summaryrefslogtreecommitdiff
path: root/deps/v8/src/arm/assembler-arm.cc
blob: bd8b0613eb9bea99a87c3f549b12069cbd8c858a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.

#include "v8.h"

#if V8_TARGET_ARCH_ARM

#include "arm/assembler-arm-inl.h"
#include "macro-assembler.h"
#include "serialize.h"

namespace v8 {
namespace internal {

#ifdef DEBUG
bool CpuFeatures::initialized_ = false;
#endif
unsigned CpuFeatures::supported_ = 0;
unsigned CpuFeatures::found_by_runtime_probing_only_ = 0;
unsigned CpuFeatures::cache_line_size_ = 64;


ExternalReference ExternalReference::cpu_features() {
  ASSERT(CpuFeatures::initialized_);
  return ExternalReference(&CpuFeatures::supported_);
}


// Get the CPU features enabled by the build. For cross compilation the
// preprocessor symbols CAN_USE_ARMV7_INSTRUCTIONS and CAN_USE_VFP3_INSTRUCTIONS
// can be defined to enable ARMv7 and VFPv3 instructions when building the
// snapshot.
static unsigned CpuFeaturesImpliedByCompiler() {
  unsigned answer = 0;
#ifdef CAN_USE_ARMV7_INSTRUCTIONS
  if (FLAG_enable_armv7) {
    answer |= 1u << ARMv7;
  }
#endif  // CAN_USE_ARMV7_INSTRUCTIONS
#ifdef CAN_USE_VFP3_INSTRUCTIONS
  if (FLAG_enable_vfp3) {
    answer |= 1u << VFP3 | 1u << ARMv7;
  }
#endif  // CAN_USE_VFP3_INSTRUCTIONS
#ifdef CAN_USE_VFP32DREGS
  if (FLAG_enable_32dregs) {
    answer |= 1u << VFP32DREGS;
  }
#endif  // CAN_USE_VFP32DREGS
  if ((answer & (1u << ARMv7)) && FLAG_enable_unaligned_accesses) {
    answer |= 1u << UNALIGNED_ACCESSES;
  }

  return answer;
}


const char* DwVfpRegister::AllocationIndexToString(int index) {
  ASSERT(index >= 0 && index < NumAllocatableRegisters());
  ASSERT(kScratchDoubleReg.code() - kDoubleRegZero.code() ==
         kNumReservedRegisters - 1);
  if (index >= kDoubleRegZero.code())
    index += kNumReservedRegisters;

  return VFPRegisters::Name(index, true);
}


void CpuFeatures::Probe() {
  uint64_t standard_features = static_cast<unsigned>(
      OS::CpuFeaturesImpliedByPlatform()) | CpuFeaturesImpliedByCompiler();
  ASSERT(supported_ == 0 || supported_ == standard_features);
#ifdef DEBUG
  initialized_ = true;
#endif

  // Get the features implied by the OS and the compiler settings. This is the
  // minimal set of features which is also alowed for generated code in the
  // snapshot.
  supported_ |= standard_features;

  if (Serializer::enabled()) {
    // No probing for features if we might serialize (generate snapshot).
    printf("   ");
    PrintFeatures();
    return;
  }

#ifndef __arm__
  // For the simulator=arm build, use VFP when FLAG_enable_vfp3 is
  // enabled. VFPv3 implies ARMv7, see ARM DDI 0406B, page A1-6.
  if (FLAG_enable_vfp3) {
    supported_ |=
        static_cast<uint64_t>(1) << VFP3 |
        static_cast<uint64_t>(1) << ARMv7;
  }
  if (FLAG_enable_neon) {
    supported_ |= 1u << NEON;
  }
  // For the simulator=arm build, use ARMv7 when FLAG_enable_armv7 is enabled
  if (FLAG_enable_armv7) {
    supported_ |= static_cast<uint64_t>(1) << ARMv7;
  }

  if (FLAG_enable_sudiv) {
    supported_ |= static_cast<uint64_t>(1) << SUDIV;
  }

  if (FLAG_enable_movw_movt) {
    supported_ |= static_cast<uint64_t>(1) << MOVW_MOVT_IMMEDIATE_LOADS;
  }

  if (FLAG_enable_32dregs) {
    supported_ |= static_cast<uint64_t>(1) << VFP32DREGS;
  }

  if (FLAG_enable_unaligned_accesses) {
    supported_ |= static_cast<uint64_t>(1) << UNALIGNED_ACCESSES;
  }

#else  // __arm__
  // Probe for additional features not already known to be available.
  CPU cpu;
  if (!IsSupported(VFP3) && FLAG_enable_vfp3 && cpu.has_vfp3()) {
    // This implementation also sets the VFP flags if runtime
    // detection of VFP returns true. VFPv3 implies ARMv7, see ARM DDI
    // 0406B, page A1-6.
    found_by_runtime_probing_only_ |=
        static_cast<uint64_t>(1) << VFP3 |
        static_cast<uint64_t>(1) << ARMv7;
  }

  if (!IsSupported(NEON) && FLAG_enable_neon && cpu.has_neon()) {
    found_by_runtime_probing_only_ |= 1u << NEON;
  }

  if (!IsSupported(ARMv7) && FLAG_enable_armv7 && cpu.architecture() >= 7) {
    found_by_runtime_probing_only_ |= static_cast<uint64_t>(1) << ARMv7;
  }

  if (!IsSupported(SUDIV) && FLAG_enable_sudiv && cpu.has_idiva()) {
    found_by_runtime_probing_only_ |= static_cast<uint64_t>(1) << SUDIV;
  }

  if (!IsSupported(UNALIGNED_ACCESSES) && FLAG_enable_unaligned_accesses
      && cpu.architecture() >= 7) {
    found_by_runtime_probing_only_ |=
        static_cast<uint64_t>(1) << UNALIGNED_ACCESSES;
  }

  // Use movw/movt for QUALCOMM ARMv7 cores.
  if (cpu.implementer() == CPU::QUALCOMM &&
      cpu.architecture() >= 7 &&
      FLAG_enable_movw_movt) {
    found_by_runtime_probing_only_ |=
        static_cast<uint64_t>(1) << MOVW_MOVT_IMMEDIATE_LOADS;
  }

  // ARM Cortex-A9 and Cortex-A5 have 32 byte cachelines.
  if (cpu.implementer() == CPU::ARM &&
      (cpu.part() == CPU::ARM_CORTEX_A5 ||
       cpu.part() == CPU::ARM_CORTEX_A9)) {
    cache_line_size_ = 32;
  }

  if (!IsSupported(VFP32DREGS) && FLAG_enable_32dregs && cpu.has_vfp3_d32()) {
    found_by_runtime_probing_only_ |= static_cast<uint64_t>(1) << VFP32DREGS;
  }

  supported_ |= found_by_runtime_probing_only_;
#endif

  // Assert that VFP3 implies ARMv7.
  ASSERT(!IsSupported(VFP3) || IsSupported(ARMv7));
}


void CpuFeatures::PrintTarget() {
  const char* arm_arch = NULL;
  const char* arm_test = "";
  const char* arm_fpu = "";
  const char* arm_thumb = "";
  const char* arm_float_abi = NULL;

#if defined CAN_USE_ARMV7_INSTRUCTIONS
  arm_arch = "arm v7";
#else
  arm_arch = "arm v6";
#endif

#ifdef __arm__

# ifdef ARM_TEST
  arm_test = " test";
# endif
# if defined __ARM_NEON__
  arm_fpu = " neon";
# elif defined CAN_USE_VFP3_INSTRUCTIONS
  arm_fpu = " vfp3";
# else
  arm_fpu = " vfp2";
# endif
# if (defined __thumb__) || (defined __thumb2__)
  arm_thumb = " thumb";
# endif
  arm_float_abi = OS::ArmUsingHardFloat() ? "hard" : "softfp";

#else  // __arm__

  arm_test = " simulator";
# if defined CAN_USE_VFP3_INSTRUCTIONS
#  if defined CAN_USE_VFP32DREGS
  arm_fpu = " vfp3";
#  else
  arm_fpu = " vfp3-d16";
#  endif
# else
  arm_fpu = " vfp2";
# endif
# if USE_EABI_HARDFLOAT == 1
  arm_float_abi = "hard";
# else
  arm_float_abi = "softfp";
# endif

#endif  // __arm__

  printf("target%s %s%s%s %s\n",
         arm_test, arm_arch, arm_fpu, arm_thumb, arm_float_abi);
}


void CpuFeatures::PrintFeatures() {
  printf(
    "ARMv7=%d VFP3=%d VFP32DREGS=%d NEON=%d SUDIV=%d UNALIGNED_ACCESSES=%d "
    "MOVW_MOVT_IMMEDIATE_LOADS=%d",
    CpuFeatures::IsSupported(ARMv7),
    CpuFeatures::IsSupported(VFP3),
    CpuFeatures::IsSupported(VFP32DREGS),
    CpuFeatures::IsSupported(NEON),
    CpuFeatures::IsSupported(SUDIV),
    CpuFeatures::IsSupported(UNALIGNED_ACCESSES),
    CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS));
#ifdef __arm__
  bool eabi_hardfloat = OS::ArmUsingHardFloat();
#elif USE_EABI_HARDFLOAT
  bool eabi_hardfloat = true;
#else
  bool eabi_hardfloat = false;
#endif
    printf(" USE_EABI_HARDFLOAT=%d\n", eabi_hardfloat);
}


// -----------------------------------------------------------------------------
// Implementation of RelocInfo

const int RelocInfo::kApplyMask = 0;


bool RelocInfo::IsCodedSpecially() {
  // The deserializer needs to know whether a pointer is specially coded.  Being
  // specially coded on ARM means that it is a movw/movt instruction.  We don't
  // generate those yet.
  return false;
}


void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
  // Patch the code at the current address with the supplied instructions.
  Instr* pc = reinterpret_cast<Instr*>(pc_);
  Instr* instr = reinterpret_cast<Instr*>(instructions);
  for (int i = 0; i < instruction_count; i++) {
    *(pc + i) = *(instr + i);
  }

  // Indicate that code has changed.
  CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize);
}


// Patch the code at the current PC with a call to the target address.
// Additional guard instructions can be added if required.
void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
  // Patch the code at the current address with a call to the target.
  UNIMPLEMENTED();
}


// -----------------------------------------------------------------------------
// Implementation of Operand and MemOperand
// See assembler-arm-inl.h for inlined constructors

Operand::Operand(Handle<Object> handle) {
  AllowDeferredHandleDereference using_raw_address;
  rm_ = no_reg;
  // Verify all Objects referred by code are NOT in new space.
  Object* obj = *handle;
  if (obj->IsHeapObject()) {
    ASSERT(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
    imm32_ = reinterpret_cast<intptr_t>(handle.location());
    rmode_ = RelocInfo::EMBEDDED_OBJECT;
  } else {
    // no relocation needed
    imm32_ = reinterpret_cast<intptr_t>(obj);
    rmode_ = RelocInfo::NONE32;
  }
}


Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) {
  ASSERT(is_uint5(shift_imm));
  ASSERT(shift_op != ROR || shift_imm != 0);  // use RRX if you mean it
  rm_ = rm;
  rs_ = no_reg;
  shift_op_ = shift_op;
  shift_imm_ = shift_imm & 31;
  if (shift_op == RRX) {
    // encoded as ROR with shift_imm == 0
    ASSERT(shift_imm == 0);
    shift_op_ = ROR;
    shift_imm_ = 0;
  }
}


Operand::Operand(Register rm, ShiftOp shift_op, Register rs) {
  ASSERT(shift_op != RRX);
  rm_ = rm;
  rs_ = no_reg;
  shift_op_ = shift_op;
  rs_ = rs;
}


MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) {
  rn_ = rn;
  rm_ = no_reg;
  offset_ = offset;
  am_ = am;
}


MemOperand::MemOperand(Register rn, Register rm, AddrMode am) {
  rn_ = rn;
  rm_ = rm;
  shift_op_ = LSL;
  shift_imm_ = 0;
  am_ = am;
}


MemOperand::MemOperand(Register rn, Register rm,
                       ShiftOp shift_op, int shift_imm, AddrMode am) {
  ASSERT(is_uint5(shift_imm));
  rn_ = rn;
  rm_ = rm;
  shift_op_ = shift_op;
  shift_imm_ = shift_imm & 31;
  am_ = am;
}


NeonMemOperand::NeonMemOperand(Register rn, AddrMode am, int align) {
  ASSERT((am == Offset) || (am == PostIndex));
  rn_ = rn;
  rm_ = (am == Offset) ? pc : sp;
  SetAlignment(align);
}


NeonMemOperand::NeonMemOperand(Register rn, Register rm, int align) {
  rn_ = rn;
  rm_ = rm;
  SetAlignment(align);
}


void NeonMemOperand::SetAlignment(int align) {
  switch (align) {
    case 0:
      align_ = 0;
      break;
    case 64:
      align_ = 1;
      break;
    case 128:
      align_ = 2;
      break;
    case 256:
      align_ = 3;
      break;
    default:
      UNREACHABLE();
      align_ = 0;
      break;
  }
}


NeonListOperand::NeonListOperand(DoubleRegister base, int registers_count) {
  base_ = base;
  switch (registers_count) {
    case 1:
      type_ = nlt_1;
      break;
    case 2:
      type_ = nlt_2;
      break;
    case 3:
      type_ = nlt_3;
      break;
    case 4:
      type_ = nlt_4;
      break;
    default:
      UNREACHABLE();
      type_ = nlt_1;
      break;
  }
}


// -----------------------------------------------------------------------------
// Specific instructions, constants, and masks.

// add(sp, sp, 4) instruction (aka Pop())
const Instr kPopInstruction =
    al | PostIndex | 4 | LeaveCC | I | kRegister_sp_Code * B16 |
        kRegister_sp_Code * B12;
// str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
// register r is not encoded.
const Instr kPushRegPattern =
    al | B26 | 4 | NegPreIndex | kRegister_sp_Code * B16;
// ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
// register r is not encoded.
const Instr kPopRegPattern =
    al | B26 | L | 4 | PostIndex | kRegister_sp_Code * B16;
// mov lr, pc
const Instr kMovLrPc = al | MOV | kRegister_pc_Code | kRegister_lr_Code * B12;
// ldr rd, [pc, #offset]
const Instr kLdrPCMask = 15 * B24 | 7 * B20 | 15 * B16;
const Instr kLdrPCPattern = 5 * B24 | L | kRegister_pc_Code * B16;
// vldr dd, [pc, #offset]
const Instr kVldrDPCMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8;
const Instr kVldrDPCPattern = 13 * B24 | L | kRegister_pc_Code * B16 | 11 * B8;
// blxcc rm
const Instr kBlxRegMask =
    15 * B24 | 15 * B20 | 15 * B16 | 15 * B12 | 15 * B8 | 15 * B4;
const Instr kBlxRegPattern =
    B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BLX;
const Instr kBlxIp = al | kBlxRegPattern | ip.code();
const Instr kMovMvnMask = 0x6d * B21 | 0xf * B16;
const Instr kMovMvnPattern = 0xd * B21;
const Instr kMovMvnFlip = B22;
const Instr kMovLeaveCCMask = 0xdff * B16;
const Instr kMovLeaveCCPattern = 0x1a0 * B16;
const Instr kMovwMask = 0xff * B20;
const Instr kMovwPattern = 0x30 * B20;
const Instr kMovwLeaveCCFlip = 0x5 * B21;
const Instr kCmpCmnMask = 0xdd * B20 | 0xf * B12;
const Instr kCmpCmnPattern = 0x15 * B20;
const Instr kCmpCmnFlip = B21;
const Instr kAddSubFlip = 0x6 * B21;
const Instr kAndBicFlip = 0xe * B21;

// A mask for the Rd register for push, pop, ldr, str instructions.
const Instr kLdrRegFpOffsetPattern =
    al | B26 | L | Offset | kRegister_fp_Code * B16;
const Instr kStrRegFpOffsetPattern =
    al | B26 | Offset | kRegister_fp_Code * B16;
const Instr kLdrRegFpNegOffsetPattern =
    al | B26 | L | NegOffset | kRegister_fp_Code * B16;
const Instr kStrRegFpNegOffsetPattern =
    al | B26 | NegOffset | kRegister_fp_Code * B16;
const Instr kLdrStrInstrTypeMask = 0xffff0000;
const Instr kLdrStrInstrArgumentMask = 0x0000ffff;
const Instr kLdrStrOffsetMask = 0x00000fff;


Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
    : AssemblerBase(isolate, buffer, buffer_size),
      recorded_ast_id_(TypeFeedbackId::None()),
      positions_recorder_(this) {
  reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
  num_pending_reloc_info_ = 0;
  num_pending_64_bit_reloc_info_ = 0;
  next_buffer_check_ = 0;
  const_pool_blocked_nesting_ = 0;
  no_const_pool_before_ = 0;
  first_const_pool_use_ = -1;
  last_bound_pos_ = 0;
  ClearRecordedAstId();
}


Assembler::~Assembler() {
  ASSERT(const_pool_blocked_nesting_ == 0);
}


void Assembler::GetCode(CodeDesc* desc) {
  // Emit constant pool if necessary.
  CheckConstPool(true, false);
  ASSERT(num_pending_reloc_info_ == 0);
  ASSERT(num_pending_64_bit_reloc_info_ == 0);

  // Set up code descriptor.
  desc->buffer = buffer_;
  desc->buffer_size = buffer_size_;
  desc->instr_size = pc_offset();
  desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
}


void Assembler::Align(int m) {
  ASSERT(m >= 4 && IsPowerOf2(m));
  while ((pc_offset() & (m - 1)) != 0) {
    nop();
  }
}


void Assembler::CodeTargetAlign() {
  // Preferred alignment of jump targets on some ARM chips.
  Align(8);
}


Condition Assembler::GetCondition(Instr instr) {
  return Instruction::ConditionField(instr);
}


bool Assembler::IsBranch(Instr instr) {
  return (instr & (B27 | B25)) == (B27 | B25);
}


int Assembler::GetBranchOffset(Instr instr) {
  ASSERT(IsBranch(instr));
  // Take the jump offset in the lower 24 bits, sign extend it and multiply it
  // with 4 to get the offset in bytes.
  return ((instr & kImm24Mask) << 8) >> 6;
}


bool Assembler::IsLdrRegisterImmediate(Instr instr) {
  return (instr & (B27 | B26 | B25 | B22 | B20)) == (B26 | B20);
}


bool Assembler::IsVldrDRegisterImmediate(Instr instr) {
  return (instr & (15 * B24 | 3 * B20 | 15 * B8)) == (13 * B24 | B20 | 11 * B8);
}


int Assembler::GetLdrRegisterImmediateOffset(Instr instr) {
  ASSERT(IsLdrRegisterImmediate(instr));
  bool positive = (instr & B23) == B23;
  int offset = instr & kOff12Mask;  // Zero extended offset.
  return positive ? offset : -offset;
}


int Assembler::GetVldrDRegisterImmediateOffset(Instr instr) {
  ASSERT(IsVldrDRegisterImmediate(instr));
  bool positive = (instr & B23) == B23;
  int offset = instr & kOff8Mask;  // Zero extended offset.
  offset <<= 2;
  return positive ? offset : -offset;
}


Instr Assembler::SetLdrRegisterImmediateOffset(Instr instr, int offset) {
  ASSERT(IsLdrRegisterImmediate(instr));
  bool positive = offset >= 0;
  if (!positive) offset = -offset;
  ASSERT(is_uint12(offset));
  // Set bit indicating whether the offset should be added.
  instr = (instr & ~B23) | (positive ? B23 : 0);
  // Set the actual offset.
  return (instr & ~kOff12Mask) | offset;
}


Instr Assembler::SetVldrDRegisterImmediateOffset(Instr instr, int offset) {
  ASSERT(IsVldrDRegisterImmediate(instr));
  ASSERT((offset & ~3) == offset);  // Must be 64-bit aligned.
  bool positive = offset >= 0;
  if (!positive) offset = -offset;
  ASSERT(is_uint10(offset));
  // Set bit indicating whether the offset should be added.
  instr = (instr & ~B23) | (positive ? B23 : 0);
  // Set the actual offset. Its bottom 2 bits are zero.
  return (instr & ~kOff8Mask) | (offset >> 2);
}


bool Assembler::IsStrRegisterImmediate(Instr instr) {
  return (instr & (B27 | B26 | B25 | B22 | B20)) == B26;
}


Instr Assembler::SetStrRegisterImmediateOffset(Instr instr, int offset) {
  ASSERT(IsStrRegisterImmediate(instr));
  bool positive = offset >= 0;
  if (!positive) offset = -offset;
  ASSERT(is_uint12(offset));
  // Set bit indicating whether the offset should be added.
  instr = (instr & ~B23) | (positive ? B23 : 0);
  // Set the actual offset.
  return (instr & ~kOff12Mask) | offset;
}


bool Assembler::IsAddRegisterImmediate(Instr instr) {
  return (instr & (B27 | B26 | B25 | B24 | B23 | B22 | B21)) == (B25 | B23);
}


Instr Assembler::SetAddRegisterImmediateOffset(Instr instr, int offset) {
  ASSERT(IsAddRegisterImmediate(instr));
  ASSERT(offset >= 0);
  ASSERT(is_uint12(offset));
  // Set the offset.
  return (instr & ~kOff12Mask) | offset;
}


Register Assembler::GetRd(Instr instr) {
  Register reg;
  reg.code_ = Instruction::RdValue(instr);
  return reg;
}


Register Assembler::GetRn(Instr instr) {
  Register reg;
  reg.code_ = Instruction::RnValue(instr);
  return reg;
}


Register Assembler::GetRm(Instr instr) {
  Register reg;
  reg.code_ = Instruction::RmValue(instr);
  return reg;
}


bool Assembler::IsPush(Instr instr) {
  return ((instr & ~kRdMask) == kPushRegPattern);
}


bool Assembler::IsPop(Instr instr) {
  return ((instr & ~kRdMask) == kPopRegPattern);
}


bool Assembler::IsStrRegFpOffset(Instr instr) {
  return ((instr & kLdrStrInstrTypeMask) == kStrRegFpOffsetPattern);
}


bool Assembler::IsLdrRegFpOffset(Instr instr) {
  return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpOffsetPattern);
}


bool Assembler::IsStrRegFpNegOffset(Instr instr) {
  return ((instr & kLdrStrInstrTypeMask) == kStrRegFpNegOffsetPattern);
}


bool Assembler::IsLdrRegFpNegOffset(Instr instr) {
  return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpNegOffsetPattern);
}


bool Assembler::IsLdrPcImmediateOffset(Instr instr) {
  // Check the instruction is indeed a
  // ldr<cond> <Rd>, [pc +/- offset_12].
  return (instr & kLdrPCMask) == kLdrPCPattern;
}


bool Assembler::IsVldrDPcImmediateOffset(Instr instr) {
  // Check the instruction is indeed a
  // vldr<cond> <Dd>, [pc +/- offset_10].
  return (instr & kVldrDPCMask) == kVldrDPCPattern;
}


bool Assembler::IsTstImmediate(Instr instr) {
  return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
      (I | TST | S);
}


bool Assembler::IsCmpRegister(Instr instr) {
  return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask | B4)) ==
      (CMP | S);
}


bool Assembler::IsCmpImmediate(Instr instr) {
  return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
      (I | CMP | S);
}


Register Assembler::GetCmpImmediateRegister(Instr instr) {
  ASSERT(IsCmpImmediate(instr));
  return GetRn(instr);
}


int Assembler::GetCmpImmediateRawImmediate(Instr instr) {
  ASSERT(IsCmpImmediate(instr));
  return instr & kOff12Mask;
}


// Labels refer to positions in the (to be) generated code.
// There are bound, linked, and unused labels.
//
// Bound labels refer to known positions in the already
// generated code. pos() is the position the label refers to.
//
// Linked labels refer to unknown positions in the code
// to be generated; pos() is the position of the last
// instruction using the label.
//
// The linked labels form a link chain by making the branch offset
// in the instruction steam to point to the previous branch
// instruction using the same label.
//
// The link chain is terminated by a branch offset pointing to the
// same position.


int Assembler::target_at(int pos)  {
  Instr instr = instr_at(pos);
  if (is_uint24(instr)) {
    // Emitted link to a label, not part of a branch.
    return instr;
  }
  ASSERT((instr & 7*B25) == 5*B25);  // b, bl, or blx imm24
  int imm26 = ((instr & kImm24Mask) << 8) >> 6;
  if ((Instruction::ConditionField(instr) == kSpecialCondition) &&
      ((instr & B24) != 0)) {
    // blx uses bit 24 to encode bit 2 of imm26
    imm26 += 2;
  }
  return pos + kPcLoadDelta + imm26;
}


void Assembler::target_at_put(int pos, int target_pos) {
  Instr instr = instr_at(pos);
  if (is_uint24(instr)) {
    ASSERT(target_pos == pos || target_pos >= 0);
    // Emitted link to a label, not part of a branch.
    // Load the position of the label relative to the generated code object
    // pointer in a register.

    // Here are the instructions we need to emit:
    //   For ARMv7: target24 => target16_1:target16_0
    //      movw dst, #target16_0
    //      movt dst, #target16_1
    //   For ARMv6: target24 => target8_2:target8_1:target8_0
    //      mov dst, #target8_0
    //      orr dst, dst, #target8_1 << 8
    //      orr dst, dst, #target8_2 << 16

    // We extract the destination register from the emitted nop instruction.
    Register dst = Register::from_code(
        Instruction::RmValue(instr_at(pos + kInstrSize)));
    ASSERT(IsNop(instr_at(pos + kInstrSize), dst.code()));
    uint32_t target24 = target_pos + (Code::kHeaderSize - kHeapObjectTag);
    ASSERT(is_uint24(target24));
    if (is_uint8(target24)) {
      // If the target fits in a byte then only patch with a mov
      // instruction.
      CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
                          1,
                          CodePatcher::DONT_FLUSH);
      patcher.masm()->mov(dst, Operand(target24));
    } else {
      uint16_t target16_0 = target24 & kImm16Mask;
      uint16_t target16_1 = target24 >> 16;
      if (CpuFeatures::IsSupported(ARMv7)) {
        // Patch with movw/movt.
        if (target16_1 == 0) {
          CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
                              1,
                              CodePatcher::DONT_FLUSH);
          patcher.masm()->movw(dst, target16_0);
        } else {
          CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
                              2,
                              CodePatcher::DONT_FLUSH);
          patcher.masm()->movw(dst, target16_0);
          patcher.masm()->movt(dst, target16_1);
        }
      } else {
        // Patch with a sequence of mov/orr/orr instructions.
        uint8_t target8_0 = target16_0 & kImm8Mask;
        uint8_t target8_1 = target16_0 >> 8;
        uint8_t target8_2 = target16_1 & kImm8Mask;
        if (target8_2 == 0) {
          CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
                              2,
                              CodePatcher::DONT_FLUSH);
          patcher.masm()->mov(dst, Operand(target8_0));
          patcher.masm()->orr(dst, dst, Operand(target8_1 << 8));
        } else {
          CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
                              3,
                              CodePatcher::DONT_FLUSH);
          patcher.masm()->mov(dst, Operand(target8_0));
          patcher.masm()->orr(dst, dst, Operand(target8_1 << 8));
          patcher.masm()->orr(dst, dst, Operand(target8_2 << 16));
        }
      }
    }
    return;
  }
  int imm26 = target_pos - (pos + kPcLoadDelta);
  ASSERT((instr & 7*B25) == 5*B25);  // b, bl, or blx imm24
  if (Instruction::ConditionField(instr) == kSpecialCondition) {
    // blx uses bit 24 to encode bit 2 of imm26
    ASSERT((imm26 & 1) == 0);
    instr = (instr & ~(B24 | kImm24Mask)) | ((imm26 & 2) >> 1)*B24;
  } else {
    ASSERT((imm26 & 3) == 0);
    instr &= ~kImm24Mask;
  }
  int imm24 = imm26 >> 2;
  ASSERT(is_int24(imm24));
  instr_at_put(pos, instr | (imm24 & kImm24Mask));
}


void Assembler::print(Label* L) {
  if (L->is_unused()) {
    PrintF("unused label\n");
  } else if (L->is_bound()) {
    PrintF("bound label to %d\n", L->pos());
  } else if (L->is_linked()) {
    Label l = *L;
    PrintF("unbound label");
    while (l.is_linked()) {
      PrintF("@ %d ", l.pos());
      Instr instr = instr_at(l.pos());
      if ((instr & ~kImm24Mask) == 0) {
        PrintF("value\n");
      } else {
        ASSERT((instr & 7*B25) == 5*B25);  // b, bl, or blx
        Condition cond = Instruction::ConditionField(instr);
        const char* b;
        const char* c;
        if (cond == kSpecialCondition) {
          b = "blx";
          c = "";
        } else {
          if ((instr & B24) != 0)
            b = "bl";
          else
            b = "b";

          switch (cond) {
            case eq: c = "eq"; break;
            case ne: c = "ne"; break;
            case hs: c = "hs"; break;
            case lo: c = "lo"; break;
            case mi: c = "mi"; break;
            case pl: c = "pl"; break;
            case vs: c = "vs"; break;
            case vc: c = "vc"; break;
            case hi: c = "hi"; break;
            case ls: c = "ls"; break;
            case ge: c = "ge"; break;
            case lt: c = "lt"; break;
            case gt: c = "gt"; break;
            case le: c = "le"; break;
            case al: c = ""; break;
            default:
              c = "";
              UNREACHABLE();
          }
        }
        PrintF("%s%s\n", b, c);
      }
      next(&l);
    }
  } else {
    PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
  }
}


void Assembler::bind_to(Label* L, int pos) {
  ASSERT(0 <= pos && pos <= pc_offset());  // must have a valid binding position
  while (L->is_linked()) {
    int fixup_pos = L->pos();
    next(L);  // call next before overwriting link with target at fixup_pos
    target_at_put(fixup_pos, pos);
  }
  L->bind_to(pos);

  // Keep track of the last bound label so we don't eliminate any instructions
  // before a bound label.
  if (pos > last_bound_pos_)
    last_bound_pos_ = pos;
}


void Assembler::bind(Label* L) {
  ASSERT(!L->is_bound());  // label can only be bound once
  bind_to(L, pc_offset());
}


void Assembler::next(Label* L) {
  ASSERT(L->is_linked());
  int link = target_at(L->pos());
  if (link == L->pos()) {
    // Branch target points to the same instuction. This is the end of the link
    // chain.
    L->Unuse();
  } else {
    ASSERT(link >= 0);
    L->link_to(link);
  }
}


// Low-level code emission routines depending on the addressing mode.
// If this returns true then you have to use the rotate_imm and immed_8
// that it returns, because it may have already changed the instruction
// to match them!
static bool fits_shifter(uint32_t imm32,
                         uint32_t* rotate_imm,
                         uint32_t* immed_8,
                         Instr* instr) {
  // imm32 must be unsigned.
  for (int rot = 0; rot < 16; rot++) {
    uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot));
    if ((imm8 <= 0xff)) {
      *rotate_imm = rot;
      *immed_8 = imm8;
      return true;
    }
  }
  // If the opcode is one with a complementary version and the complementary
  // immediate fits, change the opcode.
  if (instr != NULL) {
    if ((*instr & kMovMvnMask) == kMovMvnPattern) {
      if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
        *instr ^= kMovMvnFlip;
        return true;
      } else if ((*instr & kMovLeaveCCMask) == kMovLeaveCCPattern) {
        if (CpuFeatures::IsSupported(ARMv7)) {
          if (imm32 < 0x10000) {
            *instr ^= kMovwLeaveCCFlip;
            *instr |= EncodeMovwImmediate(imm32);
            *rotate_imm = *immed_8 = 0;  // Not used for movw.
            return true;
          }
        }
      }
    } else if ((*instr & kCmpCmnMask) == kCmpCmnPattern) {
      if (fits_shifter(-static_cast<int>(imm32), rotate_imm, immed_8, NULL)) {
        *instr ^= kCmpCmnFlip;
        return true;
      }
    } else {
      Instr alu_insn = (*instr & kALUMask);
      if (alu_insn == ADD ||
          alu_insn == SUB) {
        if (fits_shifter(-static_cast<int>(imm32), rotate_imm, immed_8, NULL)) {
          *instr ^= kAddSubFlip;
          return true;
        }
      } else if (alu_insn == AND ||
                 alu_insn == BIC) {
        if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
          *instr ^= kAndBicFlip;
          return true;
        }
      }
    }
  }
  return false;
}


// We have to use the temporary register for things that can be relocated even
// if they can be encoded in the ARM's 12 bits of immediate-offset instruction
// space.  There is no guarantee that the relocated location can be similarly
// encoded.
bool Operand::must_output_reloc_info(const Assembler* assembler) const {
  if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) {
#ifdef DEBUG
    if (!Serializer::enabled()) {
      Serializer::TooLateToEnableNow();
    }
#endif  // def DEBUG
    if (assembler != NULL && assembler->predictable_code_size()) return true;
    return Serializer::enabled();
  } else if (RelocInfo::IsNone(rmode_)) {
    return false;
  }
  return true;
}


static bool use_movw_movt(const Operand& x, const Assembler* assembler) {
  if (Assembler::use_immediate_embedded_pointer_loads(assembler)) {
    return true;
  }
  if (x.must_output_reloc_info(assembler)) {
    return false;
  }
  return CpuFeatures::IsSupported(ARMv7);
}


bool Operand::is_single_instruction(const Assembler* assembler,
                                    Instr instr) const {
  if (rm_.is_valid()) return true;
  uint32_t dummy1, dummy2;
  if (must_output_reloc_info(assembler) ||
      !fits_shifter(imm32_, &dummy1, &dummy2, &instr)) {
    // The immediate operand cannot be encoded as a shifter operand, or use of
    // constant pool is required. For a mov instruction not setting the
    // condition code additional instruction conventions can be used.
    if ((instr & ~kCondMask) == 13*B21) {  // mov, S not set
      return !use_movw_movt(*this, assembler);
    } else {
      // If this is not a mov or mvn instruction there will always an additional
      // instructions - either mov or ldr. The mov might actually be two
      // instructions mov or movw followed by movt so including the actual
      // instruction two or three instructions will be generated.
      return false;
    }
  } else {
    // No use of constant pool and the immediate operand can be encoded as a
    // shifter operand.
    return true;
  }
}


void Assembler::move_32_bit_immediate(Condition cond,
                                      Register rd,
                                      SBit s,
                                      const Operand& x) {
  if (rd.code() != pc.code() && s == LeaveCC) {
    if (use_movw_movt(x, this)) {
      if (x.must_output_reloc_info(this)) {
        RecordRelocInfo(x.rmode_, x.imm32_, DONT_USE_CONSTANT_POOL);
        // Make sure the movw/movt doesn't get separated.
        BlockConstPoolFor(2);
      }
      emit(cond | 0x30*B20 | rd.code()*B12 |
           EncodeMovwImmediate(x.imm32_ & 0xffff));
      movt(rd, static_cast<uint32_t>(x.imm32_) >> 16, cond);
      return;
    }
  }

  RecordRelocInfo(x.rmode_, x.imm32_, USE_CONSTANT_POOL);
  ldr(rd, MemOperand(pc, 0), cond);
}


void Assembler::addrmod1(Instr instr,
                         Register rn,
                         Register rd,
                         const Operand& x) {
  CheckBuffer();
  ASSERT((instr & ~(kCondMask | kOpCodeMask | S)) == 0);
  if (!x.rm_.is_valid()) {
    // Immediate.
    uint32_t rotate_imm;
    uint32_t immed_8;
    if (x.must_output_reloc_info(this) ||
        !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) {
      // The immediate operand cannot be encoded as a shifter operand, so load
      // it first to register ip and change the original instruction to use ip.
      // However, if the original instruction is a 'mov rd, x' (not setting the
      // condition code), then replace it with a 'ldr rd, [pc]'.
      CHECK(!rn.is(ip));  // rn should never be ip, or will be trashed
      Condition cond = Instruction::ConditionField(instr);
      if ((instr & ~kCondMask) == 13*B21) {  // mov, S not set
        move_32_bit_immediate(cond, rd, LeaveCC, x);
      } else {
        if ((instr & kMovMvnMask) == kMovMvnPattern) {
          // Moves need to use a constant pool entry.
          RecordRelocInfo(x.rmode_, x.imm32_, USE_CONSTANT_POOL);
          ldr(ip, MemOperand(pc, 0), cond);
        } else if (x.must_output_reloc_info(this)) {
          // Otherwise, use most efficient form of fetching from constant pool.
          move_32_bit_immediate(cond, ip, LeaveCC, x);
        } else {
          // If this is not a mov or mvn instruction we may still be able to
          // avoid a constant pool entry by using mvn or movw.
          mov(ip, x, LeaveCC, cond);
        }
        addrmod1(instr, rn, rd, Operand(ip));
      }
      return;
    }
    instr |= I | rotate_imm*B8 | immed_8;
  } else if (!x.rs_.is_valid()) {
    // Immediate shift.
    instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
  } else {
    // Register shift.
    ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc));
    instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code();
  }
  emit(instr | rn.code()*B16 | rd.code()*B12);
  if (rn.is(pc) || x.rm_.is(pc)) {
    // Block constant pool emission for one instruction after reading pc.
    BlockConstPoolFor(1);
  }
}


void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) {
  ASSERT((instr & ~(kCondMask | B | L)) == B26);
  int am = x.am_;
  if (!x.rm_.is_valid()) {
    // Immediate offset.
    int offset_12 = x.offset_;
    if (offset_12 < 0) {
      offset_12 = -offset_12;
      am ^= U;
    }
    if (!is_uint12(offset_12)) {
      // Immediate offset cannot be encoded, load it first to register ip
      // rn (and rd in a load) should never be ip, or will be trashed.
      ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
      mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
      addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_));
      return;
    }
    ASSERT(offset_12 >= 0);  // no masking needed
    instr |= offset_12;
  } else {
    // Register offset (shift_imm_ and shift_op_ are 0) or scaled
    // register offset the constructors make sure than both shift_imm_
    // and shift_op_ are initialized.
    ASSERT(!x.rm_.is(pc));
    instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
  }
  ASSERT((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
  emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
}


void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) {
  ASSERT((instr & ~(kCondMask | L | S6 | H)) == (B4 | B7));
  ASSERT(x.rn_.is_valid());
  int am = x.am_;
  if (!x.rm_.is_valid()) {
    // Immediate offset.
    int offset_8 = x.offset_;
    if (offset_8 < 0) {
      offset_8 = -offset_8;
      am ^= U;
    }
    if (!is_uint8(offset_8)) {
      // Immediate offset cannot be encoded, load it first to register ip
      // rn (and rd in a load) should never be ip, or will be trashed.
      ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
      mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
      addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
      return;
    }
    ASSERT(offset_8 >= 0);  // no masking needed
    instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf);
  } else if (x.shift_imm_ != 0) {
    // Scaled register offset not supported, load index first
    // rn (and rd in a load) should never be ip, or will be trashed.
    ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
    mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC,
        Instruction::ConditionField(instr));
    addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
    return;
  } else {
    // Register offset.
    ASSERT((am & (P|W)) == P || !x.rm_.is(pc));  // no pc index with writeback
    instr |= x.rm_.code();
  }
  ASSERT((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
  emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
}


void Assembler::addrmod4(Instr instr, Register rn, RegList rl) {
  ASSERT((instr & ~(kCondMask | P | U | W | L)) == B27);
  ASSERT(rl != 0);
  ASSERT(!rn.is(pc));
  emit(instr | rn.code()*B16 | rl);
}


void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) {
  // Unindexed addressing is not encoded by this function.
  ASSERT_EQ((B27 | B26),
            (instr & ~(kCondMask | kCoprocessorMask | P | U | N | W | L)));
  ASSERT(x.rn_.is_valid() && !x.rm_.is_valid());
  int am = x.am_;
  int offset_8 = x.offset_;
  ASSERT((offset_8 & 3) == 0);  // offset must be an aligned word offset
  offset_8 >>= 2;
  if (offset_8 < 0) {
    offset_8 = -offset_8;
    am ^= U;
  }
  ASSERT(is_uint8(offset_8));  // unsigned word offset must fit in a byte
  ASSERT((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback

  // Post-indexed addressing requires W == 1; different than in addrmod2/3.
  if ((am & P) == 0)
    am |= W;

  ASSERT(offset_8 >= 0);  // no masking needed
  emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8);
}


int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) {
  int target_pos;
  if (L->is_bound()) {
    target_pos = L->pos();
  } else {
    if (L->is_linked()) {
      // Point to previous instruction that uses the link.
      target_pos = L->pos();
    } else {
      // First entry of the link chain points to itself.
      target_pos = pc_offset();
    }
    L->link_to(pc_offset());
  }

  // Block the emission of the constant pool, since the branch instruction must
  // be emitted at the pc offset recorded by the label.
  BlockConstPoolFor(1);
  return target_pos - (pc_offset() + kPcLoadDelta);
}


// Branch instructions.
void Assembler::b(int branch_offset, Condition cond) {
  ASSERT((branch_offset & 3) == 0);
  int imm24 = branch_offset >> 2;
  ASSERT(is_int24(imm24));
  emit(cond | B27 | B25 | (imm24 & kImm24Mask));

  if (cond == al) {
    // Dead code is a good location to emit the constant pool.
    CheckConstPool(false, false);
  }
}


void Assembler::bl(int branch_offset, Condition cond) {
  positions_recorder()->WriteRecordedPositions();
  ASSERT((branch_offset & 3) == 0);
  int imm24 = branch_offset >> 2;
  ASSERT(is_int24(imm24));
  emit(cond | B27 | B25 | B24 | (imm24 & kImm24Mask));
}


void Assembler::blx(int branch_offset) {  // v5 and above
  positions_recorder()->WriteRecordedPositions();
  ASSERT((branch_offset & 1) == 0);
  int h = ((branch_offset & 2) >> 1)*B24;
  int imm24 = branch_offset >> 2;
  ASSERT(is_int24(imm24));
  emit(kSpecialCondition | B27 | B25 | h | (imm24 & kImm24Mask));
}


void Assembler::blx(Register target, Condition cond) {  // v5 and above
  positions_recorder()->WriteRecordedPositions();
  ASSERT(!target.is(pc));
  emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BLX | target.code());
}


void Assembler::bx(Register target, Condition cond) {  // v5 and above, plus v4t
  positions_recorder()->WriteRecordedPositions();
  ASSERT(!target.is(pc));  // use of pc is actually allowed, but discouraged
  emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BX | target.code());
}


// Data-processing instructions.

void Assembler::and_(Register dst, Register src1, const Operand& src2,
                     SBit s, Condition cond) {
  addrmod1(cond | AND | s, src1, dst, src2);
}


void Assembler::eor(Register dst, Register src1, const Operand& src2,
                    SBit s, Condition cond) {
  addrmod1(cond | EOR | s, src1, dst, src2);
}


void Assembler::sub(Register dst, Register src1, const Operand& src2,
                    SBit s, Condition cond) {
  addrmod1(cond | SUB | s, src1, dst, src2);
}


void Assembler::rsb(Register dst, Register src1, const Operand& src2,
                    SBit s, Condition cond) {
  addrmod1(cond | RSB | s, src1, dst, src2);
}


void Assembler::add(Register dst, Register src1, const Operand& src2,
                    SBit s, Condition cond) {
  addrmod1(cond | ADD | s, src1, dst, src2);
}


void Assembler::adc(Register dst, Register src1, const Operand& src2,
                    SBit s, Condition cond) {
  addrmod1(cond | ADC | s, src1, dst, src2);
}


void Assembler::sbc(Register dst, Register src1, const Operand& src2,
                    SBit s, Condition cond) {
  addrmod1(cond | SBC | s, src1, dst, src2);
}


void Assembler::rsc(Register dst, Register src1, const Operand& src2,
                    SBit s, Condition cond) {
  addrmod1(cond | RSC | s, src1, dst, src2);
}


void Assembler::tst(Register src1, const Operand& src2, Condition cond) {
  addrmod1(cond | TST | S, src1, r0, src2);
}


void Assembler::teq(Register src1, const Operand& src2, Condition cond) {
  addrmod1(cond | TEQ | S, src1, r0, src2);
}


void Assembler::cmp(Register src1, const Operand& src2, Condition cond) {
  addrmod1(cond | CMP | S, src1, r0, src2);
}


void Assembler::cmp_raw_immediate(
    Register src, int raw_immediate, Condition cond) {
  ASSERT(is_uint12(raw_immediate));
  emit(cond | I | CMP | S | src.code() << 16 | raw_immediate);
}


void Assembler::cmn(Register src1, const Operand& src2, Condition cond) {
  addrmod1(cond | CMN | S, src1, r0, src2);
}


void Assembler::orr(Register dst, Register src1, const Operand& src2,
                    SBit s, Condition cond) {
  addrmod1(cond | ORR | s, src1, dst, src2);
}


void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) {
  if (dst.is(pc)) {
    positions_recorder()->WriteRecordedPositions();
  }
  // Don't allow nop instructions in the form mov rn, rn to be generated using
  // the mov instruction. They must be generated using nop(int/NopMarkerTypes)
  // or MarkCode(int/NopMarkerTypes) pseudo instructions.
  ASSERT(!(src.is_reg() && src.rm().is(dst) && s == LeaveCC && cond == al));
  addrmod1(cond | MOV | s, r0, dst, src);
}


void Assembler::mov_label_offset(Register dst, Label* label) {
  if (label->is_bound()) {
    mov(dst, Operand(label->pos() + (Code::kHeaderSize - kHeapObjectTag)));
  } else {
    // Emit the link to the label in the code stream followed by extra nop
    // instructions.
    // If the label is not linked, then start a new link chain by linking it to
    // itself, emitting pc_offset().
    int link = label->is_linked() ? label->pos() : pc_offset();
    label->link_to(pc_offset());

    // When the label is bound, these instructions will be patched with a
    // sequence of movw/movt or mov/orr/orr instructions. They will load the
    // destination register with the position of the label from the beginning
    // of the code.
    //
    // The link will be extracted from the first instruction and the destination
    // register from the second.
    //   For ARMv7:
    //      link
    //      mov dst, dst
    //   For ARMv6:
    //      link
    //      mov dst, dst
    //      mov dst, dst
    //
    // When the label gets bound: target_at extracts the link and target_at_put
    // patches the instructions.
    ASSERT(is_uint24(link));
    BlockConstPoolScope block_const_pool(this);
    emit(link);
    nop(dst.code());
    if (!CpuFeatures::IsSupported(ARMv7)) {
      nop(dst.code());
    }
  }
}


void Assembler::movw(Register reg, uint32_t immediate, Condition cond) {
  ASSERT(immediate < 0x10000);
  // May use movw if supported, but on unsupported platforms will try to use
  // equivalent rotated immed_8 value and other tricks before falling back to a
  // constant pool load.
  mov(reg, Operand(immediate), LeaveCC, cond);
}


void Assembler::movt(Register reg, uint32_t immediate, Condition cond) {
  emit(cond | 0x34*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate));
}


void Assembler::bic(Register dst, Register src1, const Operand& src2,
                    SBit s, Condition cond) {
  addrmod1(cond | BIC | s, src1, dst, src2);
}


void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) {
  addrmod1(cond | MVN | s, r0, dst, src);
}


// Multiply instructions.
void Assembler::mla(Register dst, Register src1, Register src2, Register srcA,
                    SBit s, Condition cond) {
  ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
  emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 |
       src2.code()*B8 | B7 | B4 | src1.code());
}


void Assembler::mls(Register dst, Register src1, Register src2, Register srcA,
                    Condition cond) {
  ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
  emit(cond | B22 | B21 | dst.code()*B16 | srcA.code()*B12 |
       src2.code()*B8 | B7 | B4 | src1.code());
}


void Assembler::sdiv(Register dst, Register src1, Register src2,
                     Condition cond) {
  ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
  ASSERT(IsEnabled(SUDIV));
  emit(cond | B26 | B25| B24 | B20 | dst.code()*B16 | 0xf * B12 |
       src2.code()*B8 | B4 | src1.code());
}


void Assembler::mul(Register dst, Register src1, Register src2,
                    SBit s, Condition cond) {
  ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
  // dst goes in bits 16-19 for this instruction!
  emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code());
}


void Assembler::smlal(Register dstL,
                      Register dstH,
                      Register src1,
                      Register src2,
                      SBit s,
                      Condition cond) {
  ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
  ASSERT(!dstL.is(dstH));
  emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 |
       src2.code()*B8 | B7 | B4 | src1.code());
}


void Assembler::smull(Register dstL,
                      Register dstH,
                      Register src1,
                      Register src2,
                      SBit s,
                      Condition cond) {
  ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
  ASSERT(!dstL.is(dstH));
  emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 |
       src2.code()*B8 | B7 | B4 | src1.code());
}


void Assembler::umlal(Register dstL,
                      Register dstH,
                      Register src1,
                      Register src2,
                      SBit s,
                      Condition cond) {
  ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
  ASSERT(!dstL.is(dstH));
  emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 |
       src2.code()*B8 | B7 | B4 | src1.code());
}


void Assembler::umull(Register dstL,
                      Register dstH,
                      Register src1,
                      Register src2,
                      SBit s,
                      Condition cond) {
  ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
  ASSERT(!dstL.is(dstH));
  emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 |
       src2.code()*B8 | B7 | B4 | src1.code());
}


// Miscellaneous arithmetic instructions.
void Assembler::clz(Register dst, Register src, Condition cond) {
  // v5 and above.
  ASSERT(!dst.is(pc) && !src.is(pc));
  emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 |
       15*B8 | CLZ | src.code());
}


// Saturating instructions.

// Unsigned saturate.
void Assembler::usat(Register dst,
                     int satpos,
                     const Operand& src,
                     Condition cond) {
  // v6 and above.
  ASSERT(CpuFeatures::IsSupported(ARMv7));
  ASSERT(!dst.is(pc) && !src.rm_.is(pc));
  ASSERT((satpos >= 0) && (satpos <= 31));
  ASSERT((src.shift_op_ == ASR) || (src.shift_op_ == LSL));
  ASSERT(src.rs_.is(no_reg));

  int sh = 0;
  if (src.shift_op_ == ASR) {
      sh = 1;
  }

  emit(cond | 0x6*B24 | 0xe*B20 | satpos*B16 | dst.code()*B12 |
       src.shift_imm_*B7 | sh*B6 | 0x1*B4 | src.rm_.code());
}


// Bitfield manipulation instructions.

// Unsigned bit field extract.
// Extracts #width adjacent bits from position #lsb in a register, and
// writes them to the low bits of a destination register.
//   ubfx dst, src, #lsb, #width
void Assembler::ubfx(Register dst,
                     Register src,
                     int lsb,
                     int width,
                     Condition cond) {
  // v7 and above.
  ASSERT(CpuFeatures::IsSupported(ARMv7));
  ASSERT(!dst.is(pc) && !src.is(pc));
  ASSERT((lsb >= 0) && (lsb <= 31));
  ASSERT((width >= 1) && (width <= (32 - lsb)));
  emit(cond | 0xf*B23 | B22 | B21 | (width - 1)*B16 | dst.code()*B12 |
       lsb*B7 | B6 | B4 | src.code());
}


// Signed bit field extract.
// Extracts #width adjacent bits from position #lsb in a register, and
// writes them to the low bits of a destination register. The extracted
// value is sign extended to fill the destination register.
//   sbfx dst, src, #lsb, #width
void Assembler::sbfx(Register dst,
                     Register src,
                     int lsb,
                     int width,
                     Condition cond) {
  // v7 and above.
  ASSERT(CpuFeatures::IsSupported(ARMv7));
  ASSERT(!dst.is(pc) && !src.is(pc));
  ASSERT((lsb >= 0) && (lsb <= 31));
  ASSERT((width >= 1) && (width <= (32 - lsb)));
  emit(cond | 0xf*B23 | B21 | (width - 1)*B16 | dst.code()*B12 |
       lsb*B7 | B6 | B4 | src.code());
}


// Bit field clear.
// Sets #width adjacent bits at position #lsb in the destination register
// to zero, preserving the value of the other bits.
//   bfc dst, #lsb, #width
void Assembler::bfc(Register dst, int lsb, int width, Condition cond) {
  // v7 and above.
  ASSERT(CpuFeatures::IsSupported(ARMv7));
  ASSERT(!dst.is(pc));
  ASSERT((lsb >= 0) && (lsb <= 31));
  ASSERT((width >= 1) && (width <= (32 - lsb)));
  int msb = lsb + width - 1;
  emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 | 0xf);
}


// Bit field insert.
// Inserts #width adjacent bits from the low bits of the source register
// into position #lsb of the destination register.
//   bfi dst, src, #lsb, #width
void Assembler::bfi(Register dst,
                    Register src,
                    int lsb,
                    int width,
                    Condition cond) {
  // v7 and above.
  ASSERT(CpuFeatures::IsSupported(ARMv7));
  ASSERT(!dst.is(pc) && !src.is(pc));
  ASSERT((lsb >= 0) && (lsb <= 31));
  ASSERT((width >= 1) && (width <= (32 - lsb)));
  int msb = lsb + width - 1;
  emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 |
       src.code());
}


void Assembler::pkhbt(Register dst,
                      Register src1,
                      const Operand& src2,
                      Condition cond ) {
  // Instruction details available in ARM DDI 0406C.b, A8.8.125.
  // cond(31-28) | 01101000(27-20) | Rn(19-16) |
  // Rd(15-12) | imm5(11-7) | 0(6) | 01(5-4) | Rm(3-0)
  ASSERT(!dst.is(pc));
  ASSERT(!src1.is(pc));
  ASSERT(!src2.rm().is(pc));
  ASSERT(!src2.rm().is(no_reg));
  ASSERT(src2.rs().is(no_reg));
  ASSERT((src2.shift_imm_ >= 0) && (src2.shift_imm_ <= 31));
  ASSERT(src2.shift_op() == LSL);
  emit(cond | 0x68*B20 | src1.code()*B16 | dst.code()*B12 |
       src2.shift_imm_*B7 | B4 | src2.rm().code());
}


void Assembler::pkhtb(Register dst,
                      Register src1,
                      const Operand& src2,
                      Condition cond) {
  // Instruction details available in ARM DDI 0406C.b, A8.8.125.
  // cond(31-28) | 01101000(27-20) | Rn(19-16) |
  // Rd(15-12) | imm5(11-7) | 1(6) | 01(5-4) | Rm(3-0)
  ASSERT(!dst.is(pc));
  ASSERT(!src1.is(pc));
  ASSERT(!src2.rm().is(pc));
  ASSERT(!src2.rm().is(no_reg));
  ASSERT(src2.rs().is(no_reg));
  ASSERT((src2.shift_imm_ >= 1) && (src2.shift_imm_ <= 32));
  ASSERT(src2.shift_op() == ASR);
  int asr = (src2.shift_imm_ == 32) ? 0 : src2.shift_imm_;
  emit(cond | 0x68*B20 | src1.code()*B16 | dst.code()*B12 |
       asr*B7 | B6 | B4 | src2.rm().code());
}


void Assembler::uxtb(Register dst,
                     const Operand& src,
                     Condition cond) {
  // Instruction details available in ARM DDI 0406C.b, A8.8.274.
  // cond(31-28) | 01101110(27-20) | 1111(19-16) |
  // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
  ASSERT(!dst.is(pc));
  ASSERT(!src.rm().is(pc));
  ASSERT(!src.rm().is(no_reg));
  ASSERT(src.rs().is(no_reg));
  ASSERT((src.shift_imm_ == 0) ||
         (src.shift_imm_ == 8) ||
         (src.shift_imm_ == 16) ||
         (src.shift_imm_ == 24));
  ASSERT(src.shift_op() == ROR);
  emit(cond | 0x6E*B20 | 0xF*B16 | dst.code()*B12 |
       ((src.shift_imm_ >> 1)&0xC)*B8 | 7*B4 | src.rm().code());
}


void Assembler::uxtab(Register dst,
                      Register src1,
                      const Operand& src2,
                      Condition cond) {
  // Instruction details available in ARM DDI 0406C.b, A8.8.271.
  // cond(31-28) | 01101110(27-20) | Rn(19-16) |
  // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
  ASSERT(!dst.is(pc));
  ASSERT(!src1.is(pc));
  ASSERT(!src2.rm().is(pc));
  ASSERT(!src2.rm().is(no_reg));
  ASSERT(src2.rs().is(no_reg));
  ASSERT((src2.shift_imm_ == 0) ||
         (src2.shift_imm_ == 8) ||
         (src2.shift_imm_ == 16) ||
         (src2.shift_imm_ == 24));
  ASSERT(src2.shift_op() == ROR);
  emit(cond | 0x6E*B20 | src1.code()*B16 | dst.code()*B12 |
       ((src2.shift_imm_ >> 1) &0xC)*B8 | 7*B4 | src2.rm().code());
}


void Assembler::uxtb16(Register dst,
                       const Operand& src,
                       Condition cond) {
  // Instruction details available in ARM DDI 0406C.b, A8.8.275.
  // cond(31-28) | 01101100(27-20) | 1111(19-16) |
  // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
  ASSERT(!dst.is(pc));
  ASSERT(!src.rm().is(pc));
  ASSERT(!src.rm().is(no_reg));
  ASSERT(src.rs().is(no_reg));
  ASSERT((src.shift_imm_ == 0) ||
         (src.shift_imm_ == 8) ||
         (src.shift_imm_ == 16) ||
         (src.shift_imm_ == 24));
  ASSERT(src.shift_op() == ROR);
  emit(cond | 0x6C*B20 | 0xF*B16 | dst.code()*B12 |
       ((src.shift_imm_ >> 1)&0xC)*B8 | 7*B4 | src.rm().code());
}


// Status register access instructions.
void Assembler::mrs(Register dst, SRegister s, Condition cond) {
  ASSERT(!dst.is(pc));
  emit(cond | B24 | s | 15*B16 | dst.code()*B12);
}


void Assembler::msr(SRegisterFieldMask fields, const Operand& src,
                    Condition cond) {
  ASSERT(fields >= B16 && fields < B20);  // at least one field set
  Instr instr;
  if (!src.rm_.is_valid()) {
    // Immediate.
    uint32_t rotate_imm;
    uint32_t immed_8;
    if (src.must_output_reloc_info(this) ||
        !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) {
      // Immediate operand cannot be encoded, load it first to register ip.
      RecordRelocInfo(src.rmode_, src.imm32_);
      ldr(ip, MemOperand(pc, 0), cond);
      msr(fields, Operand(ip), cond);
      return;
    }
    instr = I | rotate_imm*B8 | immed_8;
  } else {
    ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0);  // only rm allowed
    instr = src.rm_.code();
  }
  emit(cond | instr | B24 | B21 | fields | 15*B12);
}


// Load/Store instructions.
void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) {
  if (dst.is(pc)) {
    positions_recorder()->WriteRecordedPositions();
  }
  addrmod2(cond | B26 | L, dst, src);
}


void Assembler::str(Register src, const MemOperand& dst, Condition cond) {
  addrmod2(cond | B26, src, dst);
}


void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) {
  addrmod2(cond | B26 | B | L, dst, src);
}


void Assembler::strb(Register src, const MemOperand& dst, Condition cond) {
  addrmod2(cond | B26 | B, src, dst);
}


void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) {
  addrmod3(cond | L | B7 | H | B4, dst, src);
}


void Assembler::strh(Register src, const MemOperand& dst, Condition cond) {
  addrmod3(cond | B7 | H | B4, src, dst);
}


void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) {
  addrmod3(cond | L | B7 | S6 | B4, dst, src);
}


void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) {
  addrmod3(cond | L | B7 | S6 | H | B4, dst, src);
}


void Assembler::ldrd(Register dst1, Register dst2,
                     const MemOperand& src, Condition cond) {
  ASSERT(IsEnabled(ARMv7));
  ASSERT(src.rm().is(no_reg));
  ASSERT(!dst1.is(lr));  // r14.
  ASSERT_EQ(0, dst1.code() % 2);
  ASSERT_EQ(dst1.code() + 1, dst2.code());
  addrmod3(cond | B7 | B6 | B4, dst1, src);
}


void Assembler::strd(Register src1, Register src2,
                     const MemOperand& dst, Condition cond) {
  ASSERT(dst.rm().is(no_reg));
  ASSERT(!src1.is(lr));  // r14.
  ASSERT_EQ(0, src1.code() % 2);
  ASSERT_EQ(src1.code() + 1, src2.code());
  ASSERT(IsEnabled(ARMv7));
  addrmod3(cond | B7 | B6 | B5 | B4, src1, dst);
}


// Preload instructions.
void Assembler::pld(const MemOperand& address) {
  // Instruction details available in ARM DDI 0406C.b, A8.8.128.
  // 1111(31-28) | 0111(27-24) | U(23) | R(22) | 01(21-20) | Rn(19-16) |
  // 1111(15-12) | imm5(11-07) | type(6-5) | 0(4)| Rm(3-0) |
  ASSERT(address.rm().is(no_reg));
  ASSERT(address.am() == Offset);
  int U = B23;
  int offset = address.offset();
  if (offset < 0) {
    offset = -offset;
    U = 0;
  }
  ASSERT(offset < 4096);
  emit(kSpecialCondition | B26 | B24 | U | B22 | B20 | address.rn().code()*B16 |
       0xf*B12 | offset);
}


// Load/Store multiple instructions.
void Assembler::ldm(BlockAddrMode am,
                    Register base,
                    RegList dst,
                    Condition cond) {
  // ABI stack constraint: ldmxx base, {..sp..}  base != sp  is not restartable.
  ASSERT(base.is(sp) || (dst & sp.bit()) == 0);

  addrmod4(cond | B27 | am | L, base, dst);

  // Emit the constant pool after a function return implemented by ldm ..{..pc}.
  if (cond == al && (dst & pc.bit()) != 0) {
    // There is a slight chance that the ldm instruction was actually a call,
    // in which case it would be wrong to return into the constant pool; we
    // recognize this case by checking if the emission of the pool was blocked
    // at the pc of the ldm instruction by a mov lr, pc instruction; if this is
    // the case, we emit a jump over the pool.
    CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize);
  }
}


void Assembler::stm(BlockAddrMode am,
                    Register base,
                    RegList src,
                    Condition cond) {
  addrmod4(cond | B27 | am, base, src);
}


// Exception-generating instructions and debugging support.
// Stops with a non-negative code less than kNumOfWatchedStops support
// enabling/disabling and a counter feature. See simulator-arm.h .
void Assembler::stop(const char* msg, Condition cond, int32_t code) {
#ifndef __arm__
  ASSERT(code >= kDefaultStopCode);
  {
    // The Simulator will handle the stop instruction and get the message
    // address. It expects to find the address just after the svc instruction.
    BlockConstPoolScope block_const_pool(this);
    if (code >= 0) {
      svc(kStopCode + code, cond);
    } else {
      svc(kStopCode + kMaxStopCode, cond);
    }
    emit(reinterpret_cast<Instr>(msg));
  }
#else  // def __arm__
  if (cond != al) {
    Label skip;
    b(&skip, NegateCondition(cond));
    bkpt(0);
    bind(&skip);
  } else {
    bkpt(0);
  }
#endif  // def __arm__
}


void Assembler::bkpt(uint32_t imm16) {  // v5 and above
  ASSERT(is_uint16(imm16));
  emit(al | B24 | B21 | (imm16 >> 4)*B8 | BKPT | (imm16 & 0xf));
}


void Assembler::svc(uint32_t imm24, Condition cond) {
  ASSERT(is_uint24(imm24));
  emit(cond | 15*B24 | imm24);
}


// Coprocessor instructions.
void Assembler::cdp(Coprocessor coproc,
                    int opcode_1,
                    CRegister crd,
                    CRegister crn,
                    CRegister crm,
                    int opcode_2,
                    Condition cond) {
  ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2));
  emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 |
       crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code());
}


void Assembler::cdp2(Coprocessor coproc,
                     int opcode_1,
                     CRegister crd,
                     CRegister crn,
                     CRegister crm,
                     int opcode_2) {  // v5 and above
  cdp(coproc, opcode_1, crd, crn, crm, opcode_2, kSpecialCondition);
}


void Assembler::mcr(Coprocessor coproc,
                    int opcode_1,
                    Register rd,
                    CRegister crn,
                    CRegister crm,
                    int opcode_2,
                    Condition cond) {
  ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
  emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 |
       rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
}


void Assembler::mcr2(Coprocessor coproc,
                     int opcode_1,
                     Register rd,
                     CRegister crn,
                     CRegister crm,
                     int opcode_2) {  // v5 and above
  mcr(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
}


void Assembler::mrc(Coprocessor coproc,
                    int opcode_1,
                    Register rd,
                    CRegister crn,
                    CRegister crm,
                    int opcode_2,
                    Condition cond) {
  ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
  emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 |
       rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
}


void Assembler::mrc2(Coprocessor coproc,
                     int opcode_1,
                     Register rd,
                     CRegister crn,
                     CRegister crm,
                     int opcode_2) {  // v5 and above
  mrc(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
}


void Assembler::ldc(Coprocessor coproc,
                    CRegister crd,
                    const MemOperand& src,
                    LFlag l,
                    Condition cond) {
  addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src);
}


void Assembler::ldc(Coprocessor coproc,
                    CRegister crd,
                    Register rn,
                    int option,
                    LFlag l,
                    Condition cond) {
  // Unindexed addressing.
  ASSERT(is_uint8(option));
  emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 |
       coproc*B8 | (option & 255));
}


void Assembler::ldc2(Coprocessor coproc,
                     CRegister crd,
                     const MemOperand& src,
                     LFlag l) {  // v5 and above
  ldc(coproc, crd, src, l, kSpecialCondition);
}


void Assembler::ldc2(Coprocessor coproc,
                     CRegister crd,
                     Register rn,
                     int option,
                     LFlag l) {  // v5 and above
  ldc(coproc, crd, rn, option, l, kSpecialCondition);
}


// Support for VFP.

void Assembler::vldr(const DwVfpRegister dst,
                     const Register base,
                     int offset,
                     const Condition cond) {
  // Ddst = MEM(Rbase + offset).
  // Instruction details available in ARM DDI 0406C.b, A8-924.
  // cond(31-28) | 1101(27-24)| U(23) | D(22) | 01(21-20) | Rbase(19-16) |
  // Vd(15-12) | 1011(11-8) | offset
  int u = 1;
  if (offset < 0) {
    offset = -offset;
    u = 0;
  }
  int vd, d;
  dst.split_code(&vd, &d);

  ASSERT(offset >= 0);
  if ((offset % 4) == 0 && (offset / 4) < 256) {
    emit(cond | 0xD*B24 | u*B23 | d*B22 | B20 | base.code()*B16 | vd*B12 |
         0xB*B8 | ((offset / 4) & 255));
  } else {
    // Larger offsets must be handled by computing the correct address
    // in the ip register.
    ASSERT(!base.is(ip));
    if (u == 1) {
      add(ip, base, Operand(offset));
    } else {
      sub(ip, base, Operand(offset));
    }
    emit(cond | 0xD*B24 | d*B22 | B20 | ip.code()*B16 | vd*B12 | 0xB*B8);
  }
}


void Assembler::vldr(const DwVfpRegister dst,
                     const MemOperand& operand,
                     const Condition cond) {
  ASSERT(!operand.rm().is_valid());
  ASSERT(operand.am_ == Offset);
  vldr(dst, operand.rn(), operand.offset(), cond);
}


void Assembler::vldr(const SwVfpRegister dst,
                     const Register base,
                     int offset,
                     const Condition cond) {
  // Sdst = MEM(Rbase + offset).
  // Instruction details available in ARM DDI 0406A, A8-628.
  // cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) |
  // Vdst(15-12) | 1010(11-8) | offset
  int u = 1;
  if (offset < 0) {
    offset = -offset;
    u = 0;
  }
  int sd, d;
  dst.split_code(&sd, &d);
  ASSERT(offset >= 0);

  if ((offset % 4) == 0 && (offset / 4) < 256) {
  emit(cond | u*B23 | d*B22 | 0xD1*B20 | base.code()*B16 | sd*B12 |
       0xA*B8 | ((offset / 4) & 255));
  } else {
    // Larger offsets must be handled by computing the correct address
    // in the ip register.
    ASSERT(!base.is(ip));
    if (u == 1) {
      add(ip, base, Operand(offset));
    } else {
      sub(ip, base, Operand(offset));
    }
    emit(cond | d*B22 | 0xD1*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
  }
}


void Assembler::vldr(const SwVfpRegister dst,
                     const MemOperand& operand,
                     const Condition cond) {
  ASSERT(!operand.rm().is_valid());
  ASSERT(operand.am_ == Offset);
  vldr(dst, operand.rn(), operand.offset(), cond);
}


void Assembler::vstr(const DwVfpRegister src,
                     const Register base,
                     int offset,
                     const Condition cond) {
  // MEM(Rbase + offset) = Dsrc.
  // Instruction details available in ARM DDI 0406C.b, A8-1082.
  // cond(31-28) | 1101(27-24)| U(23) | D(22) | 00(21-20) | Rbase(19-16) |
  // Vd(15-12) | 1011(11-8) | (offset/4)
  int u = 1;
  if (offset < 0) {
    offset = -offset;
    u = 0;
  }
  ASSERT(offset >= 0);
  int vd, d;
  src.split_code(&vd, &d);

  if ((offset % 4) == 0 && (offset / 4) < 256) {
    emit(cond | 0xD*B24 | u*B23 | d*B22 | base.code()*B16 | vd*B12 | 0xB*B8 |
         ((offset / 4) & 255));
  } else {
    // Larger offsets must be handled by computing the correct address
    // in the ip register.
    ASSERT(!base.is(ip));
    if (u == 1) {
      add(ip, base, Operand(offset));
    } else {
      sub(ip, base, Operand(offset));
    }
    emit(cond | 0xD*B24 | d*B22 | ip.code()*B16 | vd*B12 | 0xB*B8);
  }
}


void Assembler::vstr(const DwVfpRegister src,
                     const MemOperand& operand,
                     const Condition cond) {
  ASSERT(!operand.rm().is_valid());
  ASSERT(operand.am_ == Offset);
  vstr(src, operand.rn(), operand.offset(), cond);
}


void Assembler::vstr(const SwVfpRegister src,
                     const Register base,
                     int offset,
                     const Condition cond) {
  // MEM(Rbase + offset) = SSrc.
  // Instruction details available in ARM DDI 0406A, A8-786.
  // cond(31-28) | 1101(27-24)| U000(23-20) | Rbase(19-16) |
  // Vdst(15-12) | 1010(11-8) | (offset/4)
  int u = 1;
  if (offset < 0) {
    offset = -offset;
    u = 0;
  }
  int sd, d;
  src.split_code(&sd, &d);
  ASSERT(offset >= 0);
  if ((offset % 4) == 0 && (offset / 4) < 256) {
    emit(cond | u*B23 | d*B22 | 0xD0*B20 | base.code()*B16 | sd*B12 |
         0xA*B8 | ((offset / 4) & 255));
  } else {
    // Larger offsets must be handled by computing the correct address
    // in the ip register.
    ASSERT(!base.is(ip));
    if (u == 1) {
      add(ip, base, Operand(offset));
    } else {
      sub(ip, base, Operand(offset));
    }
    emit(cond | d*B22 | 0xD0*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
  }
}


void Assembler::vstr(const SwVfpRegister src,
                     const MemOperand& operand,
                     const Condition cond) {
  ASSERT(!operand.rm().is_valid());
  ASSERT(operand.am_ == Offset);
  vstr(src, operand.rn(), operand.offset(), cond);
}


void  Assembler::vldm(BlockAddrMode am,
                      Register base,
                      DwVfpRegister first,
                      DwVfpRegister last,
                      Condition cond) {
  // Instruction details available in ARM DDI 0406C.b, A8-922.
  // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
  // first(15-12) | 1011(11-8) | (count * 2)
  ASSERT_LE(first.code(), last.code());
  ASSERT(am == ia || am == ia_w || am == db_w);
  ASSERT(!base.is(pc));

  int sd, d;
  first.split_code(&sd, &d);
  int count = last.code() - first.code() + 1;
  ASSERT(count <= 16);
  emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
       0xB*B8 | count*2);
}


void  Assembler::vstm(BlockAddrMode am,
                      Register base,
                      DwVfpRegister first,
                      DwVfpRegister last,
                      Condition cond) {
  // Instruction details available in ARM DDI 0406C.b, A8-1080.
  // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
  // first(15-12) | 1011(11-8) | (count * 2)
  ASSERT_LE(first.code(), last.code());
  ASSERT(am == ia || am == ia_w || am == db_w);
  ASSERT(!base.is(pc));

  int sd, d;
  first.split_code(&sd, &d);
  int count = last.code() - first.code() + 1;
  ASSERT(count <= 16);
  emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
       0xB*B8 | count*2);
}

void  Assembler::vldm(BlockAddrMode am,
                      Register base,
                      SwVfpRegister first,
                      SwVfpRegister last,
                      Condition cond) {
  // Instruction details available in ARM DDI 0406A, A8-626.
  // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
  // first(15-12) | 1010(11-8) | (count/2)
  ASSERT_LE(first.code(), last.code());
  ASSERT(am == ia || am == ia_w || am == db_w);
  ASSERT(!base.is(pc));

  int sd, d;
  first.split_code(&sd, &d);
  int count = last.code() - first.code() + 1;
  emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
       0xA*B8 | count);
}


void  Assembler::vstm(BlockAddrMode am,
                      Register base,
                      SwVfpRegister first,
                      SwVfpRegister last,
                      Condition cond) {
  // Instruction details available in ARM DDI 0406A, A8-784.
  // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
  // first(15-12) | 1011(11-8) | (count/2)
  ASSERT_LE(first.code(), last.code());
  ASSERT(am == ia || am == ia_w || am == db_w);
  ASSERT(!base.is(pc));

  int sd, d;
  first.split_code(&sd, &d);
  int count = last.code() - first.code() + 1;
  emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
       0xA*B8 | count);
}


static void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) {
  uint64_t i;
  OS::MemCopy(&i, &d, 8);

  *lo = i & 0xffffffff;
  *hi = i >> 32;
}


// Only works for little endian floating point formats.
// We don't support VFP on the mixed endian floating point platform.
static bool FitsVMOVDoubleImmediate(double d, uint32_t *encoding) {
  ASSERT(CpuFeatures::IsSupported(VFP3));

  // VMOV can accept an immediate of the form:
  //
  //  +/- m * 2^(-n) where 16 <= m <= 31 and 0 <= n <= 7
  //
  // The immediate is encoded using an 8-bit quantity, comprised of two
  // 4-bit fields. For an 8-bit immediate of the form:
  //
  //  [abcdefgh]
  //
  // where a is the MSB and h is the LSB, an immediate 64-bit double can be
  // created of the form:
  //
  //  [aBbbbbbb,bbcdefgh,00000000,00000000,
  //      00000000,00000000,00000000,00000000]
  //
  // where B = ~b.
  //

  uint32_t lo, hi;
  DoubleAsTwoUInt32(d, &lo, &hi);

  // The most obvious constraint is the long block of zeroes.
  if ((lo != 0) || ((hi & 0xffff) != 0)) {
    return false;
  }

  // Bits 62:55 must be all clear or all set.
  if (((hi & 0x3fc00000) != 0) && ((hi & 0x3fc00000) != 0x3fc00000)) {
    return false;
  }

  // Bit 63 must be NOT bit 62.
  if (((hi ^ (hi << 1)) & (0x40000000)) == 0) {
    return false;
  }

  // Create the encoded immediate in the form:
  //  [00000000,0000abcd,00000000,0000efgh]
  *encoding  = (hi >> 16) & 0xf;      // Low nybble.
  *encoding |= (hi >> 4) & 0x70000;   // Low three bits of the high nybble.
  *encoding |= (hi >> 12) & 0x80000;  // Top bit of the high nybble.

  return true;
}


void Assembler::vmov(const DwVfpRegister dst,
                     double imm,
                     const Register scratch) {
  uint32_t enc;
  if (CpuFeatures::IsSupported(VFP3) && FitsVMOVDoubleImmediate(imm, &enc)) {
    // The double can be encoded in the instruction.
    //
    // Dd = immediate
    // Instruction details available in ARM DDI 0406C.b, A8-936.
    // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | imm4H(19-16) |
    // Vd(15-12) | 101(11-9) | sz=1(8) | imm4L(3-0)
    int vd, d;
    dst.split_code(&vd, &d);
    emit(al | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | enc);
  } else if (FLAG_enable_vldr_imm) {
    // TODO(jfb) Temporarily turned off until we have constant blinding or
    //           some equivalent mitigation: an attacker can otherwise control
    //           generated data which also happens to be executable, a Very Bad
    //           Thing indeed.
    //           Blinding gets tricky because we don't have xor, we probably
    //           need to add/subtract without losing precision, which requires a
    //           cookie value that Lithium is probably better positioned to
    //           choose.
    //           We could also add a few peepholes here like detecting 0.0 and
    //           -0.0 and doing a vmov from the sequestered d14, forcing denorms
    //           to zero (we set flush-to-zero), and normalizing NaN values.
    //           We could also detect redundant values.
    //           The code could also randomize the order of values, though
    //           that's tricky because vldr has a limited reach. Furthermore
    //           it breaks load locality.
    RecordRelocInfo(imm);
    vldr(dst, MemOperand(pc, 0));
  } else {
    // Synthesise the double from ARM immediates.
    uint32_t lo, hi;
    DoubleAsTwoUInt32(imm, &lo, &hi);

    if (scratch.is(no_reg)) {
      if (dst.code() < 16) {
        const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code());
        // Move the low part of the double into the lower of the corresponsing S
        // registers of D register dst.
        mov(ip, Operand(lo));
        vmov(loc.low(), ip);

        // Move the high part of the double into the higher of the
        // corresponsing S registers of D register dst.
        mov(ip, Operand(hi));
        vmov(loc.high(), ip);
      } else {
        // D16-D31 does not have S registers, so move the low and high parts
        // directly to the D register using vmov.32.
        // Note: This may be slower, so we only do this when we have to.
        mov(ip, Operand(lo));
        vmov(dst, VmovIndexLo, ip);
        mov(ip, Operand(hi));
        vmov(dst, VmovIndexHi, ip);
      }
    } else {
      // Move the low and high parts of the double to a D register in one
      // instruction.
      mov(ip, Operand(lo));
      mov(scratch, Operand(hi));
      vmov(dst, ip, scratch);
    }
  }
}


void Assembler::vmov(const SwVfpRegister dst,
                     const SwVfpRegister src,
                     const Condition cond) {
  // Sd = Sm
  // Instruction details available in ARM DDI 0406B, A8-642.
  int sd, d, sm, m;
  dst.split_code(&sd, &d);
  src.split_code(&sm, &m);
  emit(cond | 0xE*B24 | d*B22 | 0xB*B20 | sd*B12 | 0xA*B8 | B6 | m*B5 | sm);
}


void Assembler::vmov(const DwVfpRegister dst,
                     const DwVfpRegister src,
                     const Condition cond) {
  // Dd = Dm
  // Instruction details available in ARM DDI 0406C.b, A8-938.
  // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) |
  // 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
  int vd, d;
  dst.split_code(&vd, &d);
  int vm, m;
  src.split_code(&vm, &m);
  emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | B6 | m*B5 |
       vm);
}


void Assembler::vmov(const DwVfpRegister dst,
                     const VmovIndex index,
                     const Register src,
                     const Condition cond) {
  // Dd[index] = Rt
  // Instruction details available in ARM DDI 0406C.b, A8-940.
  // cond(31-28) | 1110(27-24) | 0(23) | opc1=0index(22-21) | 0(20) |
  // Vd(19-16) | Rt(15-12) | 1011(11-8) | D(7) | opc2=00(6-5) | 1(4) | 0000(3-0)
  ASSERT(index.index == 0 || index.index == 1);
  int vd, d;
  dst.split_code(&vd, &d);
  emit(cond | 0xE*B24 | index.index*B21 | vd*B16 | src.code()*B12 | 0xB*B8 |
       d*B7 | B4);
}


void Assembler::vmov(const Register dst,
                     const VmovIndex index,
                     const DwVfpRegister src,
                     const Condition cond) {
  // Dd[index] = Rt
  // Instruction details available in ARM DDI 0406C.b, A8.8.342.
  // cond(31-28) | 1110(27-24) | U=0(23) | opc1=0index(22-21) | 1(20) |
  // Vn(19-16) | Rt(15-12) | 1011(11-8) | N(7) | opc2=00(6-5) | 1(4) | 0000(3-0)
  ASSERT(index.index == 0 || index.index == 1);
  int vn, n;
  src.split_code(&vn, &n);
  emit(cond | 0xE*B24 | index.index*B21 | B20 | vn*B16 | dst.code()*B12 |
       0xB*B8 | n*B7 | B4);
}


void Assembler::vmov(const DwVfpRegister dst,
                     const Register src1,
                     const Register src2,
                     const Condition cond) {
  // Dm = <Rt,Rt2>.
  // Instruction details available in ARM DDI 0406C.b, A8-948.
  // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) |
  // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
  ASSERT(!src1.is(pc) && !src2.is(pc));
  int vm, m;
  dst.split_code(&vm, &m);
  emit(cond | 0xC*B24 | B22 | src2.code()*B16 |
       src1.code()*B12 | 0xB*B8 | m*B5 | B4 | vm);
}


void Assembler::vmov(const Register dst1,
                     const Register dst2,
                     const DwVfpRegister src,
                     const Condition cond) {
  // <Rt,Rt2> = Dm.
  // Instruction details available in ARM DDI 0406C.b, A8-948.
  // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) |
  // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
  ASSERT(!dst1.is(pc) && !dst2.is(pc));
  int vm, m;
  src.split_code(&vm, &m);
  emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 |
       dst1.code()*B12 | 0xB*B8 | m*B5 | B4 | vm);
}


void Assembler::vmov(const SwVfpRegister dst,
                     const Register src,
                     const Condition cond) {
  // Sn = Rt.
  // Instruction details available in ARM DDI 0406A, A8-642.
  // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) |
  // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
  ASSERT(!src.is(pc));
  int sn, n;
  dst.split_code(&sn, &n);
  emit(cond | 0xE*B24 | sn*B16 | src.code()*B12 | 0xA*B8 | n*B7 | B4);
}


void Assembler::vmov(const Register dst,
                     const SwVfpRegister src,
                     const Condition cond) {
  // Rt = Sn.
  // Instruction details available in ARM DDI 0406A, A8-642.
  // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) |
  // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
  ASSERT(!dst.is(pc));
  int sn, n;
  src.split_code(&sn, &n);
  emit(cond | 0xE*B24 | B20 | sn*B16 | dst.code()*B12 | 0xA*B8 | n*B7 | B4);
}


// Type of data to read from or write to VFP register.
// Used as specifier in generic vcvt instruction.
enum VFPType { S32, U32, F32, F64 };


static bool IsSignedVFPType(VFPType type) {
  switch (type) {
    case S32:
      return true;
    case U32:
      return false;
    default:
      UNREACHABLE();
      return false;
  }
}


static bool IsIntegerVFPType(VFPType type) {
  switch (type) {
    case S32:
    case U32:
      return true;
    case F32:
    case F64:
      return false;
    default:
      UNREACHABLE();
      return false;
  }
}


static bool IsDoubleVFPType(VFPType type) {
  switch (type) {
    case F32:
      return false;
    case F64:
      return true;
    default:
      UNREACHABLE();
      return false;
  }
}


// Split five bit reg_code based on size of reg_type.
//  32-bit register codes are Vm:M
//  64-bit register codes are M:Vm
// where Vm is four bits, and M is a single bit.
static void SplitRegCode(VFPType reg_type,
                         int reg_code,
                         int* vm,
                         int* m) {
  ASSERT((reg_code >= 0) && (reg_code <= 31));
  if (IsIntegerVFPType(reg_type) || !IsDoubleVFPType(reg_type)) {
    // 32 bit type.
    *m  = reg_code & 0x1;
    *vm = reg_code >> 1;
  } else {
    // 64 bit type.
    *m  = (reg_code & 0x10) >> 4;
    *vm = reg_code & 0x0F;
  }
}


// Encode vcvt.src_type.dst_type instruction.
static Instr EncodeVCVT(const VFPType dst_type,
                        const int dst_code,
                        const VFPType src_type,
                        const int src_code,
                        VFPConversionMode mode,
                        const Condition cond) {
  ASSERT(src_type != dst_type);
  int D, Vd, M, Vm;
  SplitRegCode(src_type, src_code, &Vm, &M);
  SplitRegCode(dst_type, dst_code, &Vd, &D);

  if (IsIntegerVFPType(dst_type) || IsIntegerVFPType(src_type)) {
    // Conversion between IEEE floating point and 32-bit integer.
    // Instruction details available in ARM DDI 0406B, A8.6.295.
    // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 1(19) | opc2(18-16) |
    // Vd(15-12) | 101(11-9) | sz(8) | op(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
    ASSERT(!IsIntegerVFPType(dst_type) || !IsIntegerVFPType(src_type));

    int sz, opc2, op;

    if (IsIntegerVFPType(dst_type)) {
      opc2 = IsSignedVFPType(dst_type) ? 0x5 : 0x4;
      sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
      op = mode;
    } else {
      ASSERT(IsIntegerVFPType(src_type));
      opc2 = 0x0;
      sz = IsDoubleVFPType(dst_type) ? 0x1 : 0x0;
      op = IsSignedVFPType(src_type) ? 0x1 : 0x0;
    }

    return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | B19 | opc2*B16 |
            Vd*B12 | 0x5*B9 | sz*B8 | op*B7 | B6 | M*B5 | Vm);
  } else {
    // Conversion between IEEE double and single precision.
    // Instruction details available in ARM DDI 0406B, A8.6.298.
    // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0111(19-16) |
    // Vd(15-12) | 101(11-9) | sz(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
    int sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
    return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | 0x7*B16 |
            Vd*B12 | 0x5*B9 | sz*B8 | B7 | B6 | M*B5 | Vm);
  }
}


void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
                             const SwVfpRegister src,
                             VFPConversionMode mode,
                             const Condition cond) {
  emit(EncodeVCVT(F64, dst.code(), S32, src.code(), mode, cond));
}


void Assembler::vcvt_f32_s32(const SwVfpRegister dst,
                             const SwVfpRegister src,
                             VFPConversionMode mode,
                             const Condition cond) {
  emit(EncodeVCVT(F32, dst.code(), S32, src.code(), mode, cond));
}


void Assembler::vcvt_f64_u32(const DwVfpRegister dst,
                             const SwVfpRegister src,
                             VFPConversionMode mode,
                             const Condition cond) {
  emit(EncodeVCVT(F64, dst.code(), U32, src.code(), mode, cond));
}


void Assembler::vcvt_s32_f64(const SwVfpRegister dst,
                             const DwVfpRegister src,
                             VFPConversionMode mode,
                             const Condition cond) {
  emit(EncodeVCVT(S32, dst.code(), F64, src.code(), mode, cond));
}


void Assembler::vcvt_u32_f64(const SwVfpRegister dst,
                             const DwVfpRegister src,
                             VFPConversionMode mode,
                             const Condition cond) {
  emit(EncodeVCVT(U32, dst.code(), F64, src.code(), mode, cond));
}


void Assembler::vcvt_f64_f32(const DwVfpRegister dst,
                             const SwVfpRegister src,
                             VFPConversionMode mode,
                             const Condition cond) {
  emit(EncodeVCVT(F64, dst.code(), F32, src.code(), mode, cond));
}


void Assembler::vcvt_f32_f64(const SwVfpRegister dst,
                             const DwVfpRegister src,
                             VFPConversionMode mode,
                             const Condition cond) {
  emit(EncodeVCVT(F32, dst.code(), F64, src.code(), mode, cond));
}


void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
                             int fraction_bits,
                             const Condition cond) {
  // Instruction details available in ARM DDI 0406C.b, A8-874.
  // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 1010(19-16) | Vd(15-12) |
  // 101(11-9) | sf=1(8) | sx=1(7) | 1(6) | i(5) | 0(4) | imm4(3-0)
  ASSERT(fraction_bits > 0 && fraction_bits <= 32);
  ASSERT(CpuFeatures::IsSupported(VFP3));
  int vd, d;
  dst.split_code(&vd, &d);
  int i = ((32 - fraction_bits) >> 4) & 1;
  int imm4 = (32 - fraction_bits) & 0xf;
  emit(cond | 0xE*B24 | B23 | d*B22 | 0x3*B20 | B19 | 0x2*B16 |
       vd*B12 | 0x5*B9 | B8 | B7 | B6 | i*B5 | imm4);
}


void Assembler::vneg(const DwVfpRegister dst,
                     const DwVfpRegister src,
                     const Condition cond) {
  // Instruction details available in ARM DDI 0406C.b, A8-968.
  // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0001(19-16) | Vd(15-12) |
  // 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
  int vd, d;
  dst.split_code(&vd, &d);
  int vm, m;
  src.split_code(&vm, &m);

  emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | B16 | vd*B12 | 0x5*B9 | B8 | B6 |
       m*B5 | vm);
}


void Assembler::vabs(const DwVfpRegister dst,
                     const DwVfpRegister src,
                     const Condition cond) {
  // Instruction details available in ARM DDI 0406C.b, A8-524.
  // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) |
  // 101(11-9) | sz=1(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
  int vd, d;
  dst.split_code(&vd, &d);
  int vm, m;
  src.split_code(&vm, &m);
  emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | B7 | B6 |
       m*B5 | vm);
}


void Assembler::vadd(const DwVfpRegister dst,
                     const DwVfpRegister src1,
                     const DwVfpRegister src2,
                     const Condition cond) {
  // Dd = vadd(Dn, Dm) double precision floating point addition.
  // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
  // Instruction details available in ARM DDI 0406C.b, A8-830.
  // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
  // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
  int vd, d;
  dst.split_code(&vd, &d);
  int vn, n;
  src1.split_code(&vn, &n);
  int vm, m;
  src2.split_code(&vm, &m);
  emit(cond | 0x1C*B23 | d*B22 | 0x3*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
       n*B7 | m*B5 | vm);
}


void Assembler::vsub(const DwVfpRegister dst,
                     const DwVfpRegister src1,
                     const DwVfpRegister src2,
                     const Condition cond) {
  // Dd = vsub(Dn, Dm) double precision floating point subtraction.
  // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
  // Instruction details available in ARM DDI 0406C.b, A8-1086.
  // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
  // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
  int vd, d;
  dst.split_code(&vd, &d);
  int vn, n;
  src1.split_code(&vn, &n);
  int vm, m;
  src2.split_code(&vm, &m);
  emit(cond | 0x1C*B23 | d*B22 | 0x3*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
       n*B7 | B6 | m*B5 | vm);
}


void Assembler::vmul(const DwVfpRegister dst,
                     const DwVfpRegister src1,
                     const DwVfpRegister src2,
                     const Condition cond) {
  // Dd = vmul(Dn, Dm) double precision floating point multiplication.
  // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
  // Instruction details available in ARM DDI 0406C.b, A8-960.
  // cond(31-28) | 11100(27-23)| D(22) | 10(21-20) | Vn(19-16) |
  // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
  int vd, d;
  dst.split_code(&vd, &d);
  int vn, n;
  src1.split_code(&vn, &n);
  int vm, m;
  src2.split_code(&vm, &m);
  emit(cond | 0x1C*B23 | d*B22 | 0x2*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
       n*B7 | m*B5 | vm);
}


void Assembler::vmla(const DwVfpRegister dst,
                     const DwVfpRegister src1,
                     const DwVfpRegister src2,
                     const Condition cond) {
  // Instruction details available in ARM DDI 0406C.b, A8-932.
  // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
  // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=0(6) | M(5) | 0(4) | Vm(3-0)
  int vd, d;
  dst.split_code(&vd, &d);
  int vn, n;
  src1.split_code(&vn, &n);
  int vm, m;
  src2.split_code(&vm, &m);
  emit(cond | 0x1C*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | m*B5 |
       vm);
}


void Assembler::vmls(const DwVfpRegister dst,
                     const DwVfpRegister src1,
                     const DwVfpRegister src2,
                     const Condition cond) {
  // Instruction details available in ARM DDI 0406C.b, A8-932.
  // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
  // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=1(6) | M(5) | 0(4) | Vm(3-0)
  int vd, d;
  dst.split_code(&vd, &d);
  int vn, n;
  src1.split_code(&vn, &n);
  int vm, m;
  src2.split_code(&vm, &m);
  emit(cond | 0x1C*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | B6 |
       m*B5 | vm);
}


void Assembler::vdiv(const DwVfpRegister dst,
                     const DwVfpRegister src1,
                     const DwVfpRegister src2,
                     const Condition cond) {
  // Dd = vdiv(Dn, Dm) double precision floating point division.
  // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
  // Instruction details available in ARM DDI 0406C.b, A8-882.
  // cond(31-28) | 11101(27-23)| D(22) | 00(21-20) | Vn(19-16) |
  // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
  int vd, d;
  dst.split_code(&vd, &d);
  int vn, n;
  src1.split_code(&vn, &n);
  int vm, m;
  src2.split_code(&vm, &m);
  emit(cond | 0x1D*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | m*B5 |
       vm);
}


void Assembler::vcmp(const DwVfpRegister src1,
                     const DwVfpRegister src2,
                     const Condition cond) {
  // vcmp(Dd, Dm) double precision floating point comparison.
  // Instruction details available in ARM DDI 0406C.b, A8-864.
  // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0100(19-16) |
  // Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
  int vd, d;
  src1.split_code(&vd, &d);
  int vm, m;
  src2.split_code(&vm, &m);
  emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | 0x4*B16 | vd*B12 | 0x5*B9 | B8 | B6 |
       m*B5 | vm);
}


void Assembler::vcmp(const DwVfpRegister src1,
                     const double src2,
                     const Condition cond) {
  // vcmp(Dd, #0.0) double precision floating point comparison.
  // Instruction details available in ARM DDI 0406C.b, A8-864.
  // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0101(19-16) |
  // Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | 0(5) | 0(4) | 0000(3-0)
  ASSERT(src2 == 0.0);
  int vd, d;
  src1.split_code(&vd, &d);
  emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | 0x5*B16 | vd*B12 | 0x5*B9 | B8 | B6);
}


void Assembler::vmsr(Register dst, Condition cond) {
  // Instruction details available in ARM DDI 0406A, A8-652.
  // cond(31-28) | 1110 (27-24) | 1110(23-20)| 0001 (19-16) |
  // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
  emit(cond | 0xE*B24 | 0xE*B20 |  B16 |
       dst.code()*B12 | 0xA*B8 | B4);
}


void Assembler::vmrs(Register dst, Condition cond) {
  // Instruction details available in ARM DDI 0406A, A8-652.
  // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) |
  // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
  emit(cond | 0xE*B24 | 0xF*B20 |  B16 |
       dst.code()*B12 | 0xA*B8 | B4);
}


void Assembler::vsqrt(const DwVfpRegister dst,
                      const DwVfpRegister src,
                      const Condition cond) {
  // Instruction details available in ARM DDI 0406C.b, A8-1058.
  // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0001(19-16) |
  // Vd(15-12) | 101(11-9) | sz=1(8) | 11(7-6) | M(5) | 0(4) | Vm(3-0)
  int vd, d;
  dst.split_code(&vd, &d);
  int vm, m;
  src.split_code(&vm, &m);
  emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | B16 | vd*B12 | 0x5*B9 | B8 | 0x3*B6 |
       m*B5 | vm);
}


// Support for NEON.

void Assembler::vld1(NeonSize size,
                     const NeonListOperand& dst,
                     const NeonMemOperand& src) {
  // Instruction details available in ARM DDI 0406C.b, A8.8.320.
  // 1111(31-28) | 01000(27-23) | D(22) | 10(21-20) | Rn(19-16) |
  // Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0)
  ASSERT(CpuFeatures::IsSupported(NEON));
  int vd, d;
  dst.base().split_code(&vd, &d);
  emit(0xFU*B28 | 4*B24 | d*B22 | 2*B20 | src.rn().code()*B16 | vd*B12 |
       dst.type()*B8 | size*B6 | src.align()*B4 | src.rm().code());
}


void Assembler::vst1(NeonSize size,
                     const NeonListOperand& src,
                     const NeonMemOperand& dst) {
  // Instruction details available in ARM DDI 0406C.b, A8.8.404.
  // 1111(31-28) | 01000(27-23) | D(22) | 00(21-20) | Rn(19-16) |
  // Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0)
  ASSERT(CpuFeatures::IsSupported(NEON));
  int vd, d;
  src.base().split_code(&vd, &d);
  emit(0xFU*B28 | 4*B24 | d*B22 | dst.rn().code()*B16 | vd*B12 | src.type()*B8 |
       size*B6 | dst.align()*B4 | dst.rm().code());
}


void Assembler::vmovl(NeonDataType dt, QwNeonRegister dst, DwVfpRegister src) {
  // Instruction details available in ARM DDI 0406C.b, A8.8.346.
  // 1111(31-28) | 001(27-25) | U(24) | 1(23) | D(22) | imm3(21-19) |
  // 000(18-16) | Vd(15-12) | 101000(11-6) | M(5) | 1(4) | Vm(3-0)
  ASSERT(CpuFeatures::IsSupported(NEON));
  int vd, d;
  dst.split_code(&vd, &d);
  int vm, m;
  src.split_code(&vm, &m);
  emit(0xFU*B28 | B25 | (dt & NeonDataTypeUMask) | B23 | d*B22 |
        (dt & NeonDataTypeSizeMask)*B19 | vd*B12 | 0xA*B8 | m*B5 | B4 | vm);
}


// Pseudo instructions.
void Assembler::nop(int type) {
  // ARMv6{K/T2} and v7 have an actual NOP instruction but it serializes
  // some of the CPU's pipeline and has to issue. Older ARM chips simply used
  // MOV Rx, Rx as NOP and it performs better even in newer CPUs.
  // We therefore use MOV Rx, Rx, even on newer CPUs, and use Rx to encode
  // a type.
  ASSERT(0 <= type && type <= 14);  // mov pc, pc isn't a nop.
  emit(al | 13*B21 | type*B12 | type);
}


bool Assembler::IsMovT(Instr instr) {
  instr &= ~(((kNumberOfConditions - 1) << 28) |  // Mask off conditions
             ((kNumRegisters-1)*B12) |            // mask out register
             EncodeMovwImmediate(0xFFFF));        // mask out immediate value
  return instr == 0x34*B20;
}


bool Assembler::IsMovW(Instr instr) {
  instr &= ~(((kNumberOfConditions - 1) << 28) |  // Mask off conditions
             ((kNumRegisters-1)*B12) |            // mask out destination
             EncodeMovwImmediate(0xFFFF));        // mask out immediate value
  return instr == 0x30*B20;
}


bool Assembler::IsNop(Instr instr, int type) {
  ASSERT(0 <= type && type <= 14);  // mov pc, pc isn't a nop.
  // Check for mov rx, rx where x = type.
  return instr == (al | 13*B21 | type*B12 | type);
}


bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) {
  uint32_t dummy1;
  uint32_t dummy2;
  return fits_shifter(imm32, &dummy1, &dummy2, NULL);
}


// Debugging.
void Assembler::RecordJSReturn() {
  positions_recorder()->WriteRecordedPositions();
  CheckBuffer();
  RecordRelocInfo(RelocInfo::JS_RETURN);
}


void Assembler::RecordDebugBreakSlot() {
  positions_recorder()->WriteRecordedPositions();
  CheckBuffer();
  RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT);
}


void Assembler::RecordComment(const char* msg) {
  if (FLAG_code_comments) {
    CheckBuffer();
    RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
  }
}


void Assembler::RecordConstPool(int size) {
  // We only need this for debugger support, to correctly compute offsets in the
  // code.
#ifdef ENABLE_DEBUGGER_SUPPORT
  RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size));
#endif
}


void Assembler::GrowBuffer() {
  if (!own_buffer_) FATAL("external code buffer is too small");

  // Compute new buffer size.
  CodeDesc desc;  // the new buffer
  if (buffer_size_ < 4*KB) {
    desc.buffer_size = 4*KB;
  } else if (buffer_size_ < 1*MB) {
    desc.buffer_size = 2*buffer_size_;
  } else {
    desc.buffer_size = buffer_size_ + 1*MB;
  }
  CHECK_GT(desc.buffer_size, 0);  // no overflow

  // Set up new buffer.
  desc.buffer = NewArray<byte>(desc.buffer_size);

  desc.instr_size = pc_offset();
  desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();

  // Copy the data.
  int pc_delta = desc.buffer - buffer_;
  int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
  OS::MemMove(desc.buffer, buffer_, desc.instr_size);
  OS::MemMove(reloc_info_writer.pos() + rc_delta,
              reloc_info_writer.pos(), desc.reloc_size);

  // Switch buffers.
  DeleteArray(buffer_);
  buffer_ = desc.buffer;
  buffer_size_ = desc.buffer_size;
  pc_ += pc_delta;
  reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
                               reloc_info_writer.last_pc() + pc_delta);

  // None of our relocation types are pc relative pointing outside the code
  // buffer nor pc absolute pointing inside the code buffer, so there is no need
  // to relocate any emitted relocation entries.

  // Relocate pending relocation entries.
  for (int i = 0; i < num_pending_reloc_info_; i++) {
    RelocInfo& rinfo = pending_reloc_info_[i];
    ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
           rinfo.rmode() != RelocInfo::POSITION);
    if (rinfo.rmode() != RelocInfo::JS_RETURN) {
      rinfo.set_pc(rinfo.pc() + pc_delta);
    }
  }
}


void Assembler::db(uint8_t data) {
  // No relocation info should be pending while using db. db is used
  // to write pure data with no pointers and the constant pool should
  // be emitted before using db.
  ASSERT(num_pending_reloc_info_ == 0);
  ASSERT(num_pending_64_bit_reloc_info_ == 0);
  CheckBuffer();
  *reinterpret_cast<uint8_t*>(pc_) = data;
  pc_ += sizeof(uint8_t);
}


void Assembler::dd(uint32_t data) {
  // No relocation info should be pending while using dd. dd is used
  // to write pure data with no pointers and the constant pool should
  // be emitted before using dd.
  ASSERT(num_pending_reloc_info_ == 0);
  ASSERT(num_pending_64_bit_reloc_info_ == 0);
  CheckBuffer();
  *reinterpret_cast<uint32_t*>(pc_) = data;
  pc_ += sizeof(uint32_t);
}


void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data,
                                UseConstantPoolMode mode) {
  // We do not try to reuse pool constants.
  RelocInfo rinfo(pc_, rmode, data, NULL);
  if (((rmode >= RelocInfo::JS_RETURN) &&
       (rmode <= RelocInfo::DEBUG_BREAK_SLOT)) ||
      (rmode == RelocInfo::CONST_POOL) ||
      mode == DONT_USE_CONSTANT_POOL) {
    // Adjust code for new modes.
    ASSERT(RelocInfo::IsDebugBreakSlot(rmode)
           || RelocInfo::IsJSReturn(rmode)
           || RelocInfo::IsComment(rmode)
           || RelocInfo::IsPosition(rmode)
           || RelocInfo::IsConstPool(rmode)
           || mode == DONT_USE_CONSTANT_POOL);
    // These modes do not need an entry in the constant pool.
  } else {
    RecordRelocInfoConstantPoolEntryHelper(rinfo);
  }
  if (!RelocInfo::IsNone(rinfo.rmode())) {
    // Don't record external references unless the heap will be serialized.
    if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
#ifdef DEBUG
      if (!Serializer::enabled()) {
        Serializer::TooLateToEnableNow();
      }
#endif
      if (!Serializer::enabled() && !emit_debug_code()) {
        return;
      }
    }
    ASSERT(buffer_space() >= kMaxRelocSize);  // too late to grow buffer here
    if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
      RelocInfo reloc_info_with_ast_id(pc_,
                                       rmode,
                                       RecordedAstId().ToInt(),
                                       NULL);
      ClearRecordedAstId();
      reloc_info_writer.Write(&reloc_info_with_ast_id);
    } else {
      reloc_info_writer.Write(&rinfo);
    }
  }
}


void Assembler::RecordRelocInfo(double data) {
  // We do not try to reuse pool constants.
  RelocInfo rinfo(pc_, data);
  RecordRelocInfoConstantPoolEntryHelper(rinfo);
}


void Assembler::RecordRelocInfoConstantPoolEntryHelper(const RelocInfo& rinfo) {
  ASSERT(num_pending_reloc_info_ < kMaxNumPendingRelocInfo);
  if (num_pending_reloc_info_ == 0) {
    first_const_pool_use_ = pc_offset();
  }
  pending_reloc_info_[num_pending_reloc_info_++] = rinfo;
  if (rinfo.rmode() == RelocInfo::NONE64) {
    ++num_pending_64_bit_reloc_info_;
  }
  ASSERT(num_pending_64_bit_reloc_info_ <= num_pending_reloc_info_);
  // Make sure the constant pool is not emitted in place of the next
  // instruction for which we just recorded relocation info.
  BlockConstPoolFor(1);
}


void Assembler::BlockConstPoolFor(int instructions) {
  int pc_limit = pc_offset() + instructions * kInstrSize;
  if (no_const_pool_before_ < pc_limit) {
    // If there are some pending entries, the constant pool cannot be blocked
    // further than constant pool instruction's reach.
    ASSERT((num_pending_reloc_info_ == 0) ||
           (pc_limit - first_const_pool_use_ < kMaxDistToIntPool));
    // TODO(jfb) Also check 64-bit entries are in range (requires splitting
    //           them up from 32-bit entries).
    no_const_pool_before_ = pc_limit;
  }

  if (next_buffer_check_ < no_const_pool_before_) {
    next_buffer_check_ = no_const_pool_before_;
  }
}


void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
  // Some short sequence of instruction mustn't be broken up by constant pool
  // emission, such sequences are protected by calls to BlockConstPoolFor and
  // BlockConstPoolScope.
  if (is_const_pool_blocked()) {
    // Something is wrong if emission is forced and blocked at the same time.
    ASSERT(!force_emit);
    return;
  }

  // There is nothing to do if there are no pending constant pool entries.
  if (num_pending_reloc_info_ == 0)  {
    ASSERT(num_pending_64_bit_reloc_info_ == 0);
    // Calculate the offset of the next check.
    next_buffer_check_ = pc_offset() + kCheckPoolInterval;
    return;
  }

  // Check that the code buffer is large enough before emitting the constant
  // pool (include the jump over the pool and the constant pool marker and
  // the gap to the relocation information).
  // Note 64-bit values are wider, and the first one needs to be 64-bit aligned.
  int jump_instr = require_jump ? kInstrSize : 0;
  int size_up_to_marker = jump_instr + kInstrSize;
  int size_after_marker = num_pending_reloc_info_ * kPointerSize;
  bool has_fp_values = (num_pending_64_bit_reloc_info_ > 0);
  // 64-bit values must be 64-bit aligned.
  // We'll start emitting at PC: branch+marker, then 32-bit values, then
  // 64-bit values which might need to be aligned.
  bool require_64_bit_align = has_fp_values &&
      (((uintptr_t)pc_ + size_up_to_marker + size_after_marker) & 0x3);
  if (require_64_bit_align) {
    size_after_marker += kInstrSize;
  }
  // num_pending_reloc_info_ also contains 64-bit entries, the above code
  // therefore already counted half of the size for 64-bit entries. Add the
  // remaining size.
  STATIC_ASSERT(kPointerSize == kDoubleSize / 2);
  size_after_marker += num_pending_64_bit_reloc_info_ * (kDoubleSize / 2);

  int size = size_up_to_marker + size_after_marker;

  // We emit a constant pool when:
  //  * requested to do so by parameter force_emit (e.g. after each function).
  //  * the distance from the first instruction accessing the constant pool to
  //    any of the constant pool entries will exceed its limit the next
  //    time the pool is checked. This is overly restrictive, but we don't emit
  //    constant pool entries in-order so it's conservatively correct.
  //  * the instruction doesn't require a jump after itself to jump over the
  //    constant pool, and we're getting close to running out of range.
  if (!force_emit) {
    ASSERT((first_const_pool_use_ >= 0) && (num_pending_reloc_info_ > 0));
    int dist = pc_offset() + size - first_const_pool_use_;
    if (has_fp_values) {
      if ((dist < kMaxDistToFPPool - kCheckPoolInterval) &&
          (require_jump || (dist < kMaxDistToFPPool / 2))) {
        return;
      }
    } else {
      if ((dist < kMaxDistToIntPool - kCheckPoolInterval) &&
          (require_jump || (dist < kMaxDistToIntPool / 2))) {
        return;
      }
    }
  }

  int needed_space = size + kGap;
  while (buffer_space() <= needed_space) GrowBuffer();

  {
    // Block recursive calls to CheckConstPool.
    BlockConstPoolScope block_const_pool(this);
    RecordComment("[ Constant Pool");
    RecordConstPool(size);

    // Emit jump over constant pool if necessary.
    Label after_pool;
    if (require_jump) {
      b(&after_pool);
    }

    // Put down constant pool marker "Undefined instruction".
    // The data size helps disassembly know what to print.
    emit(kConstantPoolMarker |
         EncodeConstantPoolLength(size_after_marker / kPointerSize));

    if (require_64_bit_align) {
      emit(kConstantPoolMarker);
    }

    // Emit 64-bit constant pool entries first: their range is smaller than
    // 32-bit entries.
    for (int i = 0; i < num_pending_reloc_info_; i++) {
      RelocInfo& rinfo = pending_reloc_info_[i];

      if (rinfo.rmode() != RelocInfo::NONE64) {
        // 32-bit values emitted later.
        continue;
      }

      ASSERT(!((uintptr_t)pc_ & 0x3));  // Check 64-bit alignment.

      Instr instr = instr_at(rinfo.pc());
      // Instruction to patch must be 'vldr rd, [pc, #offset]' with offset == 0.
      ASSERT((IsVldrDPcImmediateOffset(instr) &&
              GetVldrDRegisterImmediateOffset(instr) == 0));

      int delta = pc_ - rinfo.pc() - kPcLoadDelta;
      ASSERT(is_uint10(delta));

      instr_at_put(rinfo.pc(), SetVldrDRegisterImmediateOffset(instr, delta));

      const double double_data = rinfo.data64();
      uint64_t uint_data = 0;
      OS::MemCopy(&uint_data, &double_data, sizeof(double_data));
      emit(uint_data & 0xFFFFFFFF);
      emit(uint_data >> 32);
    }

    // Emit 32-bit constant pool entries.
    for (int i = 0; i < num_pending_reloc_info_; i++) {
      RelocInfo& rinfo = pending_reloc_info_[i];
      ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
             rinfo.rmode() != RelocInfo::POSITION &&
             rinfo.rmode() != RelocInfo::STATEMENT_POSITION &&
             rinfo.rmode() != RelocInfo::CONST_POOL);

      if (rinfo.rmode() == RelocInfo::NONE64) {
        // 64-bit values emitted earlier.
        continue;
      }

      Instr instr = instr_at(rinfo.pc());

      // 64-bit loads shouldn't get here.
      ASSERT(!IsVldrDPcImmediateOffset(instr));

      int delta = pc_ - rinfo.pc() - kPcLoadDelta;
      // 0 is the smallest delta:
      //   ldr rd, [pc, #0]
      //   constant pool marker
      //   data

      if (IsLdrPcImmediateOffset(instr) &&
          GetLdrRegisterImmediateOffset(instr) == 0) {
        ASSERT(is_uint12(delta));
        instr_at_put(rinfo.pc(), SetLdrRegisterImmediateOffset(instr, delta));
        emit(rinfo.data());
      } else {
        ASSERT(IsMovW(instr));
        emit(rinfo.data());
      }
    }

    num_pending_reloc_info_ = 0;
    num_pending_64_bit_reloc_info_ = 0;
    first_const_pool_use_ = -1;

    RecordComment("]");

    if (after_pool.is_linked()) {
      bind(&after_pool);
    }
  }

  // Since a constant pool was just emitted, move the check offset forward by
  // the standard interval.
  next_buffer_check_ = pc_offset() + kCheckPoolInterval;
}


} }  // namespace v8::internal

#endif  // V8_TARGET_ARCH_ARM