summaryrefslogtreecommitdiff
path: root/deps/v8/src/mips64/lithium-codegen-mips64.cc
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/mips64/lithium-codegen-mips64.cc')
-rw-r--r--deps/v8/src/mips64/lithium-codegen-mips64.cc5950
1 files changed, 5950 insertions, 0 deletions
diff --git a/deps/v8/src/mips64/lithium-codegen-mips64.cc b/deps/v8/src/mips64/lithium-codegen-mips64.cc
new file mode 100644
index 000000000..4d8d6afdf
--- /dev/null
+++ b/deps/v8/src/mips64/lithium-codegen-mips64.cc
@@ -0,0 +1,5950 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/code-stubs.h"
+#include "src/hydrogen-osr.h"
+#include "src/mips64/lithium-codegen-mips64.h"
+#include "src/mips64/lithium-gap-resolver-mips64.h"
+#include "src/stub-cache.h"
+
+namespace v8 {
+namespace internal {
+
+
+class SafepointGenerator V8_FINAL : public CallWrapper {
+ public:
+ SafepointGenerator(LCodeGen* codegen,
+ LPointerMap* pointers,
+ Safepoint::DeoptMode mode)
+ : codegen_(codegen),
+ pointers_(pointers),
+ deopt_mode_(mode) { }
+ virtual ~SafepointGenerator() {}
+
+ virtual void BeforeCall(int call_size) const V8_OVERRIDE {}
+
+ virtual void AfterCall() const V8_OVERRIDE {
+ codegen_->RecordSafepoint(pointers_, deopt_mode_);
+ }
+
+ private:
+ LCodeGen* codegen_;
+ LPointerMap* pointers_;
+ Safepoint::DeoptMode deopt_mode_;
+};
+
+
+#define __ masm()->
+
+bool LCodeGen::GenerateCode() {
+ LPhase phase("Z_Code generation", chunk());
+ DCHECK(is_unused());
+ status_ = GENERATING;
+
+ // Open a frame scope to indicate that there is a frame on the stack. The
+ // NONE indicates that the scope shouldn't actually generate code to set up
+ // the frame (that is done in GeneratePrologue).
+ FrameScope frame_scope(masm_, StackFrame::NONE);
+
+ return GeneratePrologue() &&
+ GenerateBody() &&
+ GenerateDeferredCode() &&
+ GenerateDeoptJumpTable() &&
+ GenerateSafepointTable();
+}
+
+
+void LCodeGen::FinishCode(Handle<Code> code) {
+ DCHECK(is_done());
+ code->set_stack_slots(GetStackSlotCount());
+ code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
+ if (code->is_optimized_code()) RegisterWeakObjectsInOptimizedCode(code);
+ PopulateDeoptimizationData(code);
+}
+
+
+void LCodeGen::SaveCallerDoubles() {
+ DCHECK(info()->saves_caller_doubles());
+ DCHECK(NeedsEagerFrame());
+ Comment(";;; Save clobbered callee double registers");
+ int count = 0;
+ BitVector* doubles = chunk()->allocated_double_registers();
+ BitVector::Iterator save_iterator(doubles);
+ while (!save_iterator.Done()) {
+ __ sdc1(DoubleRegister::FromAllocationIndex(save_iterator.Current()),
+ MemOperand(sp, count * kDoubleSize));
+ save_iterator.Advance();
+ count++;
+ }
+}
+
+
+void LCodeGen::RestoreCallerDoubles() {
+ DCHECK(info()->saves_caller_doubles());
+ DCHECK(NeedsEagerFrame());
+ Comment(";;; Restore clobbered callee double registers");
+ BitVector* doubles = chunk()->allocated_double_registers();
+ BitVector::Iterator save_iterator(doubles);
+ int count = 0;
+ while (!save_iterator.Done()) {
+ __ ldc1(DoubleRegister::FromAllocationIndex(save_iterator.Current()),
+ MemOperand(sp, count * kDoubleSize));
+ save_iterator.Advance();
+ count++;
+ }
+}
+
+
+bool LCodeGen::GeneratePrologue() {
+ DCHECK(is_generating());
+
+ if (info()->IsOptimizing()) {
+ ProfileEntryHookStub::MaybeCallEntryHook(masm_);
+
+#ifdef DEBUG
+ if (strlen(FLAG_stop_at) > 0 &&
+ info_->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
+ __ stop("stop_at");
+ }
+#endif
+
+ // a1: Callee's JS function.
+ // cp: Callee's context.
+ // fp: Caller's frame pointer.
+ // lr: Caller's pc.
+
+ // Sloppy mode functions and builtins need to replace the receiver with the
+ // global proxy when called as functions (without an explicit receiver
+ // object).
+ if (info_->this_has_uses() &&
+ info_->strict_mode() == SLOPPY &&
+ !info_->is_native()) {
+ Label ok;
+ int receiver_offset = info_->scope()->num_parameters() * kPointerSize;
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+ __ ld(a2, MemOperand(sp, receiver_offset));
+ __ Branch(&ok, ne, a2, Operand(at));
+
+ __ ld(a2, GlobalObjectOperand());
+ __ ld(a2, FieldMemOperand(a2, GlobalObject::kGlobalProxyOffset));
+
+ __ sd(a2, MemOperand(sp, receiver_offset));
+
+ __ bind(&ok);
+ }
+ }
+
+ info()->set_prologue_offset(masm_->pc_offset());
+ if (NeedsEagerFrame()) {
+ if (info()->IsStub()) {
+ __ StubPrologue();
+ } else {
+ __ Prologue(info()->IsCodePreAgingActive());
+ }
+ frame_is_built_ = true;
+ info_->AddNoFrameRange(0, masm_->pc_offset());
+ }
+
+ // Reserve space for the stack slots needed by the code.
+ int slots = GetStackSlotCount();
+ if (slots > 0) {
+ if (FLAG_debug_code) {
+ __ Dsubu(sp, sp, Operand(slots * kPointerSize));
+ __ Push(a0, a1);
+ __ Daddu(a0, sp, Operand(slots * kPointerSize));
+ __ li(a1, Operand(kSlotsZapValue));
+ Label loop;
+ __ bind(&loop);
+ __ Dsubu(a0, a0, Operand(kPointerSize));
+ __ sd(a1, MemOperand(a0, 2 * kPointerSize));
+ __ Branch(&loop, ne, a0, Operand(sp));
+ __ Pop(a0, a1);
+ } else {
+ __ Dsubu(sp, sp, Operand(slots * kPointerSize));
+ }
+ }
+
+ if (info()->saves_caller_doubles()) {
+ SaveCallerDoubles();
+ }
+
+ // Possibly allocate a local context.
+ int heap_slots = info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
+ if (heap_slots > 0) {
+ Comment(";;; Allocate local context");
+ bool need_write_barrier = true;
+ // Argument to NewContext is the function, which is in a1.
+ if (heap_slots <= FastNewContextStub::kMaximumSlots) {
+ FastNewContextStub stub(isolate(), heap_slots);
+ __ CallStub(&stub);
+ // Result of FastNewContextStub is always in new space.
+ need_write_barrier = false;
+ } else {
+ __ push(a1);
+ __ CallRuntime(Runtime::kNewFunctionContext, 1);
+ }
+ RecordSafepoint(Safepoint::kNoLazyDeopt);
+ // Context is returned in both v0. It replaces the context passed to us.
+ // It's saved in the stack and kept live in cp.
+ __ mov(cp, v0);
+ __ sd(v0, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ // Copy any necessary parameters into the context.
+ int num_parameters = scope()->num_parameters();
+ for (int i = 0; i < num_parameters; i++) {
+ Variable* var = scope()->parameter(i);
+ if (var->IsContextSlot()) {
+ int parameter_offset = StandardFrameConstants::kCallerSPOffset +
+ (num_parameters - 1 - i) * kPointerSize;
+ // Load parameter from stack.
+ __ ld(a0, MemOperand(fp, parameter_offset));
+ // Store it in the context.
+ MemOperand target = ContextOperand(cp, var->index());
+ __ sd(a0, target);
+ // Update the write barrier. This clobbers a3 and a0.
+ if (need_write_barrier) {
+ __ RecordWriteContextSlot(
+ cp, target.offset(), a0, a3, GetRAState(), kSaveFPRegs);
+ } else if (FLAG_debug_code) {
+ Label done;
+ __ JumpIfInNewSpace(cp, a0, &done);
+ __ Abort(kExpectedNewSpaceObject);
+ __ bind(&done);
+ }
+ }
+ }
+ Comment(";;; End allocate local context");
+ }
+
+ // Trace the call.
+ if (FLAG_trace && info()->IsOptimizing()) {
+ // We have not executed any compiled code yet, so cp still holds the
+ // incoming context.
+ __ CallRuntime(Runtime::kTraceEnter, 0);
+ }
+ return !is_aborted();
+}
+
+
+void LCodeGen::GenerateOsrPrologue() {
+ // Generate the OSR entry prologue at the first unknown OSR value, or if there
+ // are none, at the OSR entrypoint instruction.
+ if (osr_pc_offset_ >= 0) return;
+
+ osr_pc_offset_ = masm()->pc_offset();
+
+ // Adjust the frame size, subsuming the unoptimized frame into the
+ // optimized frame.
+ int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
+ DCHECK(slots >= 0);
+ __ Dsubu(sp, sp, Operand(slots * kPointerSize));
+}
+
+
+void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
+ if (instr->IsCall()) {
+ EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
+ }
+ if (!instr->IsLazyBailout() && !instr->IsGap()) {
+ safepoints_.BumpLastLazySafepointIndex();
+ }
+}
+
+
+bool LCodeGen::GenerateDeferredCode() {
+ DCHECK(is_generating());
+ if (deferred_.length() > 0) {
+ for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
+ LDeferredCode* code = deferred_[i];
+
+ HValue* value =
+ instructions_->at(code->instruction_index())->hydrogen_value();
+ RecordAndWritePosition(
+ chunk()->graph()->SourcePositionToScriptPosition(value->position()));
+
+ Comment(";;; <@%d,#%d> "
+ "-------------------- Deferred %s --------------------",
+ code->instruction_index(),
+ code->instr()->hydrogen_value()->id(),
+ code->instr()->Mnemonic());
+ __ bind(code->entry());
+ if (NeedsDeferredFrame()) {
+ Comment(";;; Build frame");
+ DCHECK(!frame_is_built_);
+ DCHECK(info()->IsStub());
+ frame_is_built_ = true;
+ __ MultiPush(cp.bit() | fp.bit() | ra.bit());
+ __ li(scratch0(), Operand(Smi::FromInt(StackFrame::STUB)));
+ __ push(scratch0());
+ __ Daddu(fp, sp,
+ Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
+ Comment(";;; Deferred code");
+ }
+ code->Generate();
+ if (NeedsDeferredFrame()) {
+ Comment(";;; Destroy frame");
+ DCHECK(frame_is_built_);
+ __ pop(at);
+ __ MultiPop(cp.bit() | fp.bit() | ra.bit());
+ frame_is_built_ = false;
+ }
+ __ jmp(code->exit());
+ }
+ }
+ // Deferred code is the last part of the instruction sequence. Mark
+ // the generated code as done unless we bailed out.
+ if (!is_aborted()) status_ = DONE;
+ return !is_aborted();
+}
+
+
+bool LCodeGen::GenerateDeoptJumpTable() {
+ if (deopt_jump_table_.length() > 0) {
+ Comment(";;; -------------------- Jump table --------------------");
+ }
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+ Label table_start;
+ __ bind(&table_start);
+ Label needs_frame;
+ for (int i = 0; i < deopt_jump_table_.length(); i++) {
+ __ bind(&deopt_jump_table_[i].label);
+ Address entry = deopt_jump_table_[i].address;
+ Deoptimizer::BailoutType type = deopt_jump_table_[i].bailout_type;
+ int id = Deoptimizer::GetDeoptimizationId(isolate(), entry, type);
+ if (id == Deoptimizer::kNotDeoptimizationEntry) {
+ Comment(";;; jump table entry %d.", i);
+ } else {
+ Comment(";;; jump table entry %d: deoptimization bailout %d.", i, id);
+ }
+ __ li(t9, Operand(ExternalReference::ForDeoptEntry(entry)));
+ if (deopt_jump_table_[i].needs_frame) {
+ DCHECK(!info()->saves_caller_doubles());
+ if (needs_frame.is_bound()) {
+ __ Branch(&needs_frame);
+ } else {
+ __ bind(&needs_frame);
+ __ MultiPush(cp.bit() | fp.bit() | ra.bit());
+ // This variant of deopt can only be used with stubs. Since we don't
+ // have a function pointer to install in the stack frame that we're
+ // building, install a special marker there instead.
+ DCHECK(info()->IsStub());
+ __ li(scratch0(), Operand(Smi::FromInt(StackFrame::STUB)));
+ __ push(scratch0());
+ __ Daddu(fp, sp,
+ Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
+ __ Call(t9);
+ }
+ } else {
+ if (info()->saves_caller_doubles()) {
+ DCHECK(info()->IsStub());
+ RestoreCallerDoubles();
+ }
+ __ Call(t9);
+ }
+ }
+ __ RecordComment("]");
+
+ // The deoptimization jump table is the last part of the instruction
+ // sequence. Mark the generated code as done unless we bailed out.
+ if (!is_aborted()) status_ = DONE;
+ return !is_aborted();
+}
+
+
+bool LCodeGen::GenerateSafepointTable() {
+ DCHECK(is_done());
+ safepoints_.Emit(masm(), GetStackSlotCount());
+ return !is_aborted();
+}
+
+
+Register LCodeGen::ToRegister(int index) const {
+ return Register::FromAllocationIndex(index);
+}
+
+
+DoubleRegister LCodeGen::ToDoubleRegister(int index) const {
+ return DoubleRegister::FromAllocationIndex(index);
+}
+
+
+Register LCodeGen::ToRegister(LOperand* op) const {
+ DCHECK(op->IsRegister());
+ return ToRegister(op->index());
+}
+
+
+Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
+ if (op->IsRegister()) {
+ return ToRegister(op->index());
+ } else if (op->IsConstantOperand()) {
+ LConstantOperand* const_op = LConstantOperand::cast(op);
+ HConstant* constant = chunk_->LookupConstant(const_op);
+ Handle<Object> literal = constant->handle(isolate());
+ Representation r = chunk_->LookupLiteralRepresentation(const_op);
+ if (r.IsInteger32()) {
+ DCHECK(literal->IsNumber());
+ __ li(scratch, Operand(static_cast<int32_t>(literal->Number())));
+ } else if (r.IsSmi()) {
+ DCHECK(constant->HasSmiValue());
+ __ li(scratch, Operand(Smi::FromInt(constant->Integer32Value())));
+ } else if (r.IsDouble()) {
+ Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
+ } else {
+ DCHECK(r.IsSmiOrTagged());
+ __ li(scratch, literal);
+ }
+ return scratch;
+ } else if (op->IsStackSlot()) {
+ __ ld(scratch, ToMemOperand(op));
+ return scratch;
+ }
+ UNREACHABLE();
+ return scratch;
+}
+
+
+DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
+ DCHECK(op->IsDoubleRegister());
+ return ToDoubleRegister(op->index());
+}
+
+
+DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
+ FloatRegister flt_scratch,
+ DoubleRegister dbl_scratch) {
+ if (op->IsDoubleRegister()) {
+ return ToDoubleRegister(op->index());
+ } else if (op->IsConstantOperand()) {
+ LConstantOperand* const_op = LConstantOperand::cast(op);
+ HConstant* constant = chunk_->LookupConstant(const_op);
+ Handle<Object> literal = constant->handle(isolate());
+ Representation r = chunk_->LookupLiteralRepresentation(const_op);
+ if (r.IsInteger32()) {
+ DCHECK(literal->IsNumber());
+ __ li(at, Operand(static_cast<int32_t>(literal->Number())));
+ __ mtc1(at, flt_scratch);
+ __ cvt_d_w(dbl_scratch, flt_scratch);
+ return dbl_scratch;
+ } else if (r.IsDouble()) {
+ Abort(kUnsupportedDoubleImmediate);
+ } else if (r.IsTagged()) {
+ Abort(kUnsupportedTaggedImmediate);
+ }
+ } else if (op->IsStackSlot()) {
+ MemOperand mem_op = ToMemOperand(op);
+ __ ldc1(dbl_scratch, mem_op);
+ return dbl_scratch;
+ }
+ UNREACHABLE();
+ return dbl_scratch;
+}
+
+
+Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
+ HConstant* constant = chunk_->LookupConstant(op);
+ DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
+ return constant->handle(isolate());
+}
+
+
+bool LCodeGen::IsInteger32(LConstantOperand* op) const {
+ return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
+}
+
+
+bool LCodeGen::IsSmi(LConstantOperand* op) const {
+ return chunk_->LookupLiteralRepresentation(op).IsSmi();
+}
+
+
+int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
+ // return ToRepresentation(op, Representation::Integer32());
+ HConstant* constant = chunk_->LookupConstant(op);
+ return constant->Integer32Value();
+}
+
+
+int32_t LCodeGen::ToRepresentation_donotuse(LConstantOperand* op,
+ const Representation& r) const {
+ HConstant* constant = chunk_->LookupConstant(op);
+ int32_t value = constant->Integer32Value();
+ if (r.IsInteger32()) return value;
+ DCHECK(r.IsSmiOrTagged());
+ return reinterpret_cast<int64_t>(Smi::FromInt(value));
+}
+
+
+Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
+ HConstant* constant = chunk_->LookupConstant(op);
+ return Smi::FromInt(constant->Integer32Value());
+}
+
+
+double LCodeGen::ToDouble(LConstantOperand* op) const {
+ HConstant* constant = chunk_->LookupConstant(op);
+ DCHECK(constant->HasDoubleValue());
+ return constant->DoubleValue();
+}
+
+
+Operand LCodeGen::ToOperand(LOperand* op) {
+ if (op->IsConstantOperand()) {
+ LConstantOperand* const_op = LConstantOperand::cast(op);
+ HConstant* constant = chunk()->LookupConstant(const_op);
+ Representation r = chunk_->LookupLiteralRepresentation(const_op);
+ if (r.IsSmi()) {
+ DCHECK(constant->HasSmiValue());
+ return Operand(Smi::FromInt(constant->Integer32Value()));
+ } else if (r.IsInteger32()) {
+ DCHECK(constant->HasInteger32Value());
+ return Operand(constant->Integer32Value());
+ } else if (r.IsDouble()) {
+ Abort(kToOperandUnsupportedDoubleImmediate);
+ }
+ DCHECK(r.IsTagged());
+ return Operand(constant->handle(isolate()));
+ } else if (op->IsRegister()) {
+ return Operand(ToRegister(op));
+ } else if (op->IsDoubleRegister()) {
+ Abort(kToOperandIsDoubleRegisterUnimplemented);
+ return Operand((int64_t)0);
+ }
+ // Stack slots not implemented, use ToMemOperand instead.
+ UNREACHABLE();
+ return Operand((int64_t)0);
+}
+
+
+static int ArgumentsOffsetWithoutFrame(int index) {
+ DCHECK(index < 0);
+ return -(index + 1) * kPointerSize;
+}
+
+
+MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
+ DCHECK(!op->IsRegister());
+ DCHECK(!op->IsDoubleRegister());
+ DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
+ if (NeedsEagerFrame()) {
+ return MemOperand(fp, StackSlotOffset(op->index()));
+ } else {
+ // Retrieve parameter without eager stack-frame relative to the
+ // stack-pointer.
+ return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()));
+ }
+}
+
+
+MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
+ DCHECK(op->IsDoubleStackSlot());
+ if (NeedsEagerFrame()) {
+ // return MemOperand(fp, StackSlotOffset(op->index()) + kPointerSize);
+ return MemOperand(fp, StackSlotOffset(op->index()) + kIntSize);
+ } else {
+ // Retrieve parameter without eager stack-frame relative to the
+ // stack-pointer.
+ // return MemOperand(
+ // sp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
+ return MemOperand(
+ sp, ArgumentsOffsetWithoutFrame(op->index()) + kIntSize);
+ }
+}
+
+
+void LCodeGen::WriteTranslation(LEnvironment* environment,
+ Translation* translation) {
+ if (environment == NULL) return;
+
+ // The translation includes one command per value in the environment.
+ int translation_size = environment->translation_size();
+ // The output frame height does not include the parameters.
+ int height = translation_size - environment->parameter_count();
+
+ WriteTranslation(environment->outer(), translation);
+ bool has_closure_id = !info()->closure().is_null() &&
+ !info()->closure().is_identical_to(environment->closure());
+ int closure_id = has_closure_id
+ ? DefineDeoptimizationLiteral(environment->closure())
+ : Translation::kSelfLiteralId;
+
+ switch (environment->frame_type()) {
+ case JS_FUNCTION:
+ translation->BeginJSFrame(environment->ast_id(), closure_id, height);
+ break;
+ case JS_CONSTRUCT:
+ translation->BeginConstructStubFrame(closure_id, translation_size);
+ break;
+ case JS_GETTER:
+ DCHECK(translation_size == 1);
+ DCHECK(height == 0);
+ translation->BeginGetterStubFrame(closure_id);
+ break;
+ case JS_SETTER:
+ DCHECK(translation_size == 2);
+ DCHECK(height == 0);
+ translation->BeginSetterStubFrame(closure_id);
+ break;
+ case STUB:
+ translation->BeginCompiledStubFrame();
+ break;
+ case ARGUMENTS_ADAPTOR:
+ translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
+ break;
+ }
+
+ int object_index = 0;
+ int dematerialized_index = 0;
+ for (int i = 0; i < translation_size; ++i) {
+ LOperand* value = environment->values()->at(i);
+ AddToTranslation(environment,
+ translation,
+ value,
+ environment->HasTaggedValueAt(i),
+ environment->HasUint32ValueAt(i),
+ &object_index,
+ &dematerialized_index);
+ }
+}
+
+
+void LCodeGen::AddToTranslation(LEnvironment* environment,
+ Translation* translation,
+ LOperand* op,
+ bool is_tagged,
+ bool is_uint32,
+ int* object_index_pointer,
+ int* dematerialized_index_pointer) {
+ if (op == LEnvironment::materialization_marker()) {
+ int object_index = (*object_index_pointer)++;
+ if (environment->ObjectIsDuplicateAt(object_index)) {
+ int dupe_of = environment->ObjectDuplicateOfAt(object_index);
+ translation->DuplicateObject(dupe_of);
+ return;
+ }
+ int object_length = environment->ObjectLengthAt(object_index);
+ if (environment->ObjectIsArgumentsAt(object_index)) {
+ translation->BeginArgumentsObject(object_length);
+ } else {
+ translation->BeginCapturedObject(object_length);
+ }
+ int dematerialized_index = *dematerialized_index_pointer;
+ int env_offset = environment->translation_size() + dematerialized_index;
+ *dematerialized_index_pointer += object_length;
+ for (int i = 0; i < object_length; ++i) {
+ LOperand* value = environment->values()->at(env_offset + i);
+ AddToTranslation(environment,
+ translation,
+ value,
+ environment->HasTaggedValueAt(env_offset + i),
+ environment->HasUint32ValueAt(env_offset + i),
+ object_index_pointer,
+ dematerialized_index_pointer);
+ }
+ return;
+ }
+
+ if (op->IsStackSlot()) {
+ if (is_tagged) {
+ translation->StoreStackSlot(op->index());
+ } else if (is_uint32) {
+ translation->StoreUint32StackSlot(op->index());
+ } else {
+ translation->StoreInt32StackSlot(op->index());
+ }
+ } else if (op->IsDoubleStackSlot()) {
+ translation->StoreDoubleStackSlot(op->index());
+ } else if (op->IsRegister()) {
+ Register reg = ToRegister(op);
+ if (is_tagged) {
+ translation->StoreRegister(reg);
+ } else if (is_uint32) {
+ translation->StoreUint32Register(reg);
+ } else {
+ translation->StoreInt32Register(reg);
+ }
+ } else if (op->IsDoubleRegister()) {
+ DoubleRegister reg = ToDoubleRegister(op);
+ translation->StoreDoubleRegister(reg);
+ } else if (op->IsConstantOperand()) {
+ HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
+ int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
+ translation->StoreLiteral(src_index);
+ } else {
+ UNREACHABLE();
+ }
+}
+
+
+void LCodeGen::CallCode(Handle<Code> code,
+ RelocInfo::Mode mode,
+ LInstruction* instr) {
+ CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
+}
+
+
+void LCodeGen::CallCodeGeneric(Handle<Code> code,
+ RelocInfo::Mode mode,
+ LInstruction* instr,
+ SafepointMode safepoint_mode) {
+ DCHECK(instr != NULL);
+ __ Call(code, mode);
+ RecordSafepointWithLazyDeopt(instr, safepoint_mode);
+}
+
+
+void LCodeGen::CallRuntime(const Runtime::Function* function,
+ int num_arguments,
+ LInstruction* instr,
+ SaveFPRegsMode save_doubles) {
+ DCHECK(instr != NULL);
+
+ __ CallRuntime(function, num_arguments, save_doubles);
+
+ RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
+}
+
+
+void LCodeGen::LoadContextFromDeferred(LOperand* context) {
+ if (context->IsRegister()) {
+ __ Move(cp, ToRegister(context));
+ } else if (context->IsStackSlot()) {
+ __ ld(cp, ToMemOperand(context));
+ } else if (context->IsConstantOperand()) {
+ HConstant* constant =
+ chunk_->LookupConstant(LConstantOperand::cast(context));
+ __ li(cp, Handle<Object>::cast(constant->handle(isolate())));
+ } else {
+ UNREACHABLE();
+ }
+}
+
+
+void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
+ int argc,
+ LInstruction* instr,
+ LOperand* context) {
+ LoadContextFromDeferred(context);
+ __ CallRuntimeSaveDoubles(id);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
+}
+
+
+void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
+ Safepoint::DeoptMode mode) {
+ environment->set_has_been_used();
+ if (!environment->HasBeenRegistered()) {
+ // Physical stack frame layout:
+ // -x ............. -4 0 ..................................... y
+ // [incoming arguments] [spill slots] [pushed outgoing arguments]
+
+ // Layout of the environment:
+ // 0 ..................................................... size-1
+ // [parameters] [locals] [expression stack including arguments]
+
+ // Layout of the translation:
+ // 0 ........................................................ size - 1 + 4
+ // [expression stack including arguments] [locals] [4 words] [parameters]
+ // |>------------ translation_size ------------<|
+
+ int frame_count = 0;
+ int jsframe_count = 0;
+ for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
+ ++frame_count;
+ if (e->frame_type() == JS_FUNCTION) {
+ ++jsframe_count;
+ }
+ }
+ Translation translation(&translations_, frame_count, jsframe_count, zone());
+ WriteTranslation(environment, &translation);
+ int deoptimization_index = deoptimizations_.length();
+ int pc_offset = masm()->pc_offset();
+ environment->Register(deoptimization_index,
+ translation.index(),
+ (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
+ deoptimizations_.Add(environment, zone());
+ }
+}
+
+
+void LCodeGen::DeoptimizeIf(Condition condition,
+ LEnvironment* environment,
+ Deoptimizer::BailoutType bailout_type,
+ Register src1,
+ const Operand& src2) {
+ RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
+ DCHECK(environment->HasBeenRegistered());
+ int id = environment->deoptimization_index();
+ DCHECK(info()->IsOptimizing() || info()->IsStub());
+ Address entry =
+ Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
+ if (entry == NULL) {
+ Abort(kBailoutWasNotPrepared);
+ return;
+ }
+
+ if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
+ Register scratch = scratch0();
+ ExternalReference count = ExternalReference::stress_deopt_count(isolate());
+ Label no_deopt;
+ __ Push(a1, scratch);
+ __ li(scratch, Operand(count));
+ __ lw(a1, MemOperand(scratch));
+ __ Subu(a1, a1, Operand(1));
+ __ Branch(&no_deopt, ne, a1, Operand(zero_reg));
+ __ li(a1, Operand(FLAG_deopt_every_n_times));
+ __ sw(a1, MemOperand(scratch));
+ __ Pop(a1, scratch);
+
+ __ Call(entry, RelocInfo::RUNTIME_ENTRY);
+ __ bind(&no_deopt);
+ __ sw(a1, MemOperand(scratch));
+ __ Pop(a1, scratch);
+ }
+
+ if (info()->ShouldTrapOnDeopt()) {
+ Label skip;
+ if (condition != al) {
+ __ Branch(&skip, NegateCondition(condition), src1, src2);
+ }
+ __ stop("trap_on_deopt");
+ __ bind(&skip);
+ }
+
+ DCHECK(info()->IsStub() || frame_is_built_);
+ // Go through jump table if we need to handle condition, build frame, or
+ // restore caller doubles.
+ if (condition == al && frame_is_built_ &&
+ !info()->saves_caller_doubles()) {
+ __ Call(entry, RelocInfo::RUNTIME_ENTRY, condition, src1, src2);
+ } else {
+ // We often have several deopts to the same entry, reuse the last
+ // jump entry if this is the case.
+ if (deopt_jump_table_.is_empty() ||
+ (deopt_jump_table_.last().address != entry) ||
+ (deopt_jump_table_.last().bailout_type != bailout_type) ||
+ (deopt_jump_table_.last().needs_frame != !frame_is_built_)) {
+ Deoptimizer::JumpTableEntry table_entry(entry,
+ bailout_type,
+ !frame_is_built_);
+ deopt_jump_table_.Add(table_entry, zone());
+ }
+ __ Branch(&deopt_jump_table_.last().label, condition, src1, src2);
+ }
+}
+
+
+void LCodeGen::DeoptimizeIf(Condition condition,
+ LEnvironment* environment,
+ Register src1,
+ const Operand& src2) {
+ Deoptimizer::BailoutType bailout_type = info()->IsStub()
+ ? Deoptimizer::LAZY
+ : Deoptimizer::EAGER;
+ DeoptimizeIf(condition, environment, bailout_type, src1, src2);
+}
+
+
+void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
+ int length = deoptimizations_.length();
+ if (length == 0) return;
+ Handle<DeoptimizationInputData> data =
+ DeoptimizationInputData::New(isolate(), length, 0, TENURED);
+
+ Handle<ByteArray> translations =
+ translations_.CreateByteArray(isolate()->factory());
+ data->SetTranslationByteArray(*translations);
+ data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
+ data->SetOptimizationId(Smi::FromInt(info_->optimization_id()));
+ if (info_->IsOptimizing()) {
+ // Reference to shared function info does not change between phases.
+ AllowDeferredHandleDereference allow_handle_dereference;
+ data->SetSharedFunctionInfo(*info_->shared_info());
+ } else {
+ data->SetSharedFunctionInfo(Smi::FromInt(0));
+ }
+
+ Handle<FixedArray> literals =
+ factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
+ { AllowDeferredHandleDereference copy_handles;
+ for (int i = 0; i < deoptimization_literals_.length(); i++) {
+ literals->set(i, *deoptimization_literals_[i]);
+ }
+ data->SetLiteralArray(*literals);
+ }
+
+ data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
+ data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
+
+ // Populate the deoptimization entries.
+ for (int i = 0; i < length; i++) {
+ LEnvironment* env = deoptimizations_[i];
+ data->SetAstId(i, env->ast_id());
+ data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
+ data->SetArgumentsStackHeight(i,
+ Smi::FromInt(env->arguments_stack_height()));
+ data->SetPc(i, Smi::FromInt(env->pc_offset()));
+ }
+ code->set_deoptimization_data(*data);
+}
+
+
+int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
+ int result = deoptimization_literals_.length();
+ for (int i = 0; i < deoptimization_literals_.length(); ++i) {
+ if (deoptimization_literals_[i].is_identical_to(literal)) return i;
+ }
+ deoptimization_literals_.Add(literal, zone());
+ return result;
+}
+
+
+void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
+ DCHECK(deoptimization_literals_.length() == 0);
+
+ const ZoneList<Handle<JSFunction> >* inlined_closures =
+ chunk()->inlined_closures();
+
+ for (int i = 0, length = inlined_closures->length();
+ i < length;
+ i++) {
+ DefineDeoptimizationLiteral(inlined_closures->at(i));
+ }
+
+ inlined_function_count_ = deoptimization_literals_.length();
+}
+
+
+void LCodeGen::RecordSafepointWithLazyDeopt(
+ LInstruction* instr, SafepointMode safepoint_mode) {
+ if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
+ RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
+ } else {
+ DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), 0, Safepoint::kLazyDeopt);
+ }
+}
+
+
+void LCodeGen::RecordSafepoint(
+ LPointerMap* pointers,
+ Safepoint::Kind kind,
+ int arguments,
+ Safepoint::DeoptMode deopt_mode) {
+ DCHECK(expected_safepoint_kind_ == kind);
+
+ const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
+ Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
+ kind, arguments, deopt_mode);
+ for (int i = 0; i < operands->length(); i++) {
+ LOperand* pointer = operands->at(i);
+ if (pointer->IsStackSlot()) {
+ safepoint.DefinePointerSlot(pointer->index(), zone());
+ } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
+ safepoint.DefinePointerRegister(ToRegister(pointer), zone());
+ }
+ }
+}
+
+
+void LCodeGen::RecordSafepoint(LPointerMap* pointers,
+ Safepoint::DeoptMode deopt_mode) {
+ RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
+}
+
+
+void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
+ LPointerMap empty_pointers(zone());
+ RecordSafepoint(&empty_pointers, deopt_mode);
+}
+
+
+void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
+ int arguments,
+ Safepoint::DeoptMode deopt_mode) {
+ RecordSafepoint(
+ pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
+}
+
+
+void LCodeGen::RecordAndWritePosition(int position) {
+ if (position == RelocInfo::kNoPosition) return;
+ masm()->positions_recorder()->RecordPosition(position);
+ masm()->positions_recorder()->WriteRecordedPositions();
+}
+
+
+static const char* LabelType(LLabel* label) {
+ if (label->is_loop_header()) return " (loop header)";
+ if (label->is_osr_entry()) return " (OSR entry)";
+ return "";
+}
+
+
+void LCodeGen::DoLabel(LLabel* label) {
+ Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
+ current_instruction_,
+ label->hydrogen_value()->id(),
+ label->block_id(),
+ LabelType(label));
+ __ bind(label->label());
+ current_block_ = label->block_id();
+ DoGap(label);
+}
+
+
+void LCodeGen::DoParallelMove(LParallelMove* move) {
+ resolver_.Resolve(move);
+}
+
+
+void LCodeGen::DoGap(LGap* gap) {
+ for (int i = LGap::FIRST_INNER_POSITION;
+ i <= LGap::LAST_INNER_POSITION;
+ i++) {
+ LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
+ LParallelMove* move = gap->GetParallelMove(inner_pos);
+ if (move != NULL) DoParallelMove(move);
+ }
+}
+
+
+void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
+ DoGap(instr);
+}
+
+
+void LCodeGen::DoParameter(LParameter* instr) {
+ // Nothing to do.
+}
+
+
+void LCodeGen::DoCallStub(LCallStub* instr) {
+ DCHECK(ToRegister(instr->context()).is(cp));
+ DCHECK(ToRegister(instr->result()).is(v0));
+ switch (instr->hydrogen()->major_key()) {
+ case CodeStub::RegExpExec: {
+ RegExpExecStub stub(isolate());
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ break;
+ }
+ case CodeStub::SubString: {
+ SubStringStub stub(isolate());
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ break;
+ }
+ case CodeStub::StringCompare: {
+ StringCompareStub stub(isolate());
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
+ GenerateOsrPrologue();
+}
+
+
+void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ DCHECK(dividend.is(ToRegister(instr->result())));
+
+ // Theoretically, a variation of the branch-free code for integer division by
+ // a power of 2 (calculating the remainder via an additional multiplication
+ // (which gets simplified to an 'and') and subtraction) should be faster, and
+ // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
+ // indicate that positive dividends are heavily favored, so the branching
+ // version performs better.
+ HMod* hmod = instr->hydrogen();
+ int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
+ Label dividend_is_not_negative, done;
+
+ if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
+ __ Branch(&dividend_is_not_negative, ge, dividend, Operand(zero_reg));
+ // Note: The code below even works when right contains kMinInt.
+ __ dsubu(dividend, zero_reg, dividend);
+ __ And(dividend, dividend, Operand(mask));
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(eq, instr->environment(), dividend, Operand(zero_reg));
+ }
+ __ Branch(USE_DELAY_SLOT, &done);
+ __ dsubu(dividend, zero_reg, dividend);
+ }
+
+ __ bind(&dividend_is_not_negative);
+ __ And(dividend, dividend, Operand(mask));
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoModByConstI(LModByConstI* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ Register result = ToRegister(instr->result());
+ DCHECK(!dividend.is(result));
+
+ if (divisor == 0) {
+ DeoptimizeIf(al, instr->environment());
+ return;
+ }
+
+ __ TruncatingDiv(result, dividend, Abs(divisor));
+ __ Dmul(result, result, Operand(Abs(divisor)));
+ __ Dsubu(result, dividend, Operand(result));
+
+ // Check for negative zero.
+ HMod* hmod = instr->hydrogen();
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ Label remainder_not_zero;
+ __ Branch(&remainder_not_zero, ne, result, Operand(zero_reg));
+ DeoptimizeIf(lt, instr->environment(), dividend, Operand(zero_reg));
+ __ bind(&remainder_not_zero);
+ }
+}
+
+
+void LCodeGen::DoModI(LModI* instr) {
+ HMod* hmod = instr->hydrogen();
+ const Register left_reg = ToRegister(instr->left());
+ const Register right_reg = ToRegister(instr->right());
+ const Register result_reg = ToRegister(instr->result());
+
+ // div runs in the background while we check for special cases.
+ __ Dmod(result_reg, left_reg, right_reg);
+
+ Label done;
+ // Check for x % 0, we have to deopt in this case because we can't return a
+ // NaN.
+ if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
+ DeoptimizeIf(eq, instr->environment(), right_reg, Operand(zero_reg));
+ }
+
+ // Check for kMinInt % -1, div will return kMinInt, which is not what we
+ // want. We have to deopt if we care about -0, because we can't return that.
+ if (hmod->CheckFlag(HValue::kCanOverflow)) {
+ Label no_overflow_possible;
+ __ Branch(&no_overflow_possible, ne, left_reg, Operand(kMinInt));
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(eq, instr->environment(), right_reg, Operand(-1));
+ } else {
+ __ Branch(&no_overflow_possible, ne, right_reg, Operand(-1));
+ __ Branch(USE_DELAY_SLOT, &done);
+ __ mov(result_reg, zero_reg);
+ }
+ __ bind(&no_overflow_possible);
+ }
+
+ // If we care about -0, test if the dividend is <0 and the result is 0.
+ __ Branch(&done, ge, left_reg, Operand(zero_reg));
+
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(eq, instr->environment(), result_reg, Operand(zero_reg));
+ }
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ Register result = ToRegister(instr->result());
+ DCHECK(divisor == kMinInt || IsPowerOf2(Abs(divisor)));
+ DCHECK(!result.is(dividend));
+
+ // Check for (0 / -x) that will produce negative zero.
+ HDiv* hdiv = instr->hydrogen();
+ if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+ DeoptimizeIf(eq, instr->environment(), dividend, Operand(zero_reg));
+ }
+ // Check for (kMinInt / -1).
+ if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
+ DeoptimizeIf(eq, instr->environment(), dividend, Operand(kMinInt));
+ }
+ // Deoptimize if remainder will not be 0.
+ if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
+ divisor != 1 && divisor != -1) {
+ int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
+ __ And(at, dividend, Operand(mask));
+ DeoptimizeIf(ne, instr->environment(), at, Operand(zero_reg));
+ }
+
+ if (divisor == -1) { // Nice shortcut, not needed for correctness.
+ __ Dsubu(result, zero_reg, dividend);
+ return;
+ }
+ uint16_t shift = WhichPowerOf2Abs(divisor);
+ if (shift == 0) {
+ __ Move(result, dividend);
+ } else if (shift == 1) {
+ __ dsrl32(result, dividend, 31);
+ __ Daddu(result, dividend, Operand(result));
+ } else {
+ __ dsra32(result, dividend, 31);
+ __ dsrl32(result, result, 32 - shift);
+ __ Daddu(result, dividend, Operand(result));
+ }
+ if (shift > 0) __ dsra(result, result, shift);
+ if (divisor < 0) __ Dsubu(result, zero_reg, result);
+}
+
+
+void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ Register result = ToRegister(instr->result());
+ DCHECK(!dividend.is(result));
+
+ if (divisor == 0) {
+ DeoptimizeIf(al, instr->environment());
+ return;
+ }
+
+ // Check for (0 / -x) that will produce negative zero.
+ HDiv* hdiv = instr->hydrogen();
+ if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+ DeoptimizeIf(eq, instr->environment(), dividend, Operand(zero_reg));
+ }
+
+ __ TruncatingDiv(result, dividend, Abs(divisor));
+ if (divisor < 0) __ Subu(result, zero_reg, result);
+
+ if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
+ __ Dmul(scratch0(), result, Operand(divisor));
+ __ Dsubu(scratch0(), scratch0(), dividend);
+ DeoptimizeIf(ne, instr->environment(), scratch0(), Operand(zero_reg));
+ }
+}
+
+
+// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
+void LCodeGen::DoDivI(LDivI* instr) {
+ HBinaryOperation* hdiv = instr->hydrogen();
+ Register dividend = ToRegister(instr->dividend());
+ Register divisor = ToRegister(instr->divisor());
+ const Register result = ToRegister(instr->result());
+
+ // On MIPS div is asynchronous - it will run in the background while we
+ // check for special cases.
+ __ Ddiv(result, dividend, divisor);
+
+ // Check for x / 0.
+ if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
+ DeoptimizeIf(eq, instr->environment(), divisor, Operand(zero_reg));
+ }
+
+ // Check for (0 / -x) that will produce negative zero.
+ if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ Label left_not_zero;
+ __ Branch(&left_not_zero, ne, dividend, Operand(zero_reg));
+ DeoptimizeIf(lt, instr->environment(), divisor, Operand(zero_reg));
+ __ bind(&left_not_zero);
+ }
+
+ // Check for (kMinInt / -1).
+ if (hdiv->CheckFlag(HValue::kCanOverflow) &&
+ !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
+ Label left_not_min_int;
+ __ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt));
+ DeoptimizeIf(eq, instr->environment(), divisor, Operand(-1));
+ __ bind(&left_not_min_int);
+ }
+
+ if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
+ // Calculate remainder.
+ Register remainder = ToRegister(instr->temp());
+ if (kArchVariant != kMips64r6) {
+ __ mfhi(remainder);
+ } else {
+ __ dmod(remainder, dividend, divisor);
+ }
+ DeoptimizeIf(ne, instr->environment(), remainder, Operand(zero_reg));
+ }
+}
+
+
+void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
+ DoubleRegister addend = ToDoubleRegister(instr->addend());
+ DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
+ DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
+
+ // This is computed in-place.
+ DCHECK(addend.is(ToDoubleRegister(instr->result())));
+
+ __ Madd_d(addend, addend, multiplier, multiplicand, double_scratch0());
+}
+
+
+void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ Register result = ToRegister(instr->result());
+ int32_t divisor = instr->divisor();
+ Register scratch = result.is(dividend) ? scratch0() : dividend;
+ DCHECK(!result.is(dividend) || !scratch.is(dividend));
+
+ // If the divisor is 1, return the dividend.
+ if (divisor == 1) {
+ __ Move(result, dividend);
+ return;
+ }
+
+ // If the divisor is positive, things are easy: There can be no deopts and we
+ // can simply do an arithmetic right shift.
+ uint16_t shift = WhichPowerOf2Abs(divisor);
+ if (divisor > 1) {
+ __ dsra(result, dividend, shift);
+ return;
+ }
+
+ // If the divisor is negative, we have to negate and handle edge cases.
+ // Dividend can be the same register as result so save the value of it
+ // for checking overflow.
+ __ Move(scratch, dividend);
+
+ __ Dsubu(result, zero_reg, dividend);
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(eq, instr->environment(), result, Operand(zero_reg));
+ }
+
+ __ Xor(scratch, scratch, result);
+ // Dividing by -1 is basically negation, unless we overflow.
+ if (divisor == -1) {
+ if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
+ DeoptimizeIf(gt, instr->environment(), result, Operand(kMaxInt));
+ }
+ return;
+ }
+
+ // If the negation could not overflow, simply shifting is OK.
+ if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
+ __ dsra(result, result, shift);
+ return;
+ }
+
+ Label no_overflow, done;
+ __ Branch(&no_overflow, lt, scratch, Operand(zero_reg));
+ __ li(result, Operand(kMinInt / divisor), CONSTANT_SIZE);
+ __ Branch(&done);
+ __ bind(&no_overflow);
+ __ dsra(result, result, shift);
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ Register result = ToRegister(instr->result());
+ DCHECK(!dividend.is(result));
+
+ if (divisor == 0) {
+ DeoptimizeIf(al, instr->environment());
+ return;
+ }
+
+ // Check for (0 / -x) that will produce negative zero.
+ HMathFloorOfDiv* hdiv = instr->hydrogen();
+ if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+ DeoptimizeIf(eq, instr->environment(), dividend, Operand(zero_reg));
+ }
+
+ // Easy case: We need no dynamic check for the dividend and the flooring
+ // division is the same as the truncating division.
+ if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
+ (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
+ __ TruncatingDiv(result, dividend, Abs(divisor));
+ if (divisor < 0) __ Dsubu(result, zero_reg, result);
+ return;
+ }
+
+ // In the general case we may need to adjust before and after the truncating
+ // division to get a flooring division.
+ Register temp = ToRegister(instr->temp());
+ DCHECK(!temp.is(dividend) && !temp.is(result));
+ Label needs_adjustment, done;
+ __ Branch(&needs_adjustment, divisor > 0 ? lt : gt,
+ dividend, Operand(zero_reg));
+ __ TruncatingDiv(result, dividend, Abs(divisor));
+ if (divisor < 0) __ Dsubu(result, zero_reg, result);
+ __ jmp(&done);
+ __ bind(&needs_adjustment);
+ __ Daddu(temp, dividend, Operand(divisor > 0 ? 1 : -1));
+ __ TruncatingDiv(result, temp, Abs(divisor));
+ if (divisor < 0) __ Dsubu(result, zero_reg, result);
+ __ Dsubu(result, result, Operand(1));
+ __ bind(&done);
+}
+
+
+// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
+void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
+ HBinaryOperation* hdiv = instr->hydrogen();
+ Register dividend = ToRegister(instr->dividend());
+ Register divisor = ToRegister(instr->divisor());
+ const Register result = ToRegister(instr->result());
+
+ // On MIPS div is asynchronous - it will run in the background while we
+ // check for special cases.
+ __ Ddiv(result, dividend, divisor);
+
+ // Check for x / 0.
+ if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
+ DeoptimizeIf(eq, instr->environment(), divisor, Operand(zero_reg));
+ }
+
+ // Check for (0 / -x) that will produce negative zero.
+ if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ Label left_not_zero;
+ __ Branch(&left_not_zero, ne, dividend, Operand(zero_reg));
+ DeoptimizeIf(lt, instr->environment(), divisor, Operand(zero_reg));
+ __ bind(&left_not_zero);
+ }
+
+ // Check for (kMinInt / -1).
+ if (hdiv->CheckFlag(HValue::kCanOverflow) &&
+ !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
+ Label left_not_min_int;
+ __ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt));
+ DeoptimizeIf(eq, instr->environment(), divisor, Operand(-1));
+ __ bind(&left_not_min_int);
+ }
+
+ // We performed a truncating division. Correct the result if necessary.
+ Label done;
+ Register remainder = scratch0();
+ if (kArchVariant != kMips64r6) {
+ __ mfhi(remainder);
+ } else {
+ __ dmod(remainder, dividend, divisor);
+ }
+ __ Branch(&done, eq, remainder, Operand(zero_reg), USE_DELAY_SLOT);
+ __ Xor(remainder, remainder, Operand(divisor));
+ __ Branch(&done, ge, remainder, Operand(zero_reg));
+ __ Dsubu(result, result, Operand(1));
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoMulI(LMulI* instr) {
+ Register scratch = scratch0();
+ Register result = ToRegister(instr->result());
+ // Note that result may alias left.
+ Register left = ToRegister(instr->left());
+ LOperand* right_op = instr->right();
+
+ bool bailout_on_minus_zero =
+ instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
+ bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+
+ if (right_op->IsConstantOperand()) {
+ int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
+
+ if (bailout_on_minus_zero && (constant < 0)) {
+ // The case of a null constant will be handled separately.
+ // If constant is negative and left is null, the result should be -0.
+ DeoptimizeIf(eq, instr->environment(), left, Operand(zero_reg));
+ }
+
+ switch (constant) {
+ case -1:
+ if (overflow) {
+ __ SubuAndCheckForOverflow(result, zero_reg, left, scratch);
+ DeoptimizeIf(gt, instr->environment(), scratch, Operand(kMaxInt));
+ } else {
+ __ Dsubu(result, zero_reg, left);
+ }
+ break;
+ case 0:
+ if (bailout_on_minus_zero) {
+ // If left is strictly negative and the constant is null, the
+ // result is -0. Deoptimize if required, otherwise return 0.
+ DeoptimizeIf(lt, instr->environment(), left, Operand(zero_reg));
+ }
+ __ mov(result, zero_reg);
+ break;
+ case 1:
+ // Nothing to do.
+ __ Move(result, left);
+ break;
+ default:
+ // Multiplying by powers of two and powers of two plus or minus
+ // one can be done faster with shifted operands.
+ // For other constants we emit standard code.
+ int32_t mask = constant >> 31;
+ uint32_t constant_abs = (constant + mask) ^ mask;
+
+ if (IsPowerOf2(constant_abs)) {
+ int32_t shift = WhichPowerOf2(constant_abs);
+ __ dsll(result, left, shift);
+ // Correct the sign of the result if the constant is negative.
+ if (constant < 0) __ Dsubu(result, zero_reg, result);
+ } else if (IsPowerOf2(constant_abs - 1)) {
+ int32_t shift = WhichPowerOf2(constant_abs - 1);
+ __ dsll(scratch, left, shift);
+ __ Daddu(result, scratch, left);
+ // Correct the sign of the result if the constant is negative.
+ if (constant < 0) __ Dsubu(result, zero_reg, result);
+ } else if (IsPowerOf2(constant_abs + 1)) {
+ int32_t shift = WhichPowerOf2(constant_abs + 1);
+ __ dsll(scratch, left, shift);
+ __ Dsubu(result, scratch, left);
+ // Correct the sign of the result if the constant is negative.
+ if (constant < 0) __ Dsubu(result, zero_reg, result);
+ } else {
+ // Generate standard code.
+ __ li(at, constant);
+ __ Dmul(result, left, at);
+ }
+ }
+
+ } else {
+ DCHECK(right_op->IsRegister());
+ Register right = ToRegister(right_op);
+
+ if (overflow) {
+ // hi:lo = left * right.
+ if (instr->hydrogen()->representation().IsSmi()) {
+ __ Dmulh(result, left, right);
+ } else {
+ __ Dmul(result, left, right);
+ }
+ __ dsra32(scratch, result, 0);
+ __ sra(at, result, 31);
+ if (instr->hydrogen()->representation().IsSmi()) {
+ __ SmiTag(result);
+ }
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(at));
+ } else {
+ if (instr->hydrogen()->representation().IsSmi()) {
+ __ SmiUntag(result, left);
+ __ Dmul(result, result, right);
+ } else {
+ __ Dmul(result, left, right);
+ }
+ }
+
+ if (bailout_on_minus_zero) {
+ Label done;
+ __ Xor(at, left, right);
+ __ Branch(&done, ge, at, Operand(zero_reg));
+ // Bail out if the result is minus zero.
+ DeoptimizeIf(eq,
+ instr->environment(),
+ result,
+ Operand(zero_reg));
+ __ bind(&done);
+ }
+ }
+}
+
+
+void LCodeGen::DoBitI(LBitI* instr) {
+ LOperand* left_op = instr->left();
+ LOperand* right_op = instr->right();
+ DCHECK(left_op->IsRegister());
+ Register left = ToRegister(left_op);
+ Register result = ToRegister(instr->result());
+ Operand right(no_reg);
+
+ if (right_op->IsStackSlot()) {
+ right = Operand(EmitLoadRegister(right_op, at));
+ } else {
+ DCHECK(right_op->IsRegister() || right_op->IsConstantOperand());
+ right = ToOperand(right_op);
+ }
+
+ switch (instr->op()) {
+ case Token::BIT_AND:
+ __ And(result, left, right);
+ break;
+ case Token::BIT_OR:
+ __ Or(result, left, right);
+ break;
+ case Token::BIT_XOR:
+ if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) {
+ __ Nor(result, zero_reg, left);
+ } else {
+ __ Xor(result, left, right);
+ }
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+}
+
+
+void LCodeGen::DoShiftI(LShiftI* instr) {
+ // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
+ // result may alias either of them.
+ LOperand* right_op = instr->right();
+ Register left = ToRegister(instr->left());
+ Register result = ToRegister(instr->result());
+
+ if (right_op->IsRegister()) {
+ // No need to mask the right operand on MIPS, it is built into the variable
+ // shift instructions.
+ switch (instr->op()) {
+ case Token::ROR:
+ __ Ror(result, left, Operand(ToRegister(right_op)));
+ break;
+ case Token::SAR:
+ __ srav(result, left, ToRegister(right_op));
+ break;
+ case Token::SHR:
+ __ srlv(result, left, ToRegister(right_op));
+ if (instr->can_deopt()) {
+ // TODO(yy): (-1) >>> 0. anything else?
+ DeoptimizeIf(lt, instr->environment(), result, Operand(zero_reg));
+ DeoptimizeIf(gt, instr->environment(), result, Operand(kMaxInt));
+ }
+ break;
+ case Token::SHL:
+ __ sllv(result, left, ToRegister(right_op));
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ } else {
+ // Mask the right_op operand.
+ int value = ToInteger32(LConstantOperand::cast(right_op));
+ uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
+ switch (instr->op()) {
+ case Token::ROR:
+ if (shift_count != 0) {
+ __ Ror(result, left, Operand(shift_count));
+ } else {
+ __ Move(result, left);
+ }
+ break;
+ case Token::SAR:
+ if (shift_count != 0) {
+ __ sra(result, left, shift_count);
+ } else {
+ __ Move(result, left);
+ }
+ break;
+ case Token::SHR:
+ if (shift_count != 0) {
+ __ srl(result, left, shift_count);
+ } else {
+ if (instr->can_deopt()) {
+ __ And(at, left, Operand(0x80000000));
+ DeoptimizeIf(ne, instr->environment(), at, Operand(zero_reg));
+ }
+ __ Move(result, left);
+ }
+ break;
+ case Token::SHL:
+ if (shift_count != 0) {
+ if (instr->hydrogen_value()->representation().IsSmi()) {
+ __ dsll(result, left, shift_count);
+ } else {
+ __ sll(result, left, shift_count);
+ }
+ } else {
+ __ Move(result, left);
+ }
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+}
+
+
+void LCodeGen::DoSubI(LSubI* instr) {
+ LOperand* left = instr->left();
+ LOperand* right = instr->right();
+ LOperand* result = instr->result();
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+
+ if (!can_overflow) {
+ if (right->IsStackSlot()) {
+ Register right_reg = EmitLoadRegister(right, at);
+ __ Dsubu(ToRegister(result), ToRegister(left), Operand(right_reg));
+ } else {
+ DCHECK(right->IsRegister() || right->IsConstantOperand());
+ __ Dsubu(ToRegister(result), ToRegister(left), ToOperand(right));
+ }
+ } else { // can_overflow.
+ Register overflow = scratch0();
+ Register scratch = scratch1();
+ if (right->IsStackSlot() || right->IsConstantOperand()) {
+ Register right_reg = EmitLoadRegister(right, scratch);
+ __ SubuAndCheckForOverflow(ToRegister(result),
+ ToRegister(left),
+ right_reg,
+ overflow); // Reg at also used as scratch.
+ } else {
+ DCHECK(right->IsRegister());
+ // Due to overflow check macros not supporting constant operands,
+ // handling the IsConstantOperand case was moved to prev if clause.
+ __ SubuAndCheckForOverflow(ToRegister(result),
+ ToRegister(left),
+ ToRegister(right),
+ overflow); // Reg at also used as scratch.
+ }
+ DeoptimizeIf(lt, instr->environment(), overflow, Operand(zero_reg));
+ if (!instr->hydrogen()->representation().IsSmi()) {
+ DeoptimizeIf(gt, instr->environment(),
+ ToRegister(result), Operand(kMaxInt));
+ DeoptimizeIf(lt, instr->environment(),
+ ToRegister(result), Operand(kMinInt));
+ }
+ }
+}
+
+
+void LCodeGen::DoConstantI(LConstantI* instr) {
+ __ li(ToRegister(instr->result()), Operand(instr->value()));
+}
+
+
+void LCodeGen::DoConstantS(LConstantS* instr) {
+ __ li(ToRegister(instr->result()), Operand(instr->value()));
+}
+
+
+void LCodeGen::DoConstantD(LConstantD* instr) {
+ DCHECK(instr->result()->IsDoubleRegister());
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ double v = instr->value();
+ __ Move(result, v);
+}
+
+
+void LCodeGen::DoConstantE(LConstantE* instr) {
+ __ li(ToRegister(instr->result()), Operand(instr->value()));
+}
+
+
+void LCodeGen::DoConstantT(LConstantT* instr) {
+ Handle<Object> object = instr->value(isolate());
+ AllowDeferredHandleDereference smi_check;
+ __ li(ToRegister(instr->result()), object);
+}
+
+
+void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
+ Register result = ToRegister(instr->result());
+ Register map = ToRegister(instr->value());
+ __ EnumLength(result, map);
+}
+
+
+void LCodeGen::DoDateField(LDateField* instr) {
+ Register object = ToRegister(instr->date());
+ Register result = ToRegister(instr->result());
+ Register scratch = ToRegister(instr->temp());
+ Smi* index = instr->index();
+ Label runtime, done;
+ DCHECK(object.is(a0));
+ DCHECK(result.is(v0));
+ DCHECK(!scratch.is(scratch0()));
+ DCHECK(!scratch.is(object));
+
+ __ SmiTst(object, at);
+ DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg));
+ __ GetObjectType(object, scratch, scratch);
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(JS_DATE_TYPE));
+
+ if (index->value() == 0) {
+ __ ld(result, FieldMemOperand(object, JSDate::kValueOffset));
+ } else {
+ if (index->value() < JSDate::kFirstUncachedField) {
+ ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
+ __ li(scratch, Operand(stamp));
+ __ ld(scratch, MemOperand(scratch));
+ __ ld(scratch0(), FieldMemOperand(object, JSDate::kCacheStampOffset));
+ __ Branch(&runtime, ne, scratch, Operand(scratch0()));
+ __ ld(result, FieldMemOperand(object, JSDate::kValueOffset +
+ kPointerSize * index->value()));
+ __ jmp(&done);
+ }
+ __ bind(&runtime);
+ __ PrepareCallCFunction(2, scratch);
+ __ li(a1, Operand(index));
+ __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
+ __ bind(&done);
+ }
+}
+
+
+MemOperand LCodeGen::BuildSeqStringOperand(Register string,
+ LOperand* index,
+ String::Encoding encoding) {
+ if (index->IsConstantOperand()) {
+ int offset = ToInteger32(LConstantOperand::cast(index));
+ if (encoding == String::TWO_BYTE_ENCODING) {
+ offset *= kUC16Size;
+ }
+ STATIC_ASSERT(kCharSize == 1);
+ return FieldMemOperand(string, SeqString::kHeaderSize + offset);
+ }
+ Register scratch = scratch0();
+ DCHECK(!scratch.is(string));
+ DCHECK(!scratch.is(ToRegister(index)));
+ if (encoding == String::ONE_BYTE_ENCODING) {
+ __ Daddu(scratch, string, ToRegister(index));
+ } else {
+ STATIC_ASSERT(kUC16Size == 2);
+ __ dsll(scratch, ToRegister(index), 1);
+ __ Daddu(scratch, string, scratch);
+ }
+ return FieldMemOperand(scratch, SeqString::kHeaderSize);
+}
+
+
+void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
+ String::Encoding encoding = instr->hydrogen()->encoding();
+ Register string = ToRegister(instr->string());
+ Register result = ToRegister(instr->result());
+
+ if (FLAG_debug_code) {
+ Register scratch = scratch0();
+ __ ld(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
+ __ lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
+
+ __ And(scratch, scratch,
+ Operand(kStringRepresentationMask | kStringEncodingMask));
+ static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
+ static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
+ __ Dsubu(at, scratch, Operand(encoding == String::ONE_BYTE_ENCODING
+ ? one_byte_seq_type : two_byte_seq_type));
+ __ Check(eq, kUnexpectedStringType, at, Operand(zero_reg));
+ }
+
+ MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
+ if (encoding == String::ONE_BYTE_ENCODING) {
+ __ lbu(result, operand);
+ } else {
+ __ lhu(result, operand);
+ }
+}
+
+
+void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
+ String::Encoding encoding = instr->hydrogen()->encoding();
+ Register string = ToRegister(instr->string());
+ Register value = ToRegister(instr->value());
+
+ if (FLAG_debug_code) {
+ Register scratch = scratch0();
+ Register index = ToRegister(instr->index());
+ static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
+ static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
+ int encoding_mask =
+ instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
+ ? one_byte_seq_type : two_byte_seq_type;
+ __ EmitSeqStringSetCharCheck(string, index, value, scratch, encoding_mask);
+ }
+
+ MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
+ if (encoding == String::ONE_BYTE_ENCODING) {
+ __ sb(value, operand);
+ } else {
+ __ sh(value, operand);
+ }
+}
+
+
+void LCodeGen::DoAddI(LAddI* instr) {
+ LOperand* left = instr->left();
+ LOperand* right = instr->right();
+ LOperand* result = instr->result();
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+
+ if (!can_overflow) {
+ if (right->IsStackSlot()) {
+ Register right_reg = EmitLoadRegister(right, at);
+ __ Daddu(ToRegister(result), ToRegister(left), Operand(right_reg));
+ } else {
+ DCHECK(right->IsRegister() || right->IsConstantOperand());
+ __ Daddu(ToRegister(result), ToRegister(left), ToOperand(right));
+ }
+ } else { // can_overflow.
+ Register overflow = scratch0();
+ Register scratch = scratch1();
+ if (right->IsStackSlot() ||
+ right->IsConstantOperand()) {
+ Register right_reg = EmitLoadRegister(right, scratch);
+ __ AdduAndCheckForOverflow(ToRegister(result),
+ ToRegister(left),
+ right_reg,
+ overflow); // Reg at also used as scratch.
+ } else {
+ DCHECK(right->IsRegister());
+ // Due to overflow check macros not supporting constant operands,
+ // handling the IsConstantOperand case was moved to prev if clause.
+ __ AdduAndCheckForOverflow(ToRegister(result),
+ ToRegister(left),
+ ToRegister(right),
+ overflow); // Reg at also used as scratch.
+ }
+ DeoptimizeIf(lt, instr->environment(), overflow, Operand(zero_reg));
+ // if not smi, it must int32.
+ if (!instr->hydrogen()->representation().IsSmi()) {
+ DeoptimizeIf(gt, instr->environment(),
+ ToRegister(result), Operand(kMaxInt));
+ DeoptimizeIf(lt, instr->environment(),
+ ToRegister(result), Operand(kMinInt));
+ }
+ }
+}
+
+
+void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
+ LOperand* left = instr->left();
+ LOperand* right = instr->right();
+ HMathMinMax::Operation operation = instr->hydrogen()->operation();
+ Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge;
+ if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
+ Register left_reg = ToRegister(left);
+ Register right_reg = EmitLoadRegister(right, scratch0());
+ Register result_reg = ToRegister(instr->result());
+ Label return_right, done;
+ Register scratch = scratch1();
+ __ Slt(scratch, left_reg, Operand(right_reg));
+ if (condition == ge) {
+ __ Movz(result_reg, left_reg, scratch);
+ __ Movn(result_reg, right_reg, scratch);
+ } else {
+ DCHECK(condition == le);
+ __ Movn(result_reg, left_reg, scratch);
+ __ Movz(result_reg, right_reg, scratch);
+ }
+ } else {
+ DCHECK(instr->hydrogen()->representation().IsDouble());
+ FPURegister left_reg = ToDoubleRegister(left);
+ FPURegister right_reg = ToDoubleRegister(right);
+ FPURegister result_reg = ToDoubleRegister(instr->result());
+ Label check_nan_left, check_zero, return_left, return_right, done;
+ __ BranchF(&check_zero, &check_nan_left, eq, left_reg, right_reg);
+ __ BranchF(&return_left, NULL, condition, left_reg, right_reg);
+ __ Branch(&return_right);
+
+ __ bind(&check_zero);
+ // left == right != 0.
+ __ BranchF(&return_left, NULL, ne, left_reg, kDoubleRegZero);
+ // At this point, both left and right are either 0 or -0.
+ if (operation == HMathMinMax::kMathMin) {
+ __ neg_d(left_reg, left_reg);
+ __ sub_d(result_reg, left_reg, right_reg);
+ __ neg_d(result_reg, result_reg);
+ } else {
+ __ add_d(result_reg, left_reg, right_reg);
+ }
+ __ Branch(&done);
+
+ __ bind(&check_nan_left);
+ // left == NaN.
+ __ BranchF(NULL, &return_left, eq, left_reg, left_reg);
+ __ bind(&return_right);
+ if (!right_reg.is(result_reg)) {
+ __ mov_d(result_reg, right_reg);
+ }
+ __ Branch(&done);
+
+ __ bind(&return_left);
+ if (!left_reg.is(result_reg)) {
+ __ mov_d(result_reg, left_reg);
+ }
+ __ bind(&done);
+ }
+}
+
+
+void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
+ DoubleRegister left = ToDoubleRegister(instr->left());
+ DoubleRegister right = ToDoubleRegister(instr->right());
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ switch (instr->op()) {
+ case Token::ADD:
+ __ add_d(result, left, right);
+ break;
+ case Token::SUB:
+ __ sub_d(result, left, right);
+ break;
+ case Token::MUL:
+ __ mul_d(result, left, right);
+ break;
+ case Token::DIV:
+ __ div_d(result, left, right);
+ break;
+ case Token::MOD: {
+ // Save a0-a3 on the stack.
+ RegList saved_regs = a0.bit() | a1.bit() | a2.bit() | a3.bit();
+ __ MultiPush(saved_regs);
+
+ __ PrepareCallCFunction(0, 2, scratch0());
+ __ MovToFloatParameters(left, right);
+ __ CallCFunction(
+ ExternalReference::mod_two_doubles_operation(isolate()),
+ 0, 2);
+ // Move the result in the double result register.
+ __ MovFromFloatResult(result);
+
+ // Restore saved register.
+ __ MultiPop(saved_regs);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+}
+
+
+void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
+ DCHECK(ToRegister(instr->context()).is(cp));
+ DCHECK(ToRegister(instr->left()).is(a1));
+ DCHECK(ToRegister(instr->right()).is(a0));
+ DCHECK(ToRegister(instr->result()).is(v0));
+
+ BinaryOpICStub stub(isolate(), instr->op(), NO_OVERWRITE);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ // Other arch use a nop here, to signal that there is no inlined
+ // patchable code. Mips does not need the nop, since our marker
+ // instruction (andi zero_reg) will never be used in normal code.
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitBranch(InstrType instr,
+ Condition condition,
+ Register src1,
+ const Operand& src2) {
+ int left_block = instr->TrueDestination(chunk_);
+ int right_block = instr->FalseDestination(chunk_);
+
+ int next_block = GetNextEmittedBlock();
+ if (right_block == left_block || condition == al) {
+ EmitGoto(left_block);
+ } else if (left_block == next_block) {
+ __ Branch(chunk_->GetAssemblyLabel(right_block),
+ NegateCondition(condition), src1, src2);
+ } else if (right_block == next_block) {
+ __ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2);
+ } else {
+ __ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2);
+ __ Branch(chunk_->GetAssemblyLabel(right_block));
+ }
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitBranchF(InstrType instr,
+ Condition condition,
+ FPURegister src1,
+ FPURegister src2) {
+ int right_block = instr->FalseDestination(chunk_);
+ int left_block = instr->TrueDestination(chunk_);
+
+ int next_block = GetNextEmittedBlock();
+ if (right_block == left_block) {
+ EmitGoto(left_block);
+ } else if (left_block == next_block) {
+ __ BranchF(chunk_->GetAssemblyLabel(right_block), NULL,
+ NegateCondition(condition), src1, src2);
+ } else if (right_block == next_block) {
+ __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL,
+ condition, src1, src2);
+ } else {
+ __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL,
+ condition, src1, src2);
+ __ Branch(chunk_->GetAssemblyLabel(right_block));
+ }
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitFalseBranch(InstrType instr,
+ Condition condition,
+ Register src1,
+ const Operand& src2) {
+ int false_block = instr->FalseDestination(chunk_);
+ __ Branch(chunk_->GetAssemblyLabel(false_block), condition, src1, src2);
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitFalseBranchF(InstrType instr,
+ Condition condition,
+ FPURegister src1,
+ FPURegister src2) {
+ int false_block = instr->FalseDestination(chunk_);
+ __ BranchF(chunk_->GetAssemblyLabel(false_block), NULL,
+ condition, src1, src2);
+}
+
+
+void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
+ __ stop("LDebugBreak");
+}
+
+
+void LCodeGen::DoBranch(LBranch* instr) {
+ Representation r = instr->hydrogen()->value()->representation();
+ if (r.IsInteger32() || r.IsSmi()) {
+ DCHECK(!info()->IsStub());
+ Register reg = ToRegister(instr->value());
+ EmitBranch(instr, ne, reg, Operand(zero_reg));
+ } else if (r.IsDouble()) {
+ DCHECK(!info()->IsStub());
+ DoubleRegister reg = ToDoubleRegister(instr->value());
+ // Test the double value. Zero and NaN are false.
+ EmitBranchF(instr, nue, reg, kDoubleRegZero);
+ } else {
+ DCHECK(r.IsTagged());
+ Register reg = ToRegister(instr->value());
+ HType type = instr->hydrogen()->value()->type();
+ if (type.IsBoolean()) {
+ DCHECK(!info()->IsStub());
+ __ LoadRoot(at, Heap::kTrueValueRootIndex);
+ EmitBranch(instr, eq, reg, Operand(at));
+ } else if (type.IsSmi()) {
+ DCHECK(!info()->IsStub());
+ EmitBranch(instr, ne, reg, Operand(zero_reg));
+ } else if (type.IsJSArray()) {
+ DCHECK(!info()->IsStub());
+ EmitBranch(instr, al, zero_reg, Operand(zero_reg));
+ } else if (type.IsHeapNumber()) {
+ DCHECK(!info()->IsStub());
+ DoubleRegister dbl_scratch = double_scratch0();
+ __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
+ // Test the double value. Zero and NaN are false.
+ EmitBranchF(instr, nue, dbl_scratch, kDoubleRegZero);
+ } else if (type.IsString()) {
+ DCHECK(!info()->IsStub());
+ __ ld(at, FieldMemOperand(reg, String::kLengthOffset));
+ EmitBranch(instr, ne, at, Operand(zero_reg));
+ } else {
+ ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
+ // Avoid deopts in the case where we've never executed this path before.
+ if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
+
+ if (expected.Contains(ToBooleanStub::UNDEFINED)) {
+ // undefined -> false.
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+ __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
+ }
+ if (expected.Contains(ToBooleanStub::BOOLEAN)) {
+ // Boolean -> its value.
+ __ LoadRoot(at, Heap::kTrueValueRootIndex);
+ __ Branch(instr->TrueLabel(chunk_), eq, reg, Operand(at));
+ __ LoadRoot(at, Heap::kFalseValueRootIndex);
+ __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
+ }
+ if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
+ // 'null' -> false.
+ __ LoadRoot(at, Heap::kNullValueRootIndex);
+ __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
+ }
+
+ if (expected.Contains(ToBooleanStub::SMI)) {
+ // Smis: 0 -> false, all other -> true.
+ __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(zero_reg));
+ __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
+ } else if (expected.NeedsMap()) {
+ // If we need a map later and have a Smi -> deopt.
+ __ SmiTst(reg, at);
+ DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg));
+ }
+
+ const Register map = scratch0();
+ if (expected.NeedsMap()) {
+ __ ld(map, FieldMemOperand(reg, HeapObject::kMapOffset));
+ if (expected.CanBeUndetectable()) {
+ // Undetectable -> false.
+ __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset));
+ __ And(at, at, Operand(1 << Map::kIsUndetectable));
+ __ Branch(instr->FalseLabel(chunk_), ne, at, Operand(zero_reg));
+ }
+ }
+
+ if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
+ // spec object -> true.
+ __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
+ __ Branch(instr->TrueLabel(chunk_),
+ ge, at, Operand(FIRST_SPEC_OBJECT_TYPE));
+ }
+
+ if (expected.Contains(ToBooleanStub::STRING)) {
+ // String value -> false iff empty.
+ Label not_string;
+ __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
+ __ Branch(&not_string, ge , at, Operand(FIRST_NONSTRING_TYPE));
+ __ ld(at, FieldMemOperand(reg, String::kLengthOffset));
+ __ Branch(instr->TrueLabel(chunk_), ne, at, Operand(zero_reg));
+ __ Branch(instr->FalseLabel(chunk_));
+ __ bind(&not_string);
+ }
+
+ if (expected.Contains(ToBooleanStub::SYMBOL)) {
+ // Symbol value -> true.
+ const Register scratch = scratch1();
+ __ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
+ __ Branch(instr->TrueLabel(chunk_), eq, scratch, Operand(SYMBOL_TYPE));
+ }
+
+ if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
+ // heap number -> false iff +0, -0, or NaN.
+ DoubleRegister dbl_scratch = double_scratch0();
+ Label not_heap_number;
+ __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
+ __ Branch(&not_heap_number, ne, map, Operand(at));
+ __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
+ __ BranchF(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
+ ne, dbl_scratch, kDoubleRegZero);
+ // Falls through if dbl_scratch == 0.
+ __ Branch(instr->FalseLabel(chunk_));
+ __ bind(&not_heap_number);
+ }
+
+ if (!expected.IsGeneric()) {
+ // We've seen something for the first time -> deopt.
+ // This can only happen if we are not generic already.
+ DeoptimizeIf(al, instr->environment(), zero_reg, Operand(zero_reg));
+ }
+ }
+ }
+}
+
+
+void LCodeGen::EmitGoto(int block) {
+ if (!IsNextEmittedBlock(block)) {
+ __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
+ }
+}
+
+
+void LCodeGen::DoGoto(LGoto* instr) {
+ EmitGoto(instr->block_id());
+}
+
+
+Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
+ Condition cond = kNoCondition;
+ switch (op) {
+ case Token::EQ:
+ case Token::EQ_STRICT:
+ cond = eq;
+ break;
+ case Token::NE:
+ case Token::NE_STRICT:
+ cond = ne;
+ break;
+ case Token::LT:
+ cond = is_unsigned ? lo : lt;
+ break;
+ case Token::GT:
+ cond = is_unsigned ? hi : gt;
+ break;
+ case Token::LTE:
+ cond = is_unsigned ? ls : le;
+ break;
+ case Token::GTE:
+ cond = is_unsigned ? hs : ge;
+ break;
+ case Token::IN:
+ case Token::INSTANCEOF:
+ default:
+ UNREACHABLE();
+ }
+ return cond;
+}
+
+
+void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
+ LOperand* left = instr->left();
+ LOperand* right = instr->right();
+ bool is_unsigned =
+ instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
+ instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
+ Condition cond = TokenToCondition(instr->op(), is_unsigned);
+
+ if (left->IsConstantOperand() && right->IsConstantOperand()) {
+ // We can statically evaluate the comparison.
+ double left_val = ToDouble(LConstantOperand::cast(left));
+ double right_val = ToDouble(LConstantOperand::cast(right));
+ int next_block = EvalComparison(instr->op(), left_val, right_val) ?
+ instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
+ EmitGoto(next_block);
+ } else {
+ if (instr->is_double()) {
+ // Compare left and right as doubles and load the
+ // resulting flags into the normal status register.
+ FPURegister left_reg = ToDoubleRegister(left);
+ FPURegister right_reg = ToDoubleRegister(right);
+
+ // If a NaN is involved, i.e. the result is unordered,
+ // jump to false block label.
+ __ BranchF(NULL, instr->FalseLabel(chunk_), eq,
+ left_reg, right_reg);
+
+ EmitBranchF(instr, cond, left_reg, right_reg);
+ } else {
+ Register cmp_left;
+ Operand cmp_right = Operand((int64_t)0);
+ if (right->IsConstantOperand()) {
+ int32_t value = ToInteger32(LConstantOperand::cast(right));
+ if (instr->hydrogen_value()->representation().IsSmi()) {
+ cmp_left = ToRegister(left);
+ cmp_right = Operand(Smi::FromInt(value));
+ } else {
+ cmp_left = ToRegister(left);
+ cmp_right = Operand(value);
+ }
+ } else if (left->IsConstantOperand()) {
+ int32_t value = ToInteger32(LConstantOperand::cast(left));
+ if (instr->hydrogen_value()->representation().IsSmi()) {
+ cmp_left = ToRegister(right);
+ cmp_right = Operand(Smi::FromInt(value));
+ } else {
+ cmp_left = ToRegister(right);
+ cmp_right = Operand(value);
+ }
+ // We commuted the operands, so commute the condition.
+ cond = CommuteCondition(cond);
+ } else {
+ cmp_left = ToRegister(left);
+ cmp_right = Operand(ToRegister(right));
+ }
+
+ EmitBranch(instr, cond, cmp_left, cmp_right);
+ }
+ }
+}
+
+
+void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
+ Register left = ToRegister(instr->left());
+ Register right = ToRegister(instr->right());
+
+ EmitBranch(instr, eq, left, Operand(right));
+}
+
+
+void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
+ if (instr->hydrogen()->representation().IsTagged()) {
+ Register input_reg = ToRegister(instr->object());
+ __ li(at, Operand(factory()->the_hole_value()));
+ EmitBranch(instr, eq, input_reg, Operand(at));
+ return;
+ }
+
+ DoubleRegister input_reg = ToDoubleRegister(instr->object());
+ EmitFalseBranchF(instr, eq, input_reg, input_reg);
+
+ Register scratch = scratch0();
+ __ FmoveHigh(scratch, input_reg);
+ EmitBranch(instr, eq, scratch, Operand(kHoleNanUpper32));
+}
+
+
+void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
+ Representation rep = instr->hydrogen()->value()->representation();
+ DCHECK(!rep.IsInteger32());
+ Register scratch = ToRegister(instr->temp());
+
+ if (rep.IsDouble()) {
+ DoubleRegister value = ToDoubleRegister(instr->value());
+ EmitFalseBranchF(instr, ne, value, kDoubleRegZero);
+ __ FmoveHigh(scratch, value);
+ // Only use low 32-bits of value.
+ __ dsll32(scratch, scratch, 0);
+ __ dsrl32(scratch, scratch, 0);
+ __ li(at, 0x80000000);
+ } else {
+ Register value = ToRegister(instr->value());
+ __ CheckMap(value,
+ scratch,
+ Heap::kHeapNumberMapRootIndex,
+ instr->FalseLabel(chunk()),
+ DO_SMI_CHECK);
+ __ lwu(scratch, FieldMemOperand(value, HeapNumber::kExponentOffset));
+ EmitFalseBranch(instr, ne, scratch, Operand(0x80000000));
+ __ lwu(scratch, FieldMemOperand(value, HeapNumber::kMantissaOffset));
+ __ mov(at, zero_reg);
+ }
+ EmitBranch(instr, eq, scratch, Operand(at));
+}
+
+
+Condition LCodeGen::EmitIsObject(Register input,
+ Register temp1,
+ Register temp2,
+ Label* is_not_object,
+ Label* is_object) {
+ __ JumpIfSmi(input, is_not_object);
+
+ __ LoadRoot(temp2, Heap::kNullValueRootIndex);
+ __ Branch(is_object, eq, input, Operand(temp2));
+
+ // Load map.
+ __ ld(temp1, FieldMemOperand(input, HeapObject::kMapOffset));
+ // Undetectable objects behave like undefined.
+ __ lbu(temp2, FieldMemOperand(temp1, Map::kBitFieldOffset));
+ __ And(temp2, temp2, Operand(1 << Map::kIsUndetectable));
+ __ Branch(is_not_object, ne, temp2, Operand(zero_reg));
+
+ // Load instance type and check that it is in object type range.
+ __ lbu(temp2, FieldMemOperand(temp1, Map::kInstanceTypeOffset));
+ __ Branch(is_not_object,
+ lt, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
+
+ return le;
+}
+
+
+void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
+ Register reg = ToRegister(instr->value());
+ Register temp1 = ToRegister(instr->temp());
+ Register temp2 = scratch0();
+
+ Condition true_cond =
+ EmitIsObject(reg, temp1, temp2,
+ instr->FalseLabel(chunk_), instr->TrueLabel(chunk_));
+
+ EmitBranch(instr, true_cond, temp2,
+ Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
+}
+
+
+Condition LCodeGen::EmitIsString(Register input,
+ Register temp1,
+ Label* is_not_string,
+ SmiCheck check_needed = INLINE_SMI_CHECK) {
+ if (check_needed == INLINE_SMI_CHECK) {
+ __ JumpIfSmi(input, is_not_string);
+ }
+ __ GetObjectType(input, temp1, temp1);
+
+ return lt;
+}
+
+
+void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
+ Register reg = ToRegister(instr->value());
+ Register temp1 = ToRegister(instr->temp());
+
+ SmiCheck check_needed =
+ instr->hydrogen()->value()->type().IsHeapObject()
+ ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+ Condition true_cond =
+ EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed);
+
+ EmitBranch(instr, true_cond, temp1,
+ Operand(FIRST_NONSTRING_TYPE));
+}
+
+
+void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
+ Register input_reg = EmitLoadRegister(instr->value(), at);
+ __ And(at, input_reg, kSmiTagMask);
+ EmitBranch(instr, eq, at, Operand(zero_reg));
+}
+
+
+void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
+ Register input = ToRegister(instr->value());
+ Register temp = ToRegister(instr->temp());
+
+ if (!instr->hydrogen()->value()->type().IsHeapObject()) {
+ __ JumpIfSmi(input, instr->FalseLabel(chunk_));
+ }
+ __ ld(temp, FieldMemOperand(input, HeapObject::kMapOffset));
+ __ lbu(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
+ __ And(at, temp, Operand(1 << Map::kIsUndetectable));
+ EmitBranch(instr, ne, at, Operand(zero_reg));
+}
+
+
+static Condition ComputeCompareCondition(Token::Value op) {
+ switch (op) {
+ case Token::EQ_STRICT:
+ case Token::EQ:
+ return eq;
+ case Token::LT:
+ return lt;
+ case Token::GT:
+ return gt;
+ case Token::LTE:
+ return le;
+ case Token::GTE:
+ return ge;
+ default:
+ UNREACHABLE();
+ return kNoCondition;
+ }
+}
+
+
+void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
+ DCHECK(ToRegister(instr->context()).is(cp));
+ Token::Value op = instr->op();
+
+ Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+
+ Condition condition = ComputeCompareCondition(op);
+
+ EmitBranch(instr, condition, v0, Operand(zero_reg));
+}
+
+
+static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
+ InstanceType from = instr->from();
+ InstanceType to = instr->to();
+ if (from == FIRST_TYPE) return to;
+ DCHECK(from == to || to == LAST_TYPE);
+ return from;
+}
+
+
+static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
+ InstanceType from = instr->from();
+ InstanceType to = instr->to();
+ if (from == to) return eq;
+ if (to == LAST_TYPE) return hs;
+ if (from == FIRST_TYPE) return ls;
+ UNREACHABLE();
+ return eq;
+}
+
+
+void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
+ Register scratch = scratch0();
+ Register input = ToRegister(instr->value());
+
+ if (!instr->hydrogen()->value()->type().IsHeapObject()) {
+ __ JumpIfSmi(input, instr->FalseLabel(chunk_));
+ }
+
+ __ GetObjectType(input, scratch, scratch);
+ EmitBranch(instr,
+ BranchCondition(instr->hydrogen()),
+ scratch,
+ Operand(TestType(instr->hydrogen())));
+}
+
+
+void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
+ Register input = ToRegister(instr->value());
+ Register result = ToRegister(instr->result());
+
+ __ AssertString(input);
+
+ __ lwu(result, FieldMemOperand(input, String::kHashFieldOffset));
+ __ IndexFromHash(result, result);
+}
+
+
+void LCodeGen::DoHasCachedArrayIndexAndBranch(
+ LHasCachedArrayIndexAndBranch* instr) {
+ Register input = ToRegister(instr->value());
+ Register scratch = scratch0();
+
+ __ lwu(scratch,
+ FieldMemOperand(input, String::kHashFieldOffset));
+ __ And(at, scratch, Operand(String::kContainsCachedArrayIndexMask));
+ EmitBranch(instr, eq, at, Operand(zero_reg));
+}
+
+
+// Branches to a label or falls through with the answer in flags. Trashes
+// the temp registers, but not the input.
+void LCodeGen::EmitClassOfTest(Label* is_true,
+ Label* is_false,
+ Handle<String>class_name,
+ Register input,
+ Register temp,
+ Register temp2) {
+ DCHECK(!input.is(temp));
+ DCHECK(!input.is(temp2));
+ DCHECK(!temp.is(temp2));
+
+ __ JumpIfSmi(input, is_false);
+
+ if (class_name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("Function"))) {
+ // Assuming the following assertions, we can use the same compares to test
+ // for both being a function type and being in the object type range.
+ STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
+ STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
+ FIRST_SPEC_OBJECT_TYPE + 1);
+ STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
+ LAST_SPEC_OBJECT_TYPE - 1);
+ STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
+
+ __ GetObjectType(input, temp, temp2);
+ __ Branch(is_false, lt, temp2, Operand(FIRST_SPEC_OBJECT_TYPE));
+ __ Branch(is_true, eq, temp2, Operand(FIRST_SPEC_OBJECT_TYPE));
+ __ Branch(is_true, eq, temp2, Operand(LAST_SPEC_OBJECT_TYPE));
+ } else {
+ // Faster code path to avoid two compares: subtract lower bound from the
+ // actual type and do a signed compare with the width of the type range.
+ __ GetObjectType(input, temp, temp2);
+ __ Dsubu(temp2, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
+ __ Branch(is_false, gt, temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE -
+ FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
+ }
+
+ // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
+ // Check if the constructor in the map is a function.
+ __ ld(temp, FieldMemOperand(temp, Map::kConstructorOffset));
+
+ // Objects with a non-function constructor have class 'Object'.
+ __ GetObjectType(temp, temp2, temp2);
+ if (class_name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("Object"))) {
+ __ Branch(is_true, ne, temp2, Operand(JS_FUNCTION_TYPE));
+ } else {
+ __ Branch(is_false, ne, temp2, Operand(JS_FUNCTION_TYPE));
+ }
+
+ // temp now contains the constructor function. Grab the
+ // instance class name from there.
+ __ ld(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
+ __ ld(temp, FieldMemOperand(temp,
+ SharedFunctionInfo::kInstanceClassNameOffset));
+ // The class name we are testing against is internalized since it's a literal.
+ // The name in the constructor is internalized because of the way the context
+ // is booted. This routine isn't expected to work for random API-created
+ // classes and it doesn't have to because you can't access it with natives
+ // syntax. Since both sides are internalized it is sufficient to use an
+ // identity comparison.
+
+ // End with the address of this class_name instance in temp register.
+ // On MIPS, the caller must do the comparison with Handle<String>class_name.
+}
+
+
+void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
+ Register input = ToRegister(instr->value());
+ Register temp = scratch0();
+ Register temp2 = ToRegister(instr->temp());
+ Handle<String> class_name = instr->hydrogen()->class_name();
+
+ EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
+ class_name, input, temp, temp2);
+
+ EmitBranch(instr, eq, temp, Operand(class_name));
+}
+
+
+void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
+ Register reg = ToRegister(instr->value());
+ Register temp = ToRegister(instr->temp());
+
+ __ ld(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
+ EmitBranch(instr, eq, temp, Operand(instr->map()));
+}
+
+
+void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
+ DCHECK(ToRegister(instr->context()).is(cp));
+ Label true_label, done;
+ DCHECK(ToRegister(instr->left()).is(a0)); // Object is in a0.
+ DCHECK(ToRegister(instr->right()).is(a1)); // Function is in a1.
+ Register result = ToRegister(instr->result());
+ DCHECK(result.is(v0));
+
+ InstanceofStub stub(isolate(), InstanceofStub::kArgsInRegisters);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+
+ __ Branch(&true_label, eq, result, Operand(zero_reg));
+ __ li(result, Operand(factory()->false_value()));
+ __ Branch(&done);
+ __ bind(&true_label);
+ __ li(result, Operand(factory()->true_value()));
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
+ class DeferredInstanceOfKnownGlobal V8_FINAL : public LDeferredCode {
+ public:
+ DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
+ LInstanceOfKnownGlobal* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() V8_OVERRIDE {
+ codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_);
+ }
+ virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
+ Label* map_check() { return &map_check_; }
+
+ private:
+ LInstanceOfKnownGlobal* instr_;
+ Label map_check_;
+ };
+
+ DeferredInstanceOfKnownGlobal* deferred;
+ deferred = new(zone()) DeferredInstanceOfKnownGlobal(this, instr);
+
+ Label done, false_result;
+ Register object = ToRegister(instr->value());
+ Register temp = ToRegister(instr->temp());
+ Register result = ToRegister(instr->result());
+
+ DCHECK(object.is(a0));
+ DCHECK(result.is(v0));
+
+ // A Smi is not instance of anything.
+ __ JumpIfSmi(object, &false_result);
+
+ // This is the inlined call site instanceof cache. The two occurences of the
+ // hole value will be patched to the last map/result pair generated by the
+ // instanceof stub.
+ Label cache_miss;
+ Register map = temp;
+ __ ld(map, FieldMemOperand(object, HeapObject::kMapOffset));
+
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+ __ bind(deferred->map_check()); // Label for calculating code patching.
+ // We use Factory::the_hole_value() on purpose instead of loading from the
+ // root array to force relocation to be able to later patch with
+ // the cached map.
+ Handle<Cell> cell = factory()->NewCell(factory()->the_hole_value());
+ __ li(at, Operand(Handle<Object>(cell)));
+ __ ld(at, FieldMemOperand(at, PropertyCell::kValueOffset));
+ __ BranchShort(&cache_miss, ne, map, Operand(at));
+ // We use Factory::the_hole_value() on purpose instead of loading from the
+ // root array to force relocation to be able to later patch
+ // with true or false. The distance from map check has to be constant.
+ __ li(result, Operand(factory()->the_hole_value()));
+ __ Branch(&done);
+
+ // The inlined call site cache did not match. Check null and string before
+ // calling the deferred code.
+ __ bind(&cache_miss);
+ // Null is not instance of anything.
+ __ LoadRoot(temp, Heap::kNullValueRootIndex);
+ __ Branch(&false_result, eq, object, Operand(temp));
+
+ // String values is not instance of anything.
+ Condition cc = __ IsObjectStringType(object, temp, temp);
+ __ Branch(&false_result, cc, temp, Operand(zero_reg));
+
+ // Go to the deferred code.
+ __ Branch(deferred->entry());
+
+ __ bind(&false_result);
+ __ LoadRoot(result, Heap::kFalseValueRootIndex);
+
+ // Here result has either true or false. Deferred code also produces true or
+ // false object.
+ __ bind(deferred->exit());
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
+ Label* map_check) {
+ Register result = ToRegister(instr->result());
+ DCHECK(result.is(v0));
+
+ InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
+ flags = static_cast<InstanceofStub::Flags>(
+ flags | InstanceofStub::kArgsInRegisters);
+ flags = static_cast<InstanceofStub::Flags>(
+ flags | InstanceofStub::kCallSiteInlineCheck);
+ flags = static_cast<InstanceofStub::Flags>(
+ flags | InstanceofStub::kReturnTrueFalseObject);
+ InstanceofStub stub(isolate(), flags);
+
+ PushSafepointRegistersScope scope(this);
+ LoadContextFromDeferred(instr->context());
+
+ // Get the temp register reserved by the instruction. This needs to be a4 as
+ // its slot of the pushing of safepoint registers is used to communicate the
+ // offset to the location of the map check.
+ Register temp = ToRegister(instr->temp());
+ DCHECK(temp.is(a4));
+ __ li(InstanceofStub::right(), instr->function());
+ static const int kAdditionalDelta = 13;
+ int delta = masm_->InstructionsGeneratedSince(map_check) + kAdditionalDelta;
+ Label before_push_delta;
+ __ bind(&before_push_delta);
+ {
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+ __ li(temp, Operand(delta * kIntSize), CONSTANT_SIZE);
+ __ StoreToSafepointRegisterSlot(temp, temp);
+ }
+ CallCodeGeneric(stub.GetCode(),
+ RelocInfo::CODE_TARGET,
+ instr,
+ RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+ LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment();
+ safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
+ // Put the result value into the result register slot and
+ // restore all registers.
+ __ StoreToSafepointRegisterSlot(result, result);
+}
+
+
+void LCodeGen::DoCmpT(LCmpT* instr) {
+ DCHECK(ToRegister(instr->context()).is(cp));
+ Token::Value op = instr->op();
+
+ Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+ // On MIPS there is no need for a "no inlined smi code" marker (nop).
+
+ Condition condition = ComputeCompareCondition(op);
+ // A minor optimization that relies on LoadRoot always emitting one
+ // instruction.
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm());
+ Label done, check;
+ __ Branch(USE_DELAY_SLOT, &done, condition, v0, Operand(zero_reg));
+ __ bind(&check);
+ __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
+ DCHECK_EQ(1, masm()->InstructionsGeneratedSince(&check));
+ __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoReturn(LReturn* instr) {
+ if (FLAG_trace && info()->IsOptimizing()) {
+ // Push the return value on the stack as the parameter.
+ // Runtime::TraceExit returns its parameter in v0. We're leaving the code
+ // managed by the register allocator and tearing down the frame, it's
+ // safe to write to the context register.
+ __ push(v0);
+ __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ __ CallRuntime(Runtime::kTraceExit, 1);
+ }
+ if (info()->saves_caller_doubles()) {
+ RestoreCallerDoubles();
+ }
+ int no_frame_start = -1;
+ if (NeedsEagerFrame()) {
+ __ mov(sp, fp);
+ no_frame_start = masm_->pc_offset();
+ __ Pop(ra, fp);
+ }
+ if (instr->has_constant_parameter_count()) {
+ int parameter_count = ToInteger32(instr->constant_parameter_count());
+ int32_t sp_delta = (parameter_count + 1) * kPointerSize;
+ if (sp_delta != 0) {
+ __ Daddu(sp, sp, Operand(sp_delta));
+ }
+ } else {
+ Register reg = ToRegister(instr->parameter_count());
+ // The argument count parameter is a smi
+ __ SmiUntag(reg);
+ __ dsll(at, reg, kPointerSizeLog2);
+ __ Daddu(sp, sp, at);
+ }
+
+ __ Jump(ra);
+
+ if (no_frame_start != -1) {
+ info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
+ }
+}
+
+
+void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
+ Register result = ToRegister(instr->result());
+ __ li(at, Operand(Handle<Object>(instr->hydrogen()->cell().handle())));
+ __ ld(result, FieldMemOperand(at, Cell::kValueOffset));
+ if (instr->hydrogen()->RequiresHoleCheck()) {
+ __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
+ DeoptimizeIf(eq, instr->environment(), result, Operand(at));
+ }
+}
+
+
+void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
+ DCHECK(ToRegister(instr->context()).is(cp));
+ DCHECK(ToRegister(instr->global_object()).is(LoadIC::ReceiverRegister()));
+ DCHECK(ToRegister(instr->result()).is(v0));
+
+ __ li(LoadIC::NameRegister(), Operand(instr->name()));
+ if (FLAG_vector_ics) {
+ Register vector = ToRegister(instr->temp_vector());
+ DCHECK(vector.is(LoadIC::VectorRegister()));
+ __ li(vector, instr->hydrogen()->feedback_vector());
+ // No need to allocate this register.
+ DCHECK(LoadIC::SlotRegister().is(a0));
+ __ li(LoadIC::SlotRegister(),
+ Operand(Smi::FromInt(instr->hydrogen()->slot())));
+ }
+ ContextualMode mode = instr->for_typeof() ? NOT_CONTEXTUAL : CONTEXTUAL;
+ Handle<Code> ic = LoadIC::initialize_stub(isolate(), mode);
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
+ Register value = ToRegister(instr->value());
+ Register cell = scratch0();
+
+ // Load the cell.
+ __ li(cell, Operand(instr->hydrogen()->cell().handle()));
+
+ // If the cell we are storing to contains the hole it could have
+ // been deleted from the property dictionary. In that case, we need
+ // to update the property details in the property dictionary to mark
+ // it as no longer deleted.
+ if (instr->hydrogen()->RequiresHoleCheck()) {
+ // We use a temp to check the payload.
+ Register payload = ToRegister(instr->temp());
+ __ ld(payload, FieldMemOperand(cell, Cell::kValueOffset));
+ __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
+ DeoptimizeIf(eq, instr->environment(), payload, Operand(at));
+ }
+
+ // Store the value.
+ __ sd(value, FieldMemOperand(cell, Cell::kValueOffset));
+ // Cells are always rescanned, so no write barrier here.
+}
+
+
+void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
+ Register context = ToRegister(instr->context());
+ Register result = ToRegister(instr->result());
+
+ __ ld(result, ContextOperand(context, instr->slot_index()));
+ if (instr->hydrogen()->RequiresHoleCheck()) {
+ __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
+
+ if (instr->hydrogen()->DeoptimizesOnHole()) {
+ DeoptimizeIf(eq, instr->environment(), result, Operand(at));
+ } else {
+ Label is_not_hole;
+ __ Branch(&is_not_hole, ne, result, Operand(at));
+ __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
+ __ bind(&is_not_hole);
+ }
+ }
+}
+
+
+void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
+ Register context = ToRegister(instr->context());
+ Register value = ToRegister(instr->value());
+ Register scratch = scratch0();
+ MemOperand target = ContextOperand(context, instr->slot_index());
+
+ Label skip_assignment;
+
+ if (instr->hydrogen()->RequiresHoleCheck()) {
+ __ ld(scratch, target);
+ __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
+
+ if (instr->hydrogen()->DeoptimizesOnHole()) {
+ DeoptimizeIf(eq, instr->environment(), scratch, Operand(at));
+ } else {
+ __ Branch(&skip_assignment, ne, scratch, Operand(at));
+ }
+ }
+
+ __ sd(value, target);
+ if (instr->hydrogen()->NeedsWriteBarrier()) {
+ SmiCheck check_needed =
+ instr->hydrogen()->value()->type().IsHeapObject()
+ ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+ __ RecordWriteContextSlot(context,
+ target.offset(),
+ value,
+ scratch0(),
+ GetRAState(),
+ kSaveFPRegs,
+ EMIT_REMEMBERED_SET,
+ check_needed);
+ }
+
+ __ bind(&skip_assignment);
+}
+
+
+void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
+ HObjectAccess access = instr->hydrogen()->access();
+ int offset = access.offset();
+ Register object = ToRegister(instr->object());
+ if (access.IsExternalMemory()) {
+ Register result = ToRegister(instr->result());
+ MemOperand operand = MemOperand(object, offset);
+ __ Load(result, operand, access.representation());
+ return;
+ }
+
+ if (instr->hydrogen()->representation().IsDouble()) {
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ __ ldc1(result, FieldMemOperand(object, offset));
+ return;
+ }
+
+ Register result = ToRegister(instr->result());
+ if (!access.IsInobject()) {
+ __ ld(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
+ object = result;
+ }
+
+ Representation representation = access.representation();
+ if (representation.IsSmi() && SmiValuesAre32Bits() &&
+ instr->hydrogen()->representation().IsInteger32()) {
+ if (FLAG_debug_code) {
+ // Verify this is really an Smi.
+ Register scratch = scratch0();
+ __ Load(scratch, FieldMemOperand(object, offset), representation);
+ __ AssertSmi(scratch);
+ }
+
+ // Read int value directly from upper half of the smi.
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
+ offset += kPointerSize / 2;
+ representation = Representation::Integer32();
+ }
+ __ Load(result, FieldMemOperand(object, offset), representation);
+}
+
+
+void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
+ DCHECK(ToRegister(instr->context()).is(cp));
+ DCHECK(ToRegister(instr->object()).is(LoadIC::ReceiverRegister()));
+ DCHECK(ToRegister(instr->result()).is(v0));
+
+ // Name is always in a2.
+ __ li(LoadIC::NameRegister(), Operand(instr->name()));
+ if (FLAG_vector_ics) {
+ Register vector = ToRegister(instr->temp_vector());
+ DCHECK(vector.is(LoadIC::VectorRegister()));
+ __ li(vector, instr->hydrogen()->feedback_vector());
+ // No need to allocate this register.
+ DCHECK(LoadIC::SlotRegister().is(a0));
+ __ li(LoadIC::SlotRegister(),
+ Operand(Smi::FromInt(instr->hydrogen()->slot())));
+ }
+ Handle<Code> ic = LoadIC::initialize_stub(isolate(), NOT_CONTEXTUAL);
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
+ Register scratch = scratch0();
+ Register function = ToRegister(instr->function());
+ Register result = ToRegister(instr->result());
+
+ // Get the prototype or initial map from the function.
+ __ ld(result,
+ FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
+
+ // Check that the function has a prototype or an initial map.
+ __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
+ DeoptimizeIf(eq, instr->environment(), result, Operand(at));
+
+ // If the function does not have an initial map, we're done.
+ Label done;
+ __ GetObjectType(result, scratch, scratch);
+ __ Branch(&done, ne, scratch, Operand(MAP_TYPE));
+
+ // Get the prototype from the initial map.
+ __ ld(result, FieldMemOperand(result, Map::kPrototypeOffset));
+
+ // All done.
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
+ Register result = ToRegister(instr->result());
+ __ LoadRoot(result, instr->index());
+}
+
+
+void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
+ Register arguments = ToRegister(instr->arguments());
+ Register result = ToRegister(instr->result());
+ // There are two words between the frame pointer and the last argument.
+ // Subtracting from length accounts for one of them add one more.
+ if (instr->length()->IsConstantOperand()) {
+ int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
+ if (instr->index()->IsConstantOperand()) {
+ int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
+ int index = (const_length - const_index) + 1;
+ __ ld(result, MemOperand(arguments, index * kPointerSize));
+ } else {
+ Register index = ToRegister(instr->index());
+ __ li(at, Operand(const_length + 1));
+ __ Dsubu(result, at, index);
+ __ dsll(at, result, kPointerSizeLog2);
+ __ Daddu(at, arguments, at);
+ __ ld(result, MemOperand(at));
+ }
+ } else if (instr->index()->IsConstantOperand()) {
+ Register length = ToRegister(instr->length());
+ int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
+ int loc = const_index - 1;
+ if (loc != 0) {
+ __ Dsubu(result, length, Operand(loc));
+ __ dsll(at, result, kPointerSizeLog2);
+ __ Daddu(at, arguments, at);
+ __ ld(result, MemOperand(at));
+ } else {
+ __ dsll(at, length, kPointerSizeLog2);
+ __ Daddu(at, arguments, at);
+ __ ld(result, MemOperand(at));
+ }
+ } else {
+ Register length = ToRegister(instr->length());
+ Register index = ToRegister(instr->index());
+ __ Dsubu(result, length, index);
+ __ Daddu(result, result, 1);
+ __ dsll(at, result, kPointerSizeLog2);
+ __ Daddu(at, arguments, at);
+ __ ld(result, MemOperand(at));
+ }
+}
+
+
+void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
+ Register external_pointer = ToRegister(instr->elements());
+ Register key = no_reg;
+ ElementsKind elements_kind = instr->elements_kind();
+ bool key_is_constant = instr->key()->IsConstantOperand();
+ int constant_key = 0;
+ if (key_is_constant) {
+ constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+ if (constant_key & 0xF0000000) {
+ Abort(kArrayIndexConstantValueTooBig);
+ }
+ } else {
+ key = ToRegister(instr->key());
+ }
+ int element_size_shift = ElementsKindToShiftSize(elements_kind);
+ int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
+ ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
+ : element_size_shift;
+ int base_offset = instr->base_offset();
+
+ if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
+ elements_kind == FLOAT32_ELEMENTS ||
+ elements_kind == EXTERNAL_FLOAT64_ELEMENTS ||
+ elements_kind == FLOAT64_ELEMENTS) {
+ int base_offset = instr->base_offset();
+ FPURegister result = ToDoubleRegister(instr->result());
+ if (key_is_constant) {
+ __ Daddu(scratch0(), external_pointer,
+ constant_key << element_size_shift);
+ } else {
+ if (shift_size < 0) {
+ if (shift_size == -32) {
+ __ dsra32(scratch0(), key, 0);
+ } else {
+ __ dsra(scratch0(), key, -shift_size);
+ }
+ } else {
+ __ dsll(scratch0(), key, shift_size);
+ }
+ __ Daddu(scratch0(), scratch0(), external_pointer);
+ }
+ if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
+ elements_kind == FLOAT32_ELEMENTS) {
+ __ lwc1(result, MemOperand(scratch0(), base_offset));
+ __ cvt_d_s(result, result);
+ } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
+ __ ldc1(result, MemOperand(scratch0(), base_offset));
+ }
+ } else {
+ Register result = ToRegister(instr->result());
+ MemOperand mem_operand = PrepareKeyedOperand(
+ key, external_pointer, key_is_constant, constant_key,
+ element_size_shift, shift_size, base_offset);
+ switch (elements_kind) {
+ case EXTERNAL_INT8_ELEMENTS:
+ case INT8_ELEMENTS:
+ __ lb(result, mem_operand);
+ break;
+ case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
+ case EXTERNAL_UINT8_ELEMENTS:
+ case UINT8_ELEMENTS:
+ case UINT8_CLAMPED_ELEMENTS:
+ __ lbu(result, mem_operand);
+ break;
+ case EXTERNAL_INT16_ELEMENTS:
+ case INT16_ELEMENTS:
+ __ lh(result, mem_operand);
+ break;
+ case EXTERNAL_UINT16_ELEMENTS:
+ case UINT16_ELEMENTS:
+ __ lhu(result, mem_operand);
+ break;
+ case EXTERNAL_INT32_ELEMENTS:
+ case INT32_ELEMENTS:
+ __ lw(result, mem_operand);
+ break;
+ case EXTERNAL_UINT32_ELEMENTS:
+ case UINT32_ELEMENTS:
+ __ lw(result, mem_operand);
+ if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
+ DeoptimizeIf(Ugreater_equal, instr->environment(),
+ result, Operand(0x80000000));
+ }
+ break;
+ case FLOAT32_ELEMENTS:
+ case FLOAT64_ELEMENTS:
+ case EXTERNAL_FLOAT32_ELEMENTS:
+ case EXTERNAL_FLOAT64_ELEMENTS:
+ case FAST_DOUBLE_ELEMENTS:
+ case FAST_ELEMENTS:
+ case FAST_SMI_ELEMENTS:
+ case FAST_HOLEY_DOUBLE_ELEMENTS:
+ case FAST_HOLEY_ELEMENTS:
+ case FAST_HOLEY_SMI_ELEMENTS:
+ case DICTIONARY_ELEMENTS:
+ case SLOPPY_ARGUMENTS_ELEMENTS:
+ UNREACHABLE();
+ break;
+ }
+ }
+}
+
+
+void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
+ Register elements = ToRegister(instr->elements());
+ bool key_is_constant = instr->key()->IsConstantOperand();
+ Register key = no_reg;
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ Register scratch = scratch0();
+
+ int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
+
+ int base_offset = instr->base_offset();
+ if (key_is_constant) {
+ int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+ if (constant_key & 0xF0000000) {
+ Abort(kArrayIndexConstantValueTooBig);
+ }
+ base_offset += constant_key * kDoubleSize;
+ }
+ __ Daddu(scratch, elements, Operand(base_offset));
+
+ if (!key_is_constant) {
+ key = ToRegister(instr->key());
+ int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
+ ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
+ : element_size_shift;
+ if (shift_size > 0) {
+ __ dsll(at, key, shift_size);
+ } else if (shift_size == -32) {
+ __ dsra32(at, key, 0);
+ } else {
+ __ dsra(at, key, -shift_size);
+ }
+ __ Daddu(scratch, scratch, at);
+ }
+
+ __ ldc1(result, MemOperand(scratch));
+
+ if (instr->hydrogen()->RequiresHoleCheck()) {
+ __ lw(scratch, MemOperand(scratch, sizeof(kHoleNanLower32)));
+ DeoptimizeIf(eq, instr->environment(), scratch, Operand(kHoleNanUpper32));
+ }
+}
+
+
+void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
+ HLoadKeyed* hinstr = instr->hydrogen();
+ Register elements = ToRegister(instr->elements());
+ Register result = ToRegister(instr->result());
+ Register scratch = scratch0();
+ Register store_base = scratch;
+ int offset = instr->base_offset();
+
+ if (instr->key()->IsConstantOperand()) {
+ LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
+ offset += ToInteger32(const_operand) * kPointerSize;
+ store_base = elements;
+ } else {
+ Register key = ToRegister(instr->key());
+ // Even though the HLoadKeyed instruction forces the input
+ // representation for the key to be an integer, the input gets replaced
+ // during bound check elimination with the index argument to the bounds
+ // check, which can be tagged, so that case must be handled here, too.
+ if (instr->hydrogen()->key()->representation().IsSmi()) {
+ __ SmiScale(scratch, key, kPointerSizeLog2);
+ __ daddu(scratch, elements, scratch);
+ } else {
+ __ dsll(scratch, key, kPointerSizeLog2);
+ __ daddu(scratch, elements, scratch);
+ }
+ }
+
+ Representation representation = hinstr->representation();
+ if (representation.IsInteger32() && SmiValuesAre32Bits() &&
+ hinstr->elements_kind() == FAST_SMI_ELEMENTS) {
+ DCHECK(!hinstr->RequiresHoleCheck());
+ if (FLAG_debug_code) {
+ Register temp = scratch1();
+ __ Load(temp, MemOperand(store_base, offset), Representation::Smi());
+ __ AssertSmi(temp);
+ }
+
+ // Read int value directly from upper half of the smi.
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
+ offset += kPointerSize / 2;
+ }
+
+ __ Load(result, MemOperand(store_base, offset), representation);
+
+ // Check for the hole value.
+ if (hinstr->RequiresHoleCheck()) {
+ if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
+ __ SmiTst(result, scratch);
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(zero_reg));
+ } else {
+ __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
+ DeoptimizeIf(eq, instr->environment(), result, Operand(scratch));
+ }
+ }
+}
+
+
+void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
+ if (instr->is_typed_elements()) {
+ DoLoadKeyedExternalArray(instr);
+ } else if (instr->hydrogen()->representation().IsDouble()) {
+ DoLoadKeyedFixedDoubleArray(instr);
+ } else {
+ DoLoadKeyedFixedArray(instr);
+ }
+}
+
+
+MemOperand LCodeGen::PrepareKeyedOperand(Register key,
+ Register base,
+ bool key_is_constant,
+ int constant_key,
+ int element_size,
+ int shift_size,
+ int base_offset) {
+ if (key_is_constant) {
+ return MemOperand(base, (constant_key << element_size) + base_offset);
+ }
+
+ if (base_offset == 0) {
+ if (shift_size >= 0) {
+ __ dsll(scratch0(), key, shift_size);
+ __ Daddu(scratch0(), base, scratch0());
+ return MemOperand(scratch0());
+ } else {
+ if (shift_size == -32) {
+ __ dsra32(scratch0(), key, 0);
+ } else {
+ __ dsra(scratch0(), key, -shift_size);
+ }
+ __ Daddu(scratch0(), base, scratch0());
+ return MemOperand(scratch0());
+ }
+ }
+
+ if (shift_size >= 0) {
+ __ dsll(scratch0(), key, shift_size);
+ __ Daddu(scratch0(), base, scratch0());
+ return MemOperand(scratch0(), base_offset);
+ } else {
+ if (shift_size == -32) {
+ __ dsra32(scratch0(), key, 0);
+ } else {
+ __ dsra(scratch0(), key, -shift_size);
+ }
+ __ Daddu(scratch0(), base, scratch0());
+ return MemOperand(scratch0(), base_offset);
+ }
+}
+
+
+void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
+ DCHECK(ToRegister(instr->context()).is(cp));
+ DCHECK(ToRegister(instr->object()).is(LoadIC::ReceiverRegister()));
+ DCHECK(ToRegister(instr->key()).is(LoadIC::NameRegister()));
+
+ if (FLAG_vector_ics) {
+ Register vector = ToRegister(instr->temp_vector());
+ DCHECK(vector.is(LoadIC::VectorRegister()));
+ __ li(vector, instr->hydrogen()->feedback_vector());
+ // No need to allocate this register.
+ DCHECK(LoadIC::SlotRegister().is(a0));
+ __ li(LoadIC::SlotRegister(),
+ Operand(Smi::FromInt(instr->hydrogen()->slot())));
+ }
+
+ Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
+ Register scratch = scratch0();
+ Register temp = scratch1();
+ Register result = ToRegister(instr->result());
+
+ if (instr->hydrogen()->from_inlined()) {
+ __ Dsubu(result, sp, 2 * kPointerSize);
+ } else {
+ // Check if the calling frame is an arguments adaptor frame.
+ Label done, adapted;
+ __ ld(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ ld(result, MemOperand(scratch, StandardFrameConstants::kContextOffset));
+ __ Xor(temp, result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+
+ // Result is the frame pointer for the frame if not adapted and for the real
+ // frame below the adaptor frame if adapted.
+ __ Movn(result, fp, temp); // Move only if temp is not equal to zero (ne).
+ __ Movz(result, scratch, temp); // Move only if temp is equal to zero (eq).
+ }
+}
+
+
+void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
+ Register elem = ToRegister(instr->elements());
+ Register result = ToRegister(instr->result());
+
+ Label done;
+
+ // If no arguments adaptor frame the number of arguments is fixed.
+ __ Daddu(result, zero_reg, Operand(scope()->num_parameters()));
+ __ Branch(&done, eq, fp, Operand(elem));
+
+ // Arguments adaptor frame present. Get argument length from there.
+ __ ld(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ ld(result,
+ MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ SmiUntag(result);
+
+ // Argument length is in result register.
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
+ Register receiver = ToRegister(instr->receiver());
+ Register function = ToRegister(instr->function());
+ Register result = ToRegister(instr->result());
+ Register scratch = scratch0();
+
+ // If the receiver is null or undefined, we have to pass the global
+ // object as a receiver to normal functions. Values have to be
+ // passed unchanged to builtins and strict-mode functions.
+ Label global_object, result_in_receiver;
+
+ if (!instr->hydrogen()->known_function()) {
+ // Do not transform the receiver to object for strict mode functions.
+ __ ld(scratch,
+ FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
+
+ // Do not transform the receiver to object for builtins.
+ int32_t strict_mode_function_mask =
+ 1 << SharedFunctionInfo::kStrictModeBitWithinByte;
+ int32_t native_mask = 1 << SharedFunctionInfo::kNativeBitWithinByte;
+
+ __ lbu(at,
+ FieldMemOperand(scratch, SharedFunctionInfo::kStrictModeByteOffset));
+ __ And(at, at, Operand(strict_mode_function_mask));
+ __ Branch(&result_in_receiver, ne, at, Operand(zero_reg));
+ __ lbu(at,
+ FieldMemOperand(scratch, SharedFunctionInfo::kNativeByteOffset));
+ __ And(at, at, Operand(native_mask));
+ __ Branch(&result_in_receiver, ne, at, Operand(zero_reg));
+ }
+
+ // Normal function. Replace undefined or null with global receiver.
+ __ LoadRoot(scratch, Heap::kNullValueRootIndex);
+ __ Branch(&global_object, eq, receiver, Operand(scratch));
+ __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
+ __ Branch(&global_object, eq, receiver, Operand(scratch));
+
+ // Deoptimize if the receiver is not a JS object.
+ __ SmiTst(receiver, scratch);
+ DeoptimizeIf(eq, instr->environment(), scratch, Operand(zero_reg));
+
+ __ GetObjectType(receiver, scratch, scratch);
+ DeoptimizeIf(lt, instr->environment(),
+ scratch, Operand(FIRST_SPEC_OBJECT_TYPE));
+ __ Branch(&result_in_receiver);
+
+ __ bind(&global_object);
+ __ ld(result, FieldMemOperand(function, JSFunction::kContextOffset));
+ __ ld(result,
+ ContextOperand(result, Context::GLOBAL_OBJECT_INDEX));
+ __ ld(result,
+ FieldMemOperand(result, GlobalObject::kGlobalProxyOffset));
+
+ if (result.is(receiver)) {
+ __ bind(&result_in_receiver);
+ } else {
+ Label result_ok;
+ __ Branch(&result_ok);
+ __ bind(&result_in_receiver);
+ __ mov(result, receiver);
+ __ bind(&result_ok);
+ }
+}
+
+
+void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
+ Register receiver = ToRegister(instr->receiver());
+ Register function = ToRegister(instr->function());
+ Register length = ToRegister(instr->length());
+ Register elements = ToRegister(instr->elements());
+ Register scratch = scratch0();
+ DCHECK(receiver.is(a0)); // Used for parameter count.
+ DCHECK(function.is(a1)); // Required by InvokeFunction.
+ DCHECK(ToRegister(instr->result()).is(v0));
+
+ // Copy the arguments to this function possibly from the
+ // adaptor frame below it.
+ const uint32_t kArgumentsLimit = 1 * KB;
+ DeoptimizeIf(hi, instr->environment(), length, Operand(kArgumentsLimit));
+
+ // Push the receiver and use the register to keep the original
+ // number of arguments.
+ __ push(receiver);
+ __ Move(receiver, length);
+ // The arguments are at a one pointer size offset from elements.
+ __ Daddu(elements, elements, Operand(1 * kPointerSize));
+
+ // Loop through the arguments pushing them onto the execution
+ // stack.
+ Label invoke, loop;
+ // length is a small non-negative integer, due to the test above.
+ __ Branch(USE_DELAY_SLOT, &invoke, eq, length, Operand(zero_reg));
+ __ dsll(scratch, length, kPointerSizeLog2);
+ __ bind(&loop);
+ __ Daddu(scratch, elements, scratch);
+ __ ld(scratch, MemOperand(scratch));
+ __ push(scratch);
+ __ Dsubu(length, length, Operand(1));
+ __ Branch(USE_DELAY_SLOT, &loop, ne, length, Operand(zero_reg));
+ __ dsll(scratch, length, kPointerSizeLog2);
+
+ __ bind(&invoke);
+ DCHECK(instr->HasPointerMap());
+ LPointerMap* pointers = instr->pointer_map();
+ SafepointGenerator safepoint_generator(
+ this, pointers, Safepoint::kLazyDeopt);
+ // The number of arguments is stored in receiver which is a0, as expected
+ // by InvokeFunction.
+ ParameterCount actual(receiver);
+ __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator);
+}
+
+
+void LCodeGen::DoPushArgument(LPushArgument* instr) {
+ LOperand* argument = instr->value();
+ if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
+ Abort(kDoPushArgumentNotImplementedForDoubleType);
+ } else {
+ Register argument_reg = EmitLoadRegister(argument, at);
+ __ push(argument_reg);
+ }
+}
+
+
+void LCodeGen::DoDrop(LDrop* instr) {
+ __ Drop(instr->count());
+}
+
+
+void LCodeGen::DoThisFunction(LThisFunction* instr) {
+ Register result = ToRegister(instr->result());
+ __ ld(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+}
+
+
+void LCodeGen::DoContext(LContext* instr) {
+ // If there is a non-return use, the context must be moved to a register.
+ Register result = ToRegister(instr->result());
+ if (info()->IsOptimizing()) {
+ __ ld(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ } else {
+ // If there is no frame, the context must be in cp.
+ DCHECK(result.is(cp));
+ }
+}
+
+
+void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
+ DCHECK(ToRegister(instr->context()).is(cp));
+ __ li(scratch0(), instr->hydrogen()->pairs());
+ __ li(scratch1(), Operand(Smi::FromInt(instr->hydrogen()->flags())));
+ // The context is the first argument.
+ __ Push(cp, scratch0(), scratch1());
+ CallRuntime(Runtime::kDeclareGlobals, 3, instr);
+}
+
+
+void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
+ int formal_parameter_count,
+ int arity,
+ LInstruction* instr,
+ A1State a1_state) {
+ bool dont_adapt_arguments =
+ formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
+ bool can_invoke_directly =
+ dont_adapt_arguments || formal_parameter_count == arity;
+
+ LPointerMap* pointers = instr->pointer_map();
+
+ if (can_invoke_directly) {
+ if (a1_state == A1_UNINITIALIZED) {
+ __ li(a1, function);
+ }
+
+ // Change context.
+ __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
+
+ // Set r0 to arguments count if adaption is not needed. Assumes that r0
+ // is available to write to at this point.
+ if (dont_adapt_arguments) {
+ __ li(a0, Operand(arity));
+ }
+
+ // Invoke function.
+ __ ld(at, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
+ __ Call(at);
+
+ // Set up deoptimization.
+ RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
+ } else {
+ SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
+ ParameterCount count(arity);
+ ParameterCount expected(formal_parameter_count);
+ __ InvokeFunction(function, expected, count, CALL_FUNCTION, generator);
+ }
+}
+
+
+void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
+ DCHECK(instr->context() != NULL);
+ DCHECK(ToRegister(instr->context()).is(cp));
+ Register input = ToRegister(instr->value());
+ Register result = ToRegister(instr->result());
+ Register scratch = scratch0();
+
+ // Deoptimize if not a heap number.
+ __ ld(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
+ __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(at));
+
+ Label done;
+ Register exponent = scratch0();
+ scratch = no_reg;
+ __ lwu(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
+ // Check the sign of the argument. If the argument is positive, just
+ // return it.
+ __ Move(result, input);
+ __ And(at, exponent, Operand(HeapNumber::kSignMask));
+ __ Branch(&done, eq, at, Operand(zero_reg));
+
+ // Input is negative. Reverse its sign.
+ // Preserve the value of all registers.
+ {
+ PushSafepointRegistersScope scope(this);
+
+ // Registers were saved at the safepoint, so we can use
+ // many scratch registers.
+ Register tmp1 = input.is(a1) ? a0 : a1;
+ Register tmp2 = input.is(a2) ? a0 : a2;
+ Register tmp3 = input.is(a3) ? a0 : a3;
+ Register tmp4 = input.is(a4) ? a0 : a4;
+
+ // exponent: floating point exponent value.
+
+ Label allocated, slow;
+ __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
+ __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
+ __ Branch(&allocated);
+
+ // Slow case: Call the runtime system to do the number allocation.
+ __ bind(&slow);
+
+ CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
+ instr->context());
+ // Set the pointer to the new heap number in tmp.
+ if (!tmp1.is(v0))
+ __ mov(tmp1, v0);
+ // Restore input_reg after call to runtime.
+ __ LoadFromSafepointRegisterSlot(input, input);
+ __ lwu(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
+
+ __ bind(&allocated);
+ // exponent: floating point exponent value.
+ // tmp1: allocated heap number.
+ __ And(exponent, exponent, Operand(~HeapNumber::kSignMask));
+ __ sw(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
+ __ lwu(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
+ __ sw(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
+
+ __ StoreToSafepointRegisterSlot(tmp1, result);
+ }
+
+ __ bind(&done);
+}
+
+
+void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
+ Register input = ToRegister(instr->value());
+ Register result = ToRegister(instr->result());
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+ Label done;
+ __ Branch(USE_DELAY_SLOT, &done, ge, input, Operand(zero_reg));
+ __ mov(result, input);
+ __ dsubu(result, zero_reg, input);
+ // Overflow if result is still negative, i.e. 0x80000000.
+ DeoptimizeIf(lt, instr->environment(), result, Operand(zero_reg));
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoMathAbs(LMathAbs* instr) {
+ // Class for deferred case.
+ class DeferredMathAbsTaggedHeapNumber V8_FINAL : public LDeferredCode {
+ public:
+ DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() V8_OVERRIDE {
+ codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
+ }
+ virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
+ private:
+ LMathAbs* instr_;
+ };
+
+ Representation r = instr->hydrogen()->value()->representation();
+ if (r.IsDouble()) {
+ FPURegister input = ToDoubleRegister(instr->value());
+ FPURegister result = ToDoubleRegister(instr->result());
+ __ abs_d(result, input);
+ } else if (r.IsSmiOrInteger32()) {
+ EmitIntegerMathAbs(instr);
+ } else {
+ // Representation is tagged.
+ DeferredMathAbsTaggedHeapNumber* deferred =
+ new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
+ Register input = ToRegister(instr->value());
+ // Smi check.
+ __ JumpIfNotSmi(input, deferred->entry());
+ // If smi, handle it directly.
+ EmitIntegerMathAbs(instr);
+ __ bind(deferred->exit());
+ }
+}
+
+
+void LCodeGen::DoMathFloor(LMathFloor* instr) {
+ DoubleRegister input = ToDoubleRegister(instr->value());
+ Register result = ToRegister(instr->result());
+ Register scratch1 = scratch0();
+ Register except_flag = ToRegister(instr->temp());
+
+ __ EmitFPUTruncate(kRoundToMinusInf,
+ result,
+ input,
+ scratch1,
+ double_scratch0(),
+ except_flag);
+
+ // Deopt if the operation did not succeed.
+ DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg));
+
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ // Test for -0.
+ Label done;
+ __ Branch(&done, ne, result, Operand(zero_reg));
+ __ mfhc1(scratch1, input); // Get exponent/sign bits.
+ __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
+ DeoptimizeIf(ne, instr->environment(), scratch1, Operand(zero_reg));
+ __ bind(&done);
+ }
+}
+
+
+void LCodeGen::DoMathRound(LMathRound* instr) {
+ DoubleRegister input = ToDoubleRegister(instr->value());
+ Register result = ToRegister(instr->result());
+ DoubleRegister double_scratch1 = ToDoubleRegister(instr->temp());
+ Register scratch = scratch0();
+ Label done, check_sign_on_zero;
+
+ // Extract exponent bits.
+ __ mfhc1(result, input);
+ __ Ext(scratch,
+ result,
+ HeapNumber::kExponentShift,
+ HeapNumber::kExponentBits);
+
+ // If the number is in ]-0.5, +0.5[, the result is +/- 0.
+ Label skip1;
+ __ Branch(&skip1, gt, scratch, Operand(HeapNumber::kExponentBias - 2));
+ __ mov(result, zero_reg);
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ __ Branch(&check_sign_on_zero);
+ } else {
+ __ Branch(&done);
+ }
+ __ bind(&skip1);
+
+ // The following conversion will not work with numbers
+ // outside of ]-2^32, 2^32[.
+ DeoptimizeIf(ge, instr->environment(), scratch,
+ Operand(HeapNumber::kExponentBias + 32));
+
+ // Save the original sign for later comparison.
+ __ And(scratch, result, Operand(HeapNumber::kSignMask));
+
+ __ Move(double_scratch0(), 0.5);
+ __ add_d(double_scratch0(), input, double_scratch0());
+
+ // Check sign of the result: if the sign changed, the input
+ // value was in ]0.5, 0[ and the result should be -0.
+ __ mfhc1(result, double_scratch0());
+ // mfhc1 sign-extends, clear the upper bits.
+ __ dsll32(result, result, 0);
+ __ dsrl32(result, result, 0);
+ __ Xor(result, result, Operand(scratch));
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ // ARM uses 'mi' here, which is 'lt'
+ DeoptimizeIf(lt, instr->environment(), result,
+ Operand(zero_reg));
+ } else {
+ Label skip2;
+ // ARM uses 'mi' here, which is 'lt'
+ // Negating it results in 'ge'
+ __ Branch(&skip2, ge, result, Operand(zero_reg));
+ __ mov(result, zero_reg);
+ __ Branch(&done);
+ __ bind(&skip2);
+ }
+
+ Register except_flag = scratch;
+ __ EmitFPUTruncate(kRoundToMinusInf,
+ result,
+ double_scratch0(),
+ at,
+ double_scratch1,
+ except_flag);
+
+ DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg));
+
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ // Test for -0.
+ __ Branch(&done, ne, result, Operand(zero_reg));
+ __ bind(&check_sign_on_zero);
+ __ mfhc1(scratch, input); // Get exponent/sign bits.
+ __ And(scratch, scratch, Operand(HeapNumber::kSignMask));
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(zero_reg));
+ }
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoMathFround(LMathFround* instr) {
+ DoubleRegister input = ToDoubleRegister(instr->value());
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ __ cvt_s_d(result, input);
+ __ cvt_d_s(result, result);
+}
+
+
+void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
+ DoubleRegister input = ToDoubleRegister(instr->value());
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ __ sqrt_d(result, input);
+}
+
+
+void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
+ DoubleRegister input = ToDoubleRegister(instr->value());
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ DoubleRegister temp = ToDoubleRegister(instr->temp());
+
+ DCHECK(!input.is(result));
+
+ // Note that according to ECMA-262 15.8.2.13:
+ // Math.pow(-Infinity, 0.5) == Infinity
+ // Math.sqrt(-Infinity) == NaN
+ Label done;
+ __ Move(temp, -V8_INFINITY);
+ __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, temp, input);
+ // Set up Infinity in the delay slot.
+ // result is overwritten if the branch is not taken.
+ __ neg_d(result, temp);
+
+ // Add +0 to convert -0 to +0.
+ __ add_d(result, input, kDoubleRegZero);
+ __ sqrt_d(result, result);
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoPower(LPower* instr) {
+ Representation exponent_type = instr->hydrogen()->right()->representation();
+ // Having marked this as a call, we can use any registers.
+ // Just make sure that the input/output registers are the expected ones.
+ DCHECK(!instr->right()->IsDoubleRegister() ||
+ ToDoubleRegister(instr->right()).is(f4));
+ DCHECK(!instr->right()->IsRegister() ||
+ ToRegister(instr->right()).is(a2));
+ DCHECK(ToDoubleRegister(instr->left()).is(f2));
+ DCHECK(ToDoubleRegister(instr->result()).is(f0));
+
+ if (exponent_type.IsSmi()) {
+ MathPowStub stub(isolate(), MathPowStub::TAGGED);
+ __ CallStub(&stub);
+ } else if (exponent_type.IsTagged()) {
+ Label no_deopt;
+ __ JumpIfSmi(a2, &no_deopt);
+ __ ld(a7, FieldMemOperand(a2, HeapObject::kMapOffset));
+ __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
+ DeoptimizeIf(ne, instr->environment(), a7, Operand(at));
+ __ bind(&no_deopt);
+ MathPowStub stub(isolate(), MathPowStub::TAGGED);
+ __ CallStub(&stub);
+ } else if (exponent_type.IsInteger32()) {
+ MathPowStub stub(isolate(), MathPowStub::INTEGER);
+ __ CallStub(&stub);
+ } else {
+ DCHECK(exponent_type.IsDouble());
+ MathPowStub stub(isolate(), MathPowStub::DOUBLE);
+ __ CallStub(&stub);
+ }
+}
+
+
+void LCodeGen::DoMathExp(LMathExp* instr) {
+ DoubleRegister input = ToDoubleRegister(instr->value());
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ DoubleRegister double_scratch1 = ToDoubleRegister(instr->double_temp());
+ DoubleRegister double_scratch2 = double_scratch0();
+ Register temp1 = ToRegister(instr->temp1());
+ Register temp2 = ToRegister(instr->temp2());
+
+ MathExpGenerator::EmitMathExp(
+ masm(), input, result, double_scratch1, double_scratch2,
+ temp1, temp2, scratch0());
+}
+
+
+void LCodeGen::DoMathLog(LMathLog* instr) {
+ __ PrepareCallCFunction(0, 1, scratch0());
+ __ MovToFloatParameter(ToDoubleRegister(instr->value()));
+ __ CallCFunction(ExternalReference::math_log_double_function(isolate()),
+ 0, 1);
+ __ MovFromFloatResult(ToDoubleRegister(instr->result()));
+}
+
+
+void LCodeGen::DoMathClz32(LMathClz32* instr) {
+ Register input = ToRegister(instr->value());
+ Register result = ToRegister(instr->result());
+ __ Clz(result, input);
+}
+
+
+void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
+ DCHECK(ToRegister(instr->context()).is(cp));
+ DCHECK(ToRegister(instr->function()).is(a1));
+ DCHECK(instr->HasPointerMap());
+
+ Handle<JSFunction> known_function = instr->hydrogen()->known_function();
+ if (known_function.is_null()) {
+ LPointerMap* pointers = instr->pointer_map();
+ SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
+ ParameterCount count(instr->arity());
+ __ InvokeFunction(a1, count, CALL_FUNCTION, generator);
+ } else {
+ CallKnownFunction(known_function,
+ instr->hydrogen()->formal_parameter_count(),
+ instr->arity(),
+ instr,
+ A1_CONTAINS_TARGET);
+ }
+}
+
+
+void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
+ DCHECK(ToRegister(instr->result()).is(v0));
+
+ LPointerMap* pointers = instr->pointer_map();
+ SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
+
+ if (instr->target()->IsConstantOperand()) {
+ LConstantOperand* target = LConstantOperand::cast(instr->target());
+ Handle<Code> code = Handle<Code>::cast(ToHandle(target));
+ generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
+ __ Call(code, RelocInfo::CODE_TARGET);
+ } else {
+ DCHECK(instr->target()->IsRegister());
+ Register target = ToRegister(instr->target());
+ generator.BeforeCall(__ CallSize(target));
+ __ Daddu(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
+ __ Call(target);
+ }
+ generator.AfterCall();
+}
+
+
+void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
+ DCHECK(ToRegister(instr->function()).is(a1));
+ DCHECK(ToRegister(instr->result()).is(v0));
+
+ if (instr->hydrogen()->pass_argument_count()) {
+ __ li(a0, Operand(instr->arity()));
+ }
+
+ // Change context.
+ __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
+
+ // Load the code entry address
+ __ ld(at, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
+ __ Call(at);
+
+ RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
+}
+
+
+void LCodeGen::DoCallFunction(LCallFunction* instr) {
+ DCHECK(ToRegister(instr->context()).is(cp));
+ DCHECK(ToRegister(instr->function()).is(a1));
+ DCHECK(ToRegister(instr->result()).is(v0));
+
+ int arity = instr->arity();
+ CallFunctionStub stub(isolate(), arity, instr->hydrogen()->function_flags());
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoCallNew(LCallNew* instr) {
+ DCHECK(ToRegister(instr->context()).is(cp));
+ DCHECK(ToRegister(instr->constructor()).is(a1));
+ DCHECK(ToRegister(instr->result()).is(v0));
+
+ __ li(a0, Operand(instr->arity()));
+ // No cell in a2 for construct type feedback in optimized code
+ __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
+ CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
+ CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
+}
+
+
+void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
+ DCHECK(ToRegister(instr->context()).is(cp));
+ DCHECK(ToRegister(instr->constructor()).is(a1));
+ DCHECK(ToRegister(instr->result()).is(v0));
+
+ __ li(a0, Operand(instr->arity()));
+ __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
+ ElementsKind kind = instr->hydrogen()->elements_kind();
+ AllocationSiteOverrideMode override_mode =
+ (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
+ ? DISABLE_ALLOCATION_SITES
+ : DONT_OVERRIDE;
+
+ if (instr->arity() == 0) {
+ ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
+ CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
+ } else if (instr->arity() == 1) {
+ Label done;
+ if (IsFastPackedElementsKind(kind)) {
+ Label packed_case;
+ // We might need a change here,
+ // look at the first argument.
+ __ ld(a5, MemOperand(sp, 0));
+ __ Branch(&packed_case, eq, a5, Operand(zero_reg));
+
+ ElementsKind holey_kind = GetHoleyElementsKind(kind);
+ ArraySingleArgumentConstructorStub stub(isolate(),
+ holey_kind,
+ override_mode);
+ CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
+ __ jmp(&done);
+ __ bind(&packed_case);
+ }
+
+ ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
+ CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
+ __ bind(&done);
+ } else {
+ ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
+ CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
+ }
+}
+
+
+void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
+ CallRuntime(instr->function(), instr->arity(), instr);
+}
+
+
+void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
+ Register function = ToRegister(instr->function());
+ Register code_object = ToRegister(instr->code_object());
+ __ Daddu(code_object, code_object,
+ Operand(Code::kHeaderSize - kHeapObjectTag));
+ __ sd(code_object,
+ FieldMemOperand(function, JSFunction::kCodeEntryOffset));
+}
+
+
+void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
+ Register result = ToRegister(instr->result());
+ Register base = ToRegister(instr->base_object());
+ if (instr->offset()->IsConstantOperand()) {
+ LConstantOperand* offset = LConstantOperand::cast(instr->offset());
+ __ Daddu(result, base, Operand(ToInteger32(offset)));
+ } else {
+ Register offset = ToRegister(instr->offset());
+ __ Daddu(result, base, offset);
+ }
+}
+
+
+void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
+ Representation representation = instr->representation();
+
+ Register object = ToRegister(instr->object());
+ Register scratch2 = scratch1();
+ Register scratch1 = scratch0();
+ HObjectAccess access = instr->hydrogen()->access();
+ int offset = access.offset();
+ if (access.IsExternalMemory()) {
+ Register value = ToRegister(instr->value());
+ MemOperand operand = MemOperand(object, offset);
+ __ Store(value, operand, representation);
+ return;
+ }
+
+ __ AssertNotSmi(object);
+
+ DCHECK(!representation.IsSmi() ||
+ !instr->value()->IsConstantOperand() ||
+ IsSmi(LConstantOperand::cast(instr->value())));
+ if (representation.IsDouble()) {
+ DCHECK(access.IsInobject());
+ DCHECK(!instr->hydrogen()->has_transition());
+ DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
+ DoubleRegister value = ToDoubleRegister(instr->value());
+ __ sdc1(value, FieldMemOperand(object, offset));
+ return;
+ }
+
+ if (instr->hydrogen()->has_transition()) {
+ Handle<Map> transition = instr->hydrogen()->transition_map();
+ AddDeprecationDependency(transition);
+ __ li(scratch1, Operand(transition));
+ __ sd(scratch1, FieldMemOperand(object, HeapObject::kMapOffset));
+ if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
+ Register temp = ToRegister(instr->temp());
+ // Update the write barrier for the map field.
+ __ RecordWriteForMap(object,
+ scratch1,
+ temp,
+ GetRAState(),
+ kSaveFPRegs);
+ }
+ }
+
+ // Do the store.
+ Register destination = object;
+ if (!access.IsInobject()) {
+ destination = scratch1;
+ __ ld(destination, FieldMemOperand(object, JSObject::kPropertiesOffset));
+ }
+ Register value = ToRegister(instr->value());
+ if (representation.IsSmi() && SmiValuesAre32Bits() &&
+ instr->hydrogen()->value()->representation().IsInteger32()) {
+ DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
+ if (FLAG_debug_code) {
+ __ Load(scratch2, FieldMemOperand(destination, offset), representation);
+ __ AssertSmi(scratch2);
+ }
+
+ // Store int value directly to upper half of the smi.
+ offset += kPointerSize / 2;
+ representation = Representation::Integer32();
+ }
+
+ MemOperand operand = FieldMemOperand(destination, offset);
+ __ Store(value, operand, representation);
+ if (instr->hydrogen()->NeedsWriteBarrier()) {
+ // Update the write barrier for the object for in-object properties.
+ __ RecordWriteField(destination,
+ offset,
+ value,
+ scratch2,
+ GetRAState(),
+ kSaveFPRegs,
+ EMIT_REMEMBERED_SET,
+ instr->hydrogen()->SmiCheckForWriteBarrier(),
+ instr->hydrogen()->PointersToHereCheckForValue());
+ }
+}
+
+
+void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
+ DCHECK(ToRegister(instr->context()).is(cp));
+ DCHECK(ToRegister(instr->object()).is(StoreIC::ReceiverRegister()));
+ DCHECK(ToRegister(instr->value()).is(StoreIC::ValueRegister()));
+
+ __ li(StoreIC::NameRegister(), Operand(instr->name()));
+ Handle<Code> ic = StoreIC::initialize_stub(isolate(), instr->strict_mode());
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
+ Condition cc = instr->hydrogen()->allow_equality() ? hi : hs;
+ Operand operand((int64_t)0);
+ Register reg;
+ if (instr->index()->IsConstantOperand()) {
+ operand = ToOperand(instr->index());
+ reg = ToRegister(instr->length());
+ cc = CommuteCondition(cc);
+ } else {
+ reg = ToRegister(instr->index());
+ operand = ToOperand(instr->length());
+ }
+ if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
+ Label done;
+ __ Branch(&done, NegateCondition(cc), reg, operand);
+ __ stop("eliminated bounds check failed");
+ __ bind(&done);
+ } else {
+ DeoptimizeIf(cc, instr->environment(), reg, operand);
+ }
+}
+
+
+void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
+ Register external_pointer = ToRegister(instr->elements());
+ Register key = no_reg;
+ ElementsKind elements_kind = instr->elements_kind();
+ bool key_is_constant = instr->key()->IsConstantOperand();
+ int constant_key = 0;
+ if (key_is_constant) {
+ constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+ if (constant_key & 0xF0000000) {
+ Abort(kArrayIndexConstantValueTooBig);
+ }
+ } else {
+ key = ToRegister(instr->key());
+ }
+ int element_size_shift = ElementsKindToShiftSize(elements_kind);
+ int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
+ ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
+ : element_size_shift;
+ int base_offset = instr->base_offset();
+
+ if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
+ elements_kind == FLOAT32_ELEMENTS ||
+ elements_kind == EXTERNAL_FLOAT64_ELEMENTS ||
+ elements_kind == FLOAT64_ELEMENTS) {
+ Register address = scratch0();
+ FPURegister value(ToDoubleRegister(instr->value()));
+ if (key_is_constant) {
+ if (constant_key != 0) {
+ __ Daddu(address, external_pointer,
+ Operand(constant_key << element_size_shift));
+ } else {
+ address = external_pointer;
+ }
+ } else {
+ if (shift_size < 0) {
+ if (shift_size == -32) {
+ __ dsra32(address, key, 0);
+ } else {
+ __ dsra(address, key, -shift_size);
+ }
+ } else {
+ __ dsll(address, key, shift_size);
+ }
+ __ Daddu(address, external_pointer, address);
+ }
+
+ if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
+ elements_kind == FLOAT32_ELEMENTS) {
+ __ cvt_s_d(double_scratch0(), value);
+ __ swc1(double_scratch0(), MemOperand(address, base_offset));
+ } else { // Storing doubles, not floats.
+ __ sdc1(value, MemOperand(address, base_offset));
+ }
+ } else {
+ Register value(ToRegister(instr->value()));
+ MemOperand mem_operand = PrepareKeyedOperand(
+ key, external_pointer, key_is_constant, constant_key,
+ element_size_shift, shift_size,
+ base_offset);
+ switch (elements_kind) {
+ case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
+ case EXTERNAL_INT8_ELEMENTS:
+ case EXTERNAL_UINT8_ELEMENTS:
+ case UINT8_ELEMENTS:
+ case UINT8_CLAMPED_ELEMENTS:
+ case INT8_ELEMENTS:
+ __ sb(value, mem_operand);
+ break;
+ case EXTERNAL_INT16_ELEMENTS:
+ case EXTERNAL_UINT16_ELEMENTS:
+ case INT16_ELEMENTS:
+ case UINT16_ELEMENTS:
+ __ sh(value, mem_operand);
+ break;
+ case EXTERNAL_INT32_ELEMENTS:
+ case EXTERNAL_UINT32_ELEMENTS:
+ case INT32_ELEMENTS:
+ case UINT32_ELEMENTS:
+ __ sw(value, mem_operand);
+ break;
+ case FLOAT32_ELEMENTS:
+ case FLOAT64_ELEMENTS:
+ case EXTERNAL_FLOAT32_ELEMENTS:
+ case EXTERNAL_FLOAT64_ELEMENTS:
+ case FAST_DOUBLE_ELEMENTS:
+ case FAST_ELEMENTS:
+ case FAST_SMI_ELEMENTS:
+ case FAST_HOLEY_DOUBLE_ELEMENTS:
+ case FAST_HOLEY_ELEMENTS:
+ case FAST_HOLEY_SMI_ELEMENTS:
+ case DICTIONARY_ELEMENTS:
+ case SLOPPY_ARGUMENTS_ELEMENTS:
+ UNREACHABLE();
+ break;
+ }
+ }
+}
+
+
+void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
+ DoubleRegister value = ToDoubleRegister(instr->value());
+ Register elements = ToRegister(instr->elements());
+ Register scratch = scratch0();
+ DoubleRegister double_scratch = double_scratch0();
+ bool key_is_constant = instr->key()->IsConstantOperand();
+ int base_offset = instr->base_offset();
+ Label not_nan, done;
+
+ // Calculate the effective address of the slot in the array to store the
+ // double value.
+ int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
+ if (key_is_constant) {
+ int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+ if (constant_key & 0xF0000000) {
+ Abort(kArrayIndexConstantValueTooBig);
+ }
+ __ Daddu(scratch, elements,
+ Operand((constant_key << element_size_shift) + base_offset));
+ } else {
+ int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
+ ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
+ : element_size_shift;
+ __ Daddu(scratch, elements, Operand(base_offset));
+ DCHECK((shift_size == 3) || (shift_size == -29));
+ if (shift_size == 3) {
+ __ dsll(at, ToRegister(instr->key()), 3);
+ } else if (shift_size == -29) {
+ __ dsra(at, ToRegister(instr->key()), 29);
+ }
+ __ Daddu(scratch, scratch, at);
+ }
+
+ if (instr->NeedsCanonicalization()) {
+ Label is_nan;
+ // Check for NaN. All NaNs must be canonicalized.
+ __ BranchF(NULL, &is_nan, eq, value, value);
+ __ Branch(&not_nan);
+
+ // Only load canonical NaN if the comparison above set the overflow.
+ __ bind(&is_nan);
+ __ LoadRoot(at, Heap::kNanValueRootIndex);
+ __ ldc1(double_scratch, FieldMemOperand(at, HeapNumber::kValueOffset));
+ __ sdc1(double_scratch, MemOperand(scratch, 0));
+ __ Branch(&done);
+ }
+
+ __ bind(&not_nan);
+ __ sdc1(value, MemOperand(scratch, 0));
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
+ Register value = ToRegister(instr->value());
+ Register elements = ToRegister(instr->elements());
+ Register key = instr->key()->IsRegister() ? ToRegister(instr->key())
+ : no_reg;
+ Register scratch = scratch0();
+ Register store_base = scratch;
+ int offset = instr->base_offset();
+
+ // Do the store.
+ if (instr->key()->IsConstantOperand()) {
+ DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
+ LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
+ offset += ToInteger32(const_operand) * kPointerSize;
+ store_base = elements;
+ } else {
+ // Even though the HLoadKeyed instruction forces the input
+ // representation for the key to be an integer, the input gets replaced
+ // during bound check elimination with the index argument to the bounds
+ // check, which can be tagged, so that case must be handled here, too.
+ if (instr->hydrogen()->key()->representation().IsSmi()) {
+ __ SmiScale(scratch, key, kPointerSizeLog2);
+ __ daddu(store_base, elements, scratch);
+ } else {
+ __ dsll(scratch, key, kPointerSizeLog2);
+ __ daddu(store_base, elements, scratch);
+ }
+ }
+
+ Representation representation = instr->hydrogen()->value()->representation();
+ if (representation.IsInteger32() && SmiValuesAre32Bits()) {
+ DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
+ DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
+ if (FLAG_debug_code) {
+ Register temp = scratch1();
+ __ Load(temp, MemOperand(store_base, offset), Representation::Smi());
+ __ AssertSmi(temp);
+ }
+
+ // Store int value directly to upper half of the smi.
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
+ offset += kPointerSize / 2;
+ representation = Representation::Integer32();
+ }
+
+ __ Store(value, MemOperand(store_base, offset), representation);
+
+ if (instr->hydrogen()->NeedsWriteBarrier()) {
+ SmiCheck check_needed =
+ instr->hydrogen()->value()->type().IsHeapObject()
+ ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+ // Compute address of modified element and store it into key register.
+ __ Daddu(key, store_base, Operand(offset));
+ __ RecordWrite(elements,
+ key,
+ value,
+ GetRAState(),
+ kSaveFPRegs,
+ EMIT_REMEMBERED_SET,
+ check_needed,
+ instr->hydrogen()->PointersToHereCheckForValue());
+ }
+}
+
+
+void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
+ // By cases: external, fast double
+ if (instr->is_typed_elements()) {
+ DoStoreKeyedExternalArray(instr);
+ } else if (instr->hydrogen()->value()->representation().IsDouble()) {
+ DoStoreKeyedFixedDoubleArray(instr);
+ } else {
+ DoStoreKeyedFixedArray(instr);
+ }
+}
+
+
+void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
+ DCHECK(ToRegister(instr->context()).is(cp));
+ DCHECK(ToRegister(instr->object()).is(KeyedStoreIC::ReceiverRegister()));
+ DCHECK(ToRegister(instr->key()).is(KeyedStoreIC::NameRegister()));
+ DCHECK(ToRegister(instr->value()).is(KeyedStoreIC::ValueRegister()));
+
+ Handle<Code> ic = (instr->strict_mode() == STRICT)
+ ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
+ : isolate()->builtins()->KeyedStoreIC_Initialize();
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
+ Register object_reg = ToRegister(instr->object());
+ Register scratch = scratch0();
+
+ Handle<Map> from_map = instr->original_map();
+ Handle<Map> to_map = instr->transitioned_map();
+ ElementsKind from_kind = instr->from_kind();
+ ElementsKind to_kind = instr->to_kind();
+
+ Label not_applicable;
+ __ ld(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
+ __ Branch(&not_applicable, ne, scratch, Operand(from_map));
+
+ if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
+ Register new_map_reg = ToRegister(instr->new_map_temp());
+ __ li(new_map_reg, Operand(to_map));
+ __ sd(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
+ // Write barrier.
+ __ RecordWriteForMap(object_reg,
+ new_map_reg,
+ scratch,
+ GetRAState(),
+ kDontSaveFPRegs);
+ } else {
+ DCHECK(object_reg.is(a0));
+ DCHECK(ToRegister(instr->context()).is(cp));
+ PushSafepointRegistersScope scope(this);
+ __ li(a1, Operand(to_map));
+ bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
+ TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
+ __ CallStub(&stub);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), 0, Safepoint::kLazyDeopt);
+ }
+ __ bind(&not_applicable);
+}
+
+
+void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
+ Register object = ToRegister(instr->object());
+ Register temp = ToRegister(instr->temp());
+ Label no_memento_found;
+ __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found,
+ ne, &no_memento_found);
+ DeoptimizeIf(al, instr->environment());
+ __ bind(&no_memento_found);
+}
+
+
+void LCodeGen::DoStringAdd(LStringAdd* instr) {
+ DCHECK(ToRegister(instr->context()).is(cp));
+ DCHECK(ToRegister(instr->left()).is(a1));
+ DCHECK(ToRegister(instr->right()).is(a0));
+ StringAddStub stub(isolate(),
+ instr->hydrogen()->flags(),
+ instr->hydrogen()->pretenure_flag());
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
+ class DeferredStringCharCodeAt V8_FINAL : public LDeferredCode {
+ public:
+ DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() V8_OVERRIDE {
+ codegen()->DoDeferredStringCharCodeAt(instr_);
+ }
+ virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
+ private:
+ LStringCharCodeAt* instr_;
+ };
+
+ DeferredStringCharCodeAt* deferred =
+ new(zone()) DeferredStringCharCodeAt(this, instr);
+ StringCharLoadGenerator::Generate(masm(),
+ ToRegister(instr->string()),
+ ToRegister(instr->index()),
+ ToRegister(instr->result()),
+ deferred->entry());
+ __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
+ Register string = ToRegister(instr->string());
+ Register result = ToRegister(instr->result());
+ Register scratch = scratch0();
+
+ // TODO(3095996): Get rid of this. For now, we need to make the
+ // result register contain a valid pointer because it is already
+ // contained in the register pointer map.
+ __ mov(result, zero_reg);
+
+ PushSafepointRegistersScope scope(this);
+ __ push(string);
+ // Push the index as a smi. This is safe because of the checks in
+ // DoStringCharCodeAt above.
+ if (instr->index()->IsConstantOperand()) {
+ int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
+ __ Daddu(scratch, zero_reg, Operand(Smi::FromInt(const_index)));
+ __ push(scratch);
+ } else {
+ Register index = ToRegister(instr->index());
+ __ SmiTag(index);
+ __ push(index);
+ }
+ CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
+ instr->context());
+ __ AssertSmi(v0);
+ __ SmiUntag(v0);
+ __ StoreToSafepointRegisterSlot(v0, result);
+}
+
+
+void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
+ class DeferredStringCharFromCode V8_FINAL : public LDeferredCode {
+ public:
+ DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() V8_OVERRIDE {
+ codegen()->DoDeferredStringCharFromCode(instr_);
+ }
+ virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
+ private:
+ LStringCharFromCode* instr_;
+ };
+
+ DeferredStringCharFromCode* deferred =
+ new(zone()) DeferredStringCharFromCode(this, instr);
+
+ DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
+ Register char_code = ToRegister(instr->char_code());
+ Register result = ToRegister(instr->result());
+ Register scratch = scratch0();
+ DCHECK(!char_code.is(result));
+
+ __ Branch(deferred->entry(), hi,
+ char_code, Operand(String::kMaxOneByteCharCode));
+ __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
+ __ dsll(scratch, char_code, kPointerSizeLog2);
+ __ Daddu(result, result, scratch);
+ __ ld(result, FieldMemOperand(result, FixedArray::kHeaderSize));
+ __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
+ __ Branch(deferred->entry(), eq, result, Operand(scratch));
+ __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
+ Register char_code = ToRegister(instr->char_code());
+ Register result = ToRegister(instr->result());
+
+ // TODO(3095996): Get rid of this. For now, we need to make the
+ // result register contain a valid pointer because it is already
+ // contained in the register pointer map.
+ __ mov(result, zero_reg);
+
+ PushSafepointRegistersScope scope(this);
+ __ SmiTag(char_code);
+ __ push(char_code);
+ CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context());
+ __ StoreToSafepointRegisterSlot(v0, result);
+}
+
+
+void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
+ LOperand* input = instr->value();
+ DCHECK(input->IsRegister() || input->IsStackSlot());
+ LOperand* output = instr->result();
+ DCHECK(output->IsDoubleRegister());
+ FPURegister single_scratch = double_scratch0().low();
+ if (input->IsStackSlot()) {
+ Register scratch = scratch0();
+ __ ld(scratch, ToMemOperand(input));
+ __ mtc1(scratch, single_scratch);
+ } else {
+ __ mtc1(ToRegister(input), single_scratch);
+ }
+ __ cvt_d_w(ToDoubleRegister(output), single_scratch);
+}
+
+
+void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
+ LOperand* input = instr->value();
+ LOperand* output = instr->result();
+
+ FPURegister dbl_scratch = double_scratch0();
+ __ mtc1(ToRegister(input), dbl_scratch);
+ __ Cvt_d_uw(ToDoubleRegister(output), dbl_scratch, f22); // TODO(plind): f22?
+}
+
+
+void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
+ class DeferredNumberTagU V8_FINAL : public LDeferredCode {
+ public:
+ DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() V8_OVERRIDE {
+ codegen()->DoDeferredNumberTagIU(instr_,
+ instr_->value(),
+ instr_->temp1(),
+ instr_->temp2(),
+ UNSIGNED_INT32);
+ }
+ virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
+ private:
+ LNumberTagU* instr_;
+ };
+
+ Register input = ToRegister(instr->value());
+ Register result = ToRegister(instr->result());
+
+ DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
+ __ Branch(deferred->entry(), hi, input, Operand(Smi::kMaxValue));
+ __ SmiTag(result, input);
+ __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
+ LOperand* value,
+ LOperand* temp1,
+ LOperand* temp2,
+ IntegerSignedness signedness) {
+ Label done, slow;
+ Register src = ToRegister(value);
+ Register dst = ToRegister(instr->result());
+ Register tmp1 = scratch0();
+ Register tmp2 = ToRegister(temp1);
+ Register tmp3 = ToRegister(temp2);
+ DoubleRegister dbl_scratch = double_scratch0();
+
+ if (signedness == SIGNED_INT32) {
+ // There was overflow, so bits 30 and 31 of the original integer
+ // disagree. Try to allocate a heap number in new space and store
+ // the value in there. If that fails, call the runtime system.
+ if (dst.is(src)) {
+ __ SmiUntag(src, dst);
+ __ Xor(src, src, Operand(0x80000000));
+ }
+ __ mtc1(src, dbl_scratch);
+ __ cvt_d_w(dbl_scratch, dbl_scratch);
+ } else {
+ __ mtc1(src, dbl_scratch);
+ __ Cvt_d_uw(dbl_scratch, dbl_scratch, f22);
+ }
+
+ if (FLAG_inline_new) {
+ __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex);
+ __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow, TAG_RESULT);
+ __ Branch(&done);
+ }
+
+ // Slow case: Call the runtime system to do the number allocation.
+ __ bind(&slow);
+ {
+ // TODO(3095996): Put a valid pointer value in the stack slot where the
+ // result register is stored, as this register is in the pointer map, but
+ // contains an integer value.
+ __ mov(dst, zero_reg);
+ // Preserve the value of all registers.
+ PushSafepointRegistersScope scope(this);
+
+ // NumberTagI and NumberTagD use the context from the frame, rather than
+ // the environment's HContext or HInlinedContext value.
+ // They only call Runtime::kAllocateHeapNumber.
+ // The corresponding HChange instructions are added in a phase that does
+ // not have easy access to the local context.
+ __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
+ __ StoreToSafepointRegisterSlot(v0, dst);
+ }
+
+ // Done. Put the value in dbl_scratch into the value of the allocated heap
+ // number.
+ __ bind(&done);
+ __ sdc1(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
+}
+
+
+void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
+ class DeferredNumberTagD V8_FINAL : public LDeferredCode {
+ public:
+ DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() V8_OVERRIDE {
+ codegen()->DoDeferredNumberTagD(instr_);
+ }
+ virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
+ private:
+ LNumberTagD* instr_;
+ };
+
+ DoubleRegister input_reg = ToDoubleRegister(instr->value());
+ Register scratch = scratch0();
+ Register reg = ToRegister(instr->result());
+ Register temp1 = ToRegister(instr->temp());
+ Register temp2 = ToRegister(instr->temp2());
+
+ DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
+ if (FLAG_inline_new) {
+ __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
+ // We want the untagged address first for performance
+ __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry(),
+ DONT_TAG_RESULT);
+ } else {
+ __ Branch(deferred->entry());
+ }
+ __ bind(deferred->exit());
+ __ sdc1(input_reg, MemOperand(reg, HeapNumber::kValueOffset));
+ // Now that we have finished with the object's real address tag it
+ __ Daddu(reg, reg, kHeapObjectTag);
+}
+
+
+void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
+ // TODO(3095996): Get rid of this. For now, we need to make the
+ // result register contain a valid pointer because it is already
+ // contained in the register pointer map.
+ Register reg = ToRegister(instr->result());
+ __ mov(reg, zero_reg);
+
+ PushSafepointRegistersScope scope(this);
+ // NumberTagI and NumberTagD use the context from the frame, rather than
+ // the environment's HContext or HInlinedContext value.
+ // They only call Runtime::kAllocateHeapNumber.
+ // The corresponding HChange instructions are added in a phase that does
+ // not have easy access to the local context.
+ __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
+ __ Dsubu(v0, v0, kHeapObjectTag);
+ __ StoreToSafepointRegisterSlot(v0, reg);
+}
+
+
+void LCodeGen::DoSmiTag(LSmiTag* instr) {
+ HChange* hchange = instr->hydrogen();
+ Register input = ToRegister(instr->value());
+ Register output = ToRegister(instr->result());
+ if (hchange->CheckFlag(HValue::kCanOverflow) &&
+ hchange->value()->CheckFlag(HValue::kUint32)) {
+ __ And(at, input, Operand(0x80000000));
+ DeoptimizeIf(ne, instr->environment(), at, Operand(zero_reg));
+ }
+ if (hchange->CheckFlag(HValue::kCanOverflow) &&
+ !hchange->value()->CheckFlag(HValue::kUint32)) {
+ __ SmiTagCheckOverflow(output, input, at);
+ DeoptimizeIf(lt, instr->environment(), at, Operand(zero_reg));
+ } else {
+ __ SmiTag(output, input);
+ }
+}
+
+
+void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
+ Register scratch = scratch0();
+ Register input = ToRegister(instr->value());
+ Register result = ToRegister(instr->result());
+ if (instr->needs_check()) {
+ STATIC_ASSERT(kHeapObjectTag == 1);
+ // If the input is a HeapObject, value of scratch won't be zero.
+ __ And(scratch, input, Operand(kHeapObjectTag));
+ __ SmiUntag(result, input);
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(zero_reg));
+ } else {
+ __ SmiUntag(result, input);
+ }
+}
+
+
+void LCodeGen::EmitNumberUntagD(Register input_reg,
+ DoubleRegister result_reg,
+ bool can_convert_undefined_to_nan,
+ bool deoptimize_on_minus_zero,
+ LEnvironment* env,
+ NumberUntagDMode mode) {
+ Register scratch = scratch0();
+ Label convert, load_smi, done;
+ if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
+ // Smi check.
+ __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
+ // Heap number map check.
+ __ ld(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
+ __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
+ if (can_convert_undefined_to_nan) {
+ __ Branch(&convert, ne, scratch, Operand(at));
+ } else {
+ DeoptimizeIf(ne, env, scratch, Operand(at));
+ }
+ // Load heap number.
+ __ ldc1(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
+ if (deoptimize_on_minus_zero) {
+ __ mfc1(at, result_reg);
+ __ Branch(&done, ne, at, Operand(zero_reg));
+ __ mfhc1(scratch, result_reg); // Get exponent/sign bits.
+ DeoptimizeIf(eq, env, scratch, Operand(HeapNumber::kSignMask));
+ }
+ __ Branch(&done);
+ if (can_convert_undefined_to_nan) {
+ __ bind(&convert);
+ // Convert undefined (and hole) to NaN.
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+ DeoptimizeIf(ne, env, input_reg, Operand(at));
+ __ LoadRoot(scratch, Heap::kNanValueRootIndex);
+ __ ldc1(result_reg, FieldMemOperand(scratch, HeapNumber::kValueOffset));
+ __ Branch(&done);
+ }
+ } else {
+ __ SmiUntag(scratch, input_reg);
+ DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
+ }
+ // Smi to double register conversion
+ __ bind(&load_smi);
+ // scratch: untagged value of input_reg
+ __ mtc1(scratch, result_reg);
+ __ cvt_d_w(result_reg, result_reg);
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
+ Register input_reg = ToRegister(instr->value());
+ Register scratch1 = scratch0();
+ Register scratch2 = ToRegister(instr->temp());
+ DoubleRegister double_scratch = double_scratch0();
+ DoubleRegister double_scratch2 = ToDoubleRegister(instr->temp2());
+
+ DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2));
+ DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1));
+
+ Label done;
+
+ // The input is a tagged HeapObject.
+ // Heap number map check.
+ __ ld(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset));
+ __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
+ // This 'at' value and scratch1 map value are used for tests in both clauses
+ // of the if.
+
+ if (instr->truncating()) {
+ // Performs a truncating conversion of a floating point number as used by
+ // the JS bitwise operations.
+ Label no_heap_number, check_bools, check_false;
+ // Check HeapNumber map.
+ __ Branch(USE_DELAY_SLOT, &no_heap_number, ne, scratch1, Operand(at));
+ __ mov(scratch2, input_reg); // In delay slot.
+ __ TruncateHeapNumberToI(input_reg, scratch2);
+ __ Branch(&done);
+
+ // Check for Oddballs. Undefined/False is converted to zero and True to one
+ // for truncating conversions.
+ __ bind(&no_heap_number);
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+ __ Branch(&check_bools, ne, input_reg, Operand(at));
+ DCHECK(ToRegister(instr->result()).is(input_reg));
+ __ Branch(USE_DELAY_SLOT, &done);
+ __ mov(input_reg, zero_reg); // In delay slot.
+
+ __ bind(&check_bools);
+ __ LoadRoot(at, Heap::kTrueValueRootIndex);
+ __ Branch(&check_false, ne, scratch2, Operand(at));
+ __ Branch(USE_DELAY_SLOT, &done);
+ __ li(input_reg, Operand(1)); // In delay slot.
+
+ __ bind(&check_false);
+ __ LoadRoot(at, Heap::kFalseValueRootIndex);
+ DeoptimizeIf(ne, instr->environment(), scratch2, Operand(at));
+ __ Branch(USE_DELAY_SLOT, &done);
+ __ mov(input_reg, zero_reg); // In delay slot.
+ } else {
+ // Deoptimize if we don't have a heap number.
+ DeoptimizeIf(ne, instr->environment(), scratch1, Operand(at));
+
+ // Load the double value.
+ __ ldc1(double_scratch,
+ FieldMemOperand(input_reg, HeapNumber::kValueOffset));
+
+ Register except_flag = scratch2;
+ __ EmitFPUTruncate(kRoundToZero,
+ input_reg,
+ double_scratch,
+ scratch1,
+ double_scratch2,
+ except_flag,
+ kCheckForInexactConversion);
+
+ // Deopt if the operation did not succeed.
+ DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg));
+
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ __ Branch(&done, ne, input_reg, Operand(zero_reg));
+
+ __ mfhc1(scratch1, double_scratch); // Get exponent/sign bits.
+ __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
+ DeoptimizeIf(ne, instr->environment(), scratch1, Operand(zero_reg));
+ }
+ }
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
+ class DeferredTaggedToI V8_FINAL : public LDeferredCode {
+ public:
+ DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() V8_OVERRIDE {
+ codegen()->DoDeferredTaggedToI(instr_);
+ }
+ virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
+ private:
+ LTaggedToI* instr_;
+ };
+
+ LOperand* input = instr->value();
+ DCHECK(input->IsRegister());
+ DCHECK(input->Equals(instr->result()));
+
+ Register input_reg = ToRegister(input);
+
+ if (instr->hydrogen()->value()->representation().IsSmi()) {
+ __ SmiUntag(input_reg);
+ } else {
+ DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
+
+ // Let the deferred code handle the HeapObject case.
+ __ JumpIfNotSmi(input_reg, deferred->entry());
+
+ // Smi to int32 conversion.
+ __ SmiUntag(input_reg);
+ __ bind(deferred->exit());
+ }
+}
+
+
+void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
+ LOperand* input = instr->value();
+ DCHECK(input->IsRegister());
+ LOperand* result = instr->result();
+ DCHECK(result->IsDoubleRegister());
+
+ Register input_reg = ToRegister(input);
+ DoubleRegister result_reg = ToDoubleRegister(result);
+
+ HValue* value = instr->hydrogen()->value();
+ NumberUntagDMode mode = value->representation().IsSmi()
+ ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
+
+ EmitNumberUntagD(input_reg, result_reg,
+ instr->hydrogen()->can_convert_undefined_to_nan(),
+ instr->hydrogen()->deoptimize_on_minus_zero(),
+ instr->environment(),
+ mode);
+}
+
+
+void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
+ Register result_reg = ToRegister(instr->result());
+ Register scratch1 = scratch0();
+ DoubleRegister double_input = ToDoubleRegister(instr->value());
+
+ if (instr->truncating()) {
+ __ TruncateDoubleToI(result_reg, double_input);
+ } else {
+ Register except_flag = LCodeGen::scratch1();
+
+ __ EmitFPUTruncate(kRoundToMinusInf,
+ result_reg,
+ double_input,
+ scratch1,
+ double_scratch0(),
+ except_flag,
+ kCheckForInexactConversion);
+
+ // Deopt if the operation did not succeed (except_flag != 0).
+ DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg));
+
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ Label done;
+ __ Branch(&done, ne, result_reg, Operand(zero_reg));
+ __ mfhc1(scratch1, double_input); // Get exponent/sign bits.
+ __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
+ DeoptimizeIf(ne, instr->environment(), scratch1, Operand(zero_reg));
+ __ bind(&done);
+ }
+ }
+}
+
+
+void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
+ Register result_reg = ToRegister(instr->result());
+ Register scratch1 = LCodeGen::scratch0();
+ DoubleRegister double_input = ToDoubleRegister(instr->value());
+
+ if (instr->truncating()) {
+ __ TruncateDoubleToI(result_reg, double_input);
+ } else {
+ Register except_flag = LCodeGen::scratch1();
+
+ __ EmitFPUTruncate(kRoundToMinusInf,
+ result_reg,
+ double_input,
+ scratch1,
+ double_scratch0(),
+ except_flag,
+ kCheckForInexactConversion);
+
+ // Deopt if the operation did not succeed (except_flag != 0).
+ DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg));
+
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ Label done;
+ __ Branch(&done, ne, result_reg, Operand(zero_reg));
+ __ mfhc1(scratch1, double_input); // Get exponent/sign bits.
+ __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
+ DeoptimizeIf(ne, instr->environment(), scratch1, Operand(zero_reg));
+ __ bind(&done);
+ }
+ }
+ __ SmiTag(result_reg, result_reg);
+}
+
+
+void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
+ LOperand* input = instr->value();
+ __ SmiTst(ToRegister(input), at);
+ DeoptimizeIf(ne, instr->environment(), at, Operand(zero_reg));
+}
+
+
+void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
+ if (!instr->hydrogen()->value()->type().IsHeapObject()) {
+ LOperand* input = instr->value();
+ __ SmiTst(ToRegister(input), at);
+ DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg));
+ }
+}
+
+
+void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
+ Register input = ToRegister(instr->value());
+ Register scratch = scratch0();
+
+ __ GetObjectType(input, scratch, scratch);
+
+ if (instr->hydrogen()->is_interval_check()) {
+ InstanceType first;
+ InstanceType last;
+ instr->hydrogen()->GetCheckInterval(&first, &last);
+
+ // If there is only one type in the interval check for equality.
+ if (first == last) {
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(first));
+ } else {
+ DeoptimizeIf(lo, instr->environment(), scratch, Operand(first));
+ // Omit check for the last type.
+ if (last != LAST_TYPE) {
+ DeoptimizeIf(hi, instr->environment(), scratch, Operand(last));
+ }
+ }
+ } else {
+ uint8_t mask;
+ uint8_t tag;
+ instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
+
+ if (IsPowerOf2(mask)) {
+ DCHECK(tag == 0 || IsPowerOf2(tag));
+ __ And(at, scratch, mask);
+ DeoptimizeIf(tag == 0 ? ne : eq, instr->environment(),
+ at, Operand(zero_reg));
+ } else {
+ __ And(scratch, scratch, Operand(mask));
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(tag));
+ }
+ }
+}
+
+
+void LCodeGen::DoCheckValue(LCheckValue* instr) {
+ Register reg = ToRegister(instr->value());
+ Handle<HeapObject> object = instr->hydrogen()->object().handle();
+ AllowDeferredHandleDereference smi_check;
+ if (isolate()->heap()->InNewSpace(*object)) {
+ Register reg = ToRegister(instr->value());
+ Handle<Cell> cell = isolate()->factory()->NewCell(object);
+ __ li(at, Operand(Handle<Object>(cell)));
+ __ ld(at, FieldMemOperand(at, Cell::kValueOffset));
+ DeoptimizeIf(ne, instr->environment(), reg,
+ Operand(at));
+ } else {
+ DeoptimizeIf(ne, instr->environment(), reg,
+ Operand(object));
+ }
+}
+
+
+void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
+ {
+ PushSafepointRegistersScope scope(this);
+ __ push(object);
+ __ mov(cp, zero_reg);
+ __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
+ __ StoreToSafepointRegisterSlot(v0, scratch0());
+ }
+ __ SmiTst(scratch0(), at);
+ DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg));
+}
+
+
+void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
+ class DeferredCheckMaps V8_FINAL : public LDeferredCode {
+ public:
+ DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
+ : LDeferredCode(codegen), instr_(instr), object_(object) {
+ SetExit(check_maps());
+ }
+ virtual void Generate() V8_OVERRIDE {
+ codegen()->DoDeferredInstanceMigration(instr_, object_);
+ }
+ Label* check_maps() { return &check_maps_; }
+ virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
+ private:
+ LCheckMaps* instr_;
+ Label check_maps_;
+ Register object_;
+ };
+
+ if (instr->hydrogen()->IsStabilityCheck()) {
+ const UniqueSet<Map>* maps = instr->hydrogen()->maps();
+ for (int i = 0; i < maps->size(); ++i) {
+ AddStabilityDependency(maps->at(i).handle());
+ }
+ return;
+ }
+
+ Register map_reg = scratch0();
+ LOperand* input = instr->value();
+ DCHECK(input->IsRegister());
+ Register reg = ToRegister(input);
+ __ ld(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset));
+
+ DeferredCheckMaps* deferred = NULL;
+ if (instr->hydrogen()->HasMigrationTarget()) {
+ deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
+ __ bind(deferred->check_maps());
+ }
+
+ const UniqueSet<Map>* maps = instr->hydrogen()->maps();
+ Label success;
+ for (int i = 0; i < maps->size() - 1; i++) {
+ Handle<Map> map = maps->at(i).handle();
+ __ CompareMapAndBranch(map_reg, map, &success, eq, &success);
+ }
+ Handle<Map> map = maps->at(maps->size() - 1).handle();
+ // Do the CompareMap() directly within the Branch() and DeoptimizeIf().
+ if (instr->hydrogen()->HasMigrationTarget()) {
+ __ Branch(deferred->entry(), ne, map_reg, Operand(map));
+ } else {
+ DeoptimizeIf(ne, instr->environment(), map_reg, Operand(map));
+ }
+
+ __ bind(&success);
+}
+
+
+void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
+ DoubleRegister value_reg = ToDoubleRegister(instr->unclamped());
+ Register result_reg = ToRegister(instr->result());
+ DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
+ __ ClampDoubleToUint8(result_reg, value_reg, temp_reg);
+}
+
+
+void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
+ Register unclamped_reg = ToRegister(instr->unclamped());
+ Register result_reg = ToRegister(instr->result());
+ __ ClampUint8(result_reg, unclamped_reg);
+}
+
+
+void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
+ Register scratch = scratch0();
+ Register input_reg = ToRegister(instr->unclamped());
+ Register result_reg = ToRegister(instr->result());
+ DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
+ Label is_smi, done, heap_number;
+
+ // Both smi and heap number cases are handled.
+ __ UntagAndJumpIfSmi(scratch, input_reg, &is_smi);
+
+ // Check for heap number
+ __ ld(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
+ __ Branch(&heap_number, eq, scratch, Operand(factory()->heap_number_map()));
+
+ // Check for undefined. Undefined is converted to zero for clamping
+ // conversions.
+ DeoptimizeIf(ne, instr->environment(), input_reg,
+ Operand(factory()->undefined_value()));
+ __ mov(result_reg, zero_reg);
+ __ jmp(&done);
+
+ // Heap number
+ __ bind(&heap_number);
+ __ ldc1(double_scratch0(), FieldMemOperand(input_reg,
+ HeapNumber::kValueOffset));
+ __ ClampDoubleToUint8(result_reg, double_scratch0(), temp_reg);
+ __ jmp(&done);
+
+ __ bind(&is_smi);
+ __ ClampUint8(result_reg, scratch);
+
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
+ DoubleRegister value_reg = ToDoubleRegister(instr->value());
+ Register result_reg = ToRegister(instr->result());
+ if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
+ __ FmoveHigh(result_reg, value_reg);
+ } else {
+ __ FmoveLow(result_reg, value_reg);
+ }
+}
+
+
+void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
+ Register hi_reg = ToRegister(instr->hi());
+ Register lo_reg = ToRegister(instr->lo());
+ DoubleRegister result_reg = ToDoubleRegister(instr->result());
+ __ Move(result_reg, lo_reg, hi_reg);
+}
+
+
+void LCodeGen::DoAllocate(LAllocate* instr) {
+ class DeferredAllocate V8_FINAL : public LDeferredCode {
+ public:
+ DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() V8_OVERRIDE {
+ codegen()->DoDeferredAllocate(instr_);
+ }
+ virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
+ private:
+ LAllocate* instr_;
+ };
+
+ DeferredAllocate* deferred =
+ new(zone()) DeferredAllocate(this, instr);
+
+ Register result = ToRegister(instr->result());
+ Register scratch = ToRegister(instr->temp1());
+ Register scratch2 = ToRegister(instr->temp2());
+
+ // Allocate memory for the object.
+ AllocationFlags flags = TAG_OBJECT;
+ if (instr->hydrogen()->MustAllocateDoubleAligned()) {
+ flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
+ }
+ if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
+ DCHECK(!instr->hydrogen()->IsOldDataSpaceAllocation());
+ DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
+ flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE);
+ } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
+ DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
+ flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_DATA_SPACE);
+ }
+ if (instr->size()->IsConstantOperand()) {
+ int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
+ if (size <= Page::kMaxRegularHeapObjectSize) {
+ __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
+ } else {
+ __ jmp(deferred->entry());
+ }
+ } else {
+ Register size = ToRegister(instr->size());
+ __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
+ }
+
+ __ bind(deferred->exit());
+
+ if (instr->hydrogen()->MustPrefillWithFiller()) {
+ STATIC_ASSERT(kHeapObjectTag == 1);
+ if (instr->size()->IsConstantOperand()) {
+ int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
+ __ li(scratch, Operand(size - kHeapObjectTag));
+ } else {
+ __ Dsubu(scratch, ToRegister(instr->size()), Operand(kHeapObjectTag));
+ }
+ __ li(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
+ Label loop;
+ __ bind(&loop);
+ __ Dsubu(scratch, scratch, Operand(kPointerSize));
+ __ Daddu(at, result, Operand(scratch));
+ __ sd(scratch2, MemOperand(at));
+ __ Branch(&loop, ge, scratch, Operand(zero_reg));
+ }
+}
+
+
+void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
+ Register result = ToRegister(instr->result());
+
+ // TODO(3095996): Get rid of this. For now, we need to make the
+ // result register contain a valid pointer because it is already
+ // contained in the register pointer map.
+ __ mov(result, zero_reg);
+
+ PushSafepointRegistersScope scope(this);
+ if (instr->size()->IsRegister()) {
+ Register size = ToRegister(instr->size());
+ DCHECK(!size.is(result));
+ __ SmiTag(size);
+ __ push(size);
+ } else {
+ int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
+ if (size >= 0 && size <= Smi::kMaxValue) {
+ __ li(v0, Operand(Smi::FromInt(size)));
+ __ Push(v0);
+ } else {
+ // We should never get here at runtime => abort
+ __ stop("invalid allocation size");
+ return;
+ }
+ }
+
+ int flags = AllocateDoubleAlignFlag::encode(
+ instr->hydrogen()->MustAllocateDoubleAligned());
+ if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
+ DCHECK(!instr->hydrogen()->IsOldDataSpaceAllocation());
+ DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
+ flags = AllocateTargetSpace::update(flags, OLD_POINTER_SPACE);
+ } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
+ DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
+ flags = AllocateTargetSpace::update(flags, OLD_DATA_SPACE);
+ } else {
+ flags = AllocateTargetSpace::update(flags, NEW_SPACE);
+ }
+ __ li(v0, Operand(Smi::FromInt(flags)));
+ __ Push(v0);
+
+ CallRuntimeFromDeferred(
+ Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
+ __ StoreToSafepointRegisterSlot(v0, result);
+}
+
+
+void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
+ DCHECK(ToRegister(instr->value()).is(a0));
+ DCHECK(ToRegister(instr->result()).is(v0));
+ __ push(a0);
+ CallRuntime(Runtime::kToFastProperties, 1, instr);
+}
+
+
+void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
+ DCHECK(ToRegister(instr->context()).is(cp));
+ Label materialized;
+ // Registers will be used as follows:
+ // a7 = literals array.
+ // a1 = regexp literal.
+ // a0 = regexp literal clone.
+ // a2 and a4-a6 are used as temporaries.
+ int literal_offset =
+ FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index());
+ __ li(a7, instr->hydrogen()->literals());
+ __ ld(a1, FieldMemOperand(a7, literal_offset));
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+ __ Branch(&materialized, ne, a1, Operand(at));
+
+ // Create regexp literal using runtime function
+ // Result will be in v0.
+ __ li(a6, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
+ __ li(a5, Operand(instr->hydrogen()->pattern()));
+ __ li(a4, Operand(instr->hydrogen()->flags()));
+ __ Push(a7, a6, a5, a4);
+ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
+ __ mov(a1, v0);
+
+ __ bind(&materialized);
+ int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
+ Label allocated, runtime_allocate;
+
+ __ Allocate(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT);
+ __ jmp(&allocated);
+
+ __ bind(&runtime_allocate);
+ __ li(a0, Operand(Smi::FromInt(size)));
+ __ Push(a1, a0);
+ CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
+ __ pop(a1);
+
+ __ bind(&allocated);
+ // Copy the content into the newly allocated memory.
+ // (Unroll copy loop once for better throughput).
+ for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
+ __ ld(a3, FieldMemOperand(a1, i));
+ __ ld(a2, FieldMemOperand(a1, i + kPointerSize));
+ __ sd(a3, FieldMemOperand(v0, i));
+ __ sd(a2, FieldMemOperand(v0, i + kPointerSize));
+ }
+ if ((size % (2 * kPointerSize)) != 0) {
+ __ ld(a3, FieldMemOperand(a1, size - kPointerSize));
+ __ sd(a3, FieldMemOperand(v0, size - kPointerSize));
+ }
+}
+
+
+void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
+ DCHECK(ToRegister(instr->context()).is(cp));
+ // Use the fast case closure allocation code that allocates in new
+ // space for nested functions that don't need literals cloning.
+ bool pretenure = instr->hydrogen()->pretenure();
+ if (!pretenure && instr->hydrogen()->has_no_literals()) {
+ FastNewClosureStub stub(isolate(),
+ instr->hydrogen()->strict_mode(),
+ instr->hydrogen()->is_generator());
+ __ li(a2, Operand(instr->hydrogen()->shared_info()));
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ } else {
+ __ li(a2, Operand(instr->hydrogen()->shared_info()));
+ __ li(a1, Operand(pretenure ? factory()->true_value()
+ : factory()->false_value()));
+ __ Push(cp, a2, a1);
+ CallRuntime(Runtime::kNewClosure, 3, instr);
+ }
+}
+
+
+void LCodeGen::DoTypeof(LTypeof* instr) {
+ DCHECK(ToRegister(instr->result()).is(v0));
+ Register input = ToRegister(instr->value());
+ __ push(input);
+ CallRuntime(Runtime::kTypeof, 1, instr);
+}
+
+
+void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
+ Register input = ToRegister(instr->value());
+
+ Register cmp1 = no_reg;
+ Operand cmp2 = Operand(no_reg);
+
+ Condition final_branch_condition = EmitTypeofIs(instr->TrueLabel(chunk_),
+ instr->FalseLabel(chunk_),
+ input,
+ instr->type_literal(),
+ &cmp1,
+ &cmp2);
+
+ DCHECK(cmp1.is_valid());
+ DCHECK(!cmp2.is_reg() || cmp2.rm().is_valid());
+
+ if (final_branch_condition != kNoCondition) {
+ EmitBranch(instr, final_branch_condition, cmp1, cmp2);
+ }
+}
+
+
+Condition LCodeGen::EmitTypeofIs(Label* true_label,
+ Label* false_label,
+ Register input,
+ Handle<String> type_name,
+ Register* cmp1,
+ Operand* cmp2) {
+ // This function utilizes the delay slot heavily. This is used to load
+ // values that are always usable without depending on the type of the input
+ // register.
+ Condition final_branch_condition = kNoCondition;
+ Register scratch = scratch0();
+ Factory* factory = isolate()->factory();
+ if (String::Equals(type_name, factory->number_string())) {
+ __ JumpIfSmi(input, true_label);
+ __ ld(input, FieldMemOperand(input, HeapObject::kMapOffset));
+ __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
+ *cmp1 = input;
+ *cmp2 = Operand(at);
+ final_branch_condition = eq;
+
+ } else if (String::Equals(type_name, factory->string_string())) {
+ __ JumpIfSmi(input, false_label);
+ __ GetObjectType(input, input, scratch);
+ __ Branch(USE_DELAY_SLOT, false_label,
+ ge, scratch, Operand(FIRST_NONSTRING_TYPE));
+ // input is an object so we can load the BitFieldOffset even if we take the
+ // other branch.
+ __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
+ __ And(at, at, 1 << Map::kIsUndetectable);
+ *cmp1 = at;
+ *cmp2 = Operand(zero_reg);
+ final_branch_condition = eq;
+
+ } else if (String::Equals(type_name, factory->symbol_string())) {
+ __ JumpIfSmi(input, false_label);
+ __ GetObjectType(input, input, scratch);
+ *cmp1 = scratch;
+ *cmp2 = Operand(SYMBOL_TYPE);
+ final_branch_condition = eq;
+
+ } else if (String::Equals(type_name, factory->boolean_string())) {
+ __ LoadRoot(at, Heap::kTrueValueRootIndex);
+ __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
+ __ LoadRoot(at, Heap::kFalseValueRootIndex);
+ *cmp1 = at;
+ *cmp2 = Operand(input);
+ final_branch_condition = eq;
+
+ } else if (String::Equals(type_name, factory->undefined_string())) {
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+ __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
+ // The first instruction of JumpIfSmi is an And - it is safe in the delay
+ // slot.
+ __ JumpIfSmi(input, false_label);
+ // Check for undetectable objects => true.
+ __ ld(input, FieldMemOperand(input, HeapObject::kMapOffset));
+ __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
+ __ And(at, at, 1 << Map::kIsUndetectable);
+ *cmp1 = at;
+ *cmp2 = Operand(zero_reg);
+ final_branch_condition = ne;
+
+ } else if (String::Equals(type_name, factory->function_string())) {
+ STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
+ __ JumpIfSmi(input, false_label);
+ __ GetObjectType(input, scratch, input);
+ __ Branch(true_label, eq, input, Operand(JS_FUNCTION_TYPE));
+ *cmp1 = input;
+ *cmp2 = Operand(JS_FUNCTION_PROXY_TYPE);
+ final_branch_condition = eq;
+
+ } else if (String::Equals(type_name, factory->object_string())) {
+ __ JumpIfSmi(input, false_label);
+ __ LoadRoot(at, Heap::kNullValueRootIndex);
+ __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
+ Register map = input;
+ __ GetObjectType(input, map, scratch);
+ __ Branch(false_label,
+ lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
+ __ Branch(USE_DELAY_SLOT, false_label,
+ gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
+ // map is still valid, so the BitField can be loaded in delay slot.
+ // Check for undetectable objects => false.
+ __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset));
+ __ And(at, at, 1 << Map::kIsUndetectable);
+ *cmp1 = at;
+ *cmp2 = Operand(zero_reg);
+ final_branch_condition = eq;
+
+ } else {
+ *cmp1 = at;
+ *cmp2 = Operand(zero_reg); // Set to valid regs, to avoid caller assertion.
+ __ Branch(false_label);
+ }
+
+ return final_branch_condition;
+}
+
+
+void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
+ Register temp1 = ToRegister(instr->temp());
+
+ EmitIsConstructCall(temp1, scratch0());
+
+ EmitBranch(instr, eq, temp1,
+ Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
+}
+
+
+void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) {
+ DCHECK(!temp1.is(temp2));
+ // Get the frame pointer for the calling frame.
+ __ ld(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+
+ // Skip the arguments adaptor frame if it exists.
+ Label check_frame_marker;
+ __ ld(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset));
+ __ Branch(&check_frame_marker, ne, temp2,
+ Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+ __ ld(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset));
+
+ // Check the marker in the calling frame.
+ __ bind(&check_frame_marker);
+ __ ld(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset));
+}
+
+
+void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
+ if (!info()->IsStub()) {
+ // Ensure that we have enough space after the previous lazy-bailout
+ // instruction for patching the code here.
+ int current_pc = masm()->pc_offset();
+ if (current_pc < last_lazy_deopt_pc_ + space_needed) {
+ int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
+ DCHECK_EQ(0, padding_size % Assembler::kInstrSize);
+ while (padding_size > 0) {
+ __ nop();
+ padding_size -= Assembler::kInstrSize;
+ }
+ }
+ }
+ last_lazy_deopt_pc_ = masm()->pc_offset();
+}
+
+
+void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
+ last_lazy_deopt_pc_ = masm()->pc_offset();
+ DCHECK(instr->HasEnvironment());
+ LEnvironment* env = instr->environment();
+ RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
+ safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
+}
+
+
+void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
+ Deoptimizer::BailoutType type = instr->hydrogen()->type();
+ // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
+ // needed return address), even though the implementation of LAZY and EAGER is
+ // now identical. When LAZY is eventually completely folded into EAGER, remove
+ // the special case below.
+ if (info()->IsStub() && type == Deoptimizer::EAGER) {
+ type = Deoptimizer::LAZY;
+ }
+
+ Comment(";;; deoptimize: %s", instr->hydrogen()->reason());
+ DeoptimizeIf(al, instr->environment(), type, zero_reg, Operand(zero_reg));
+}
+
+
+void LCodeGen::DoDummy(LDummy* instr) {
+ // Nothing to see here, move on!
+}
+
+
+void LCodeGen::DoDummyUse(LDummyUse* instr) {
+ // Nothing to see here, move on!
+}
+
+
+void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
+ PushSafepointRegistersScope scope(this);
+ LoadContextFromDeferred(instr->context());
+ __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
+ RecordSafepointWithLazyDeopt(
+ instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+ DCHECK(instr->HasEnvironment());
+ LEnvironment* env = instr->environment();
+ safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
+}
+
+
+void LCodeGen::DoStackCheck(LStackCheck* instr) {
+ class DeferredStackCheck V8_FINAL : public LDeferredCode {
+ public:
+ DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() V8_OVERRIDE {
+ codegen()->DoDeferredStackCheck(instr_);
+ }
+ virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
+ private:
+ LStackCheck* instr_;
+ };
+
+ DCHECK(instr->HasEnvironment());
+ LEnvironment* env = instr->environment();
+ // There is no LLazyBailout instruction for stack-checks. We have to
+ // prepare for lazy deoptimization explicitly here.
+ if (instr->hydrogen()->is_function_entry()) {
+ // Perform stack overflow check.
+ Label done;
+ __ LoadRoot(at, Heap::kStackLimitRootIndex);
+ __ Branch(&done, hs, sp, Operand(at));
+ DCHECK(instr->context()->IsRegister());
+ DCHECK(ToRegister(instr->context()).is(cp));
+ CallCode(isolate()->builtins()->StackCheck(),
+ RelocInfo::CODE_TARGET,
+ instr);
+ __ bind(&done);
+ } else {
+ DCHECK(instr->hydrogen()->is_backwards_branch());
+ // Perform stack overflow check if this goto needs it before jumping.
+ DeferredStackCheck* deferred_stack_check =
+ new(zone()) DeferredStackCheck(this, instr);
+ __ LoadRoot(at, Heap::kStackLimitRootIndex);
+ __ Branch(deferred_stack_check->entry(), lo, sp, Operand(at));
+ EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
+ __ bind(instr->done_label());
+ deferred_stack_check->SetExit(instr->done_label());
+ RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
+ // Don't record a deoptimization index for the safepoint here.
+ // This will be done explicitly when emitting call and the safepoint in
+ // the deferred code.
+ }
+}
+
+
+void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
+ // This is a pseudo-instruction that ensures that the environment here is
+ // properly registered for deoptimization and records the assembler's PC
+ // offset.
+ LEnvironment* environment = instr->environment();
+
+ // If the environment were already registered, we would have no way of
+ // backpatching it with the spill slot operands.
+ DCHECK(!environment->HasBeenRegistered());
+ RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
+
+ GenerateOsrPrologue();
+}
+
+
+void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
+ Register result = ToRegister(instr->result());
+ Register object = ToRegister(instr->object());
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+ DeoptimizeIf(eq, instr->environment(), object, Operand(at));
+
+ Register null_value = a5;
+ __ LoadRoot(null_value, Heap::kNullValueRootIndex);
+ DeoptimizeIf(eq, instr->environment(), object, Operand(null_value));
+
+ __ And(at, object, kSmiTagMask);
+ DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg));
+
+ STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
+ __ GetObjectType(object, a1, a1);
+ DeoptimizeIf(le, instr->environment(), a1, Operand(LAST_JS_PROXY_TYPE));
+
+ Label use_cache, call_runtime;
+ DCHECK(object.is(a0));
+ __ CheckEnumCache(null_value, &call_runtime);
+
+ __ ld(result, FieldMemOperand(object, HeapObject::kMapOffset));
+ __ Branch(&use_cache);
+
+ // Get the set of properties to enumerate.
+ __ bind(&call_runtime);
+ __ push(object);
+ CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
+
+ __ ld(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
+ DCHECK(result.is(v0));
+ __ LoadRoot(at, Heap::kMetaMapRootIndex);
+ DeoptimizeIf(ne, instr->environment(), a1, Operand(at));
+ __ bind(&use_cache);
+}
+
+
+void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
+ Register map = ToRegister(instr->map());
+ Register result = ToRegister(instr->result());
+ Label load_cache, done;
+ __ EnumLength(result, map);
+ __ Branch(&load_cache, ne, result, Operand(Smi::FromInt(0)));
+ __ li(result, Operand(isolate()->factory()->empty_fixed_array()));
+ __ jmp(&done);
+
+ __ bind(&load_cache);
+ __ LoadInstanceDescriptors(map, result);
+ __ ld(result,
+ FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
+ __ ld(result,
+ FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
+ DeoptimizeIf(eq, instr->environment(), result, Operand(zero_reg));
+
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
+ Register object = ToRegister(instr->value());
+ Register map = ToRegister(instr->map());
+ __ ld(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
+ DeoptimizeIf(ne, instr->environment(), map, Operand(scratch0()));
+}
+
+
+void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
+ Register result,
+ Register object,
+ Register index) {
+ PushSafepointRegistersScope scope(this);
+ __ Push(object, index);
+ __ mov(cp, zero_reg);
+ __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
+ __ StoreToSafepointRegisterSlot(v0, result);
+}
+
+
+void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
+ class DeferredLoadMutableDouble V8_FINAL : public LDeferredCode {
+ public:
+ DeferredLoadMutableDouble(LCodeGen* codegen,
+ LLoadFieldByIndex* instr,
+ Register result,
+ Register object,
+ Register index)
+ : LDeferredCode(codegen),
+ instr_(instr),
+ result_(result),
+ object_(object),
+ index_(index) {
+ }
+ virtual void Generate() V8_OVERRIDE {
+ codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
+ }
+ virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
+ private:
+ LLoadFieldByIndex* instr_;
+ Register result_;
+ Register object_;
+ Register index_;
+ };
+
+ Register object = ToRegister(instr->object());
+ Register index = ToRegister(instr->index());
+ Register result = ToRegister(instr->result());
+ Register scratch = scratch0();
+
+ DeferredLoadMutableDouble* deferred;
+ deferred = new(zone()) DeferredLoadMutableDouble(
+ this, instr, result, object, index);
+
+ Label out_of_object, done;
+
+ __ And(scratch, index, Operand(Smi::FromInt(1)));
+ __ Branch(deferred->entry(), ne, scratch, Operand(zero_reg));
+ __ dsra(index, index, 1);
+
+ __ Branch(USE_DELAY_SLOT, &out_of_object, lt, index, Operand(zero_reg));
+ __ SmiScale(scratch, index, kPointerSizeLog2); // In delay slot.
+ __ Daddu(scratch, object, scratch);
+ __ ld(result, FieldMemOperand(scratch, JSObject::kHeaderSize));
+
+ __ Branch(&done);
+
+ __ bind(&out_of_object);
+ __ ld(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
+ // Index is equal to negated out of object property index plus 1.
+ __ Dsubu(scratch, result, scratch);
+ __ ld(result, FieldMemOperand(scratch,
+ FixedArray::kHeaderSize - kPointerSize));
+ __ bind(deferred->exit());
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
+ Register context = ToRegister(instr->context());
+ __ sd(context, MemOperand(fp, StandardFrameConstants::kContextOffset));
+}
+
+
+void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
+ Handle<ScopeInfo> scope_info = instr->scope_info();
+ __ li(at, scope_info);
+ __ Push(at, ToRegister(instr->function()));
+ CallRuntime(Runtime::kPushBlockContext, 2, instr);
+ RecordSafepoint(Safepoint::kNoLazyDeopt);
+}
+
+
+#undef __
+
+} } // namespace v8::internal