1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
|
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been modified
// significantly by Google Inc.
// Copyright 2006-2008 the V8 project authors. All rights reserved.
#ifndef V8_ARM_ASSEMBLER_ARM_INL_H_
#define V8_ARM_ASSEMBLER_ARM_INL_H_
#include "arm/assembler-arm.h"
#include "cpu.h"
namespace v8 {
namespace internal {
Condition NegateCondition(Condition cc) {
ASSERT(cc != al);
return static_cast<Condition>(cc ^ ne);
}
void RelocInfo::apply(intptr_t delta) {
if (RelocInfo::IsInternalReference(rmode_)) {
// absolute code pointer inside code object moves with the code object.
int32_t* p = reinterpret_cast<int32_t*>(pc_);
*p += delta; // relocate entry
}
// We do not use pc relative addressing on ARM, so there is
// nothing else to do.
}
Address RelocInfo::target_address() {
ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
return Assembler::target_address_at(pc_);
}
Address RelocInfo::target_address_address() {
ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
return reinterpret_cast<Address>(Assembler::target_address_address_at(pc_));
}
void RelocInfo::set_target_address(Address target) {
ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
Assembler::set_target_address_at(pc_, target);
}
Object* RelocInfo::target_object() {
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
return Memory::Object_at(Assembler::target_address_address_at(pc_));
}
Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
return Memory::Object_Handle_at(Assembler::target_address_address_at(pc_));
}
Object** RelocInfo::target_object_address() {
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
return reinterpret_cast<Object**>(Assembler::target_address_address_at(pc_));
}
void RelocInfo::set_target_object(Object* target) {
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
Assembler::set_target_address_at(pc_, reinterpret_cast<Address>(target));
}
Address* RelocInfo::target_reference_address() {
ASSERT(rmode_ == EXTERNAL_REFERENCE);
return reinterpret_cast<Address*>(Assembler::target_address_address_at(pc_));
}
Address RelocInfo::call_address() {
ASSERT(IsPatchedReturnSequence());
// The 2 instructions offset assumes patched return sequence.
ASSERT(IsJSReturn(rmode()));
return Memory::Address_at(pc_ + 2 * Assembler::kInstrSize);
}
void RelocInfo::set_call_address(Address target) {
ASSERT(IsPatchedReturnSequence());
// The 2 instructions offset assumes patched return sequence.
ASSERT(IsJSReturn(rmode()));
Memory::Address_at(pc_ + 2 * Assembler::kInstrSize) = target;
}
Object* RelocInfo::call_object() {
return *call_object_address();
}
Object** RelocInfo::call_object_address() {
ASSERT(IsPatchedReturnSequence());
// The 2 instructions offset assumes patched return sequence.
ASSERT(IsJSReturn(rmode()));
return reinterpret_cast<Object**>(pc_ + 2 * Assembler::kInstrSize);
}
void RelocInfo::set_call_object(Object* target) {
*call_object_address() = target;
}
bool RelocInfo::IsPatchedReturnSequence() {
Instr current_instr = Assembler::instr_at(pc_);
Instr next_instr = Assembler::instr_at(pc_ + Assembler::kInstrSize);
#ifdef USE_BLX
// A patched return sequence is:
// ldr ip, [pc, #0]
// blx ip
return ((current_instr & kLdrPCMask) == kLdrPCPattern)
&& ((next_instr & kBlxRegMask) == kBlxRegPattern);
#else
// A patched return sequence is:
// mov lr, pc
// ldr pc, [pc, #-4]
return (current_instr == kMovLrPc)
&& ((next_instr & kLdrPCMask) == kLdrPCPattern);
#endif
}
Operand::Operand(int32_t immediate, RelocInfo::Mode rmode) {
rm_ = no_reg;
imm32_ = immediate;
rmode_ = rmode;
}
Operand::Operand(const ExternalReference& f) {
rm_ = no_reg;
imm32_ = reinterpret_cast<int32_t>(f.address());
rmode_ = RelocInfo::EXTERNAL_REFERENCE;
}
Operand::Operand(Smi* value) {
rm_ = no_reg;
imm32_ = reinterpret_cast<intptr_t>(value);
rmode_ = RelocInfo::NONE;
}
Operand::Operand(Register rm) {
rm_ = rm;
rs_ = no_reg;
shift_op_ = LSL;
shift_imm_ = 0;
}
bool Operand::is_reg() const {
return rm_.is_valid() &&
rs_.is(no_reg) &&
shift_op_ == LSL &&
shift_imm_ == 0;
}
void Assembler::CheckBuffer() {
if (buffer_space() <= kGap) {
GrowBuffer();
}
if (pc_offset() >= next_buffer_check_) {
CheckConstPool(false, true);
}
}
void Assembler::emit(Instr x) {
CheckBuffer();
*reinterpret_cast<Instr*>(pc_) = x;
pc_ += kInstrSize;
}
Address Assembler::target_address_address_at(Address pc) {
Address target_pc = pc;
Instr instr = Memory::int32_at(target_pc);
// If we have a bx instruction, the instruction before the bx is
// what we need to patch.
static const int32_t kBxInstMask = 0x0ffffff0;
static const int32_t kBxInstPattern = 0x012fff10;
if ((instr & kBxInstMask) == kBxInstPattern) {
target_pc -= kInstrSize;
instr = Memory::int32_at(target_pc);
}
#ifdef USE_BLX
// If we have a blx instruction, the instruction before it is
// what needs to be patched.
if ((instr & kBlxRegMask) == kBlxRegPattern) {
target_pc -= kInstrSize;
instr = Memory::int32_at(target_pc);
}
#endif
// Verify that the instruction to patch is a
// ldr<cond> <Rd>, [pc +/- offset_12].
ASSERT((instr & 0x0f7f0000) == 0x051f0000);
int offset = instr & 0xfff; // offset_12 is unsigned
if ((instr & (1 << 23)) == 0) offset = -offset; // U bit defines offset sign
// Verify that the constant pool comes after the instruction referencing it.
ASSERT(offset >= -4);
return target_pc + offset + 8;
}
Address Assembler::target_address_at(Address pc) {
return Memory::Address_at(target_address_address_at(pc));
}
void Assembler::set_target_at(Address constant_pool_entry,
Address target) {
Memory::Address_at(constant_pool_entry) = target;
}
void Assembler::set_target_address_at(Address pc, Address target) {
Memory::Address_at(target_address_address_at(pc)) = target;
// Intuitively, we would think it is necessary to flush the instruction cache
// after patching a target address in the code as follows:
// CPU::FlushICache(pc, sizeof(target));
// However, on ARM, no instruction was actually patched by the assignment
// above; the target address is not part of an instruction, it is patched in
// the constant pool and is read via a data access; the instruction accessing
// this address in the constant pool remains unchanged.
}
} } // namespace v8::internal
#endif // V8_ARM_ASSEMBLER_ARM_INL_H_
|