred->Branch(mi);
break;
}
case Token::SHR: {
// LSR by immediate 0 means shifting 32 bits.
if (shift_value != 0) {
__ mov(r2, Operand(r2, LSR, shift_value));
}
// check that the *unsigned* result fits in a smi
// neither of the two high-order bits can be set:
// - 0x80000000: high bit would be lost when smi tagging
// - 0x40000000: this number would convert to negative when
// smi tagging these two cases can only happen with shifts
// by 0 or 1 when handed a valid smi
__ and_(r3, r2, Operand(0xc0000000), SetCC);
deferred->Branch(ne);
break;
}
case Token::SAR: {
if (shift_value != 0) {
// ASR by immediate 0 means shifting 32 bits.
__ mov(r2, Operand(r2, ASR, shift_value));
}
break;
}
default: UNREACHABLE();
}
__ mov(r0, Operand(r2, LSL, kSmiTagSize));
deferred->BindExit();
break;
}
case Token::MOD: {
if (reversed || int_value < 2 || !IsPowerOf2(int_value)) {
something_to_inline = false;
break;
}
DeferredCode* deferred =
new DeferredInlineSmiOperation(op, int_value, reversed, mode);
unsigned mask = (0x80000000u | kSmiTagMask);
__ tst(r0, Operand(mask));
deferred->Branch(ne); // Go to deferred code on non-Smis and negative.
mask = (int_value << kSmiTagSize) - 1;
__ and_(r0, r0, Operand(mask));
deferred->BindExit();
break;
}
case Token::MUL: {
if (!IsEasyToMultiplyBy(int_value)) {
something_to_inline = false;
break;
}
DeferredCode* deferred =
new DeferredInlineSmiOperation(op, int_value, reversed, mode);
unsigned max_smi_that_wont_overflow = Smi::kMaxValue / int_value;
max_smi_that_wont_overflow <<= kSmiTagSize;
unsigned mask = 0x80000000u;
while ((mask & max_smi_that_wont_overflow) == 0) {
mask |= mask >> 1;
}
mask |= kSmiTagMask;
// This does a single mask that checks for a too high value in a
// conservative way and for a non-Smi. It also filters out negative
// numbers, unfortunately, but since this code is inline we prefer
// brevity to comprehensiveness.
__ tst(r0, Operand(mask));
deferred->Branch(ne);
MultiplyByKnownInt(masm_, r0, r0, int_value);
deferred->BindExit();
break;
}
default:
something_to_inline = false;
break;
}
if (!something_to_inline) {
if (!reversed) {
frame_->EmitPush(r0);
__ mov(r0, Operand(value));
frame_->EmitPush(r0);
GenericBinaryOperation(op, mode, int_value);
} else {
__ mov(ip, Operand(value));
frame_->EmitPush(ip);
frame_->EmitPush(r0);
GenericBinaryOperation(op, mode, kUnknownIntValue);
}
}
exit.Bind();
}
void CodeGenerator::Comparison(Condition cc,
Expression* left,
Expression* right,
bool strict) {
if (left != NULL) LoadAndSpill(left);
if (right != NULL) LoadAndSpill(right);
VirtualFrame::SpilledScope spilled_scope;
// sp[0] : y
// sp[1] : x
// result : cc register
// Strict only makes sense for equality comparisons.
ASSERT(!strict || cc == eq);
JumpTarget exit;
JumpTarget smi;
// Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order.
if (cc == gt || cc == le) {
cc = ReverseCondition(cc);
frame_->EmitPop(r1);
frame_->EmitPop(r0);
} else {
frame_->EmitPop(r0);
frame_->EmitPop(r1);
}
__ orr(r2, r0, Operand(r1));
__ tst(r2, Operand(kSmiTagMask));
smi.Branch(eq);
// Perform non-smi comparison by stub.
// CompareStub takes arguments in r0 and r1, returns <0, >0 or 0 in r0.
// We call with 0 args because there are 0 on the stack.
CompareStub stub(cc, strict);
frame_->CallStub(&stub, 0);
__ cmp(r0, Operand(0));
exit.Jump();
// Do smi comparisons by pointer comparison.
smi.Bind();
__ cmp(r1, Operand(r0));
exit.Bind();
cc_reg_ = cc;
}
class CallFunctionStub: public CodeStub {
public:
CallFunctionStub(int argc, InLoopFlag in_loop)
: argc_(argc), in_loop_(in_loop) {}
void Generate(MacroAssembler* masm);
private:
int argc_;
InLoopFlag in_loop_;
#if defined(DEBUG)
void Print() { PrintF("CallFunctionStub (argc %d)\n", argc_); }
#endif // defined(DEBUG)
Major MajorKey() { return CallFunction; }
int MinorKey() { return argc_; }
InLoopFlag InLoop() { return in_loop_; }
};
// Call the function on the stack with the given arguments.
void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args,
int position) {
VirtualFrame::SpilledScope spilled_scope;
// Push the arguments ("left-to-right") on the stack.
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
LoadAndSpill(args->at(i));
}
// Record the position for debugging purposes.
CodeForSourcePosition(position);
// Use the shared code stub to call the function.
InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
CallFunctionStub call_function(arg_count, in_loop);
frame_->CallStub(&call_function, arg_count + 1);
// Restore context and pop function from the stack.
__ ldr(cp, frame_->Context());
frame_->Drop(); // discard the TOS
}
void CodeGenerator::Branch(bool if_true, JumpTarget* target) {
VirtualFrame::SpilledScope spilled_scope;
ASSERT(has_cc());
Condition cc = if_true ? cc_reg_ : NegateCondition(cc_reg_);
target->Branch(cc);
cc_reg_ = al;
}
void CodeGenerator::CheckStack() {
VirtualFrame::SpilledScope spilled_scope;
if (FLAG_check_stack) {
Comment cmnt(masm_, "[ check stack");
__ LoadRoot(ip, Heap::kStackLimitRootIndex);
// Put the lr setup instruction in the delay slot. kInstrSize is added to
// the implicit 8 byte offset that always applies to operations with pc and
// gives a return address 12 bytes down.
masm_->add(lr, pc, Operand(Assembler::kInstrSize));
masm_->cmp(sp, Operand(ip));
StackCheckStub stub;
// Call the stub if lower.
masm_->mov(pc,
Operand(reinterpret_cast<intptr_t>(stub.GetCode().location()),
RelocInfo::CODE_TARGET),
LeaveCC,
lo);
}
}
void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
for (int i = 0; frame_ != NULL && i < statements->length(); i++) {
VisitAndSpill(statements->at(i));
}
ASSERT(!has_valid_frame() || frame_->height() == original_height);
}
void CodeGenerator::VisitBlock(Block* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ Block");
CodeForStatementPosition(node);
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
VisitStatementsAndSpill(node->statements());
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
node->break_target()->Unuse();
ASSERT(!has_valid_frame() || frame_->height() == original_height);
}
void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
VirtualFrame::SpilledScope spilled_scope;
__ mov(r0, Operand(pairs));
frame_->EmitPush(r0);
frame_->EmitPush(cp);
__ mov(r0, Operand(Smi::FromInt(is_eval() ? 1 : 0)));
frame_->EmitPush(r0);
frame_->CallRuntime(Runtime::kDeclareGlobals, 3);
// The result is discarded.
}
void CodeGenerator::VisitDeclaration(Declaration* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ Declaration");
Variable* var = node->proxy()->var();
ASSERT(var != NULL); // must have been resolved
Slot* slot = var->slot();
// If it was not possible to allocate the variable at compile time,
// we need to "declare" it at runtime to make sure it actually
// exists in the local context.
if (slot != NULL && slot->type() == Slot::LOOKUP) {
// Variables with a "LOOKUP" slot were introduced as non-locals
// during variable resolution and must have mode DYNAMIC.
ASSERT(var->is_dynamic());
// For now, just do a runtime call.
frame_->EmitPush(cp);
__ mov(r0, Operand(var->name()));
frame_->EmitPush(r0);
// Declaration nodes are always declared in only two modes.
ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST);
PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY;
__ mov(r0, Operand(Smi::FromInt(attr)));
frame_->EmitPush(r0);
// Push initial value, if any.
// Note: For variables we must not push an initial value (such as
// 'undefined') because we may have a (legal) redeclaration and we
// must not destroy the current value.
if (node->mode() == Variable::CONST) {
__ LoadRoot(r0, Heap::kTheHoleValueRootIndex);
frame_->EmitPush(r0);
} else if (node->fun() != NULL) {
LoadAndSpill(node->fun());
} else {
__ mov(r0, Operand(0)); // no initial value!
frame_->EmitPush(r0);
}
frame_->CallRuntime(Runtime::kDeclareContextSlot, 4);
// Ignore the return value (declarations are statements).
ASSERT(frame_->height() == original_height);
return;
}
ASSERT(!var->is_global());
// If we have a function or a constant, we need to initialize the variable.
Expression* val = NULL;
if (node->mode() == Variable::CONST) {
val = new Literal(Factory::the_hole_value());
} else {
val = node->fun(); // NULL if we don't have a function
}
if (val != NULL) {
{
// Set initial value.
Reference target(this, node->proxy());
LoadAndSpill(val);
target.SetValue(NOT_CONST_INIT);
// The reference is removed from the stack (preserving TOS) when
// it goes out of scope.
}
// Get rid of the assigned value (declarations are statements).
frame_->Drop();
}
ASSERT(frame_->height() == original_height);
}
void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ ExpressionStatement");
CodeForStatementPosition(node);
Expression* expression = node->expression();
expression->MarkAsStatement();
LoadAndSpill(expression);
frame_->Drop();
ASSERT(frame_->height() == original_height);
}
void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "// EmptyStatement");
CodeForStatementPosition(node);
// nothing to do
ASSERT(frame_->height() == original_height);
}
void CodeGenerator::VisitIfStatement(IfStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ IfStatement");
// Generate different code depending on which parts of the if statement
// are present or not.
bool has_then_stm = node->HasThenStatement();
bool has_else_stm = node->HasElseStatement();
CodeForStatementPosition(node);
JumpTarget exit;
if (has_then_stm && has_else_stm) {
Comment cmnt(masm_, "[ IfThenElse");
JumpTarget then;
JumpTarget else_;
// if (cond)
LoadConditionAndSpill(node->condition(), NOT_INSIDE_TYPEOF,
&then, &else_, true);
if (frame_ != NULL) {
Branch(false, &else_);
}
// then
if (frame_ != NULL || then.is_linked()) {
then.Bind();
VisitAndSpill(node->then_statement());
}
if (frame_ != NULL) {
exit.Jump();
}
// else
if (else_.is_linked()) {
else_.Bind();
VisitAndSpill(node->else_statement());
}
} else if (has_then_stm) {
Comment cmnt(masm_, "[ IfThen");
ASSERT(!has_else_stm);
JumpTarget then;
// if (cond)
LoadConditionAndSpill(node->condition(), NOT_INSIDE_TYPEOF,
&then, &exit, true);
if (frame_ != NULL) {
Branch(false, &exit);
}
// then
if (frame_ != NULL || then.is_linked()) {
then.Bind();
VisitAndSpill(node->then_statement());
}
} else if (has_else_stm) {
Comment cmnt(masm_, "[ IfElse");
ASSERT(!has_then_stm);
JumpTarget else_;
// if (!cond)
LoadConditionAndSpill(node->condition(), NOT_INSIDE_TYPEOF,
&exit, &else_, true);
if (frame_ != NULL) {
Branch(true, &exit);
}
// else
if (frame_ != NULL || else_.is_linked()) {
else_.Bind();
VisitAndSpill(node->else_statement());
}
} else {
Comment cmnt(masm_, "[ If");
ASSERT(!has_then_stm && !has_else_stm);
// if (cond)
LoadConditionAndSpill(node->condition(), NOT_INSIDE_TYPEOF,
&exit, &exit, false);
if (frame_ != NULL) {
if (has_cc()) {
cc_reg_ = al;
} else {
frame_->Drop();
}
}
}
// end
if (exit.is_linked()) {
exit.Bind();
}
ASSERT(!has_valid_frame() || frame_->height() == original_height);
}
void CodeGenerator::VisitContinueStatement(ContinueStatement* node) {
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ ContinueStatement");
CodeForStatementPosition(node);
node->target()->continue_target()->Jump();
}
void CodeGenerator::VisitBreakStatement(BreakStatement* node) {
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ BreakStatement");
CodeForStatementPosition(node);
node->target()->break_target()->Jump();
}
void CodeGenerator::VisitReturnStatement(ReturnStatement* node) {
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ ReturnStatement");
CodeForStatementPosition(node);
LoadAndSpill(node->expression());
if (function_return_is_shadowed_) {
frame_->EmitPop(r0);
function_return_.Jump();
} else {
// Pop the result from the frame and prepare the frame for
// returning thus making it easier to merge.
frame_->EmitPop(r0);
frame_->PrepareForReturn();
function_return_.Jump();
}
}
void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ WithEnterStatement");
CodeForStatementPosition(node);
LoadAndSpill(node->expression());
if (node->is_catch_block()) {
frame_->CallRuntime(Runtime::kPushCatchContext, 1);
} else {
frame_->CallRuntime(Runtime::kPushContext, 1);
}
#ifdef DEBUG
JumpTarget verified_true;
__ cmp(r0, Operand(cp));
verified_true.Branch(eq);
__ stop("PushContext: r0 is expected to be the same as cp");
verified_true.Bind();
#endif
// Update context local.
__ str(cp, frame_->Context());
ASSERT(frame_->height() == original_height);
}
void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ WithExitStatement");
CodeForStatementPosition(node);
// Pop context.
__ ldr(cp, ContextOperand(cp, Context::PREVIOUS_INDEX));
// Update context local.
__ str(cp, frame_->Context());
ASSERT(frame_->height() == original_height);
}
void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ SwitchStatement");
CodeForStatementPosition(node);
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
LoadAndSpill(node->tag());
JumpTarget next_test;
JumpTarget fall_through;
JumpTarget default_entry;
JumpTarget default_exit(JumpTarget::BIDIRECTIONAL);
ZoneList<CaseClause*>* cases = node->cases();
int length = cases->length();
CaseClause* default_clause = NULL;
for (int i = 0; i < length; i++) {
CaseClause* clause = cases->at(i);
if (clause->is_default()) {
// Remember the default clause and compile it at the end.
default_clause = clause;
continue;
}
Comment cmnt(masm_, "[ Case clause");
// Compile the test.
next_test.Bind();
next_test.Unuse();
// Duplicate TOS.
__ ldr(r0, frame_->Top());
frame_->EmitPush(r0);
Comparison(eq, NULL, clause->label(), true);
Branch(false, &next_test);
// Before entering the body from the test, remove the switch value from
// the stack.
frame_->Drop();
// Label the body so that fall through is enabled.
if (i > 0 && cases->at(i - 1)->is_default()) {
default_exit.Bind();
} else {
fall_through.Bind();
fall_through.Unuse();
}
VisitStatementsAndSpill(clause->statements());
// If control flow can fall through from the body, jump to the next body
// or the end of the statement.
if (frame_ != NULL) {
if (i < length - 1 && cases->at(i + 1)->is_default()) {
default_entry.Jump();
} else {
fall_through.Jump();
}
}
}
// The final "test" removes the switch value.
next_test.Bind();
frame_->Drop();
// If there is a default clause, compile it.
if (default_clause != NULL) {
Comment cmnt(masm_, "[ Default clause");
default_entry.Bind();
VisitStatementsAndSpill(default_clause->statements());
// If control flow can fall out of the default and there is a case after
// it, jup to that case's body.
if (frame_ != NULL && default_exit.is_bound()) {
default_exit.Jump();
}
}
if (fall_through.is_linked()) {
fall_through.Bind();
}
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
node->break_target()->Unuse();
ASSERT(!has_valid_frame() || frame_->height() == original_height);
}
void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ DoWhileStatement");
CodeForStatementPosition(node);
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
JumpTarget body(JumpTarget::BIDIRECTIONAL);
// Label the top of the loop for the backward CFG edge. If the test
// is always true we can use the continue target, and if the test is
// always false there is no need.
ConditionAnalysis info = AnalyzeCondition(node->cond());
switch (info) {
case ALWAYS_TRUE:
node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
node->continue_target()->Bind();
break;
case ALWAYS_FALSE:
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
break;
case DONT_KNOW:
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
body.Bind();
break;
}
CheckStack(); // TODO(1222600): ignore if body contains calls.
VisitAndSpill(node->body());
// Compile the test.
switch (info) {
case ALWAYS_TRUE:
// If control can fall off the end of the body, jump back to the
// top.
if (has_valid_frame()) {
node->continue_target()->Jump();
}
break;
case ALWAYS_FALSE:
// If we have a continue in the body, we only have to bind its
// jump target.
if (node->continue_target()->is_linked()) {
node->continue_target()->Bind();
}
break;
case DONT_KNOW:
// We have to compile the test expression if it can be reached by
// control flow falling out of the body or via continue.
if (node->continue_target()->is_linked()) {
node->continue_target()->Bind();
}
if (has_valid_frame()) {
LoadConditionAndSpill(node->cond(), NOT_INSIDE_TYPEOF,
&body, node->break_target(), true);
if (has_valid_frame()) {
// A invalid frame here indicates that control did not
// fall out of the test expression.
Branch(true, &body);
}
}
break;
}
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
ASSERT(!has_valid_frame() || frame_->height() == original_height);
}
void CodeGenerator::VisitWhileStatement(WhileStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ WhileStatement");
CodeForStatementPosition(node);
// If the test is never true and has no side effects there is no need
// to compile the test or body.
ConditionAnalysis info = AnalyzeCondition(node->cond());
if (info == ALWAYS_FALSE) return;
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
// Label the top of the loop with the continue target for the backward
// CFG edge.
node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
node->continue_target()->Bind();
if (info == DONT_KNOW) {
JumpTarget body;
LoadConditionAndSpill(node->cond(), NOT_INSIDE_TYPEOF,
&body, node->break_target(), true);
if (has_valid_frame()) {
// A NULL frame indicates that control did not fall out of the
// test expression.
Branch(false, node->break_target());
}
if (has_valid_frame() || body.is_linked()) {
body.Bind();
}
}
if (has_valid_frame()) {
CheckStack(); // TODO(1222600): ignore if body contains calls.
VisitAndSpill(node->body());
// If control flow can fall out of the body, jump back to the top.
if (has_valid_frame()) {
node->continue_target()->Jump();
}
}
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
ASSERT(!has_valid_frame() || frame_->height() == original_height);
}
void CodeGenerator::VisitForStatement(ForStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ ForStatement");
CodeForStatementPosition(node);
if (node->init() != NULL) {
VisitAndSpill(node->init());
}
// If the test is never true there is no need to compile the test or
// body.
ConditionAnalysis info = AnalyzeCondition(node->cond());
if (info == ALWAYS_FALSE) return;
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
// If there is no update statement, label the top of the loop with the
// continue target, otherwise with the loop target.
JumpTarget loop(JumpTarget::BIDIRECTIONAL);
if (node->next() == NULL) {
node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
node->continue_target()->Bind();
} else {
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
loop.Bind();
}
// If the test is always true, there is no need to compile it.
if (info == DONT_KNOW) {
JumpTarget body;
LoadConditionAndSpill(node->cond(), NOT_INSIDE_TYPEOF,
&body, node->break_target(), true);
if (has_valid_frame()) {
Branch(false, node->break_target());
}
if (has_valid_frame() || body.is_linked()) {
body.Bind();
}
}
if (has_valid_frame()) {
CheckStack(); // TODO(1222600): ignore if body contains calls.
VisitAndSpill(node->body());
if (node->next() == NULL) {
// If there is no update statement and control flow can fall out
// of the loop, jump directly to the continue label.
if (has_valid_frame()) {
node->continue_target()->Jump();
}
} else {
// If there is an update statement and control flow can reach it
// via falling out of the body of the loop or continuing, we
// compile the update statement.
if (node->continue_target()->is_linked()) {
node->continue_target()->Bind();
}
if (has_valid_frame()) {
// Record source position of the statement as this code which is
// after the code for the body actually belongs to the loop
// statement and not the body.
CodeForStatementPosition(node);
VisitAndSpill(node->next());
loop.Jump();
}
}
}
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
ASSERT(!has_valid_frame() || frame_->height() == original_height);
}
void CodeGenerator::VisitForInStatement(ForInStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ ForInStatement");
CodeForStatementPosition(node);
JumpTarget primitive;
JumpTarget jsobject;
JumpTarget fixed_array;
JumpTarget entry(JumpTarget::BIDIRECTIONAL);
JumpTarget end_del_check;
JumpTarget exit;
// Get the object to enumerate over (converted to JSObject).
LoadAndSpill(node->enumerable());
// Both SpiderMonkey and kjs ignore null and undefined in contrast
// to the specification. 12.6.4 mandates a call to ToObject.
frame_->EmitPop(r0);
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(r0, ip);
exit.Branch(eq);
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(r0, ip);
exit.Branch(eq);
// Stack layout in body:
// [iteration counter (Smi)]
// [length of array]
// [FixedArray]
// [Map or 0]
// [Object]
// Check if enumerable is already a JSObject
__ tst(r0, Operand(kSmiTagMask));
primitive.Branch(eq);
__ CompareObjectType(r0, r1, r1, FIRST_JS_OBJECT_TYPE);
jsobject.Branch(hs);
primitive.Bind();
frame_->EmitPush(r0);
Result arg_count(r0);
__ mov(r0, Operand(0));
frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS, &arg_count, 1);
jsobject.Bind();
// Get the set of properties (as a FixedArray or Map).
frame_->EmitPush(r0); // duplicate the object being enumerated
frame_->EmitPush(r0);
frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1);
// If we got a Map, we can do a fast modification check.
// Otherwise, we got a FixedArray, and we have to do a slow check.
__ mov(r2, Operand(r0));
__ ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kMetaMapRootIndex);
__ cmp(r1, ip);
fixed_array.Branch(ne);
// Get enum cache
__ mov(r1, Operand(r0));
__ ldr(r1, FieldMemOperand(r1, Map::kInstanceDescriptorsOffset));
__ ldr(r1, FieldMemOperand(r1, DescriptorArray::kEnumerationIndexOffset));
__ ldr(r2,
FieldMemOperand(r1, DescriptorArray::kEnumCacheBridgeCacheOffset));
frame_->EmitPush(r0); // map
frame_->EmitPush(r2); // enum cache bridge cache
__ ldr(r0, FieldMemOperand(r2, FixedArray::kLengthOffset));
__ mov(r0, Operand(r0, LSL, kSmiTagSize));
frame_->EmitPush(r0);
__ mov(r0, Operand(Smi::FromInt(0)));
frame_->EmitPush(r0);
entry.Jump();
fixed_array.Bind();
__ mov(r1, Operand(Smi::FromInt(0)));
frame_->EmitPush(r1); // insert 0 in place of Map
frame_->EmitPush(r0);
// Push the length of the array and the initial index onto the stack.
__ ldr(r0, FieldMemOperand(r0, FixedArray::kLengthOffset));
__ mov(r0, Operand(r0, LSL, kSmiTagSize));
frame_->EmitPush(r0);
__ mov(r0, Operand(Smi::FromInt(0))); // init index
frame_->EmitPush(r0);
// Condition.
entry.Bind();
// sp[0] : index
// sp[1] : array/enum cache length
// sp[2] : array or enum cache
// sp[3] : 0 or map
// sp[4] : enumerable
// Grab the current frame's height for the break and continue
// targets only after all the state is pushed on the frame.
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
__ ldr(r0, frame_->ElementAt(0)); // load the current count
__ ldr(r1, frame_->ElementAt(1)); // load the length
__ cmp(r0, Operand(r1)); // compare to the array length
node->break_target()->Branch(hs);
__ ldr(r0, frame_->ElementAt(0));
// Get the i'th entry of the array.
__ ldr(r2, frame_->ElementAt(2));
__ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ ldr(r3, MemOperand(r2, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
// Get Map or 0.
__ ldr(r2, frame_->ElementAt(3));
// Check if this (still) matches the map of the enumerable.
// If not, we have to filter the key.
__ ldr(r1, frame_->ElementAt(4));
__ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
__ cmp(r1, Operand(r2));
end_del_check.Branch(eq);
// Convert the entry to a string (or null if it isn't a property anymore).
__ ldr(r0, frame_->ElementAt(4)); // push enumerable
frame_->EmitPush(r0);
frame_->EmitPush(r3); // push entry
Result arg_count_reg(r0);
__ mov(r0, Operand(1));
frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_JS, &arg_count_reg, 2);
__ mov(r3, Operand(r0));
// If the property has been removed while iterating, we just skip it.
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(r3, ip);
node->continue_target()->Branch(eq);
end_del_check.Bind();
// Store the entry in the 'each' expression and take another spin in the
// loop. r3: i'th entry of the enum cache (or string there of)
frame_->EmitPush(r3); // push entry
{ Reference each(this, node->each());
if (!each.is_illegal()) {
if (each.size() > 0) {
__ ldr(r0, frame_->ElementAt(each.size()));
frame_->EmitPush(r0);
}
// If the reference was to a slot we rely on the convenient property
// that it doesn't matter whether a value (eg, r3 pushed above) is
// right on top of or right underneath a zero-sized reference.
each.SetValue(NOT_CONST_INIT);
if (each.size() > 0) {
// It's safe to pop the value lying on top of the reference before
// unloading the reference itself (which preserves the top of stack,
// ie, now the topmost value of the non-zero sized reference), since
// we will discard the top of stack after unloading the reference
// anyway.
frame_->EmitPop(r0);
}
}
}
// Discard the i'th entry pushed above or else the remainder of the
// reference, whichever is currently on top of the stack.
frame_->Drop();
// Body.
CheckStack(); // TODO(1222600): ignore if body contains calls.
VisitAndSpill(node->body());
// Next. Reestablish a spilled frame in case we are coming here via
// a continue in the body.
node->continue_target()->Bind();
frame_->SpillAll();
frame_->EmitPop(r0);
__ add(r0, r0, Operand(Smi::FromInt(1)));
frame_->EmitPush(r0);
entry.Jump();
// Cleanup. No need to spill because VirtualFrame::Drop is safe for
// any frame.
node->break_target()->Bind();
frame_->Drop(5);
// Exit.
exit.Bind();
node->continue_target()->Unuse();
node->break_target()->Unuse();
ASSERT(frame_->height() == original_height);
}
void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ TryCatchStatement");
CodeForStatementPosition(node);
JumpTarget try_block;
JumpTarget exit;
try_block.Call();
// --- Catch block ---
frame_->EmitPush(r0);
// Store the caught exception in the catch variable.
{ Reference ref(this, node->catch_var());
ASSERT(ref.is_slot());
// Here we make use of the convenient property that it doesn't matter
// whether a value is immediately on top of or underneath a zero-sized
// reference.
ref.SetValue(NOT_CONST_INIT);
}
// Remove the exception from the stack.
frame_->Drop();
VisitStatementsAndSpill(node->catch_block()->statements());
if (frame_ != NULL) {
exit.Jump();
}
// --- Try block ---
try_block.Bind();
frame_->PushTryHandler(TRY_CATCH_HANDLER);
int handler_height = frame_->height();
// Shadow the labels for all escapes from the try block, including
// returns. During shadowing, the original label is hidden as the
// LabelShadow and operations on the original actually affect the
// shadowing label.
//
// We should probably try to unify the escaping labels and the return
// label.
int nof_escapes = node->escaping_targets()->length();
List<ShadowTarget*> shadows(1 + nof_escapes);
// Add the shadow target for the function return.
static const int kReturnShadowIndex = 0;
shadows.Add(new ShadowTarget(&function_return_));
bool function_return_was_shadowed = function_return_is_shadowed_;
function_return_is_shadowed_ = true;
ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
// Add the remaining shadow targets.
for (int i = 0; i < nof_escapes; i++) {
shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
}
// Generate code for the statements in the try block.
VisitStatementsAndSpill(node->try_block()->statements());
// Stop the introduced shadowing and count the number of required unlinks.
// After shadowing stops, the original labels are unshadowed and the
// LabelShadows represent the formerly shadowing labels.
bool has_unlinks = false;
for (int i = 0; i < shadows.length(); i++) {
shadows[i]->StopShadowing();
has_unlinks = has_unlinks || shadows[i]->is_linked();
}
function_return_is_shadowed_ = function_return_was_shadowed;
// Get an external reference to the handler address.
ExternalReference handler_address(Top::k_handler_address);
// If we can fall off the end of the try block, unlink from try chain.
if (has_valid_frame()) {
// The next handler address is on top of the frame. Unlink from
// the handler list and drop the rest of this handler from the
// frame.
ASSERT(StackHandlerConstants::kNextOffset == 0);
frame_->EmitPop(r1);
__ mov(r3, Operand(handler_address));
__ str(r1, MemOperand(r3));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
if (has_unlinks) {
exit.Jump();
}
}
// Generate unlink code for the (formerly) shadowing labels that have been
// jumped to. Deallocate each shadow target.
for (int i = 0; i < shadows.length(); i++) {
if (shadows[i]->is_linked()) {
// Unlink from try chain;
shadows[i]->Bind();
// Because we can be jumping here (to spilled code) from unspilled
// code, we need to reestablish a spilled frame at this block.
frame_->SpillAll();
// Reload sp from the top handler, because some statements that we
// break from (eg, for...in) may have left stuff on the stack.
__ mov(r3, Operand(handler_address));
__ ldr(sp, MemOperand(r3));
frame_->Forget(frame_->height() - handler_height);
ASSERT(StackHandlerConstants::kNextOffset == 0);
frame_->EmitPop(r1);
__ str(r1, MemOperand(r3));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
if (!function_return_is_shadowed_ && i == kReturnShadowIndex) {
frame_->PrepareForReturn();
}
shadows[i]->other_target()->Jump();
}
}
exit.Bind();
ASSERT(!has_valid_frame() || frame_->height() == original_height);
}
void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ TryFinallyStatement");
CodeForStatementPosition(node);
// State: Used to keep track of reason for entering the finally
// block. Should probably be extended to hold information for
// break/continue from within the try block.
enum { FALLING, THROWING, JUMPING };
JumpTarget try_block;
JumpTarget finally_block;
try_block.Call();
frame_->EmitPush(r0); // save exception object on the stack
// In case of thrown exceptions, this is where we continue.
__ mov(r2, Operand(Smi::FromInt(THROWING)));
finally_block.Jump();
// --- Try block ---
try_block.Bind();
frame_->PushTryHandler(TRY_FINALLY_HANDLER);
int handler_height = frame_->height();
// Shadow the labels for all escapes from the try block, including
// returns. Shadowing hides the original label as the LabelShadow and
// operations on the original actually affect the shadowing label.
//
// We should probably try to unify the escaping labels and the return
// label.
int nof_escapes = node->escaping_targets()->length();
List<ShadowTarget*> shadows(1 + nof_escapes);
// Add the shadow target for the function return.
static const int kReturnShadowIndex = 0;
shadows.Add(new ShadowTarget(&function_return_));
bool function_return_was_shadowed = function_return_is_shadowed_;
function_return_is_shadowed_ = true;
ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
// Add the remaining shadow targets.
for (int i = 0; i < nof_escapes; i++) {
shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
}
// Generate code for the statements in the try block.
VisitStatementsAndSpill(node->try_block()->statements());
// Stop the introduced shadowing and count the number of required unlinks.
// After shadowing stops, the original labels are unshadowed and the
// LabelShadows represent the formerly shadowing labels.
int nof_unlinks = 0;
for (int i = 0; i < shadows.length(); i++) {
shadows[i]->StopShadowing();
if (shadows[i]->is_linked()) nof_unlinks++;
}
function_return_is_shadowed_ = function_return_was_shadowed;
// Get an external reference to the handler address.
ExternalReference handler_address(Top::k_handler_address);
// If we can fall off the end of the try block, unlink from the try
// chain and set the state on the frame to FALLING.
if (has_valid_frame()) {
// The next handler address is on top of the frame.
ASSERT(StackHandlerConstants::kNextOffset == 0);
frame_->EmitPop(r1);
__ mov(r3, Operand(handler_address));
__ str(r1, MemOperand(r3));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
// Fake a top of stack value (unneeded when FALLING) and set the
// state in r2, then jump around the unlink blocks if any.
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
frame_->EmitPush(r0);
__ mov(r2, Operand(Smi::FromInt(FALLING)));
if (nof_unlinks > 0) {
finally_block.Jump();
}
}
// Generate code to unlink and set the state for the (formerly)
// shadowing targets that have been jumped to.
for (int i = 0; i < shadows.length(); i++) {
if (shadows[i]->is_linked()) {
// If we have come from the shadowed return, the return value is
// in (a non-refcounted reference to) r0. We must preserve it
// until it is pushed.
//
// Because we can be jumping here (to spilled code) from
// unspilled code, we need to reestablish a spilled frame at
// this block.
shadows[i]->Bind();
frame_->SpillAll();
// Reload sp from the top handler, because some statements that
// we break from (eg, for...in) may have left stuff on the
// stack.
__ mov(r3, Operand(handler_address));
__ ldr(sp, MemOperand(r3));
frame_->Forget(frame_->height() - handler_height);
// Unlink this handler and drop it from the frame. The next
// handler address is currently on top of the frame.
ASSERT(StackHandlerConstants::kNextOffset == 0);
frame_->EmitPop(r1);
__ str(r1, MemOperand(r3));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
if (i == kReturnShadowIndex) {
// If this label shadowed the function return, materialize the
// return value on the stack.
frame_->EmitPush(r0);
} else {
// Fake TOS for targets that shadowed breaks and continues.
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
frame_->EmitPush(r0);
}
__ mov(r2, Operand(Smi::FromInt(JUMPING + i)));
if (--nof_unlinks > 0) {
// If this is not the last unlink block, jump around the next.
finally_block.Jump();
}
}
}
// --- Finally block ---
finally_block.Bind();
// Push the state on the stack.
frame_->EmitPush(r2);
// We keep two elements on the stack - the (possibly faked) result
// and the state - while evaluating the finally block.
//
// Generate code for the statements in the finally block.
VisitStatementsAndSpill(node->finally_block()->statements());
if (has_valid_frame()) {
// Restore state and return value or faked TOS.
frame_->EmitPop(r2);
frame_->EmitPop(r0);
}
// Generate code to jump to the right destination for all used
// formerly shadowing targets. Deallocate each shadow target.
for (int i = 0; i < shadows.length(); i++) {
if (has_valid_frame() && shadows[i]->is_bound()) {
JumpTarget* original = shadows[i]->other_target();
__ cmp(r2, Operand(Smi::FromInt(JUMPING + i)));
if (!function_return_is_shadowed_ && i == kReturnShadowIndex) {
JumpTarget skip;
skip.Branch(ne);
frame_->PrepareForReturn();
original->Jump();
skip.Bind();
} else {
original->Branch(eq);
}
}
}
if (has_valid_frame()) {
// Check if we need to rethrow the exception.
JumpTarget exit;
__ cmp(r2, Operand(Smi::FromInt(THROWING)));
exit.Branch(ne);
// Rethrow exception.
frame_->EmitPush(r0);
frame_->CallRuntime(Runtime::kReThrow, 1);
// Done.
exit.Bind();
}
ASSERT(!has_valid_frame() || frame_->height() == original_height);
}
void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ DebuggerStatament");
CodeForStatementPosition(node);
#ifdef ENABLE_DEBUGGER_SUPPORT
frame_->CallRuntime(Runtime::kDebugBreak, 0);
#endif
// Ignore the return value.
ASSERT(frame_->height() == original_height);
}
void CodeGenerator::InstantiateBoilerplate(Handle<JSFunction> boilerplate) {
VirtualFrame::SpilledScope spilled_scope;
ASSERT(boilerplate->IsBoilerplate());
// Push the boilerplate on the stack.
__ mov(r0, Operand(boilerplate));
frame_->EmitPush(r0);
// Create a new closure.
frame_->EmitPush(cp);
frame_->CallRuntime(Runtime::kNewClosure, 2);
frame_->EmitPush(r0);
}
void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ FunctionLiteral");
// Build the function boilerplate and instantiate it.
Handle<JSFunction> boilerplate = BuildBoilerplate(node);
// Check for stack-overflow exception.
if (HasStackOverflow()) {
ASSERT(frame_->height() == original_height);
return;
}
InstantiateBoilerplate(boilerplate);
ASSERT(frame_->height() == original_height + 1);
}
void CodeGenerator::VisitFunctionBoilerplateLiteral(
FunctionBoilerplateLiteral* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ FunctionBoilerplateLiteral");
InstantiateBoilerplate(node->boilerplate());
ASSERT(frame_->height() == original_height + 1);
}
void CodeGenerator::VisitConditional(Conditional* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ Conditional");
JumpTarget then;
JumpTarget else_;
LoadConditionAndSpill(node->condition(), NOT_INSIDE_TYPEOF,
&then, &else_, true);
if (has_valid_frame()) {
Branch(false, &else_);
}
if (has_valid_frame() || then.is_linked()) {
then.Bind();
LoadAndSpill(node->then_expression(), typeof_state());
}
if (else_.is_linked()) {
JumpTarget exit;
if (has_valid_frame()) exit.Jump();
else_.Bind();
LoadAndSpill(node->else_expression(), typeof_state());
if (exit.is_linked()) exit.Bind();
}
ASSERT(frame_->height() == original_height + 1);
}
void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) {
VirtualFrame::SpilledScope spilled_scope;
if (slot->type() == Slot::LOOKUP) {
ASSERT(slot->var()->is_dynamic());
JumpTarget slow;
JumpTarget done;
// Generate fast-case code for variables that might be shadowed by
// eval-introduced variables. Eval is used a lot without
// introducing variables. In those cases, we do not want to
// perform a runtime call for all variables in the scope
// containing the eval.
if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) {
LoadFromGlobalSlotCheckExtensions(slot, typeof_state, r1, r2, &slow);
// If there was no control flow to slow, we can exit early.
if (!slow.is_linked()) {
frame_->EmitPush(r0);
return;
}
done.Jump();
} else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) {
Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot();
// Only generate the fast case for locals that rewrite to slots.
// This rules out argument loads.
if (potential_slot != NULL) {
__ ldr(r0,
ContextSlotOperandCheckExtensions(potential_slot,
r1,
r2,
&slow));
if (potential_slot->var()->mode() == Variable::CONST) {
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(r0, ip);
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq);
}
// There is always control flow to slow from
// ContextSlotOperandCheckExtensions so we have to jump around
// it.
done.Jump();
}
}
slow.Bind();
frame_->EmitPush(cp);
__ mov(r0, Operand(slot->var()->name()));
frame_->EmitPush(r0);
if (typeof_state == INSIDE_TYPEOF) {
frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
} else {
frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
}
done.Bind();
frame_->EmitPush(r0);
} else {
// Note: We would like to keep the assert below, but it fires because of
// some nasty code in LoadTypeofExpression() which should be removed...
// ASSERT(!slot->var()->is_dynamic());
// Special handling for locals allocated in registers.
__ ldr(r0, SlotOperand(slot, r2));
frame_->EmitPush(r0);
if (slot->var()->mode() == Variable::CONST) {
// Const slots may contain 'the hole' value (the constant hasn't been
// initialized yet) which needs to be converted into the 'undefined'
// value.
Comment cmnt(masm_, "[ Unhole const");
frame_->EmitPop(r0);
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(r0, ip);
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq);
frame_->EmitPush(r0);
}
}
}
void CodeGenerator::LoadFromGlobalSlotCheckExtensions(Slot* slot,
TypeofState typeof_state,
Register tmp,
Register tmp2,
JumpTarget* slow) {
// Check that no extension objects have been created by calls to
// eval from the current scope to the global scope.
Register context = cp;
Scope* s = scope();
while (s != NULL) {
if (s->num_heap_slots() > 0) {
if (s->calls_eval()) {
// Check that extension is NULL.
__ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX));
__ tst(tmp2, tmp2);
slow->Branch(ne);
}
// Load next context in chain.
__ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
__ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset));
context = tmp;
}
// If no outer scope calls eval, we do not need to check more
// context extensions.
if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break;
s = s->outer_scope();
}
if (s->is_eval_scope()) {
Label next, fast;
if (!context.is(tmp)) {
__ mov(tmp, Operand(context));
}
__ bind(&next);
// Terminate at global context.
__ ldr(tmp2, FieldMemOperand(tmp, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kGlobalContextMapRootIndex);
__ cmp(tmp2, ip);
__ b(eq, &fast);
// Check that extension is NULL.
__ ldr(tmp2, ContextOperand(tmp, Context::EXTENSION_INDEX));
__ tst(tmp2, tmp2);
slow->Branch(ne);
// Load next context in chain.
__ ldr(tmp, ContextOperand(tmp, Context::CLOSURE_INDEX));
__ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset));
__ b(&next);
__ bind(&fast);
}
// All extension objects were empty and it is safe to use a global
// load IC call.
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
// Load the global object.
LoadGlobal();
// Setup the name register.
Result name(r2);
__ mov(r2, Operand(slot->var()->name()));
// Call IC stub.
if (typeof_state == INSIDE_TYPEOF) {
frame_->CallCodeObject(ic, RelocInfo::CODE_TARGET, &name, 0);
} else {
frame_->CallCodeObject(ic, RelocInfo::CODE_TARGET_CONTEXT, &name, 0);
}
// Drop the global object. The result is in r0.
frame_->Drop();
}
void CodeGenerator::VisitSlot(Slot* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ Slot");
LoadFromSlot(node, typeof_state());
ASSERT(frame_->height() == original_height + 1);
}
void CodeGenerator::VisitVariableProxy(VariableProxy* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ VariableProxy");
Variable* var = node->var();
Expression* expr = var->rewrite();
if (expr != NULL) {
Visit(expr);
} else {
ASSERT(var->is_global());
Reference ref(this, node);
ref.GetValueAndSpill(typeof_state());
}
ASSERT(frame_->height() == original_height + 1);
}
void CodeGenerator::VisitLiteral(Literal* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ Literal");
__ mov(r0, Operand(node->handle()));
frame_->EmitPush(r0);
ASSERT(frame_->height() == original_height + 1);
}
void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ RexExp Literal");
// Retrieve the literal array and check the allocated entry.
// Load the function of this activation.
__ ldr(r1, frame_->Function());
// Load the literals array of the function.
__ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset));
// Load the literal at the ast saved index.
int literal_offset =
FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
__ ldr(r2, FieldMemOperand(r1, literal_offset));
JumpTarget done;
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(r2, ip);
done.Branch(ne);
// If the entry is undefined we call the runtime system to computed
// the literal.
frame_->EmitPush(r1); // literal array (0)
__ mov(r0, Operand(Smi::FromInt(node->literal_index())));
frame_->EmitPush(r0); // literal index (1)
__ mov(r0, Operand(node->pattern())); // RegExp pattern (2)
frame_->EmitPush(r0);
__ mov(r0, Operand(node->flags())); // RegExp flags (3)
frame_->EmitPush(r0);
frame_->CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
__ mov(r2, Operand(r0));
done.Bind();
// Push the literal.
frame_->EmitPush(r2);
ASSERT(frame_->height() == original_height + 1);
}
// This deferred code stub will be used for creating the boilerplate
// by calling Runtime_CreateObjectLiteralBoilerplate.
// Each created boilerplate is stored in the JSFunction and they are
// therefore context dependent.
class DeferredObjectLiteral: public DeferredCode {
public:
explicit DeferredObjectLiteral(ObjectLiteral* node) : node_(node) {
set_comment("[ DeferredObjectLiteral");
}
virtual void Generate();
private:
ObjectLiteral* node_;
};
void DeferredObjectLiteral::Generate() {
// Argument is passed in r1.
// If the entry is undefined we call the runtime system to compute
// the literal.
// Literal array (0).
__ push(r1);
// Literal index (1).
__ mov(r0, Operand(Smi::FromInt(node_->literal_index())));
__ push(r0);
// Constant properties (2).
__ mov(r0, Operand(node_->constant_properties()));
__ push(r0);
__ CallRuntime(Runtime::kCreateObjectLiteralBoilerplate, 3);
__ mov(r2, Operand(r0));
// Result is returned in r2.
}
void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ ObjectLiteral");
DeferredObjectLiteral* deferred = new DeferredObjectLiteral(node);
// Retrieve the literal array and check the allocated entry.
// Load the function of this activation.
__ ldr(r1, frame_->Function());
// Load the literals array of the function.
__ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset));
// Load the literal at the ast saved index.
int literal_offset =
FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
__ ldr(r2, FieldMemOperand(r1, literal_offset));
// Check whether we need to materialize the object literal boilerplate.
// If so, jump to the deferred code.
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(r2, Operand(ip));
deferred->Branch(eq);
deferred->BindExit();
// Push the object literal boilerplate.
frame_->EmitPush(r2);
// Clone the boilerplate object.
Runtime::FunctionId clone_function_id = Runtime::kCloneLiteralBoilerplate;
if (node->depth() == 1) {
clone_function_id = Runtime::kCloneShallowLiteralBoilerplate;
}
frame_->CallRuntime(clone_function_id, 1);
frame_->EmitPush(r0); // save the result
// r0: cloned object literal
for (int i = 0; i < node->properties()->length(); i++) {
ObjectLiteral::Property* property = node->properties()->at(i);
Literal* key = property->key();
Expression* value = property->value();
switch (property->kind()) {
case ObjectLiteral::Property::CONSTANT:
break;
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
if (CompileTimeValue::IsCompileTimeValue(property->value())) break;
// else fall through
case ObjectLiteral::Property::COMPUTED: // fall through
case ObjectLiteral::Property::PROTOTYPE: {
frame_->EmitPush(r0); // dup the result
LoadAndSpill(key);
LoadAndSpill(value);
frame_->CallRuntime(Runtime::kSetProperty, 3);
// restore r0
__ ldr(r0, frame_->Top());
break;
}
case ObjectLiteral::Property::SETTER: {
frame_->EmitPush(r0);
LoadAndSpill(key);
__ mov(r0, Operand(Smi::FromInt(1)));
frame_->EmitPush(r0);
LoadAndSpill(value);
frame_->CallRuntime(Runtime::kDefineAccessor, 4);
__ ldr(r0, frame_->Top());
break;
}
case ObjectLiteral::Property::GETTER: {
frame_->EmitPush(r0);
LoadAndSpill(key);
__ mov(r0, Operand(Smi::FromInt(0)));
frame_->EmitPush(r0);
LoadAndSpill(value);
frame_->CallRuntime(Runtime::kDefineAccessor, 4);
__ ldr(r0, frame_->Top());
break;
}
}
}
ASSERT(frame_->height() == original_height + 1);
}
// This deferred code stub will be used for creating the boilerplate
// by calling Runtime_CreateArrayLiteralBoilerplate.
// Each created boilerplate is stored in the JSFunction and they are
// therefore context dependent.
class DeferredArrayLiteral: public DeferredCode {
public:
explicit DeferredArrayLiteral(ArrayLiteral* node) : node_(node) {
set_comment("[ DeferredArrayLiteral");
}
virtual void Generate();
private:
ArrayLiteral* node_;
};
void DeferredArrayLiteral::Generate() {
// Argument is passed in r1.
// If the entry is undefined we call the runtime system to computed
// the literal.
// Literal array (0).
__ push(r1);
// Literal index (1).
__ mov(r0, Operand(Smi::FromInt(node_->literal_index())));
__ push(r0);
// Constant properties (2).
__ mov(r0, Operand(node_->literals()));
__ push(r0);
__ CallRuntime(Runtime::kCreateArrayLiteralBoilerplate, 3);
__ mov(r2, Operand(r0));
// Result is returned in r2.
}
void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ ArrayLiteral");
DeferredArrayLiteral* deferred = new DeferredArrayLiteral(node);
// Retrieve the literal array and check the allocated entry.
// Load the function of this activation.
__ ldr(r1, frame_->Function());
// Load the literals array of the function.
__ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset));
// Load the literal at the ast saved index.
int literal_offset =
FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
__ ldr(r2, FieldMemOperand(r1, literal_offset));
// Check whether we need to materialize the object literal boilerplate.
// If so, jump to the deferred code.
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(r2, Operand(ip));
deferred->Branch(eq);
deferred->BindExit();
// Push the object literal boilerplate.
frame_->EmitPush(r2);
// Clone the boilerplate object.
Runtime::FunctionId clone_function_id = Runtime::kCloneLiteralBoilerplate;
if (node->depth() == 1) {
clone_function_id = Runtime::kCloneShallowLiteralBoilerplate;
}
frame_->CallRuntime(clone_function_id, 1);
frame_->EmitPush(r0); // save the result
// r0: cloned object literal
// Generate code to set the elements in the array that are not
// literals.
for (int i = 0; i < node->values()->length(); i++) {
Expression* value = node->values()->at(i);
// If value is a literal the property value is already set in the
// boilerplate object.
if (value->AsLiteral() != NULL) continue;
// If value is a materialized literal the property value is already set
// in the boilerplate object if it is simple.
if (CompileTimeValue::IsCompileTimeValue(value)) continue;
// The property must be set by generated code.
LoadAndSpill(value);
frame_->EmitPop(r0);
// Fetch the object literal.
__ ldr(r1, frame_->Top());
// Get the elements array.
__ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset));
// Write to the indexed properties array.
int offset = i * kPointerSize + FixedArray::kHeaderSize;
__ str(r0, FieldMemOperand(r1, offset));
// Update the write barrier for the array address.
__ mov(r3, Operand(offset));
__ RecordWrite(r1, r3, r2);
}
ASSERT(frame_->height() == original_height + 1);
}
void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
// Call runtime routine to allocate the catch extension object and
// assign the exception value to the catch variable.
Comment cmnt(masm_, "[ CatchExtensionObject");
LoadAndSpill(node->key());
LoadAndSpill(node->value());
frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2);
frame_->EmitPush(r0);
ASSERT(frame_->height() == original_height + 1);
}
void CodeGenerator::VisitAssignment(Assignment* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ Assignment");
{ Reference target(this, node->target());
if (target.is_illegal()) {
// Fool the virtual frame into thinking that we left the assignment's
// value on the frame.
__ mov(r0, Operand(Smi::FromInt(0)));
frame_->EmitPush(r0);
ASSERT(frame_->height() == original_height + 1);
return;
}
if (node->op() == Token::ASSIGN ||
node->op() == Token::INIT_VAR ||
node->op() == Token::INIT_CONST) {
LoadAndSpill(node->value());
} else {
// +=, *= and similar binary assignments.
// Get the old value of the lhs.
target.GetValueAndSpill(NOT_INSIDE_TYPEOF);
Literal* literal = node->value()->AsLiteral();
bool overwrite =
(node->value()->AsBinaryOperation() != NULL &&
node->value()->AsBinaryOperation()->ResultOverwriteAllowed());
if (literal != NULL && literal->handle()->IsSmi()) {
SmiOperation(node->binary_op(),
literal->handle(),
false,
overwrite ? OVERWRITE_RIGHT : NO_OVERWRITE);
frame_->EmitPush(r0);
} else {
LoadAndSpill(node->value());
GenericBinaryOperation(node->binary_op(),
overwrite ? OVERWRITE_RIGHT : NO_OVERWRITE);
frame_->EmitPush(r0);
}
}
Variable* var = node->target()->AsVariableProxy()->AsVariable();
if (var != NULL &&
(var->mode() == Variable::CONST) &&
node->op() != Token::INIT_VAR && node->op() != Token::INIT_CONST) {
// Assignment ignored - leave the value on the stack.
} else {
CodeForSourcePosition(node->position());
if (node->op() == Token::INIT_CONST) {
// Dynamic constant initializations must use the function context
// and initialize the actual constant declared. Dynamic variable
// initializations are simply assignments and use SetValue.
target.SetValue(CONST_INIT);
} else {
target.SetValue(NOT_CONST_INIT);
}
}
}
ASSERT(frame_->height() == original_height + 1);
}
void CodeGenerator::VisitThrow(Throw* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ Throw");
LoadAndSpill(node->exception());
CodeForSourcePosition(node->position());
frame_->CallRuntime(Runtime::kThrow, 1);
frame_->EmitPush(r0);
ASSERT(frame_->height() == original_height + 1);
}
void CodeGenerator::VisitProperty(Property* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ Property");
{ Reference property(this, node);
property.GetValueAndSpill(typeof_state());
}
ASSERT(frame_->height() == original_height + 1);
}
void CodeGenerator::VisitCall(Call* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ Call");
Expression* function = node->expression();
ZoneList<Expression*>* args = node->arguments();
// Standard function call.
// Check if the function is a variable or a property.
Variable* var = function->AsVariableProxy()->AsVariable();
Property* property = function->AsProperty();
// ------------------------------------------------------------------------
// Fast-case: Use inline caching.
// ---
// According to ECMA-262, section 11.2.3, page 44, the function to call
// must be resolved after the arguments have been evaluated. The IC code
// automatically handles this by loading the arguments before the function
// is resolved in cache misses (this also holds for megamorphic calls).
// ------------------------------------------------------------------------
if (var != NULL && var->is_possibly_eval()) {
// ----------------------------------
// JavaScript example: 'eval(arg)' // eval is not known to be shadowed
// ----------------------------------
// In a call to eval, we first call %ResolvePossiblyDirectEval to
// resolve the function we need to call and the receiver of the
// call. Then we call the resolved function using the given
// arguments.
// Prepare stack for call to resolved function.
LoadAndSpill(function);
__ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
frame_->EmitPush(r2); // Slot for receiver
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
LoadAndSpill(args->at(i));
}
// Prepare stack for call to ResolvePossiblyDirectEval.
__ ldr(r1, MemOperand(sp, arg_count * kPointerSize + kPointerSize));
frame_->EmitPush(r1);
if (arg_count > 0) {
__ ldr(r1, MemOperand(sp, arg_count * kPointerSize));
frame_->EmitPush(r1);
} else {
frame_->EmitPush(r2);
}
// Resolve the call.
frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 2);
// Touch up stack with the right values for the function and the receiver.
__ ldr(r1, FieldMemOperand(r0, FixedArray::kHeaderSize));
__ str(r1, MemOperand(sp, (arg_count + 1) * kPointerSize));
__ ldr(r1, FieldMemOperand(r0, FixedArray::kHeaderSize + kPointerSize));
__ str(r1, MemOperand(sp, arg_count * kPointerSize));
// Call the function.
CodeForSourcePosition(node->position());
InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
CallFunctionStub call_function(arg_count, in_loop);
frame_->CallStub(&call_function, arg_count + 1);
__ ldr(cp, frame_->Context());
// Remove the function from the stack.
frame_->Drop();
frame_->EmitPush(r0);
} else if (var != NULL && !var->is_this() && var->is_global()) {
// ----------------------------------
// JavaScript example: 'foo(1, 2, 3)' // foo is global
// ----------------------------------
// Push the name of the function and the receiver onto the stack.
__ mov(r0, Operand(var->name()));
frame_->EmitPush(r0);
// Pass the global object as the receiver and let the IC stub
// patch the stack to use the global proxy as 'this' in the
// invoked function.
LoadGlobal();
// Load the arguments.
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
LoadAndSpill(args->at(i));
}
// Setup the receiver register and call the IC initialization code.
InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
Handle<Code> stub = ComputeCallInitialize(arg_count, in_loop);
CodeForSourcePosition(node->position());
frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET_CONTEXT,
arg_count + 1);
__ ldr(cp, frame_->Context());
// Remove the function from the stack.
frame_->Drop();
frame_->EmitPush(r0);
} else if (var != NULL && var->slot() != NULL &&
var->slot()->type() == Slot::LOOKUP) {
// ----------------------------------
// JavaScript example: 'with (obj) foo(1, 2, 3)' // foo is in obj
// ----------------------------------
// Load the function
frame_->EmitPush(cp);
__ mov(r0, Operand(var->name()));
frame_->EmitPush(r0);
frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
// r0: slot value; r1: receiver
// Load the receiver.
frame_->EmitPush(r0); // function
frame_->EmitPush(r1); // receiver
// Call the function.
CallWithArguments(args, node->position());
frame_->EmitPush(r0);
} else if (property != NULL) {
// Check if the key is a literal string.
Literal* literal = property->key()->AsLiteral();
if (literal != NULL && literal->handle()->IsSymbol()) {
// ------------------------------------------------------------------
// JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)'
// ------------------------------------------------------------------
// Push the name of the function and the receiver onto the stack.
__ mov(r0, Operand(literal->handle()));
frame_->EmitPush(r0);
LoadAndSpill(property->obj());
// Load the arguments.
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
LoadAndSpill(args->at(i));
}
// Set the receiver register and call the IC initialization code.
InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
Handle<Code> stub = ComputeCallInitialize(arg_count, in_loop);
CodeForSourcePosition(node->position());
frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1);
__ ldr(cp, frame_->Context());
// Remove the function from the stack.
frame_->Drop();
frame_->EmitPush(r0); // push after get rid of function from the stack
} else {
// -------------------------------------------
// JavaScript example: 'array[index](1, 2, 3)'
// -------------------------------------------
// Load the function to call from the property through a reference.
Reference ref(this, property);
ref.GetValueAndSpill(NOT_INSIDE_TYPEOF); // receiver
// Pass receiver to called function.
if (property->is_synthetic()) {
LoadGlobalReceiver(r0);
} else {
__ ldr(r0, frame_->ElementAt(ref.size()));
frame_->EmitPush(r0);
}
// Call the function.
CallWithArguments(args, node->position());
frame_->EmitPush(r0);
}
} else {
// ----------------------------------
// JavaScript example: 'foo(1, 2, 3)' // foo is not global
// ----------------------------------
// Load the function.
LoadAndSpill(function);
// Pass the global proxy as the receiver.
LoadGlobalReceiver(r0);
// Call the function.
CallWithArguments(args, node->position());
frame_->EmitPush(r0);
}
ASSERT(frame_->height() == original_height + 1);
}
void CodeGenerator::VisitCallNew(CallNew* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ CallNew");
// According to ECMA-262, section 11.2.2, page 44, the function
// expression in new calls must be evaluated before the
// arguments. This is different from ordinary calls, where the
// actual function to call is resolved after the arguments have been
// evaluated.
// Compute function to call and use the global object as the
// receiver. There is no need to use the global proxy here because
// it will always be replaced with a newly allocated object.
LoadAndSpill(node->expression());
LoadGlobal();
// Push the arguments ("left-to-right") on the stack.
ZoneList<Expression*>* args = node->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
LoadAndSpill(args->at(i));
}
// r0: the number of arguments.
Result num_args(r0);
__ mov(r0, Operand(arg_count));
// Load the function into r1 as per calling convention.
Result function(r1);
__ ldr(r1, frame_->ElementAt(arg_count + 1));
// Call the construct call builtin that handles allocation and
// constructor invocation.
CodeForSourcePosition(node->position());
Handle<Code> ic(Builtins::builtin(Builtins::JSConstructCall));
frame_->CallCodeObject(ic,
RelocInfo::CONSTRUCT_CALL,
&num_args,
&function,
arg_count + 1);
// Discard old TOS value and push r0 on the stack (same as Pop(), push(r0)).
__ str(r0, frame_->Top());
ASSERT(frame_->height() == original_height + 1);
}
void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) {
VirtualFrame::SpilledScope spilled_scope;
ASSERT(args->length() == 1);
JumpTarget leave, null, function, non_function_constructor;
// Load the object into r0.
LoadAndSpill(args->at(0));
frame_->EmitPop(r0);
// If the object is a smi, we return null.
__ tst(r0, Operand(kSmiTagMask));
null.Branch(eq);
// Check that the object is a JS object but take special care of JS
// functions to make sure they have 'Function' as their class.
__ CompareObjectType(r0, r0, r1, FIRST_JS_OBJECT_TYPE);
null.Branch(lt);
// As long as JS_FUNCTION_TYPE is the last instance type and it is
// right after LAST_JS_OBJECT_TYPE, we can avoid checking for
// LAST_JS_OBJECT_TYPE.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
__ cmp(r1, Operand(JS_FUNCTION_TYPE));
function.Branch(eq);
// Check if the constructor in the map is a function.
__ ldr(r0, FieldMemOperand(r0, Map::kConstructorOffset));
__ CompareObjectType(r0, r1, r1, JS_FUNCTION_TYPE);
non_function_constructor.Branch(ne);
// The r0 register now contains the constructor function. Grab the
// instance class name from there.
__ ldr(r0, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r0, FieldMemOperand(r0, SharedFunctionInfo::kInstanceClassNameOffset));
frame_->EmitPush(r0);
leave.Jump();
// Functions have class 'Function'.
function.Bind();
__ mov(r0, Operand(Factory::function_class_symbol()));
frame_->EmitPush(r0);
leave.Jump();
// Objects with a non-function constructor have class 'Object'.
non_function_constructor.Bind();
__ mov(r0, Operand(Factory::Object_symbol()));
frame_->EmitPush(r0);
leave.Jump();
// Non-JS objects have class null.
null.Bind();
__ LoadRoot(r0, Heap::kNullValueRootIndex);
frame_->EmitPush(r0);
// All done.
leave.Bind();
}
void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) {
VirtualFrame::SpilledScope spilled_scope;
ASSERT(args->length() == 1);
JumpTarget leave;
LoadAndSpill(args->at(0));
frame_->EmitPop(r0); // r0 contains object.
// if (object->IsSmi()) return the object.
__ tst(r0, Operand(kSmiTagMask));
leave.Branch(eq);
// It is a heap object - get map. If (!object->IsJSValue()) return the object.
__ CompareObjectType(r0, r1, r1, JS_VALUE_TYPE);
leave.Branch(ne);
// Load the value.
__ ldr(r0, FieldMemOperand(r0, JSValue::kValueOffset));
leave.Bind();
frame_->EmitPush(r0);
}
void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) {
VirtualFrame::SpilledScope spilled_scope;
ASSERT(args->length() == 2);
JumpTarget leave;
LoadAndSpill(args->at(0)); // Load the object.
LoadAndSpill(args->at(1)); // Load the value.
frame_->EmitPop(r0); // r0 contains value
frame_->EmitPop(r1); // r1 contains object
// if (object->IsSmi()) return object.
__ tst(r1, Operand(kSmiTagMask));
leave.Branch(eq);
// It is a heap object - get map. If (!object->IsJSValue()) return the object.
__ CompareObjectType(r1, r2, r2, JS_VALUE_TYPE);
leave.Branch(ne);
// Store the value.
__ str(r0, FieldMemOperand(r1, JSValue::kValueOffset));
// Update the write barrier.
__ mov(r2, Operand(JSValue::kValueOffset - kHeapObjectTag));
__ RecordWrite(r1, r2, r3);
// Leave.
leave.Bind();
frame_->EmitPush(r0);
}
void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) {
VirtualFrame::SpilledScope spilled_scope;
ASSERT(args->length() == 1);
LoadAndSpill(args->at(0));
frame_->EmitPop(r0);
__ tst(r0, Operand(kSmiTagMask));
cc_reg_ = eq;
}
void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) {
VirtualFrame::SpilledScope spilled_scope;
// See comment in CodeGenerator::GenerateLog in codegen-ia32.cc.
ASSERT_EQ(args->length(), 3);
#ifdef ENABLE_LOGGING_AND_PROFILING
if (ShouldGenerateLog(args->at(0))) {
LoadAndSpill(args->at(1));
LoadAndSpill(args->at(2));
__ CallRuntime(Runtime::kLog, 2);
}
#endif
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
frame_->EmitPush(r0);
}
void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) {
VirtualFrame::SpilledScope spilled_scope;
ASSERT(args->length() == 1);
LoadAndSpill(args->at(0));
frame_->EmitPop(r0);
__ tst(r0, Operand(kSmiTagMask | 0x80000000u));
cc_reg_ = eq;
}
// This should generate code that performs a charCodeAt() call or returns
// undefined in order to trigger the slow case, Runtime_StringCharCodeAt.
// It is not yet implemented on ARM, so it always goes to the slow case.
void CodeGenerator::GenerateFastCharCodeAt(ZoneList<Expression*>* args) {
VirtualFrame::SpilledScope spilled_scope;
ASSERT(args->length() == 2);
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
frame_->EmitPush(r0);
}
void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) {
VirtualFrame::SpilledScope spilled_scope;
ASSERT(args->length() == 1);
LoadAndSpill(args->at(0));
JumpTarget answer;
// We need the CC bits to come out as not_equal in the case where the
// object is a smi. This can't be done with the usual test opcode so
// we use XOR to get the right CC bits.
frame_->EmitPop(r0);
__ and_(r1, r0, Operand(kSmiTagMask));
__ eor(r1, r1, Operand(kSmiTagMask), SetCC);
answer.Branch(ne);
// It is a heap object - get the map. Check if the object is a JS array.
__ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE);
answer.Bind();
cc_reg_ = eq;
}
void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) {
VirtualFrame::SpilledScope spilled_scope;
ASSERT(args->length() == 0);
// Get the frame pointer for the calling frame.
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
// Skip the arguments adaptor frame if it exists.
Label check_frame_marker;
__ ldr(r1, MemOperand(r2, StandardFrameConstants::kContextOffset));
__ cmp(r1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ b(ne, &check_frame_marker);
__ ldr(r2, MemOperand(r2, StandardFrameConstants::kCallerFPOffset));
// Check the marker in the calling frame.
__ bind(&check_frame_marker);
__ ldr(r1, MemOperand(r2, StandardFrameConstants::kMarkerOffset));
__ cmp(r1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
cc_reg_ = eq;
}
void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) {
VirtualFrame::SpilledScope spilled_scope;
ASSERT(args->length() == 0);
// Seed the result with the formal parameters count, which will be used
// in case no arguments adaptor frame is found below the current frame.
__ mov(r0, Operand(Smi::FromInt(scope_->num_parameters())));
// Call the shared stub to get to the arguments.length.
ArgumentsAccessStub stub(ArgumentsAccessStub::READ_LENGTH);
frame_->CallStub(&stub, 0);
frame_->EmitPush(r0);
}
void CodeGenerator::GenerateArgumentsAccess(ZoneList<Expression*>* args) {
VirtualFrame::SpilledScope spilled_scope;
ASSERT(args->length() == 1);
// Satisfy contract with ArgumentsAccessStub:
// Load the key into r1 and the formal parameters count into r0.
LoadAndSpill(args->at(0));
frame_->EmitPop(r1);
__ mov(r0, Operand(Smi::FromInt(scope_->num_parameters())));
// Call the shared stub to get to arguments[key].
ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
frame_->CallStub(&stub, 0);
frame_->EmitPush(r0);
}
void CodeGenerator::GenerateRandomPositiveSmi(ZoneList<Expression*>* args) {
VirtualFrame::SpilledScope spilled_scope;
ASSERT(args->length() == 0);
__ Call(ExternalReference::random_positive_smi_function().address(),
RelocInfo::RUNTIME_ENTRY);
frame_->EmitPush(r0);
}
void CodeGenerator::GenerateFastMathOp(MathOp op, ZoneList<Expression*>* args) {
VirtualFrame::SpilledScope spilled_scope;
LoadAndSpill(args->at(0));
switch (op) {
case SIN:
frame_->CallRuntime(Runtime::kMath_sin, 1);
break;
case COS:
frame_->CallRuntime(Runtime::kMath_cos, 1);
break;
}
frame_->EmitPush(r0);
}
void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) {
VirtualFrame::SpilledScope spilled_scope;
ASSERT(args->length() == 2);
// Load the two objects into registers and perform the comparison.
LoadAndSpill(args->at(0));
LoadAndSpill(args->at(1));
frame_->EmitPop(r0);
frame_->EmitPop(r1);
__ cmp(r0, Operand(r1));
cc_reg_ = eq;
}
void CodeGenerator::VisitCallRuntime(CallRuntime* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
if (CheckForInlineRuntimeCall(node)) {
ASSERT((has_cc() && frame_->height() == original_height) ||
(!has_cc() && frame_->height() == original_height + 1));
return;
}
ZoneList<Expression*>* args = node->arguments();
Comment cmnt(masm_, "[ CallRuntime");
Runtime::Function* function = node->function();
if (function == NULL) {
// Prepare stack for calling JS runtime function.
__ mov(r0, Operand(node->name()));
frame_->EmitPush(r0);
// Push the builtins object found in the current global object.
__ ldr(r1, GlobalObject());
__ ldr(r0, FieldMemOperand(r1, GlobalObject::kBuiltinsOffset));
frame_->EmitPush(r0);
}
// Push the arguments ("left-to-right").
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
LoadAndSpill(args->at(i));
}
if (function == NULL) {
// Call the JS runtime function.
InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
Handle<Code> stub = ComputeCallInitialize(arg_count, in_loop);
frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1);
__ ldr(cp, frame_->Context());
frame_->Drop();
frame_->EmitPush(r0);
} else {
// Call the C runtime function.
frame_->CallRuntime(function, arg_count);
frame_->EmitPush(r0);
}
ASSERT(frame_->height() == original_height + 1);
}
void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ UnaryOperation");
Token::Value op = node->op();
if (op == Token::NOT) {
LoadConditionAndSpill(node->expression(),
NOT_INSIDE_TYPEOF,
false_target(),
true_target(),
true);
// LoadCondition may (and usually does) leave a test and branch to
// be emitted by the caller. In that case, negate the condition.
if (has_cc()) cc_reg_ = NegateCondition(cc_reg_);
} else if (op == Token::DELETE) {
Property* property = node->expression()->AsProperty();
Variable* variable = node->expression()->AsVariableProxy()->AsVariable();
if (property != NULL) {
LoadAndSpill(property->obj());
LoadAndSpill(property->key());
Result arg_count(r0);
__ mov(r0, Operand(1)); // not counting receiver
frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, &arg_count, 2);
} else if (variable != NULL) {
Slot* slot = variable->slot();
if (variable->is_global()) {
LoadGlobal();
__ mov(r0, Operand(variable->name()));
frame_->EmitPush(r0);
Result arg_count(r0);
__ mov(r0, Operand(1)); // not counting receiver
frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, &arg_count, 2);
} else if (slot != NULL && slot->type() == Slot::LOOKUP) {
// lookup the context holding the named variable
frame_->EmitPush(cp);
__ mov(r0, Operand(variable->name()));
frame_->EmitPush(r0);
frame_->CallRuntime(Runtime::kLookupContext, 2);
// r0: context
frame_->EmitPush(r0);
__ mov(r0, Operand(variable->name()));
frame_->EmitPush(r0);
Result arg_count(r0);
__ mov(r0, Operand(1)); // not counting receiver
frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, &arg_count, 2);
} else {
// Default: Result of deleting non-global, not dynamically
// introduced variables is false.
__ LoadRoot(r0, Heap::kFalseValueRootIndex);
}
} else {
// Default: Result of deleting expressions is true.
LoadAndSpill(node->expression()); // may have side-effects
frame_->Drop();
__ LoadRoot(r0, Heap::kTrueValueRootIndex);
}
frame_->EmitPush(r0);
} else if (op == Token::TYPEOF) {
// Special case for loading the typeof expression; see comment on
// LoadTypeofExpression().
LoadTypeofExpression(node->expression());
frame_->CallRuntime(Runtime::kTypeof, 1);
frame_->EmitPush(r0); // r0 has result
} else {
LoadAndSpill(node->expression());
frame_->EmitPop(r0);
switch (op) {
case Token::NOT:
case Token::DELETE:
case Token::TYPEOF:
UNREACHABLE(); // handled above
break;
case Token::SUB: {
bool overwrite =
(node->expression()->AsBinaryOperation() != NULL &&
node->expression()->AsBinaryOperation()->ResultOverwriteAllowed());
UnarySubStub stub(overwrite);
frame_->CallStub(&stub, 0);
break;
}
case Token::BIT_NOT: {
// smi check
JumpTarget smi_label;
JumpTarget continue_label;
__ tst(r0, Operand(kSmiTagMask));
smi_label.Branch(eq);
frame_->EmitPush(r0);
Result arg_count(r0);
__ mov(r0, Operand(0)); // not counting receiver
frame_->InvokeBuiltin(Builtins::BIT_NOT, CALL_JS, &arg_count, 1);
continue_label.Jump();
smi_label.Bind();
__ mvn(r0, Operand(r0));
__ bic(r0, r0, Operand(kSmiTagMask)); // bit-clear inverted smi-tag
continue_label.Bind();
break;
}
case Token::VOID:
// since the stack top is cached in r0, popping and then
// pushing a value can be done by just writing to r0.
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
break;
case Token::ADD: {
// Smi check.
JumpTarget continue_label;
__ tst(r0, Operand(kSmiTagMask));
continue_label.Branch(eq);
frame_->EmitPush(r0);
Result arg_count(r0);
__ mov(r0, Operand(0)); // not counting receiver
frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, &arg_count, 1);
continue_label.Bind();
break;
}
default:
UNREACHABLE();
}
frame_->EmitPush(r0); // r0 has result
}
ASSERT(!has_valid_frame() ||
(has_cc() && frame_->height() == original_height) ||
(!has_cc() && frame_->height() == original_height + 1));
}
void CodeGenerator::VisitCountOperation(CountOperation* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ CountOperation");
bool is_postfix = node->is_postfix();
bool is_increment = node->op() == Token::INC;
Variable* var = node->expression()->AsVariableProxy()->AsVariable();
bool is_const = (var != NULL && var->mode() == Variable::CONST);
// Postfix: Make room for the result.
if (is_postfix) {
__ mov(r0, Operand(0));
frame_->EmitPush(r0);
}
{ Reference target(this, node->expression());
if (target.is_illegal()) {
// Spoof the virtual frame to have the expected height (one higher
// than on entry).
if (!is_postfix) {
__ mov(r0, Operand(Smi::FromInt(0)));
frame_->EmitPush(r0);
}
ASSERT(frame_->height() == original_height + 1);
return;
}
target.GetValueAndSpill(NOT_INSIDE_TYPEOF);
frame_->EmitPop(r0);
JumpTarget slow;
JumpTarget exit;
// Load the value (1) into register r1.
__ mov(r1, Operand(Smi::FromInt(1)));
// Check for smi operand.
__ tst(r0, Operand(kSmiTagMask));
slow.Branch(ne);
// Postfix: Store the old value as the result.
if (is_postfix) {
__ str(r0, frame_->ElementAt(target.size()));
}
// Perform optimistic increment/decrement.
if (is_increment) {
__ add(r0, r0, Operand(r1), SetCC);
} else {
__ sub(r0, r0, Operand(r1), SetCC);
}
// If the increment/decrement didn't overflow, we're done.
exit.Branch(vc);
// Revert optimistic increment/decrement.
if (is_increment) {
__ sub(r0, r0, Operand(r1));
} else {
__ add(r0, r0, Operand(r1));
}
// Slow case: Convert to number.
slow.Bind();
{
// Convert the operand to a number.
frame_->EmitPush(r0);
Result arg_count(r0);
__ mov(r0, Operand(0));
frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, &arg_count, 1);
}
if (is_postfix) {
// Postfix: store to result (on the stack).
__ str(r0, frame_->ElementAt(target.size()));
}
// Compute the new value.
__ mov(r1, Operand(Smi::FromInt(1)));
frame_->EmitPush(r0);
frame_->EmitPush(r1);
if (is_increment) {
frame_->CallRuntime(Runtime::kNumberAdd, 2);
} else {
frame_->CallRuntime(Runtime::kNumberSub, 2);
}
// Store the new value in the target if not const.
exit.Bind();
frame_->EmitPush(r0);
if (!is_const) target.SetValue(NOT_CONST_INIT);
}
// Postfix: Discard the new value and use the old.
if (is_postfix) frame_->EmitPop(r0);
ASSERT(frame_->height() == original_height + 1);
}
void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ BinaryOperation");
Token::Value op = node->op();
// According to ECMA-262 section 11.11, page 58, the binary logical
// operators must yield the result of one of the two expressions
// before any ToBoolean() conversions. This means that the value
// produced by a && or || operator is not necessarily a boolean.
// NOTE: If the left hand side produces a materialized value (not in
// the CC register), we force the right hand side to do the
// same. This is necessary because we may have to branch to the exit
// after evaluating the left hand side (due to the shortcut
// semantics), but the compiler must (statically) know if the result
// of compiling the binary operation is materialized or not.
if (op == Token::AND) {
JumpTarget is_true;
LoadConditionAndSpill(node->left(),
NOT_INSIDE_TYPEOF,
&is_true,
false_target(),
false);
if (has_valid_frame() && !has_cc()) {
// The left-hand side result is on top of the virtual frame.
JumpTarget pop_and_continue;
JumpTarget exit;
__ ldr(r0, frame_->Top()); // Duplicate the stack top.
frame_->EmitPush(r0);
// Avoid popping the result if it converts to 'false' using the
// standard ToBoolean() conversion as described in ECMA-262,
// section 9.2, page 30.
ToBoolean(&pop_and_continue, &exit);
Branch(false, &exit);
// Pop the result of evaluating the first part.
pop_and_continue.Bind();
frame_->EmitPop(r0);
// Evaluate right side expression.
is_true.Bind();
LoadAndSpill(node->right());
// Exit (always with a materialized value).
exit.Bind();
} else if (has_cc() || is_true.is_linked()) {
// The left-hand side is either (a) partially compiled to
// control flow with a final branch left to emit or (b) fully
// compiled to control flow and possibly true.
if (has_cc()) {
Branch(false, false_target());
}
is_true.Bind();
LoadConditionAndSpill(node->right(),
NOT_INSIDE_TYPEOF,
true_target(),
false_target(),
false);
} else {
// Nothing to do.
ASSERT(!has_valid_frame() && !has_cc() && !is_true.is_linked());
}
} else if (op == Token::OR) {
JumpTarget is_false;
LoadConditionAndSpill(node->left(),
NOT_INSIDE_TYPEOF,
true_target(),
&is_false,
false);
if (has_valid_frame() && !has_cc()) {
// The left-hand side result is on top of the virtual frame.
JumpTarget pop_and_continue;
JumpTarget exit;
__ ldr(r0, frame_->Top());
frame_->EmitPush(r0);
// Avoid popping the result if it converts to 'true' using the
// standard ToBoolean() conversion as described in ECMA-262,
// section 9.2, page 30.
ToBoolean(&exit, &pop_and_continue);
Branch(true, &exit);
// Pop the result of evaluating the first part.
pop_and_continue.Bind();
frame_->EmitPop(r0);
// Evaluate right side expression.
is_false.Bind();
LoadAndSpill(node->right());
// Exit (always with a materialized value).
exit.Bind();
} else if (has_cc() || is_false.is_linked()) {
// The left-hand side is either (a) partially compiled to
// control flow with a final branch left to emit or (b) fully
// compiled to control flow and possibly false.
if (has_cc()) {
Branch(true, true_target());
}
is_false.Bind();
LoadConditionAndSpill(node->right(),
NOT_INSIDE_TYPEOF,
true_target(),
false_target(),
false);
} else {
// Nothing to do.
ASSERT(!has_valid_frame() && !has_cc() && !is_false.is_linked());
}
} else {
// Optimize for the case where (at least) one of the expressions
// is a literal small integer.
Literal* lliteral = node->left()->AsLiteral();
Literal* rliteral = node->right()->AsLiteral();
// NOTE: The code below assumes that the slow cases (calls to runtime)
// never return a constant/immutable object.
bool overwrite_left =
(node->left()->AsBinaryOperation() != NULL &&
node->left()->AsBinaryOperation()->ResultOverwriteAllowed());
bool overwrite_right =
(node->right()->AsBinaryOperation() != NULL &&
node->right()->AsBinaryOperation()->ResultOverwriteAllowed());
if (rliteral != NULL && rliteral->handle()->IsSmi()) {
LoadAndSpill(node->left());
SmiOperation(node->op(),
rliteral->handle(),
false,
overwrite_right ? OVERWRITE_RIGHT : NO_OVERWRITE);
} else if (lliteral != NULL && lliteral->handle()->IsSmi()) {
LoadAndSpill(node->right());
SmiOperation(node->op(),
lliteral->handle(),
true,
overwrite_left ? OVERWRITE_LEFT : NO_OVERWRITE);
} else {
OverwriteMode overwrite_mode = NO_OVERWRITE;
if (overwrite_left) {
overwrite_mode = OVERWRITE_LEFT;
} else if (overwrite_right) {
overwrite_mode = OVERWRITE_RIGHT;
}
LoadAndSpill(node->left());
LoadAndSpill(node->right());
GenericBinaryOperation(node->op(), overwrite_mode);
}
frame_->EmitPush(r0);
}
ASSERT(!has_valid_frame() ||
(has_cc() && frame_->height() == original_height) ||
(!has_cc() && frame_->height() == original_height + 1));
}
void CodeGenerator::VisitThisFunction(ThisFunction* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
__ ldr(r0, frame_->Function());
frame_->EmitPush(r0);
ASSERT(frame_->height() == original_height + 1);
}
void CodeGenerator::VisitCompareOperation(CompareOperation* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ CompareOperation");
// Get the expressions from the node.
Expression* left = node->left();
Expression* right = node->right();
Token::Value op = node->op();
// To make null checks efficient, we check if either left or right is the
// literal 'null'. If so, we optimize the code by inlining a null check
// instead of calling the (very) general runtime routine for checking
// equality.
if (op == Token::EQ || op == Token::EQ_STRICT) {
bool left_is_null =
left->AsLiteral() != NULL && left->AsLiteral()->IsNull();
bool right_is_null =
right->AsLiteral() != NULL && right->AsLiteral()->IsNull();
// The 'null' value can only be equal to 'null' or 'undefined'.
if (left_is_null || right_is_null) {
LoadAndSpill(left_is_null ? right : left);
frame_->EmitPop(r0);
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(r0, ip);
// The 'null' value is only equal to 'undefined' if using non-strict
// comparisons.
if (op != Token::EQ_STRICT) {
true_target()->Branch(eq);
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(r0, Operand(ip));
true_target()->Branch(eq);
__ tst(r0, Operand(kSmiTagMask));
false_target()->Branch(eq);
// It can be an undetectable object.
__ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
__ ldrb(r0, FieldMemOperand(r0, Map::kBitFieldOffset));
__ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
__ cmp(r0, Operand(1 << Map::kIsUndetectable));
}
cc_reg_ = eq;
ASSERT(has_cc() && frame_->height() == original_height);
return;
}
}
// To make typeof testing for natives implemented in JavaScript really
// efficient, we generate special code for expressions of the form:
// 'typeof <expression> == <string>'.
UnaryOperation* operation = left->AsUnaryOperation();
if ((op == Token::EQ || op == Token::EQ_STRICT) &&
(operation != NULL && operation->op() == Token::TYPEOF) &&
(right->AsLiteral() != NULL &&
right->AsLiteral()->handle()->IsString())) {
Handle<String> check(String::cast(*right->AsLiteral()->handle()));
// Load the operand, move it to register r1.
LoadTypeofExpression(operation->expression());
frame_->EmitPop(r1);
if (check->Equals(Heap::number_symbol())) {
__ tst(r1, Operand(kSmiTagMask));
true_target()->Branch(eq);
__ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
__ cmp(r1, ip);
cc_reg_ = eq;
} else if (check->Equals(Heap::string_symbol())) {
__ tst(r1, Operand(kSmiTagMask));
false_target()->Branch(eq);
__ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
// It can be an undetectable string object.
__ ldrb(r2, FieldMemOperand(r1, Map::kBitFieldOffset));
__ and_(r2, r2, Operand(1 << Map::kIsUndetectable));
__ cmp(r2, Operand(1 << Map::kIsUndetectable));
false_target()->Branch(eq);
__ ldrb(r2, FieldMemOperand(r1, Map::kInstanceTypeOffset));
__ cmp(r2, Operand(FIRST_NONSTRING_TYPE));
cc_reg_ = lt;
} else if (check->Equals(Heap::boolean_symbol())) {
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ cmp(r1, ip);
true_target()->Branch(eq);
__ LoadRoot(ip, Heap::kFalseValueRootIndex);
__ cmp(r1, ip);
cc_reg_ = eq;
} else if (check->Equals(Heap::undefined_symbol())) {
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(r1, ip);
true_target()->Branch(eq);
__ tst(r1, Operand(kSmiTagMask));
false_target()->Branch(eq);
// It can be an undetectable object.
__ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
__ ldrb(r2, FieldMemOperand(r1, Map::kBitFieldOffset));
__ and_(r2, r2, Operand(1 << Map::kIsUndetectable));
__ cmp(r2, Operand(1 << Map::kIsUndetectable));
cc_reg_ = eq;
} else if (check->Equals(Heap::function_symbol())) {
__ tst(r1, Operand(kSmiTagMask));
false_target()->Branch(eq);
__ CompareObjectType(r1, r1, r1, JS_FUNCTION_TYPE);
cc_reg_ = eq;
} else if (check->Equals(Heap::object_symbol())) {
__ tst(r1, Operand(kSmiTagMask));
false_target()->Branch(eq);
__ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(r1, ip);
true_target()->Branch(eq);
// It can be an undetectable object.
__ ldrb(r1, FieldMemOperand(r2, Map::kBitFieldOffset));
__ and_(r1, r1, Operand(1 << Map::kIsUndetectable));
__ cmp(r1, Operand(1 << Map::kIsUndetectable));
false_target()->Branch(eq);
__ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
__ cmp(r2, Operand(FIRST_JS_OBJECT_TYPE));
false_target()->Branch(lt);
__ cmp(r2, Operand(LAST_JS_OBJECT_TYPE));
cc_reg_ = le;
} else {
// Uncommon case: typeof testing against a string literal that is
// never returned from the typeof operator.
false_target()->Jump();
}
ASSERT(!has_valid_frame() ||
(has_cc() && frame_->height() == original_height));
return;
}
switch (op) {
case Token::EQ:
Comparison(eq, left, right, false);
break;
case Token::LT:
Comparison(lt, left, right);
break;
case Token::GT:
Comparison(gt, left, right);
break;
case Token::LTE:
Comparison(le, left, right);
break;
case Token::GTE:
Comparison(ge, left, right);
break;
case Token::EQ_STRICT:
Comparison(eq, left, right, true);
break;
case Token::IN: {
LoadAndSpill(left);
LoadAndSpill(right);
Result arg_count(r0);
__ mov(r0, Operand(1)); // not counting receiver
frame_->InvokeBuiltin(Builtins::IN, CALL_JS, &arg_count, 2);
frame_->EmitPush(r0);
break;
}
case Token::INSTANCEOF: {
LoadAndSpill(left);
LoadAndSpill(right);
InstanceofStub stub;
frame_->CallStub(&stub, 2);
// At this point if instanceof succeeded then r0 == 0.
__ tst(r0, Operand(r0));
cc_reg_ = eq;
break;
}
default:
UNREACHABLE();
}
ASSERT((has_cc() && frame_->height() == original_height) ||
(!has_cc() && frame_->height() == original_height + 1));
}
#ifdef DEBUG
bool CodeGenerator::HasValidEntryRegisters() { return true; }
#endif
#undef __
#define __ ACCESS_MASM(masm)
Handle<String> Reference::GetName() {
ASSERT(type_ == NAMED);
Property* property = expression_->AsProperty();
if (property == NULL) {
// Global variable reference treated as a named property reference.
VariableProxy* proxy = expression_->AsVariableProxy();
ASSERT(proxy->AsVariable() != NULL);
ASSERT(proxy->AsVariable()->is_global());
return proxy->name();
} else {
Literal* raw_name = property->key()->AsLiteral();
ASSERT(raw_name != NULL);
return Handle<String>(String::cast(*raw_name->handle()));
}
}
void Reference::GetValue(TypeofState typeof_state) {
ASSERT(cgen_->HasValidEntryRegisters());
ASSERT(!is_illegal());
ASSERT(!cgen_->has_cc());
MacroAssembler* masm = cgen_->masm();
Property* property = expression_->AsProperty();
if (property != NULL) {
cgen_->CodeForSourcePosition(property->position());
}
switch (type_) {
case SLOT: {
Comment cmnt(masm, "[ Load from Slot");
Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
ASSERT(slot != NULL);
cgen_->LoadFromSlot(slot, typeof_state);
break;
}
case NAMED: {
// TODO(1241834): Make sure that this it is safe to ignore the
// distinction between expressions in a typeof and not in a typeof. If
// there is a chance that reference errors can be thrown below, we
// must distinguish between the two kinds of loads (typeof expression
// loads must not throw a reference error).
VirtualFrame* frame = cgen_->frame();
Comment cmnt(masm, "[ Load from named Property");
Handle<String> name(GetName());
Variable* var = expression_->AsVariableProxy()->AsVariable();
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
// Setup the name register.
Result name_reg(r2);
__ mov(r2, Operand(name));
ASSERT(var == NULL || var->is_global());
RelocInfo::Mode rmode = (var == NULL)
? RelocInfo::CODE_TARGET
: RelocInfo::CODE_TARGET_CONTEXT;
frame->CallCodeObject(ic, rmode, &name_reg, 0);
frame->EmitPush(r0);
break;
}
case KEYED: {
// TODO(1241834): Make sure that this it is safe to ignore the
// distinction between expressions in a typeof and not in a typeof.
// TODO(181): Implement inlined version of array indexing once
// loop nesting is properly tracked on ARM.
VirtualFrame* frame = cgen_->frame();
Comment cmnt(masm, "[ Load from keyed Property");
ASSERT(property != NULL);
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
Variable* var = expression_->AsVariableProxy()->AsVariable();
ASSERT(var == NULL || var->is_global());
RelocInfo::Mode rmode = (var == NULL)
? RelocInfo::CODE_TARGET
: RelocInfo::CODE_TARGET_CONTEXT;
frame->CallCodeObject(ic, rmode, 0);
frame->EmitPush(r0);
break;
}
default:
UNREACHABLE();
}
}
void Reference::SetValue(InitState init_state) {
ASSERT(!is_illegal());
ASSERT(!cgen_->has_cc());
MacroAssembler* masm = cgen_->masm();
VirtualFrame* frame = cgen_->frame();
Property* property = expression_->AsProperty();
if (property != NULL) {
cgen_->CodeForSourcePosition(property->position());
}
switch (type_) {
case SLOT: {
Comment cmnt(masm, "[ Store to Slot");
Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
ASSERT(slot != NULL);
if (slot->type() == Slot::LOOKUP) {
ASSERT(slot->var()->is_dynamic());
// For now, just do a runtime call.
frame->EmitPush(cp);
__ mov(r0, Operand(slot->var()->name()));
frame->EmitPush(r0);
if (init_state == CONST_INIT) {
// Same as the case for a normal store, but ignores attribute
// (e.g. READ_ONLY) of context slot so that we can initialize
// const properties (introduced via eval("const foo = (some
// expr);")). Also, uses the current function context instead of
// the top context.
//
// Note that we must declare the foo upon entry of eval(), via a
// context slot declaration, but we cannot initialize it at the
// same time, because the const declaration may be at the end of
// the eval code (sigh...) and the const variable may have been
// used before (where its value is 'undefined'). Thus, we can only
// do the initialization when we actually encounter the expression
// and when the expression operands are defined and valid, and
// thus we need the split into 2 operations: declaration of the
// context slot followed by initialization.
frame->CallRuntime(Runtime::kInitializeConstContextSlot, 3);
} else {
frame->CallRuntime(Runtime::kStoreContextSlot, 3);
}
// Storing a variable must keep the (new) value on the expression
// stack. This is necessary for compiling assignment expressions.
frame->EmitPush(r0);
} else {
ASSERT(!slot->var()->is_dynamic());
JumpTarget exit;
if (init_state == CONST_INIT) {
ASSERT(slot->var()->mode() == Variable::CONST);
// Only the first const initialization must be executed (the slot
// still contains 'the hole' value). When the assignment is
// executed, the code is identical to a normal store (see below).
Comment cmnt(masm, "[ Init const");
__ ldr(r2, cgen_->SlotOperand(slot, r2));
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(r2, ip);
exit.Branch(ne);
}
// We must execute the store. Storing a variable must keep the
// (new) value on the stack. This is necessary for compiling
// assignment expressions.
//
// Note: We will reach here even with slot->var()->mode() ==
// Variable::CONST because of const declarations which will
// initialize consts to 'the hole' value and by doing so, end up
// calling this code. r2 may be loaded with context; used below in
// RecordWrite.
frame->EmitPop(r0);
__ str(r0, cgen_->SlotOperand(slot, r2));
frame->EmitPush(r0);
if (slot->type() == Slot::CONTEXT) {
// Skip write barrier if the written value is a smi.
__ tst(r0, Operand(kSmiTagMask));
exit.Branch(eq);
// r2 is loaded with context when calling SlotOperand above.
int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
__ mov(r3, Operand(offset));
__ RecordWrite(r2, r3, r1);
}
// If we definitely did not jump over the assignment, we do not need
// to bind the exit label. Doing so can defeat peephole
// optimization.
if (init_state == CONST_INIT || slot->type() == Slot::CONTEXT) {
exit.Bind();
}
}
break;
}
case NAMED: {
Comment cmnt(masm, "[ Store to named Property");
// Call the appropriate IC code.
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
Handle<String> name(GetName());
Result value(r0);
frame->EmitPop(r0);
// Setup the name register.
Result property_name(r2);
__ mov(r2, Operand(name));
frame->CallCodeObject(ic,
RelocInfo::CODE_TARGET,
&value,
&property_name,
0);
frame->EmitPush(r0);
break;
}
case KEYED: {
Comment cmnt(masm, "[ Store to keyed Property");
Property* property = expression_->AsProperty();
ASSERT(property != NULL);
cgen_->CodeForSourcePosition(property->position());
// Call IC code.
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
// TODO(1222589): Make the IC grab the values from the stack.
Result value(r0);
frame->EmitPop(r0); // value
frame->CallCodeObject(ic, RelocInfo::CODE_TARGET, &value, 0);
frame->EmitPush(r0);
break;
}
default:
UNREACHABLE();
}
}
// Count leading zeros in a 32 bit word. On ARM5 and later it uses the clz
// instruction. On pre-ARM5 hardware this routine gives the wrong answer for 0
// (31 instead of 32).
static void CountLeadingZeros(
MacroAssembler* masm,
Register source,
Register scratch,
Register zeros) {
#ifdef CAN_USE_ARMV5_INSTRUCTIONS
__ clz(zeros, source); // This instruction is only supported after ARM5.
#else
__ mov(zeros, Operand(0));
__ mov(scratch, source);
// Top 16.
__ tst(scratch, Operand(0xffff0000));
__ add(zeros, zeros, Operand(16), LeaveCC, eq);
__ mov(scratch, Operand(scratch, LSL, 16), LeaveCC, eq);
// Top 8.
__ tst(scratch, Operand(0xff000000));
__ add(zeros, zeros, Operand(8), LeaveCC, eq);
__ mov(scratch, Operand(scratch, LSL, 8), LeaveCC, eq);
// Top 4.
__ tst(scratch, Operand(0xf0000000));
__ add(zeros, zeros, Operand(4), LeaveCC, eq);
__ mov(scratch, Operand(scratch, LSL, 4), LeaveCC, eq);
// Top 2.
__ tst(scratch, Operand(0xc0000000));
__ add(zeros, zeros, Operand(2), LeaveCC, eq);
__ mov(scratch, Operand(scratch, LSL, 2), LeaveCC, eq);
// Top bit.
__ tst(scratch, Operand(0x80000000u));
__ add(zeros, zeros, Operand(1), LeaveCC, eq);
#endif
}
// Takes a Smi and converts to an IEEE 64 bit floating point value in two
// registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and
// 52 fraction bits (20 in the first word, 32 in the second). Zeros is a
// scratch register. Destroys the source register. No GC occurs during this
// stub so you don't have to set up the frame.
class ConvertToDoubleStub : public CodeStub {
public:
ConvertToDoubleStub(Register result_reg_1,
Register result_reg_2,
Register source_reg,
Register scratch_reg)
: result1_(result_reg_1),
result2_(result_reg_2),
source_(source_reg),
zeros_(scratch_reg) { }
private:
Register result1_;
Register result2_;
Register source_;
Register zeros_;
// Minor key encoding in 16 bits.
class ModeBits: public BitField<OverwriteMode, 0, 2> {};
class OpBits: public BitField<Token::Value, 2, 14> {};
Major MajorKey() { return ConvertToDouble; }
int MinorKey() {
// Encode the parameters in a unique 16 bit value.
return result1_.code() +
(result2_.code() << 4) +
(source_.code() << 8) +
(zeros_.code() << 12);
}
void Generate(MacroAssembler* masm);
const char* GetName() { return "ConvertToDoubleStub"; }
#ifdef DEBUG
void Print() { PrintF("ConvertToDoubleStub\n"); }
#endif
};
void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
#ifndef BIG_ENDIAN_FLOATING_POINT
Register exponent = result1_;
Register mantissa = result2_;
#else
Register exponent = result2_;
Register mantissa = result1_;
#endif
Label not_special;
// Convert from Smi to integer.
__ mov(source_, Operand(source_, ASR, kSmiTagSize));
// Move sign bit from source to destination. This works because the sign bit
// in the exponent word of the double has the same position and polarity as
// the 2's complement sign bit in a Smi.
ASSERT(HeapNumber::kSignMask == 0x80000000u);
__ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC);
// Subtract from 0 if source was negative.
__ rsb(source_, source_, Operand(0), LeaveCC, ne);
__ cmp(source_, Operand(1));
__ b(gt, ¬_special);
// We have -1, 0 or 1, which we treat specially.
__ cmp(source_, Operand(0));
// For 1 or -1 we need to or in the 0 exponent (biased to 1023).
static const uint32_t exponent_word_for_1 =
HeapNumber::kExponentBias << HeapNumber::kExponentShift;
__ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, ne);
// 1, 0 and -1 all have 0 for the second word.
__ mov(mantissa, Operand(0));
__ Ret();
__ bind(¬_special);
// Count leading zeros. Uses result2 for a scratch register on pre-ARM5.
// Gets the wrong answer for 0, but we already checked for that case above.
CountLeadingZeros(masm, source_, mantissa, zeros_);
// Compute exponent and or it into the exponent register.
// We use result2 as a scratch register here.
__ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias));
__ orr(exponent,
exponent,
Operand(mantissa, LSL, HeapNumber::kExponentShift));
// Shift up the source chopping the top bit off.
__ add(zeros_, zeros_, Operand(1));
// This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
__ mov(source_, Operand(source_, LSL, zeros_));
// Compute lower part of fraction (last 12 bits).
__ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord));
// And the top (top 20 bits).
__ orr(exponent,
exponent,
Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord));
__ Ret();
}
// This stub can convert a signed int32 to a heap number (double). It does
// not work for int32s that are in Smi range! No GC occurs during this stub
// so you don't have to set up the frame.
class WriteInt32ToHeapNumberStub : public CodeStub {
public:
WriteInt32ToHeapNumberStub(Register the_int,
Register the_heap_number,
Register scratch)
: the_int_(the_int),
the_heap_number_(the_heap_number),
scratch_(scratch) { }
private:
Register the_int_;
Register the_heap_number_;
Register scratch_;
// Minor key encoding in 16 bits.
class ModeBits: public BitField<OverwriteMode, 0, 2> {};
class OpBits: public BitField<Token::Value, 2, 14> {};
Major MajorKey() { return WriteInt32ToHeapNumber; }
int MinorKey() {
// Encode the parameters in a unique 16 bit value.
return the_int_.code() +
(the_heap_number_.code() << 4) +
(scratch_.code() << 8);
}
void Generate(MacroAssembler* masm);
const char* GetName() { return "WriteInt32ToHeapNumberStub"; }
#ifdef DEBUG
void Print() { PrintF("WriteInt32ToHeapNumberStub\n"); }
#endif
};
// See comment for class.
void WriteInt32ToHeapNumberStub::Generate(MacroAssembler *masm) {
Label max_negative_int;
// the_int_ has the answer which is a signed int32 but not a Smi.
// We test for the special value that has a different exponent. This test
// has the neat side effect of setting the flags according to the sign.
ASSERT(HeapNumber::kSignMask == 0x80000000u);
__ cmp(the_int_, Operand(0x80000000u));
__ b(eq, &max_negative_int);
// Set up the correct exponent in scratch_. All non-Smi int32s have the same.
// A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
uint32_t non_smi_exponent =
(HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
__ mov(scratch_, Operand(non_smi_exponent));
// Set the sign bit in scratch_ if the value was negative.
__ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs);
// Subtract from 0 if the value was negative.
__ rsb(the_int_, the_int_, Operand(0), LeaveCC, cs);
// We should be masking the implict first digit of the mantissa away here,
// but it just ends up combining harmlessly with the last digit of the
// exponent that happens to be 1. The sign bit is 0 so we shift 10 to get
// the most significant 1 to hit the last bit of the 12 bit sign and exponent.
ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
__ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance));
__ str(scratch_, FieldMemOperand(the_heap_number_,
HeapNumber::kExponentOffset));
__ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance));
__ str(scratch_, FieldMemOperand(the_heap_number_,
HeapNumber::kMantissaOffset));
__ Ret();
__ bind(&max_negative_int);
// The max negative int32 is stored as a positive number in the mantissa of
// a double because it uses a sign bit instead of using two's complement.
// The actual mantissa bits stored are all 0 because the implicit most
// significant 1 bit is not stored.
non_smi_exponent += 1 << HeapNumber::kExponentShift;
__ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent));
__ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
__ mov(ip, Operand(0));
__ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
__ Ret();
}
// Handle the case where the lhs and rhs are the same object.
// Equality is almost reflexive (everything but NaN), so this is a test
// for "identity and not NaN".
static void EmitIdenticalObjectComparison(MacroAssembler* masm,
Label* slow,
Condition cc) {
Label not_identical;
__ cmp(r0, Operand(r1));
__ b(ne, ¬_identical);
Register exp_mask_reg = r5;
__ mov(exp_mask_reg, Operand(HeapNumber::kExponentMask));
// Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
// so we do the second best thing - test it ourselves.
Label heap_number, return_equal;
// They are both equal and they are not both Smis so both of them are not
// Smis. If it's not a heap number, then return equal.
if (cc == lt || cc == gt) {
__ CompareObjectType(r0, r4, r4, FIRST_JS_OBJECT_TYPE);
__ b(ge, slow);
} else {
__ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
__ b(eq, &heap_number);
// Comparing JS objects with <=, >= is complicated.
if (cc != eq) {
__ cmp(r4, Operand(FIRST_JS_OBJECT_TYPE));
__ b(ge, slow);
}
}
__ bind(&return_equal);
if (cc == lt) {
__ mov(r0, Operand(GREATER)); // Things aren't less than themselves.
} else if (cc == gt) {
__ mov(r0, Operand(LESS)); // Things aren't greater than themselves.
} else {
__ mov(r0, Operand(0)); // Things are <=, >=, ==, === themselves.
}
__ mov(pc, Operand(lr)); // Return.
// For less and greater we don't have to check for NaN since the result of
// x < x is false regardless. For the others here is some code to check
// for NaN.
if (cc != lt && cc != gt) {
__ bind(&heap_number);
// It is a heap number, so return non-equal if it's NaN and equal if it's
// not NaN.
// The representation of NaN values has all exponent bits (52..62) set,
// and not all mantissa bits (0..51) clear.
// Read top bits of double representation (second word of value).
__ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
// Test that exponent bits are all set.
__ and_(r3, r2, Operand(exp_mask_reg));
__ cmp(r3, Operand(exp_mask_reg));
__ b(ne, &return_equal);
// Shift out flag and all exponent bits, retaining only mantissa.
__ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
// Or with all low-bits of mantissa.
__ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
__ orr(r0, r3, Operand(r2), SetCC);
// For equal we already have the right value in r0: Return zero (equal)
// if all bits in mantissa are zero (it's an Infinity) and non-zero if not
// (it's a NaN). For <= and >= we need to load r0 with the failing value
// if it's a NaN.
if (cc != eq) {
// All-zero means Infinity means equal.
__ mov(pc, Operand(lr), LeaveCC, eq); // Return equal
if (cc == le) {
__ mov(r0, Operand(GREATER)); // NaN <= NaN should fail.
} else {
__ mov(r0, Operand(LESS)); // NaN >= NaN should fail.
}
}
__ mov(pc, Operand(lr)); // Return.
}
// No fall through here.
__ bind(¬_identical);
}
// See comment at call site.
static void EmitSmiNonsmiComparison(MacroAssembler* masm,
Label* rhs_not_nan,
Label* slow,
bool strict) {
Label lhs_is_smi;
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, &lhs_is_smi);
// Rhs is a Smi. Check whether the non-smi is a heap number.
__ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
if (strict) {
// If lhs was not a number and rhs was a Smi then strict equality cannot
// succeed. Return non-equal (r0 is already not zero)
__ mov(pc, Operand(lr), LeaveCC, ne); // Return.
} else {
// Smi compared non-strictly with a non-Smi non-heap-number. Call
// the runtime.
__ b(ne, slow);
}
// Rhs is a smi, lhs is a number.
__ push(lr);
__ mov(r7, Operand(r1));
ConvertToDoubleStub stub1(r3, r2, r7, r6);
__ Call(stub1.GetCode(), RelocInfo::CODE_TARGET);
// r3 and r2 are rhs as double.
__ ldr(r1, FieldMemOperand(r0, HeapNumber::kValueOffset + kPointerSize));
__ ldr(r0, FieldMemOperand(r0, HeapNumber::kValueOffset));
// We now have both loaded as doubles but we can skip the lhs nan check
// since it's a Smi.
__ pop(lr);
__ jmp(rhs_not_nan);
__ bind(&lhs_is_smi);
// Lhs is a Smi. Check whether the non-smi is a heap number.
__ CompareObjectType(r1, r4, r4, HEAP_NUMBER_TYPE);
if (strict) {
// If lhs was not a number and rhs was a Smi then strict equality cannot
// succeed. Return non-equal.
__ mov(r0, Operand(1), LeaveCC, ne); // Non-zero indicates not equal.
__ mov(pc, Operand(lr), LeaveCC, ne); // Return.
} else {
// Smi compared non-strictly with a non-Smi non-heap-number. Call
// the runtime.
__ b(ne, slow);
}
// Lhs is a smi, rhs is a number.
// r0 is Smi and r1 is heap number.
__ push(lr);
__ ldr(r2, FieldMemOperand(r1, HeapNumber::kValueOffset));
__ ldr(r3, FieldMemOperand(r1, HeapNumber::kValueOffset + kPointerSize));
__ mov(r7, Operand(r0));
ConvertToDoubleStub stub2(r1, r0, r7, r6);
__ Call(stub2.GetCode(), RelocInfo::CODE_TARGET);
__ pop(lr);
// Fall through to both_loaded_as_doubles.
}
void EmitNanCheck(MacroAssembler* masm, Label* rhs_not_nan, Condition cc) {
bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
Register lhs_exponent = exp_first ? r0 : r1;
Register rhs_exponent = exp_first ? r2 : r3;
Register lhs_mantissa = exp_first ? r1 : r0;
Register rhs_mantissa = exp_first ? r3 : r2;
Label one_is_nan, neither_is_nan;
Register exp_mask_reg = r5;
__ mov(exp_mask_reg, Operand(HeapNumber::kExponentMask));
__ and_(r4, rhs_exponent, Operand(exp_mask_reg));
__ cmp(r4, Operand(exp_mask_reg));
__ b(ne, rhs_not_nan);
__ mov(r4,
Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
SetCC);
__ b(ne, &one_is_nan);
__ cmp(rhs_mantissa, Operand(0));
__ b(ne, &one_is_nan);
__ bind(rhs_not_nan);
__ mov(exp_mask_reg, Operand(HeapNumber::kExponentMask));
__ and_(r4, lhs_exponent, Operand(exp_mask_reg));
__ cmp(r4, Operand(exp_mask_reg));
__ b(ne, &neither_is_nan);
__ mov(r4,
Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
SetCC);
__ b(ne, &one_is_nan);
__ cmp(lhs_mantissa, Operand(0));
__ b(eq, &neither_is_nan);
__ bind(&one_is_nan);
// NaN comparisons always fail.
// Load whatever we need in r0 to make the comparison fail.
if (cc == lt || cc == le) {
__ mov(r0, Operand(GREATER));
} else {
__ mov(r0, Operand(LESS));
}
__ mov(pc, Operand(lr)); // Return.
__ bind(&neither_is_nan);
}
// See comment at call site.
static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc) {
bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
Register lhs_exponent = exp_first ? r0 : r1;
Register rhs_exponent = exp_first ? r2 : r3;
Register lhs_mantissa = exp_first ? r1 : r0;
Register rhs_mantissa = exp_first ? r3 : r2;
// r0, r1, r2, r3 have the two doubles. Neither is a NaN.
if (cc == eq) {
// Doubles are not equal unless they have the same bit pattern.
// Exception: 0 and -0.
__ cmp(lhs_mantissa, Operand(rhs_mantissa));
__ orr(r0, lhs_mantissa, Operand(rhs_mantissa), LeaveCC, ne);
// Return non-zero if the numbers are unequal.
__ mov(pc, Operand(lr), LeaveCC, ne);
__ sub(r0, lhs_exponent, Operand(rhs_exponent), SetCC);
// If exponents are equal then return 0.
__ mov(pc, Operand(lr), LeaveCC, eq);
// Exponents are unequal. The only way we can return that the numbers
// are equal is if one is -0 and the other is 0. We already dealt
// with the case where both are -0 or both are 0.
// We start by seeing if the mantissas (that are equal) or the bottom
// 31 bits of the rhs exponent are non-zero. If so we return not
// equal.
__ orr(r4, rhs_mantissa, Operand(rhs_exponent, LSL, kSmiTagSize), SetCC);
__ mov(r0, Operand(r4), LeaveCC, ne);
__ mov(pc, Operand(lr), LeaveCC, ne); // Return conditionally.
// Now they are equal if and only if the lhs exponent is zero in its
// low 31 bits.
__ mov(r0, Operand(lhs_exponent, LSL, kSmiTagSize));
__ mov(pc, Operand(lr));
} else {
// Call a native function to do a comparison between two non-NaNs.
// Call C routine that may not cause GC or other trouble.
__ mov(r5, Operand(ExternalReference::compare_doubles()));
__ Jump(r5); // Tail call.
}
}
// See comment at call site.
static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm) {
// If either operand is a JSObject or an oddball value, then they are
// not equal since their pointers are different.
// There is no test for undetectability in strict equality.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
Label first_non_object;
// Get the type of the first operand into r2 and compare it with
// FIRST_JS_OBJECT_TYPE.
__ CompareObjectType(r0, r2, r2, FIRST_JS_OBJECT_TYPE);
__ b(lt, &first_non_object);
// Return non-zero (r0 is not zero)
Label return_not_equal;
__ bind(&return_not_equal);
__ mov(pc, Operand(lr)); // Return.
__ bind(&first_non_object);
// Check for oddballs: true, false, null, undefined.
__ cmp(r2, Operand(ODDBALL_TYPE));
__ b(eq, &return_not_equal);
__ CompareObjectType(r1, r3, r3, FIRST_JS_OBJECT_TYPE);
__ b(ge, &return_not_equal);
// Check for oddballs: true, false, null, undefined.
__ cmp(r3, Operand(ODDBALL_TYPE));
__ b(eq, &return_not_equal);
}
// See comment at call site.
static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
Label* both_loaded_as_doubles,
Label* not_heap_numbers,
Label* slow) {
__ CompareObjectType(r0, r2, r2, HEAP_NUMBER_TYPE);
__ b(ne, not_heap_numbers);
__ CompareObjectType(r1, r3, r3, HEAP_NUMBER_TYPE);
__ b(ne, slow); // First was a heap number, second wasn't. Go slow case.
// Both are heap numbers. Load them up then jump to the code we have
// for that.
__ ldr(r2, FieldMemOperand(r1, HeapNumber::kValueOffset));
__ ldr(r3, FieldMemOperand(r1, HeapNumber::kValueOffset + kPointerSize));
__ ldr(r1, FieldMemOperand(r0, HeapNumber::kValueOffset + kPointerSize));
__ ldr(r0, FieldMemOperand(r0, HeapNumber::kValueOffset));
__ jmp(both_loaded_as_doubles);
}
// Fast negative check for symbol-to-symbol equality.
static void EmitCheckForSymbols(MacroAssembler* masm, Label* slow) {
// r2 is object type of r0.
__ tst(r2, Operand(kIsNotStringMask));
__ b(ne, slow);
__ tst(r2, Operand(kIsSymbolMask));
__ b(eq, slow);
__ CompareObjectType(r1, r3, r3, FIRST_NONSTRING_TYPE);
__ b(ge, slow);
__ tst(r3, Operand(kIsSymbolMask));
__ b(eq, slow);
// Both are symbols. We already checked they weren't the same pointer
// so they are not equal.
__ mov(r0, Operand(1)); // Non-zero indicates not equal.
__ mov(pc, Operand(lr)); // Return.
}
// On entry r0 and r1 are the things to be compared. On exit r0 is 0,
// positive or negative to indicate the result of the comparison.
void CompareStub::Generate(MacroAssembler* masm) {
Label slow; // Call builtin.
Label not_smis, both_loaded_as_doubles, rhs_not_nan;
// NOTICE! This code is only reached after a smi-fast-case check, so
// it is certain that at least one operand isn't a smi.
// Handle the case where the objects are identical. Either returns the answer
// or goes to slow. Only falls through if the objects were not identical.
EmitIdenticalObjectComparison(masm, &slow, cc_);
// If either is a Smi (we know that not both are), then they can only
// be strictly equal if the other is a HeapNumber.
ASSERT_EQ(0, kSmiTag);
ASSERT_EQ(0, Smi::FromInt(0));
__ and_(r2, r0, Operand(r1));
__ tst(r2, Operand(kSmiTagMask));
__ b(ne, ¬_smis);
// One operand is a smi. EmitSmiNonsmiComparison generates code that can:
// 1) Return the answer.
// 2) Go to slow.
// 3) Fall through to both_loaded_as_doubles.
// 4) Jump to rhs_not_nan.
// In cases 3 and 4 we have found out we were dealing with a number-number
// comparison and the numbers have been loaded into r0, r1, r2, r3 as doubles.
EmitSmiNonsmiComparison(masm, &rhs_not_nan, &slow, strict_);
__ bind(&both_loaded_as_doubles);
// r0, r1, r2, r3 are the double representations of the left hand side
// and the right hand side.
// Checks for NaN in the doubles we have loaded. Can return the answer or
// fall through if neither is a NaN. Also binds rhs_not_nan.
EmitNanCheck(masm, &rhs_not_nan, cc_);
// Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the
// answer. Never falls through.
EmitTwoNonNanDoubleComparison(masm, cc_);
__ bind(¬_smis);
// At this point we know we are dealing with two different objects,
// and neither of them is a Smi. The objects are in r0 and r1.
if (strict_) {
// This returns non-equal for some object types, or falls through if it
// was not lucky.
EmitStrictTwoHeapObjectCompare(masm);
}
Label check_for_symbols;
// Check for heap-number-heap-number comparison. Can jump to slow case,
// or load both doubles into r0, r1, r2, r3 and jump to the code that handles
// that case. If the inputs are not doubles then jumps to check_for_symbols.
// In this case r2 will contain the type of r0.
EmitCheckForTwoHeapNumbers(masm,
&both_loaded_as_doubles,
&check_for_symbols,
&slow);
__ bind(&check_for_symbols);
if (cc_ == eq) {
// Either jumps to slow or returns the answer. Assumes that r2 is the type
// of r0 on entry.
EmitCheckForSymbols(masm, &slow);
}
__ bind(&slow);
__ push(lr);
__ push(r1);
__ push(r0);
// Figure out which native to call and setup the arguments.
Builtins::JavaScript native;
int arg_count = 1; // Not counting receiver.
if (cc_ == eq) {
native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
} else {
native = Builtins::COMPARE;
int ncr; // NaN compare result
if (cc_ == lt || cc_ == le) {
ncr = GREATER;
} else {
ASSERT(cc_ == gt || cc_ == ge); // remaining cases
ncr = LESS;
}
arg_count++;
__ mov(r0, Operand(Smi::FromInt(ncr)));
__ push(r0);
}
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
__ mov(r0, Operand(arg_count));
__ InvokeBuiltin(native, CALL_JS);
__ cmp(r0, Operand(0));
__ pop(pc);
}
// Allocates a heap number or jumps to the label if the young space is full and
// a scavenge is needed.
static void AllocateHeapNumber(
MacroAssembler* masm,
Label* need_gc, // Jump here if young space is full.
Register result, // The tagged address of the new heap number.
Register scratch1, // A scratch register.
Register scratch2) { // Another scratch register.
// Allocate an object in the heap for the heap number and tag it as a heap
// object.
__ AllocateInNewSpace(HeapNumber::kSize / kPointerSize,
result,
scratch1,
scratch2,
need_gc,
TAG_OBJECT);
// Get heap number map and store it in the allocated object.
__ LoadRoot(scratch1, Heap::kHeapNumberMapRootIndex);
__ str(scratch1, FieldMemOperand(result, HeapObject::kMapOffset));
}
// We fall into this code if the operands were Smis, but the result was
// not (eg. overflow). We branch into this code (to the not_smi label) if
// the operands were not both Smi. The operands are in r0 and r1. In order
// to call the C-implemented binary fp operation routines we need to end up
// with the double precision floating point operands in r0 and r1 (for the
// value in r1) and r2 and r3 (for the value in r0).
static void HandleBinaryOpSlowCases(MacroAssembler* masm,
Label* not_smi,
const Builtins::JavaScript& builtin,
Token::Value operation,
OverwriteMode mode) {
Label slow, slow_pop_2_first, do_the_call;
Label r0_is_smi, r1_is_smi, finished_loading_r0, finished_loading_r1;
// Smi-smi case (overflow).
// Since both are Smis there is no heap number to overwrite, so allocate.
// The new heap number is in r5. r6 and r7 are scratch.
AllocateHeapNumber(masm, &slow, r5, r6, r7);
// Write Smi from r0 to r3 and r2 in double format. r6 is scratch.
__ mov(r7, Operand(r0));
ConvertToDoubleStub stub1(r3, r2, r7, r6);
__ push(lr);
__ Call(stub1.GetCode(), RelocInfo::CODE_TARGET);
// Write Smi from r1 to r1 and r0 in double format. r6 is scratch.
__ mov(r7, Operand(r1));
ConvertToDoubleStub stub2(r1, r0, r7, r6);
__ Call(stub2.GetCode(), RelocInfo::CODE_TARGET);
__ pop(lr);
__ jmp(&do_the_call); // Tail call. No return.
// We jump to here if something goes wrong (one param is not a number of any
// sort or new-space allocation fails).
__ bind(&slow);
__ push(r1);
__ push(r0);
__ mov(r0, Operand(1)); // Set number of arguments.
__ InvokeBuiltin(builtin, JUMP_JS); // Tail call. No return.
// We branch here if at least one of r0 and r1 is not a Smi.
__ bind(not_smi);
if (mode == NO_OVERWRITE) {
// In the case where there is no chance of an overwritable float we may as
// well do the allocation immediately while r0 and r1 are untouched.
AllocateHeapNumber(masm, &slow, r5, r6, r7);
}
// Move r0 to a double in r2-r3.
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, &r0_is_smi); // It's a Smi so don't check it's a heap number.
__ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
__ b(ne, &slow);
if (mode == OVERWRITE_RIGHT) {
__ mov(r5, Operand(r0)); // Overwrite this heap number.
}
// Calling convention says that second double is in r2 and r3.
__ ldr(r2, FieldMemOperand(r0, HeapNumber::kValueOffset));
__ ldr(r3, FieldMemOperand(r0, HeapNumber::kValueOffset + 4));
__ jmp(&finished_loading_r0);
__ bind(&r0_is_smi);
if (mode == OVERWRITE_RIGHT) {
// We can't overwrite a Smi so get address of new heap number into r5.
AllocateHeapNumber(masm, &slow, r5, r6, r7);
}
// Write Smi from r0 to r3 and r2 in double format.
__ mov(r7, Operand(r0));
ConvertToDoubleStub stub3(r3, r2, r7, r6);
__ push(lr);
__ Call(stub3.GetCode(), RelocInfo::CODE_TARGET);
__ pop(lr);
__ bind(&finished_loading_r0);
// Move r1 to a double in r0-r1.
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, &r1_is_smi); // It's a Smi so don't check it's a heap number.
__ CompareObjectType(r1, r4, r4, HEAP_NUMBER_TYPE);
__ b(ne, &slow);
if (mode == OVERWRITE_LEFT) {
__ mov(r5, Operand(r1)); // Overwrite this heap number.
}
// Calling convention says that first double is in r0 and r1.
__ ldr(r0, FieldMemOperand(r1, HeapNumber::kValueOffset));
__ ldr(r1, FieldMemOperand(r1, HeapNumber::kValueOffset + 4));
__ jmp(&finished_loading_r1);
__ bind(&r1_is_smi);
if (mode == OVERWRITE_LEFT) {
// We can't overwrite a Smi so get address of new heap number into r5.
AllocateHeapNumber(masm, &slow, r5, r6, r7);
}
// Write Smi from r1 to r1 and r0 in double format.
__ mov(r7, Operand(r1));
ConvertToDoubleStub stub4(r1, r0, r7, r6);
__ push(lr);
__ Call(stub4.GetCode(), RelocInfo::CODE_TARGET);
__ pop(lr);
__ bind(&finished_loading_r1);
__ bind(&do_the_call);
// r0: Left value (least significant part of mantissa).
// r1: Left value (sign, exponent, top of mantissa).
// r2: Right value (least significant part of mantissa).
// r3: Right value (sign, exponent, top of mantissa).
// r5: Address of heap number for result.
__ push(lr); // For later.
__ push(r5); // Address of heap number that is answer.
__ AlignStack(0);
// Call C routine that may not cause GC or other trouble.
__ mov(r5, Operand(ExternalReference::double_fp_operation(operation)));
__ Call(r5);
__ pop(r4); // Address of heap number.
__ cmp(r4, Operand(Smi::FromInt(0)));
__ pop(r4, eq); // Conditional pop instruction to get rid of alignment push.
// Store answer in the overwritable heap number.
#if !defined(USE_ARM_EABI)
// Double returned in fp coprocessor register 0 and 1, encoded as register
// cr8. Offsets must be divisible by 4 for coprocessor so we need to
// substract the tag from r4.
__ sub(r5, r4, Operand(kHeapObjectTag));
__ stc(p1, cr8, MemOperand(r5, HeapNumber::kValueOffset));
#else
// Double returned in registers 0 and 1.
__ str(r0, FieldMemOperand(r4, HeapNumber::kValueOffset));
__ str(r1, FieldMemOperand(r4, HeapNumber::kValueOffset + 4));
#endif
__ mov(r0, Operand(r4));
// And we are done.
__ pop(pc);
}
// Tries to get a signed int32 out of a double precision floating point heap
// number. Rounds towards 0. Fastest for doubles that are in the ranges
// -0x7fffffff to -0x40000000 or 0x40000000 to 0x7fffffff. This corresponds
// almost to the range of signed int32 values that are not Smis. Jumps to the
// label 'slow' if the double isn't in the range -0x80000000.0 to 0x80000000.0
// (excluding the endpoints).
static void GetInt32(MacroAssembler* masm,
Register source,
Register dest,
Register scratch,
Register scratch2,
Label* slow) {
Label right_exponent, done;
// Get exponent word.
__ ldr(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset));
// Get exponent alone in scratch2.
__ and_(scratch2, scratch, Operand(HeapNumber::kExponentMask));
// Load dest with zero. We use this either for the final shift or
// for the answer.
__ mov(dest, Operand(0));
// Check whether the exponent matches a 32 bit signed int that is not a Smi.
// A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). This is
// the exponent that we are fastest at and also the highest exponent we can
// handle here.
const uint32_t non_smi_exponent =
(HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
__ cmp(scratch2, Operand(non_smi_exponent));
// If we have a match of the int32-but-not-Smi exponent then skip some logic.
__ b(eq, &right_exponent);
// If the exponent is higher than that then go to slow case. This catches
// numbers that don't fit in a signed int32, infinities and NaNs.
__ b(gt, slow);
// We know the exponent is smaller than 30 (biased). If it is less than
// 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie
// it rounds to zero.
const uint32_t zero_exponent =
(HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift;
__ sub(scratch2, scratch2, Operand(zero_exponent), SetCC);
// Dest already has a Smi zero.
__ b(lt, &done);
// We have a shifted exponent between 0 and 30 in scratch2.
__ mov(dest, Operand(scratch2, LSR, HeapNumber::kExponentShift));
// We now have the exponent in dest. Subtract from 30 to get
// how much to shift down.
__ rsb(dest, dest, Operand(30));
__ bind(&right_exponent);
// Get the top bits of the mantissa.
__ and_(scratch2, scratch, Operand(HeapNumber::kMantissaMask));
// Put back the implicit 1.
__ orr(scratch2, scratch2, Operand(1 << HeapNumber::kExponentShift));
// Shift up the mantissa bits to take up the space the exponent used to take.
// We just orred in the implicit bit so that took care of one and we want to
// leave the sign bit 0 so we subtract 2 bits from the shift distance.
const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
__ mov(scratch2, Operand(scratch2, LSL, shift_distance));
// Put sign in zero flag.
__ tst(scratch, Operand(HeapNumber::kSignMask));
// Get the second half of the double. For some exponents we don't actually
// need this because the bits get shifted out again, but it's probably slower
// to test than just to do it.
__ ldr(scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset));
// Shift down 22 bits to get the last 10 bits.
__ orr(scratch, scratch2, Operand(scratch, LSR, 32 - shift_distance));
// Move down according to the exponent.
__ mov(dest, Operand(scratch, LSR, dest));
// Fix sign if sign bit was set.
__ rsb(dest, dest, Operand(0), LeaveCC, ne);
__ bind(&done);
}
// For bitwise ops where the inputs are not both Smis we here try to determine
// whether both inputs are either Smis or at least heap numbers that can be
// represented by a 32 bit signed value. We truncate towards zero as required
// by the ES spec. If this is the case we do the bitwise op and see if the
// result is a Smi. If so, great, otherwise we try to find a heap number to
// write the answer into (either by allocating or by overwriting).
// On entry the operands are in r0 and r1. On exit the answer is in r0.
void GenericBinaryOpStub::HandleNonSmiBitwiseOp(MacroAssembler* masm) {
Label slow, result_not_a_smi;
Label r0_is_smi, r1_is_smi;
Label done_checking_r0, done_checking_r1;
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, &r1_is_smi); // It's a Smi so don't check it's a heap number.
__ CompareObjectType(r1, r4, r4, HEAP_NUMBER_TYPE);
__ b(ne, &slow);
GetInt32(masm, r1, r3, r4, r5, &slow);
__ jmp(&done_checking_r1);
__ bind(&r1_is_smi);
__ mov(r3, Operand(r1, ASR, 1));
__ bind(&done_checking_r1);
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, &r0_is_smi); // It's a Smi so don't check it's a heap number.
__ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
__ b(ne, &slow);
GetInt32(masm, r0, r2, r4, r5, &slow);
__ jmp(&done_checking_r0);
__ bind(&r0_is_smi);
__ mov(r2, Operand(r0, ASR, 1));
__ bind(&done_checking_r0);
// r0 and r1: Original operands (Smi or heap numbers).
// r2 and r3: Signed int32 operands.
switch (op_) {
case Token::BIT_OR: __ orr(r2, r2, Operand(r3)); break;
case Token::BIT_XOR: __ eor(r2, r2, Operand(r3)); break;
case Token::BIT_AND: __ and_(r2, r2, Operand(r3)); break;
case Token::SAR:
// Use only the 5 least significant bits of the shift count.
__ and_(r2, r2, Operand(0x1f));
__ mov(r2, Operand(r3, ASR, r2));
break;
case Token::SHR:
// Use only the 5 least significant bits of the shift count.
__ and_(r2, r2, Operand(0x1f));
__ mov(r2, Operand(r3, LSR, r2), SetCC);
// SHR is special because it is required to produce a positive answer.
// The code below for writing into heap numbers isn't capable of writing
// the register as an unsigned int so we go to slow case if we hit this
// case.
__ b(mi, &slow);
break;
case Token::SHL:
// Use only the 5 least significant bits of the shift count.
__ and_(r2, r2, Operand(0x1f));
__ mov(r2, Operand(r3, LSL, r2));
break;
default: UNREACHABLE();
}
// check that the *signed* result fits in a smi
__ add(r3, r2, Operand(0x40000000), SetCC);
__ b(mi, &result_not_a_smi);
__ mov(r0, Operand(r2, LSL, kSmiTagSize));
__ Ret();
Label have_to_allocate, got_a_heap_number;
__ bind(&result_not_a_smi);
switch (mode_) {
case OVERWRITE_RIGHT: {
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, &have_to_allocate);
__ mov(r5, Operand(r0));
break;
}
case OVERWRITE_LEFT: {
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, &have_to_allocate);
__ mov(r5, Operand(r1));
break;
}
case NO_OVERWRITE: {
// Get a new heap number in r5. r6 and r7 are scratch.
AllocateHeapNumber(masm, &slow, r5, r6, r7);
}
default: break;
}
__ bind(&got_a_heap_number);
// r2: Answer as signed int32.
// r5: Heap number to write answer into.
// Nothing can go wrong now, so move the heap number to r0, which is the
// result.
__ mov(r0, Operand(r5));
// Tail call that writes the int32 in r2 to the heap number in r0, using
// r3 as scratch. r0 is preserved and returned.
WriteInt32ToHeapNumberStub stub(r2, r0, r3);
__ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
if (mode_ != NO_OVERWRITE) {
__ bind(&have_to_allocate);
// Get a new heap number in r5. r6 and r7 are scratch.
AllocateHeapNumber(masm, &slow, r5, r6, r7);
__ jmp(&got_a_heap_number);
}
// If all else failed then we go to the runtime system.
__ bind(&slow);
__ push(r1); // restore stack
__ push(r0);
__ mov(r0, Operand(1)); // 1 argument (not counting receiver).
switch (op_) {
case Token::BIT_OR:
__ InvokeBuiltin(Builtins::BIT_OR, JUMP_JS);
break;
case Token::BIT_AND:
__ InvokeBuiltin(Builtins::BIT_AND, JUMP_JS);
break;
case Token::BIT_XOR:
__ InvokeBuiltin(Builtins::BIT_XOR, JUMP_JS);
break;
case Token::SAR:
__ InvokeBuiltin(Builtins::SAR, JUMP_JS);
break;
case Token::SHR:
__ InvokeBuiltin(Builtins::SHR, JUMP_JS);
break;
case Token::SHL:
__ InvokeBuiltin(Builtins::SHL, JUMP_JS);
break;
default:
UNREACHABLE();
}
}
// Can we multiply by x with max two shifts and an add.
// This answers yes to all integers from 2 to 10.
static bool IsEasyToMultiplyBy(int x) {
if (x < 2) return false; // Avoid special cases.
if (x > (Smi::kMaxValue + 1) >> 2) return false; // Almost always overflows.
if (IsPowerOf2(x)) return true; // Simple shift.
if (PopCountLessThanEqual2(x)) return true; // Shift and add and shift.
if (IsPowerOf2(x + 1)) return true; // Patterns like 11111.
return false;
}
// Can multiply by anything that IsEasyToMultiplyBy returns true for.
// Source and destination may be the same register. This routine does
// not set carry and overflow the way a mul instruction would.
static void MultiplyByKnownInt(MacroAssembler* masm,
Register source,
Register destination,
int known_int) {
if (IsPowerOf2(known_int)) {
__ mov(destination, Operand(source, LSL, BitPosition(known_int)));
} else if (PopCountLessThanEqual2(known_int)) {
int first_bit = BitPosition(known_int);
int second_bit = BitPosition(known_int ^ (1 << first_bit));
__ add(destination, source, Operand(source, LSL, second_bit - first_bit));
if (first_bit != 0) {
__ mov(destination, Operand(destination, LSL, first_bit));
}
} else {
ASSERT(IsPowerOf2(known_int + 1)); // Patterns like 1111.
int the_bit = BitPosition(known_int + 1);
__ rsb(destination, source, Operand(source, LSL, the_bit));
}
}
// This function (as opposed to MultiplyByKnownInt) takes the known int in a
// a register for the cases where it doesn't know a good trick, and may deliver
// a result that needs shifting.
static void MultiplyByKnownInt2(
MacroAssembler* masm,
Register result,
Register source,
Register known_int_register, // Smi tagged.
int known_int,
int* required_shift) { // Including Smi tag shift
switch (known_int) {
case 3:
__ add(result, source, Operand(source, LSL, 1));
*required_shift = 1;
break;
case 5:
__ add(result, source, Operand(source, LSL, 2));
*required_shift = 1;
break;
case 6:
__ add(result, source, Operand(source, LSL, 1));
*required_shift = 2;
break;
case 7:
__ rsb(result, source, Operand(source, LSL, 3));
*required_shift = 1;
break;
case 9:
__ add(result, source, Operand(source, LSL, 3));
*required_shift = 1;
break;
case 10:
__ add(result, source, Operand(source, LSL, 2));
*required_shift = 2;
break;
default:
ASSERT(!IsPowerOf2(known_int)); // That would be very inefficient.
__ mul(result, source, known_int_register);
*required_shift = 0;
}
}
void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
// r1 : x
// r0 : y
// result : r0
// All ops need to know whether we are dealing with two Smis. Set up r2 to
// tell us that.
__ orr(r2, r1, Operand(r0)); // r2 = x | y;
switch (op_) {
case Token::ADD: {
Label not_smi;
// Fast path.
ASSERT(kSmiTag == 0); // Adjust code below.
__ tst(r2, Operand(kSmiTagMask));
__ b(ne, ¬_smi);
__ add(r0, r1, Operand(r0), SetCC); // Add y optimistically.
// Return if no overflow.
__ Ret(vc);
__ sub(r0, r0, Operand(r1)); // Revert optimistic add.
HandleBinaryOpSlowCases(masm,
¬_smi,
Builtins::ADD,
Token::ADD,
mode_);
break;
}
case Token::SUB: {
Label not_smi;
// Fast path.
ASSERT(kSmiTag == 0); // Adjust code below.
__ tst(r2, Operand(kSmiTagMask));
__ b(ne, ¬_smi);
__ sub(r0, r1, Operand(r0), SetCC); // Subtract y optimistically.
// Return if no overflow.
__ Ret(vc);
__ sub(r0, r1, Operand(r0)); // Revert optimistic subtract.
HandleBinaryOpSlowCases(masm,
¬_smi,
Builtins::SUB,
Token::SUB,
mode_);
break;
}
case Token::MUL: {
Label not_smi, slow;
ASSERT(kSmiTag == 0); // adjust code below
__ tst(r2, Operand(kSmiTagMask));
__ b(ne, ¬_smi);
// Remove tag from one operand (but keep sign), so that result is Smi.
__ mov(ip, Operand(r0, ASR, kSmiTagSize));
// Do multiplication
__ smull(r3, r2, r1, ip); // r3 = lower 32 bits of ip*r1.
// Go slow on overflows (overflow bit is not set).
__ mov(ip, Operand(r3, ASR, 31));
__ cmp(ip, Operand(r2)); // no overflow if higher 33 bits are identical
__ b(ne, &slow);
// Go slow on zero result to handle -0.
__ tst(r3, Operand(r3));
__ mov(r0, Operand(r3), LeaveCC, ne);
__ Ret(ne);
// We need -0 if we were multiplying a negative number with 0 to get 0.
// We know one of them was zero.
__ add(r2, r0, Operand(r1), SetCC);
__ mov(r0, Operand(Smi::FromInt(0)), LeaveCC, pl);
__ Ret(pl); // Return Smi 0 if the non-zero one was positive.
// Slow case. We fall through here if we multiplied a negative number
// with 0, because that would mean we should produce -0.
__ bind(&slow);
HandleBinaryOpSlowCases(masm,
¬_smi,
Builtins::MUL,
Token::MUL,
mode_);
break;
}
case Token::DIV:
case Token::MOD: {
Label not_smi;
if (specialized_on_rhs_) {
Label smi_is_unsuitable;
__ BranchOnNotSmi(r1, ¬_smi);
if (IsPowerOf2(constant_rhs_)) {
if (op_ == Token::MOD) {
__ and_(r0,
r1,
Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1)),
SetCC);
// We now have the answer, but if the input was negative we also
// have the sign bit. Our work is done if the result is
// positive or zero:
__ Ret(pl);
// A mod of a negative left hand side must return a negative number.
// Unfortunately if the answer is 0 then we must return -0. And we
// already optimistically trashed r0 so we may need to restore it.
__ eor(r0, r0, Operand(0x80000000u), SetCC);
// Next two instructions are conditional on the answer being -0.
__ mov(r0, Operand(Smi::FromInt(constant_rhs_)), LeaveCC, eq);
__ b(eq, &smi_is_unsuitable);
// We need to subtract the dividend. Eg. -3 % 4 == -3.
__ sub(r0, r0, Operand(Smi::FromInt(constant_rhs_)));
} else {
ASSERT(op_ == Token::DIV);
__ tst(r1,
Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1)));
__ b(ne, &smi_is_unsuitable); // Go slow on negative or remainder.
int shift = 0;
int d = constant_rhs_;
while ((d & 1) == 0) {
d >>= 1;
shift++;
}
__ mov(r0, Operand(r1, LSR, shift));
__ bic(r0, r0, Operand(kSmiTagMask));
}
} else {
// Not a power of 2.
__ tst(r1, Operand(0x80000000u));
__ b(ne, &smi_is_unsuitable);
// Find a fixed point reciprocal of the divisor so we can divide by
// multiplying.
double divisor = 1.0 / constant_rhs_;
int shift = 32;
double scale = 4294967296.0; // 1 << 32.
uint32_t mul;
// Maximise the precision of the fixed point reciprocal.
while (true) {
mul = static_cast<uint32_t>(scale * divisor);
if (mul >= 0x7fffffff) break;
scale *= 2.0;
shift++;
}
mul++;
__ mov(r2, Operand(mul));
__ umull(r3, r2, r2, r1);
__ mov(r2, Operand(r2, LSR, shift - 31));
// r2 is r1 / rhs. r2 is not Smi tagged.
// r0 is still the known rhs. r0 is Smi tagged.
// r1 is still the unkown lhs. r1 is Smi tagged.
int required_r4_shift = 0; // Including the Smi tag shift of 1.
// r4 = r2 * r0.
MultiplyByKnownInt2(masm,
r4,
r2,
r0,
constant_rhs_,
&required_r4_shift);
// r4 << required_r4_shift is now the Smi tagged rhs * (r1 / rhs).
if (op_ == Token::DIV) {
__ sub(r3, r1, Operand(r4, LSL, required_r4_shift), SetCC);
__ b(ne, &smi_is_unsuitable); // There was a remainder.
__ mov(r0, Operand(r2, LSL, kSmiTagSize));
} else {
ASSERT(op_ == Token::MOD);
__ sub(r0, r1, Operand(r4, LSL, required_r4_shift));
}
}
__ Ret();
__ bind(&smi_is_unsuitable);
} else {
__ jmp(¬_smi);
}
HandleBinaryOpSlowCases(masm,
¬_smi,
op_ == Token::MOD ? Builtins::MOD : Builtins::DIV,
op_,
mode_);
break;
}
case Token::BIT_OR:
case Token::BIT_AND:
case Token::BIT_XOR:
case Token::SAR:
case Token::SHR:
case Token::SHL: {
Label slow;
ASSERT(kSmiTag == 0); // adjust code below
__ tst(r2, Operand(kSmiTagMask));
__ b(ne, &slow);
switch (op_) {
case Token::BIT_OR: __ orr(r0, r0, Operand(r1)); break;
case Token::BIT_AND: __ and_(r0, r0, Operand(r1)); break;
case Token::BIT_XOR: __ eor(r0, r0, Operand(r1)); break;
case Token::SAR:
// Remove tags from right operand.
__ mov(r2, Operand(r0, ASR, kSmiTagSize)); // y
// Use only the 5 least significant bits of the shift count.
__ and_(r2, r2, Operand(0x1f));
__ mov(r0, Operand(r1, ASR, r2));
// Smi tag result.
__ bic(r0, r0, Operand(kSmiTagMask));
break;
case Token::SHR:
// Remove tags from operands. We can't do this on a 31 bit number
// because then the 0s get shifted into bit 30 instead of bit 31.
__ mov(r3, Operand(r1, ASR, kSmiTagSize)); // x
__ mov(r2, Operand(r0, ASR, kSmiTagSize)); // y
// Use only the 5 least significant bits of the shift count.
__ and_(r2, r2, Operand(0x1f));
__ mov(r3, Operand(r3, LSR, r2));
// Unsigned shift is not allowed to produce a negative number, so
// check the sign bit and the sign bit after Smi tagging.
__ tst(r3, Operand(0xc0000000));
__ b(ne, &slow);
// Smi tag result.
__ mov(r0, Operand(r3, LSL, kSmiTagSize));
break;
case Token::SHL:
// Remove tags from operands.
__ mov(r3, Operand(r1, ASR, kSmiTagSize)); // x
__ mov(r2, Operand(r0, ASR, kSmiTagSize)); // y
// Use only the 5 least significant bits of the shift count.
__ and_(r2, r2, Operand(0x1f));
__ mov(r3, Operand(r3, LSL, r2));
// Check that the signed result fits in a Smi.
__ add(r2, r3, Operand(0x40000000), SetCC);
__ b(mi, &slow);
__ mov(r0, Operand(r3, LSL, kSmiTagSize));
break;
default: UNREACHABLE();
}
__ Ret();
__ bind(&slow);
HandleNonSmiBitwiseOp(masm);
break;
}
default: UNREACHABLE();
}
// This code should be unreachable.
__ stop("Unreachable");
}
void StackCheckStub::Generate(MacroAssembler* masm) {
// Do tail-call to runtime routine. Runtime routines expect at least one
// argument, so give it a Smi.
__ mov(r0, Operand(Smi::FromInt(0)));
__ push(r0);
__ TailCallRuntime(ExternalReference(Runtime::kStackGuard), 1, 1);
__ StubReturn(1);
}
void UnarySubStub::Generate(MacroAssembler* masm) {
Label undo;
Label slow;
Label not_smi;
// Enter runtime system if the value is not a smi.
__ tst(r0, Operand(kSmiTagMask));
__ b(ne, ¬_smi);
// Enter runtime system if the value of the expression is zero
// to make sure that we switch between 0 and -0.
__ cmp(r0, Operand(0));
__ b(eq, &slow);
// The value of the expression is a smi that is not zero. Try
// optimistic subtraction '0 - value'.
__ rsb(r1, r0, Operand(0), SetCC);
__ b(vs, &slow);
__ mov(r0, Operand(r1)); // Set r0 to result.
__ StubReturn(1);
// Enter runtime system.
__ bind(&slow);
__ push(r0);
__ mov(r0, Operand(0)); // Set number of arguments.
__ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_JS);
__ bind(¬_smi);
__ CompareObjectType(r0, r1, r1, HEAP_NUMBER_TYPE);
__ b(ne, &slow);
// r0 is a heap number. Get a new heap number in r1.
if (overwrite_) {
__ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
__ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
__ str(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
} else {
AllocateHeapNumber(masm, &slow, r1, r2, r3);
__ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
__ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
__ str(r3, FieldMemOperand(r1, HeapNumber::kMantissaOffset));
__ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
__ str(r2, FieldMemOperand(r1, HeapNumber::kExponentOffset));
__ mov(r0, Operand(r1));
}
__ StubReturn(1);
}
int CEntryStub::MinorKey() {
ASSERT(result_size_ <= 2);
// Result returned in r0 or r0+r1 by default.
return 0;
}
void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
// r0 holds the exception.
// Adjust this code if not the case.
ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
// Drop the sp to the top of the handler.
__ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
__ ldr(sp, MemOperand(r3));
// Restore the next handler and frame pointer, discard handler state.
ASSERT(StackHandlerConstants::kNextOffset == 0);
__ pop(r2);
__ str(r2, MemOperand(r3));
ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
__ ldm(ia_w, sp, r3.bit() | fp.bit()); // r3: discarded state.
// Before returning we restore the context from the frame pointer if
// not NULL. The frame pointer is NULL in the exception handler of a
// JS entry frame.
__ cmp(fp, Operand(0));
// Set cp to NULL if fp is NULL.
__ mov(cp, Operand(0), LeaveCC, eq);
// Restore cp otherwise.
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
#ifdef DEBUG
if (FLAG_debug_code) {
__ mov(lr, Operand(pc));
}
#endif
ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
__ pop(pc);
}
void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
UncatchableExceptionType type) {
// Adjust this code if not the case.
ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
// Drop sp to the top stack handler.
__ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
__ ldr(sp, MemOperand(r3));
// Unwind the handlers until the ENTRY handler is found.
Label loop, done;
__ bind(&loop);
// Load the type of the current stack handler.
const int kStateOffset = StackHandlerConstants::kStateOffset;
__ ldr(r2, MemOperand(sp, kStateOffset));
__ cmp(r2, Operand(StackHandler::ENTRY));
__ b(eq, &done);
// Fetch the next handler in the list.
const int kNextOffset = StackHandlerConstants::kNextOffset;
__ ldr(sp, MemOperand(sp, kNextOffset));
__ jmp(&loop);
__ bind(&done);
// Set the top handler address to next handler past the current ENTRY handler.
ASSERT(StackHandlerConstants::kNextOffset == 0);
__ pop(r2);
__ str(r2, MemOperand(r3));
if (type == OUT_OF_MEMORY) {
// Set external caught exception to false.
ExternalReference external_caught(Top::k_external_caught_exception_address);
__ mov(r0, Operand(false));
__ mov(r2, Operand(external_caught));
__ str(r0, MemOperand(r2));
// Set pending exception and r0 to out of memory exception.
Failure* out_of_memory = Failure::OutOfMemoryException();
__ mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
__ mov(r2, Operand(ExternalReference(Top::k_pending_exception_address)));
__ str(r0, MemOperand(r2));
}
// Stack layout at this point. See also StackHandlerConstants.
// sp -> state (ENTRY)
// fp
// lr
// Discard handler state (r2 is not used) and restore frame pointer.
ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
__ ldm(ia_w, sp, r2.bit() | fp.bit()); // r2: discarded state.
// Before returning we restore the context from the frame pointer if
// not NULL. The frame pointer is NULL in the exception handler of a
// JS entry frame.
__ cmp(fp, Operand(0));
// Set cp to NULL if fp is NULL.
__ mov(cp, Operand(0), LeaveCC, eq);
// Restore cp otherwise.
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
#ifdef DEBUG
if (FLAG_debug_code) {
__ mov(lr, Operand(pc));
}
#endif
ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
__ pop(pc);
}
void CEntryStub::GenerateCore(MacroAssembler* masm,
Label* throw_normal_exception,
Label* throw_termination_exception,
Label* throw_out_of_memory_exception,
StackFrame::Type frame_type,
bool do_gc,
bool always_allocate) {
// r0: result parameter for PerformGC, if any
// r4: number of arguments including receiver (C callee-saved)
// r5: pointer to builtin function (C callee-saved)
// r6: pointer to the first argument (C callee-saved)
if (do_gc) {
// Passing r0.
ExternalReference gc_reference = ExternalReference::perform_gc_function();
__ Call(gc_reference.address(), RelocInfo::RUNTIME_ENTRY);
}
ExternalReference scope_depth =
ExternalReference::heap_always_allocate_scope_depth();
if (always_allocate) {
__ mov(r0, Operand(scope_depth));
__ ldr(r1, MemOperand(r0));
__ add(r1, r1, Operand(1));
__ str(r1, MemOperand(r0));
}
// Call C built-in.
// r0 = argc, r1 = argv
__ mov(r0, Operand(r4));
__ mov(r1, Operand(r6));
// TODO(1242173): To let the GC traverse the return address of the exit
// frames, we need to know where the return address is. Right now,
// we push it on the stack to be able to find it again, but we never
// restore from it in case of changes, which makes it impossible to
// support moving the C entry code stub. This should be fixed, but currently
// this is OK because the CEntryStub gets generated so early in the V8 boot
// sequence that it is not moving ever.
masm->add(lr, pc, Operand(4)); // compute return address: (pc + 8) + 4
masm->push(lr);
masm->Jump(r5);
if (always_allocate) {
// It's okay to clobber r2 and r3 here. Don't mess with r0 and r1
// though (contain the result).
__ mov(r2, Operand(scope_depth));
__ ldr(r3, MemOperand(r2));
__ sub(r3, r3, Operand(1));
__ str(r3, MemOperand(r2));
}
// check for failure result
Label failure_returned;
ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
// Lower 2 bits of r2 are 0 iff r0 has failure tag.
__ add(r2, r0, Operand(1));
__ tst(r2, Operand(kFailureTagMask));
__ b(eq, &failure_returned);
// Exit C frame and return.
// r0:r1: result
// sp: stack pointer
// fp: frame pointer
__ LeaveExitFrame(frame_type);
// check if we should retry or throw exception
Label retry;
__ bind(&failure_returned);
ASSERT(Failure::RETRY_AFTER_GC == 0);
__ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
__ b(eq, &retry);
// Special handling of out of memory exceptions.
Failure* out_of_memory = Failure::OutOfMemoryException();
__ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
__ b(eq, throw_out_of_memory_exception);
// Retrieve the pending exception and clear the variable.
__ mov(ip, Operand(ExternalReference::the_hole_value_location()));
__ ldr(r3, MemOperand(ip));
__ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
__ ldr(r0, MemOperand(ip));
__ str(r3, MemOperand(ip));
// Special handling of termination exceptions which are uncatchable
// by javascript code.
__ cmp(r0, Operand(Factory::termination_exception()));
__ b(eq, throw_termination_exception);
// Handle normal exception.
__ jmp(throw_normal_exception);
__ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying
}
void CEntryStub::GenerateBody(MacroAssembler* masm, bool is_debug_break) {
// Called from JavaScript; parameters are on stack as if calling JS function
// r0: number of arguments including receiver
// r1: pointer to builtin function
// fp: frame pointer (restored after C call)
// sp: stack pointer (restored as callee's sp after C call)
// cp: current context (C callee-saved)
// NOTE: Invocations of builtins may return failure objects
// instead of a proper result. The builtin entry handles
// this by performing a garbage collection and retrying the
// builtin once.
StackFrame::Type frame_type = is_debug_break
? StackFrame::EXIT_DEBUG
: StackFrame::EXIT;
// Enter the exit frame that transitions from JavaScript to C++.
__ EnterExitFrame(frame_type);
// r4: number of arguments (C callee-saved)
// r5: pointer to builtin function (C callee-saved)
// r6: pointer to first argument (C callee-saved)
Label throw_normal_exception;
Label throw_termination_exception;
Label throw_out_of_memory_exception;
// Call into the runtime system.
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
frame_type,
false,
false);
// Do space-specific GC and retry runtime call.
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
frame_type,
true,
false);
// Do full GC and retry runtime call one final time.
Failure* failure = Failure::InternalError();
__ mov(r0, Operand(reinterpret_cast<int32_t>(failure)));
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
frame_type,
true,
true);
__ bind(&throw_out_of_memory_exception);
GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
__ bind(&throw_termination_exception);
GenerateThrowUncatchable(masm, TERMINATION);
__ bind(&throw_normal_exception);
GenerateThrowTOS(masm);
}
void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
// r0: code entry
// r1: function
// r2: receiver
// r3: argc
// [sp+0]: argv
Label invoke, exit;
// Called from C, so do not pop argc and args on exit (preserve sp)
// No need to save register-passed args
// Save callee-saved registers (incl. cp and fp), sp, and lr
__ stm(db_w, sp, kCalleeSaved | lr.bit());
// Get address of argv, see stm above.
// r0: code entry
// r1: function
// r2: receiver
// r3: argc
__ add(r4, sp, Operand((kNumCalleeSaved + 1)*kPointerSize));
__ ldr(r4, MemOperand(r4)); // argv
// Push a frame with special values setup to mark it as an entry frame.
// r0: code entry
// r1: function
// r2: receiver
// r3: argc
// r4: argv
__ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used.
int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
__ mov(r7, Operand(Smi::FromInt(marker)));
__ mov(r6, Operand(Smi::FromInt(marker)));
__ mov(r5, Operand(ExternalReference(Top::k_c_entry_fp_address)));
__ ldr(r5, MemOperand(r5));
__ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() | r8.bit());
// Setup frame pointer for the frame to be pushed.
__ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
// Call a faked try-block that does the invoke.
__ bl(&invoke);
// Caught exception: Store result (exception) in the pending
// exception field in the JSEnv and return a failure sentinel.
// Coming in here the fp will be invalid because the PushTryHandler below
// sets it to 0 to signal the existence of the JSEntry frame.
__ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
__ str(r0, MemOperand(ip));
__ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
__ b(&exit);
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
// Must preserve r0-r4, r5-r7 are available.
__ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
// If an exception not caught by another handler occurs, this handler
// returns control to the code after the bl(&invoke) above, which
// restores all kCalleeSaved registers (including cp and fp) to their
// saved values before returning a failure to C.
// Clear any pending exceptions.
__ mov(ip, Operand(ExternalReference::the_hole_value_location()));
__ ldr(r5, MemOperand(ip));
__ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
__ str(r5, MemOperand(ip));
// Invoke the function by calling through JS entry trampoline builtin.
// Notice that we cannot store a reference to the trampoline code directly in
// this stub, because runtime stubs are not traversed when doing GC.
// Expected registers by Builtins::JSEntryTrampoline
// r0: code entry
// r1: function
// r2: receiver
// r3: argc
// r4: argv
if (is_construct) {
ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
__ mov(ip, Operand(construct_entry));
} else {
ExternalReference entry(Builtins::JSEntryTrampoline);
__ mov(ip, Operand(entry));
}
__ ldr(ip, MemOperand(ip)); // deref address
// Branch and link to JSEntryTrampoline. We don't use the double underscore
// macro for the add instruction because we don't want the coverage tool
// inserting instructions here after we read the pc.
__ mov(lr, Operand(pc));
masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
// Unlink this frame from the handler chain. When reading the
// address of the next handler, there is no need to use the address
// displacement since the current stack pointer (sp) points directly
// to the stack handler.
__ ldr(r3, MemOperand(sp, StackHandlerConstants::kNextOffset));
__ mov(ip, Operand(ExternalReference(Top::k_handler_address)));
__ str(r3, MemOperand(ip));
// No need to restore registers
__ add(sp, sp, Operand(StackHandlerConstants::kSize));
__ bind(&exit); // r0 holds result
// Restore the top frame descriptors from the stack.
__ pop(r3);
__ mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address)));
__ str(r3, MemOperand(ip));
// Reset the stack to the callee saved registers.
__ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
// Restore callee-saved registers and return.
#ifdef DEBUG
if (FLAG_debug_code) {
__ mov(lr, Operand(pc));
}
#endif
__ ldm(ia_w, sp, kCalleeSaved | pc.bit());
}
// This stub performs an instanceof, calling the builtin function if
// necessary. Uses r1 for the object, r0 for the function that it may
// be an instance of (these are fetched from the stack).
void InstanceofStub::Generate(MacroAssembler* masm) {
// Get the object - slow case for smis (we may need to throw an exception
// depending on the rhs).
Label slow, loop, is_instance, is_not_instance;
__ ldr(r0, MemOperand(sp, 1 * kPointerSize));
__ BranchOnSmi(r0, &slow);
// Check that the left hand is a JS object and put map in r3.
__ CompareObjectType(r0, r3, r2, FIRST_JS_OBJECT_TYPE);
__ b(lt, &slow);
__ cmp(r2, Operand(LAST_JS_OBJECT_TYPE));
__ b(gt, &slow);
// Get the prototype of the function (r4 is result, r2 is scratch).
__ ldr(r1, MemOperand(sp, 0 * kPointerSize));
__ TryGetFunctionPrototype(r1, r4, r2, &slow);
// Check that the function prototype is a JS object.
__ BranchOnSmi(r4, &slow);
__ CompareObjectType(r4, r5, r5, FIRST_JS_OBJECT_TYPE);
__ b(lt, &slow);
__ cmp(r5, Operand(LAST_JS_OBJECT_TYPE));
__ b(gt, &slow);
// Register mapping: r3 is object map and r4 is function prototype.
// Get prototype of object into r2.
__ ldr(r2, FieldMemOperand(r3, Map::kPrototypeOffset));
// Loop through the prototype chain looking for the function prototype.
__ bind(&loop);
__ cmp(r2, Operand(r4));
__ b(eq, &is_instance);
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(r2, ip);
__ b(eq, &is_not_instance);
__ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
__ ldr(r2, FieldMemOperand(r2, Map::kPrototypeOffset));
__ jmp(&loop);
__ bind(&is_instance);
__ mov(r0, Operand(Smi::FromInt(0)));
__ pop();
__ pop();
__ mov(pc, Operand(lr)); // Return.
__ bind(&is_not_instance);
__ mov(r0, Operand(Smi::FromInt(1)));
__ pop();
__ pop();
__ mov(pc, Operand(lr)); // Return.
// Slow-case. Tail call builtin.
__ bind(&slow);
__ mov(r0, Operand(1)); // Arg count without receiver.
__ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_JS);
}
void ArgumentsAccessStub::GenerateReadLength(MacroAssembler* masm) {
// Check if the calling frame is an arguments adaptor frame.
Label adaptor;
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
__ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ b(eq, &adaptor);
// Nothing to do: The formal number of parameters has already been
// passed in register r0 by calling function. Just return it.
__ Jump(lr);
// Arguments adaptor case: Read the arguments length from the
// adaptor frame and return it.
__ bind(&adaptor);
__ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ Jump(lr);
}
void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
// The displacement is the offset of the last parameter (if any)
// relative to the frame pointer.
static const int kDisplacement =
StandardFrameConstants::kCallerSPOffset - kPointerSize;
// Check that the key is a smi.
Label slow;
__ BranchOnNotSmi(r1, &slow);
// Check if the calling frame is an arguments adaptor frame.
Label adaptor;
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
__ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ b(eq, &adaptor);
// Check index against formal parameters count limit passed in
// through register eax. Use unsigned comparison to get negative
// check for free.
__ cmp(r1, r0);
__ b(cs, &slow);
// Read the argument from the stack and return it.
__ sub(r3, r0, r1);
__ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
__ ldr(r0, MemOperand(r3, kDisplacement));
__ Jump(lr);
// Arguments adaptor case: Check index against actual arguments
// limit found in the arguments adaptor frame. Use unsigned
// comparison to get negative check for free.
__ bind(&adaptor);
__ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ cmp(r1, r0);
__ b(cs, &slow);
// Read the argument from the adaptor frame and return it.
__ sub(r3, r0, r1);
__ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
__ ldr(r0, MemOperand(r3, kDisplacement));
__ Jump(lr);
// Slow-case: Handle non-smi or out-of-bounds access to arguments
// by calling the runtime system.
__ bind(&slow);
__ push(r1);
__ TailCallRuntime(ExternalReference(Runtime::kGetArgumentsProperty), 1, 1);
}
void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
// Check if the calling frame is an arguments adaptor frame.
Label runtime;
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
__ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ b(ne, &runtime);
// Patch the arguments.length and the parameters pointer.
__ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ str(r0, MemOperand(sp, 0 * kPointerSize));
__ add(r3, r2, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
__ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
__ str(r3, MemOperand(sp, 1 * kPointerSize));
// Do the runtime call to allocate the arguments object.
__ bind(&runtime);
__ TailCallRuntime(ExternalReference(Runtime::kNewArgumentsFast), 3, 1);
}
void CallFunctionStub::Generate(MacroAssembler* masm) {
Label slow;
// Get the function to call from the stack.
// function, receiver [, arguments]
__ ldr(r1, MemOperand(sp, (argc_ + 1) * kPointerSize));
// Check that the function is really a JavaScript function.
// r1: pushed function (to be verified)
__ BranchOnSmi(r1, &slow);
// Get the map of the function object.
__ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
__ b(ne, &slow);
// Fast-case: Invoke the function now.
// r1: pushed function
ParameterCount actual(argc_);
__ InvokeFunction(r1, actual, JUMP_FUNCTION);
// Slow-case: Non-function called.
__ bind(&slow);
__ mov(r0, Operand(argc_)); // Setup the number of arguments.
__ mov(r2, Operand(0));
__ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
__ Jump(Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)),
RelocInfo::CODE_TARGET);
}
int CompareStub::MinorKey() {
// Encode the two parameters in a unique 16 bit value.
ASSERT(static_cast<unsigned>(cc_) >> 28 < (1 << 15));
return (static_cast<unsigned>(cc_) >> 27) | (strict_ ? 1 : 0);
}
#undef __
} } // namespace v8::internal
|