summaryrefslogtreecommitdiff
path: root/deps/v8/src/mips64/code-stubs-mips64.cc
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/mips64/code-stubs-mips64.cc')
-rw-r--r--deps/v8/src/mips64/code-stubs-mips64.cc5329
1 files changed, 5329 insertions, 0 deletions
diff --git a/deps/v8/src/mips64/code-stubs-mips64.cc b/deps/v8/src/mips64/code-stubs-mips64.cc
new file mode 100644
index 000000000..970792aaf
--- /dev/null
+++ b/deps/v8/src/mips64/code-stubs-mips64.cc
@@ -0,0 +1,5329 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#if V8_TARGET_ARCH_MIPS64
+
+#include "src/bootstrapper.h"
+#include "src/code-stubs.h"
+#include "src/codegen.h"
+#include "src/regexp-macro-assembler.h"
+#include "src/stub-cache.h"
+
+namespace v8 {
+namespace internal {
+
+
+void FastNewClosureStub::InitializeInterfaceDescriptor(
+ CodeStubInterfaceDescriptor* descriptor) {
+ Register registers[] = { cp, a2 };
+ descriptor->Initialize(
+ MajorKey(), ARRAY_SIZE(registers), registers,
+ Runtime::FunctionForId(Runtime::kNewClosureFromStubFailure)->entry);
+}
+
+
+void FastNewContextStub::InitializeInterfaceDescriptor(
+ CodeStubInterfaceDescriptor* descriptor) {
+ Register registers[] = { cp, a1 };
+ descriptor->Initialize(MajorKey(), ARRAY_SIZE(registers), registers);
+}
+
+
+void ToNumberStub::InitializeInterfaceDescriptor(
+ CodeStubInterfaceDescriptor* descriptor) {
+ Register registers[] = { cp, a0 };
+ descriptor->Initialize(MajorKey(), ARRAY_SIZE(registers), registers);
+}
+
+
+void NumberToStringStub::InitializeInterfaceDescriptor(
+ CodeStubInterfaceDescriptor* descriptor) {
+ Register registers[] = { cp, a0 };
+ descriptor->Initialize(
+ MajorKey(), ARRAY_SIZE(registers), registers,
+ Runtime::FunctionForId(Runtime::kNumberToStringRT)->entry);
+}
+
+
+void FastCloneShallowArrayStub::InitializeInterfaceDescriptor(
+ CodeStubInterfaceDescriptor* descriptor) {
+ Register registers[] = { cp, a3, a2, a1 };
+ Representation representations[] = {
+ Representation::Tagged(),
+ Representation::Tagged(),
+ Representation::Smi(),
+ Representation::Tagged() };
+ descriptor->Initialize(
+ MajorKey(), ARRAY_SIZE(registers), registers,
+ Runtime::FunctionForId(Runtime::kCreateArrayLiteralStubBailout)->entry,
+ representations);
+}
+
+
+void FastCloneShallowObjectStub::InitializeInterfaceDescriptor(
+ CodeStubInterfaceDescriptor* descriptor) {
+ Register registers[] = { cp, a3, a2, a1, a0 };
+ descriptor->Initialize(
+ MajorKey(), ARRAY_SIZE(registers), registers,
+ Runtime::FunctionForId(Runtime::kCreateObjectLiteral)->entry);
+}
+
+
+void CallFunctionStub::InitializeInterfaceDescriptor(
+ CodeStubInterfaceDescriptor* descriptor) {
+ UNIMPLEMENTED();
+}
+
+
+void CallConstructStub::InitializeInterfaceDescriptor(
+ CodeStubInterfaceDescriptor* descriptor) {
+ UNIMPLEMENTED();
+}
+
+
+void CreateAllocationSiteStub::InitializeInterfaceDescriptor(
+ CodeStubInterfaceDescriptor* descriptor) {
+ Register registers[] = { cp, a2, a3 };
+ descriptor->Initialize(MajorKey(), ARRAY_SIZE(registers), registers);
+}
+
+
+void RegExpConstructResultStub::InitializeInterfaceDescriptor(
+ CodeStubInterfaceDescriptor* descriptor) {
+ Register registers[] = { cp, a2, a1, a0 };
+ descriptor->Initialize(
+ MajorKey(), ARRAY_SIZE(registers), registers,
+ Runtime::FunctionForId(Runtime::kRegExpConstructResult)->entry);
+}
+
+
+void TransitionElementsKindStub::InitializeInterfaceDescriptor(
+ CodeStubInterfaceDescriptor* descriptor) {
+ Register registers[] = { cp, a0, a1 };
+ Address entry =
+ Runtime::FunctionForId(Runtime::kTransitionElementsKind)->entry;
+ descriptor->Initialize(MajorKey(), ARRAY_SIZE(registers), registers,
+ FUNCTION_ADDR(entry));
+}
+
+
+void CompareNilICStub::InitializeInterfaceDescriptor(
+ CodeStubInterfaceDescriptor* descriptor) {
+ Register registers[] = { cp, a0 };
+ descriptor->Initialize(MajorKey(), ARRAY_SIZE(registers), registers,
+ FUNCTION_ADDR(CompareNilIC_Miss));
+ descriptor->SetMissHandler(
+ ExternalReference(IC_Utility(IC::kCompareNilIC_Miss), isolate()));
+}
+
+
+const Register InterfaceDescriptor::ContextRegister() { return cp; }
+
+
+static void InitializeArrayConstructorDescriptor(
+ CodeStub::Major major, CodeStubInterfaceDescriptor* descriptor,
+ int constant_stack_parameter_count) {
+ // register state
+ // cp -- context
+ // a0 -- number of arguments
+ // a1 -- function
+ // a2 -- allocation site with elements kind
+ Address deopt_handler = Runtime::FunctionForId(
+ Runtime::kArrayConstructor)->entry;
+
+ if (constant_stack_parameter_count == 0) {
+ Register registers[] = { cp, a1, a2 };
+ descriptor->Initialize(major, ARRAY_SIZE(registers), registers,
+ deopt_handler, NULL, constant_stack_parameter_count,
+ JS_FUNCTION_STUB_MODE);
+ } else {
+ // stack param count needs (constructor pointer, and single argument)
+ Register registers[] = { cp, a1, a2, a0 };
+ Representation representations[] = {
+ Representation::Tagged(),
+ Representation::Tagged(),
+ Representation::Tagged(),
+ Representation::Integer32() };
+ descriptor->Initialize(major, ARRAY_SIZE(registers), registers, a0,
+ deopt_handler, representations,
+ constant_stack_parameter_count,
+ JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
+ }
+}
+
+
+static void InitializeInternalArrayConstructorDescriptor(
+ CodeStub::Major major, CodeStubInterfaceDescriptor* descriptor,
+ int constant_stack_parameter_count) {
+ // register state
+ // cp -- context
+ // a0 -- number of arguments
+ // a1 -- constructor function
+ Address deopt_handler = Runtime::FunctionForId(
+ Runtime::kInternalArrayConstructor)->entry;
+
+ if (constant_stack_parameter_count == 0) {
+ Register registers[] = { cp, a1 };
+ descriptor->Initialize(major, ARRAY_SIZE(registers), registers,
+ deopt_handler, NULL, constant_stack_parameter_count,
+ JS_FUNCTION_STUB_MODE);
+ } else {
+ // stack param count needs (constructor pointer, and single argument)
+ Register registers[] = { cp, a1, a0 };
+ Representation representations[] = {
+ Representation::Tagged(),
+ Representation::Tagged(),
+ Representation::Integer32() };
+ descriptor->Initialize(major, ARRAY_SIZE(registers), registers, a0,
+ deopt_handler, representations,
+ constant_stack_parameter_count,
+ JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
+ }
+}
+
+
+void ArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor(
+ CodeStubInterfaceDescriptor* descriptor) {
+ InitializeArrayConstructorDescriptor(MajorKey(), descriptor, 0);
+}
+
+
+void ArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor(
+ CodeStubInterfaceDescriptor* descriptor) {
+ InitializeArrayConstructorDescriptor(MajorKey(), descriptor, 1);
+}
+
+
+void ArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor(
+ CodeStubInterfaceDescriptor* descriptor) {
+ InitializeArrayConstructorDescriptor(MajorKey(), descriptor, -1);
+}
+
+
+void ToBooleanStub::InitializeInterfaceDescriptor(
+ CodeStubInterfaceDescriptor* descriptor) {
+ Register registers[] = { cp, a0 };
+ descriptor->Initialize(MajorKey(), ARRAY_SIZE(registers), registers,
+ FUNCTION_ADDR(ToBooleanIC_Miss));
+ descriptor->SetMissHandler(
+ ExternalReference(IC_Utility(IC::kToBooleanIC_Miss), isolate()));
+}
+
+
+void InternalArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor(
+ CodeStubInterfaceDescriptor* descriptor) {
+ InitializeInternalArrayConstructorDescriptor(MajorKey(), descriptor, 0);
+}
+
+
+void InternalArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor(
+ CodeStubInterfaceDescriptor* descriptor) {
+ InitializeInternalArrayConstructorDescriptor(MajorKey(), descriptor, 1);
+}
+
+
+void InternalArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor(
+ CodeStubInterfaceDescriptor* descriptor) {
+ InitializeInternalArrayConstructorDescriptor(MajorKey(), descriptor, -1);
+}
+
+
+void BinaryOpICStub::InitializeInterfaceDescriptor(
+ CodeStubInterfaceDescriptor* descriptor) {
+ Register registers[] = { cp, a1, a0 };
+ descriptor->Initialize(MajorKey(), ARRAY_SIZE(registers), registers,
+ FUNCTION_ADDR(BinaryOpIC_Miss));
+ descriptor->SetMissHandler(
+ ExternalReference(IC_Utility(IC::kBinaryOpIC_Miss), isolate()));
+}
+
+
+void BinaryOpWithAllocationSiteStub::InitializeInterfaceDescriptor(
+ CodeStubInterfaceDescriptor* descriptor) {
+ Register registers[] = { cp, a2, a1, a0 };
+ descriptor->Initialize(MajorKey(), ARRAY_SIZE(registers), registers,
+ FUNCTION_ADDR(BinaryOpIC_MissWithAllocationSite));
+}
+
+
+void StringAddStub::InitializeInterfaceDescriptor(
+ CodeStubInterfaceDescriptor* descriptor) {
+ Register registers[] = { cp, a1, a0 };
+ descriptor->Initialize(MajorKey(), ARRAY_SIZE(registers), registers,
+ Runtime::FunctionForId(Runtime::kStringAdd)->entry);
+}
+
+
+void CallDescriptors::InitializeForIsolate(Isolate* isolate) {
+ {
+ CallInterfaceDescriptor* descriptor =
+ isolate->call_descriptor(Isolate::ArgumentAdaptorCall);
+ Register registers[] = { cp, // context
+ a1, // JSFunction
+ a0, // actual number of arguments
+ a2, // expected number of arguments
+ };
+ Representation representations[] = {
+ Representation::Tagged(), // context
+ Representation::Tagged(), // JSFunction
+ Representation::Integer32(), // actual number of arguments
+ Representation::Integer32(), // expected number of arguments
+ };
+ descriptor->Initialize(ARRAY_SIZE(registers), registers, representations);
+ }
+ {
+ CallInterfaceDescriptor* descriptor =
+ isolate->call_descriptor(Isolate::KeyedCall);
+ Register registers[] = { cp, // context
+ a2, // key
+ };
+ Representation representations[] = {
+ Representation::Tagged(), // context
+ Representation::Tagged(), // key
+ };
+ descriptor->Initialize(ARRAY_SIZE(registers), registers, representations);
+ }
+ {
+ CallInterfaceDescriptor* descriptor =
+ isolate->call_descriptor(Isolate::NamedCall);
+ Register registers[] = { cp, // context
+ a2, // name
+ };
+ Representation representations[] = {
+ Representation::Tagged(), // context
+ Representation::Tagged(), // name
+ };
+ descriptor->Initialize(ARRAY_SIZE(registers), registers, representations);
+ }
+ {
+ CallInterfaceDescriptor* descriptor =
+ isolate->call_descriptor(Isolate::CallHandler);
+ Register registers[] = { cp, // context
+ a0, // receiver
+ };
+ Representation representations[] = {
+ Representation::Tagged(), // context
+ Representation::Tagged(), // receiver
+ };
+ descriptor->Initialize(ARRAY_SIZE(registers), registers, representations);
+ }
+ {
+ CallInterfaceDescriptor* descriptor =
+ isolate->call_descriptor(Isolate::ApiFunctionCall);
+ Register registers[] = { cp, // context
+ a0, // callee
+ a4, // call_data
+ a2, // holder
+ a1, // api_function_address
+ };
+ Representation representations[] = {
+ Representation::Tagged(), // context
+ Representation::Tagged(), // callee
+ Representation::Tagged(), // call_data
+ Representation::Tagged(), // holder
+ Representation::External(), // api_function_address
+ };
+ descriptor->Initialize(ARRAY_SIZE(registers), registers, representations);
+ }
+}
+
+
+#define __ ACCESS_MASM(masm)
+
+
+static void EmitIdenticalObjectComparison(MacroAssembler* masm,
+ Label* slow,
+ Condition cc);
+static void EmitSmiNonsmiComparison(MacroAssembler* masm,
+ Register lhs,
+ Register rhs,
+ Label* rhs_not_nan,
+ Label* slow,
+ bool strict);
+static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
+ Register lhs,
+ Register rhs);
+
+
+void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm) {
+ // Update the static counter each time a new code stub is generated.
+ isolate()->counters()->code_stubs()->Increment();
+
+ CodeStubInterfaceDescriptor* descriptor = GetInterfaceDescriptor();
+ int param_count = descriptor->GetEnvironmentParameterCount();
+ {
+ // Call the runtime system in a fresh internal frame.
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ DCHECK((param_count == 0) ||
+ a0.is(descriptor->GetEnvironmentParameterRegister(param_count - 1)));
+ // Push arguments, adjust sp.
+ __ Dsubu(sp, sp, Operand(param_count * kPointerSize));
+ for (int i = 0; i < param_count; ++i) {
+ // Store argument to stack.
+ __ sd(descriptor->GetEnvironmentParameterRegister(i),
+ MemOperand(sp, (param_count-1-i) * kPointerSize));
+ }
+ ExternalReference miss = descriptor->miss_handler();
+ __ CallExternalReference(miss, param_count);
+ }
+
+ __ Ret();
+}
+
+
+// Takes a Smi and converts to an IEEE 64 bit floating point value in two
+// registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and
+// 52 fraction bits (20 in the first word, 32 in the second). Zeros is a
+// scratch register. Destroys the source register. No GC occurs during this
+// stub so you don't have to set up the frame.
+class ConvertToDoubleStub : public PlatformCodeStub {
+ public:
+ ConvertToDoubleStub(Isolate* isolate,
+ Register result_reg_1,
+ Register result_reg_2,
+ Register source_reg,
+ Register scratch_reg)
+ : PlatformCodeStub(isolate),
+ result1_(result_reg_1),
+ result2_(result_reg_2),
+ source_(source_reg),
+ zeros_(scratch_reg) { }
+
+ private:
+ Register result1_;
+ Register result2_;
+ Register source_;
+ Register zeros_;
+
+ // Minor key encoding in 16 bits.
+ class ModeBits: public BitField<OverwriteMode, 0, 2> {};
+ class OpBits: public BitField<Token::Value, 2, 14> {};
+
+ Major MajorKey() const { return ConvertToDouble; }
+ int MinorKey() const {
+ // Encode the parameters in a unique 16 bit value.
+ return result1_.code() +
+ (result2_.code() << 4) +
+ (source_.code() << 8) +
+ (zeros_.code() << 12);
+ }
+
+ void Generate(MacroAssembler* masm);
+};
+
+
+void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
+#ifndef BIG_ENDIAN_FLOATING_POINT
+ Register exponent = result1_;
+ Register mantissa = result2_;
+#else
+ Register exponent = result2_;
+ Register mantissa = result1_;
+#endif
+ Label not_special;
+ // Convert from Smi to integer.
+ __ SmiUntag(source_);
+ // Move sign bit from source to destination. This works because the sign bit
+ // in the exponent word of the double has the same position and polarity as
+ // the 2's complement sign bit in a Smi.
+ STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
+ __ And(exponent, source_, Operand(HeapNumber::kSignMask));
+ // Subtract from 0 if source was negative.
+ __ subu(at, zero_reg, source_);
+ __ Movn(source_, at, exponent);
+
+ // We have -1, 0 or 1, which we treat specially. Register source_ contains
+ // absolute value: it is either equal to 1 (special case of -1 and 1),
+ // greater than 1 (not a special case) or less than 1 (special case of 0).
+ __ Branch(&not_special, gt, source_, Operand(1));
+
+ // For 1 or -1 we need to or in the 0 exponent (biased to 1023).
+ const uint32_t exponent_word_for_1 =
+ HeapNumber::kExponentBias << HeapNumber::kExponentShift;
+ // Safe to use 'at' as dest reg here.
+ __ Or(at, exponent, Operand(exponent_word_for_1));
+ __ Movn(exponent, at, source_); // Write exp when source not 0.
+ // 1, 0 and -1 all have 0 for the second word.
+ __ Ret(USE_DELAY_SLOT);
+ __ mov(mantissa, zero_reg);
+
+ __ bind(&not_special);
+ // Count leading zeros.
+ // Gets the wrong answer for 0, but we already checked for that case above.
+ __ Clz(zeros_, source_);
+ // Compute exponent and or it into the exponent register.
+ // We use mantissa as a scratch register here.
+ __ li(mantissa, Operand(31 + HeapNumber::kExponentBias));
+ __ subu(mantissa, mantissa, zeros_);
+ __ sll(mantissa, mantissa, HeapNumber::kExponentShift);
+ __ Or(exponent, exponent, mantissa);
+
+ // Shift up the source chopping the top bit off.
+ __ Addu(zeros_, zeros_, Operand(1));
+ // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
+ __ sllv(source_, source_, zeros_);
+ // Compute lower part of fraction (last 12 bits).
+ __ sll(mantissa, source_, HeapNumber::kMantissaBitsInTopWord);
+ // And the top (top 20 bits).
+ __ srl(source_, source_, 32 - HeapNumber::kMantissaBitsInTopWord);
+
+ __ Ret(USE_DELAY_SLOT);
+ __ or_(exponent, exponent, source_);
+}
+
+
+void DoubleToIStub::Generate(MacroAssembler* masm) {
+ Label out_of_range, only_low, negate, done;
+ Register input_reg = source();
+ Register result_reg = destination();
+
+ int double_offset = offset();
+ // Account for saved regs if input is sp.
+ if (input_reg.is(sp)) double_offset += 3 * kPointerSize;
+
+ Register scratch =
+ GetRegisterThatIsNotOneOf(input_reg, result_reg);
+ Register scratch2 =
+ GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
+ Register scratch3 =
+ GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch2);
+ DoubleRegister double_scratch = kLithiumScratchDouble;
+
+ __ Push(scratch, scratch2, scratch3);
+ if (!skip_fastpath()) {
+ // Load double input.
+ __ ldc1(double_scratch, MemOperand(input_reg, double_offset));
+
+ // Clear cumulative exception flags and save the FCSR.
+ __ cfc1(scratch2, FCSR);
+ __ ctc1(zero_reg, FCSR);
+
+ // Try a conversion to a signed integer.
+ __ Trunc_w_d(double_scratch, double_scratch);
+ // Move the converted value into the result register.
+ __ mfc1(scratch3, double_scratch);
+
+ // Retrieve and restore the FCSR.
+ __ cfc1(scratch, FCSR);
+ __ ctc1(scratch2, FCSR);
+
+ // Check for overflow and NaNs.
+ __ And(
+ scratch, scratch,
+ kFCSROverflowFlagMask | kFCSRUnderflowFlagMask
+ | kFCSRInvalidOpFlagMask);
+ // If we had no exceptions then set result_reg and we are done.
+ Label error;
+ __ Branch(&error, ne, scratch, Operand(zero_reg));
+ __ Move(result_reg, scratch3);
+ __ Branch(&done);
+ __ bind(&error);
+ }
+
+ // Load the double value and perform a manual truncation.
+ Register input_high = scratch2;
+ Register input_low = scratch3;
+
+ __ lw(input_low, MemOperand(input_reg, double_offset));
+ __ lw(input_high, MemOperand(input_reg, double_offset + kIntSize));
+
+ Label normal_exponent, restore_sign;
+ // Extract the biased exponent in result.
+ __ Ext(result_reg,
+ input_high,
+ HeapNumber::kExponentShift,
+ HeapNumber::kExponentBits);
+
+ // Check for Infinity and NaNs, which should return 0.
+ __ Subu(scratch, result_reg, HeapNumber::kExponentMask);
+ __ Movz(result_reg, zero_reg, scratch);
+ __ Branch(&done, eq, scratch, Operand(zero_reg));
+
+ // Express exponent as delta to (number of mantissa bits + 31).
+ __ Subu(result_reg,
+ result_reg,
+ Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31));
+
+ // If the delta is strictly positive, all bits would be shifted away,
+ // which means that we can return 0.
+ __ Branch(&normal_exponent, le, result_reg, Operand(zero_reg));
+ __ mov(result_reg, zero_reg);
+ __ Branch(&done);
+
+ __ bind(&normal_exponent);
+ const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
+ // Calculate shift.
+ __ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits));
+
+ // Save the sign.
+ Register sign = result_reg;
+ result_reg = no_reg;
+ __ And(sign, input_high, Operand(HeapNumber::kSignMask));
+
+ // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need
+ // to check for this specific case.
+ Label high_shift_needed, high_shift_done;
+ __ Branch(&high_shift_needed, lt, scratch, Operand(32));
+ __ mov(input_high, zero_reg);
+ __ Branch(&high_shift_done);
+ __ bind(&high_shift_needed);
+
+ // Set the implicit 1 before the mantissa part in input_high.
+ __ Or(input_high,
+ input_high,
+ Operand(1 << HeapNumber::kMantissaBitsInTopWord));
+ // Shift the mantissa bits to the correct position.
+ // We don't need to clear non-mantissa bits as they will be shifted away.
+ // If they weren't, it would mean that the answer is in the 32bit range.
+ __ sllv(input_high, input_high, scratch);
+
+ __ bind(&high_shift_done);
+
+ // Replace the shifted bits with bits from the lower mantissa word.
+ Label pos_shift, shift_done;
+ __ li(at, 32);
+ __ subu(scratch, at, scratch);
+ __ Branch(&pos_shift, ge, scratch, Operand(zero_reg));
+
+ // Negate scratch.
+ __ Subu(scratch, zero_reg, scratch);
+ __ sllv(input_low, input_low, scratch);
+ __ Branch(&shift_done);
+
+ __ bind(&pos_shift);
+ __ srlv(input_low, input_low, scratch);
+
+ __ bind(&shift_done);
+ __ Or(input_high, input_high, Operand(input_low));
+ // Restore sign if necessary.
+ __ mov(scratch, sign);
+ result_reg = sign;
+ sign = no_reg;
+ __ Subu(result_reg, zero_reg, input_high);
+ __ Movz(result_reg, input_high, scratch);
+
+ __ bind(&done);
+
+ __ Pop(scratch, scratch2, scratch3);
+ __ Ret();
+}
+
+
+void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(
+ Isolate* isolate) {
+ WriteInt32ToHeapNumberStub stub1(isolate, a1, v0, a2, a3);
+ WriteInt32ToHeapNumberStub stub2(isolate, a2, v0, a3, a0);
+ stub1.GetCode();
+ stub2.GetCode();
+}
+
+
+// See comment for class, this does NOT work for int32's that are in Smi range.
+void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
+ Label max_negative_int;
+ // the_int_ has the answer which is a signed int32 but not a Smi.
+ // We test for the special value that has a different exponent.
+ STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
+ // Test sign, and save for later conditionals.
+ __ And(sign_, the_int_, Operand(0x80000000u));
+ __ Branch(&max_negative_int, eq, the_int_, Operand(0x80000000u));
+
+ // Set up the correct exponent in scratch_. All non-Smi int32s have the same.
+ // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
+ uint32_t non_smi_exponent =
+ (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
+ __ li(scratch_, Operand(non_smi_exponent));
+ // Set the sign bit in scratch_ if the value was negative.
+ __ or_(scratch_, scratch_, sign_);
+ // Subtract from 0 if the value was negative.
+ __ subu(at, zero_reg, the_int_);
+ __ Movn(the_int_, at, sign_);
+ // We should be masking the implict first digit of the mantissa away here,
+ // but it just ends up combining harmlessly with the last digit of the
+ // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get
+ // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
+ DCHECK(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
+ const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
+ __ srl(at, the_int_, shift_distance);
+ __ or_(scratch_, scratch_, at);
+ __ sw(scratch_, FieldMemOperand(the_heap_number_,
+ HeapNumber::kExponentOffset));
+ __ sll(scratch_, the_int_, 32 - shift_distance);
+ __ Ret(USE_DELAY_SLOT);
+ __ sw(scratch_, FieldMemOperand(the_heap_number_,
+ HeapNumber::kMantissaOffset));
+
+ __ bind(&max_negative_int);
+ // The max negative int32 is stored as a positive number in the mantissa of
+ // a double because it uses a sign bit instead of using two's complement.
+ // The actual mantissa bits stored are all 0 because the implicit most
+ // significant 1 bit is not stored.
+ non_smi_exponent += 1 << HeapNumber::kExponentShift;
+ __ li(scratch_, Operand(HeapNumber::kSignMask | non_smi_exponent));
+ __ sw(scratch_,
+ FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
+ __ mov(scratch_, zero_reg);
+ __ Ret(USE_DELAY_SLOT);
+ __ sw(scratch_,
+ FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
+}
+
+
+// Handle the case where the lhs and rhs are the same object.
+// Equality is almost reflexive (everything but NaN), so this is a test
+// for "identity and not NaN".
+static void EmitIdenticalObjectComparison(MacroAssembler* masm,
+ Label* slow,
+ Condition cc) {
+ Label not_identical;
+ Label heap_number, return_equal;
+ Register exp_mask_reg = t1;
+
+ __ Branch(&not_identical, ne, a0, Operand(a1));
+
+ __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask));
+
+ // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
+ // so we do the second best thing - test it ourselves.
+ // They are both equal and they are not both Smis so both of them are not
+ // Smis. If it's not a heap number, then return equal.
+ if (cc == less || cc == greater) {
+ __ GetObjectType(a0, t0, t0);
+ __ Branch(slow, greater, t0, Operand(FIRST_SPEC_OBJECT_TYPE));
+ } else {
+ __ GetObjectType(a0, t0, t0);
+ __ Branch(&heap_number, eq, t0, Operand(HEAP_NUMBER_TYPE));
+ // Comparing JS objects with <=, >= is complicated.
+ if (cc != eq) {
+ __ Branch(slow, greater, t0, Operand(FIRST_SPEC_OBJECT_TYPE));
+ // Normally here we fall through to return_equal, but undefined is
+ // special: (undefined == undefined) == true, but
+ // (undefined <= undefined) == false! See ECMAScript 11.8.5.
+ if (cc == less_equal || cc == greater_equal) {
+ __ Branch(&return_equal, ne, t0, Operand(ODDBALL_TYPE));
+ __ LoadRoot(a6, Heap::kUndefinedValueRootIndex);
+ __ Branch(&return_equal, ne, a0, Operand(a6));
+ DCHECK(is_int16(GREATER) && is_int16(LESS));
+ __ Ret(USE_DELAY_SLOT);
+ if (cc == le) {
+ // undefined <= undefined should fail.
+ __ li(v0, Operand(GREATER));
+ } else {
+ // undefined >= undefined should fail.
+ __ li(v0, Operand(LESS));
+ }
+ }
+ }
+ }
+
+ __ bind(&return_equal);
+ DCHECK(is_int16(GREATER) && is_int16(LESS));
+ __ Ret(USE_DELAY_SLOT);
+ if (cc == less) {
+ __ li(v0, Operand(GREATER)); // Things aren't less than themselves.
+ } else if (cc == greater) {
+ __ li(v0, Operand(LESS)); // Things aren't greater than themselves.
+ } else {
+ __ mov(v0, zero_reg); // Things are <=, >=, ==, === themselves.
+ }
+ // For less and greater we don't have to check for NaN since the result of
+ // x < x is false regardless. For the others here is some code to check
+ // for NaN.
+ if (cc != lt && cc != gt) {
+ __ bind(&heap_number);
+ // It is a heap number, so return non-equal if it's NaN and equal if it's
+ // not NaN.
+
+ // The representation of NaN values has all exponent bits (52..62) set,
+ // and not all mantissa bits (0..51) clear.
+ // Read top bits of double representation (second word of value).
+ __ lwu(a6, FieldMemOperand(a0, HeapNumber::kExponentOffset));
+ // Test that exponent bits are all set.
+ __ And(a7, a6, Operand(exp_mask_reg));
+ // If all bits not set (ne cond), then not a NaN, objects are equal.
+ __ Branch(&return_equal, ne, a7, Operand(exp_mask_reg));
+
+ // Shift out flag and all exponent bits, retaining only mantissa.
+ __ sll(a6, a6, HeapNumber::kNonMantissaBitsInTopWord);
+ // Or with all low-bits of mantissa.
+ __ lwu(a7, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
+ __ Or(v0, a7, Operand(a6));
+ // For equal we already have the right value in v0: Return zero (equal)
+ // if all bits in mantissa are zero (it's an Infinity) and non-zero if
+ // not (it's a NaN). For <= and >= we need to load v0 with the failing
+ // value if it's a NaN.
+ if (cc != eq) {
+ // All-zero means Infinity means equal.
+ __ Ret(eq, v0, Operand(zero_reg));
+ DCHECK(is_int16(GREATER) && is_int16(LESS));
+ __ Ret(USE_DELAY_SLOT);
+ if (cc == le) {
+ __ li(v0, Operand(GREATER)); // NaN <= NaN should fail.
+ } else {
+ __ li(v0, Operand(LESS)); // NaN >= NaN should fail.
+ }
+ }
+ }
+ // No fall through here.
+
+ __ bind(&not_identical);
+}
+
+
+static void EmitSmiNonsmiComparison(MacroAssembler* masm,
+ Register lhs,
+ Register rhs,
+ Label* both_loaded_as_doubles,
+ Label* slow,
+ bool strict) {
+ DCHECK((lhs.is(a0) && rhs.is(a1)) ||
+ (lhs.is(a1) && rhs.is(a0)));
+
+ Label lhs_is_smi;
+ __ JumpIfSmi(lhs, &lhs_is_smi);
+ // Rhs is a Smi.
+ // Check whether the non-smi is a heap number.
+ __ GetObjectType(lhs, t0, t0);
+ if (strict) {
+ // If lhs was not a number and rhs was a Smi then strict equality cannot
+ // succeed. Return non-equal (lhs is already not zero).
+ __ Ret(USE_DELAY_SLOT, ne, t0, Operand(HEAP_NUMBER_TYPE));
+ __ mov(v0, lhs);
+ } else {
+ // Smi compared non-strictly with a non-Smi non-heap-number. Call
+ // the runtime.
+ __ Branch(slow, ne, t0, Operand(HEAP_NUMBER_TYPE));
+ }
+ // Rhs is a smi, lhs is a number.
+ // Convert smi rhs to double.
+ __ SmiUntag(at, rhs);
+ __ mtc1(at, f14);
+ __ cvt_d_w(f14, f14);
+ __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
+
+ // We now have both loaded as doubles.
+ __ jmp(both_loaded_as_doubles);
+
+ __ bind(&lhs_is_smi);
+ // Lhs is a Smi. Check whether the non-smi is a heap number.
+ __ GetObjectType(rhs, t0, t0);
+ if (strict) {
+ // If lhs was not a number and rhs was a Smi then strict equality cannot
+ // succeed. Return non-equal.
+ __ Ret(USE_DELAY_SLOT, ne, t0, Operand(HEAP_NUMBER_TYPE));
+ __ li(v0, Operand(1));
+ } else {
+ // Smi compared non-strictly with a non-Smi non-heap-number. Call
+ // the runtime.
+ __ Branch(slow, ne, t0, Operand(HEAP_NUMBER_TYPE));
+ }
+
+ // Lhs is a smi, rhs is a number.
+ // Convert smi lhs to double.
+ __ SmiUntag(at, lhs);
+ __ mtc1(at, f12);
+ __ cvt_d_w(f12, f12);
+ __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
+ // Fall through to both_loaded_as_doubles.
+}
+
+
+static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
+ Register lhs,
+ Register rhs) {
+ // If either operand is a JS object or an oddball value, then they are
+ // not equal since their pointers are different.
+ // There is no test for undetectability in strict equality.
+ STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
+ Label first_non_object;
+ // Get the type of the first operand into a2 and compare it with
+ // FIRST_SPEC_OBJECT_TYPE.
+ __ GetObjectType(lhs, a2, a2);
+ __ Branch(&first_non_object, less, a2, Operand(FIRST_SPEC_OBJECT_TYPE));
+
+ // Return non-zero.
+ Label return_not_equal;
+ __ bind(&return_not_equal);
+ __ Ret(USE_DELAY_SLOT);
+ __ li(v0, Operand(1));
+
+ __ bind(&first_non_object);
+ // Check for oddballs: true, false, null, undefined.
+ __ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE));
+
+ __ GetObjectType(rhs, a3, a3);
+ __ Branch(&return_not_equal, greater, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
+
+ // Check for oddballs: true, false, null, undefined.
+ __ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE));
+
+ // Now that we have the types we might as well check for
+ // internalized-internalized.
+ STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
+ __ Or(a2, a2, Operand(a3));
+ __ And(at, a2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
+ __ Branch(&return_not_equal, eq, at, Operand(zero_reg));
+}
+
+
+static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
+ Register lhs,
+ Register rhs,
+ Label* both_loaded_as_doubles,
+ Label* not_heap_numbers,
+ Label* slow) {
+ __ GetObjectType(lhs, a3, a2);
+ __ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE));
+ __ ld(a2, FieldMemOperand(rhs, HeapObject::kMapOffset));
+ // If first was a heap number & second wasn't, go to slow case.
+ __ Branch(slow, ne, a3, Operand(a2));
+
+ // Both are heap numbers. Load them up then jump to the code we have
+ // for that.
+ __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
+ __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
+
+ __ jmp(both_loaded_as_doubles);
+}
+
+
+// Fast negative check for internalized-to-internalized equality.
+static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
+ Register lhs,
+ Register rhs,
+ Label* possible_strings,
+ Label* not_both_strings) {
+ DCHECK((lhs.is(a0) && rhs.is(a1)) ||
+ (lhs.is(a1) && rhs.is(a0)));
+
+ // a2 is object type of rhs.
+ Label object_test;
+ STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
+ __ And(at, a2, Operand(kIsNotStringMask));
+ __ Branch(&object_test, ne, at, Operand(zero_reg));
+ __ And(at, a2, Operand(kIsNotInternalizedMask));
+ __ Branch(possible_strings, ne, at, Operand(zero_reg));
+ __ GetObjectType(rhs, a3, a3);
+ __ Branch(not_both_strings, ge, a3, Operand(FIRST_NONSTRING_TYPE));
+ __ And(at, a3, Operand(kIsNotInternalizedMask));
+ __ Branch(possible_strings, ne, at, Operand(zero_reg));
+
+ // Both are internalized strings. We already checked they weren't the same
+ // pointer so they are not equal.
+ __ Ret(USE_DELAY_SLOT);
+ __ li(v0, Operand(1)); // Non-zero indicates not equal.
+
+ __ bind(&object_test);
+ __ Branch(not_both_strings, lt, a2, Operand(FIRST_SPEC_OBJECT_TYPE));
+ __ GetObjectType(rhs, a2, a3);
+ __ Branch(not_both_strings, lt, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
+
+ // If both objects are undetectable, they are equal. Otherwise, they
+ // are not equal, since they are different objects and an object is not
+ // equal to undefined.
+ __ ld(a3, FieldMemOperand(lhs, HeapObject::kMapOffset));
+ __ lbu(a2, FieldMemOperand(a2, Map::kBitFieldOffset));
+ __ lbu(a3, FieldMemOperand(a3, Map::kBitFieldOffset));
+ __ and_(a0, a2, a3);
+ __ And(a0, a0, Operand(1 << Map::kIsUndetectable));
+ __ Ret(USE_DELAY_SLOT);
+ __ xori(v0, a0, 1 << Map::kIsUndetectable);
+}
+
+
+static void ICCompareStub_CheckInputType(MacroAssembler* masm,
+ Register input,
+ Register scratch,
+ CompareIC::State expected,
+ Label* fail) {
+ Label ok;
+ if (expected == CompareIC::SMI) {
+ __ JumpIfNotSmi(input, fail);
+ } else if (expected == CompareIC::NUMBER) {
+ __ JumpIfSmi(input, &ok);
+ __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
+ DONT_DO_SMI_CHECK);
+ }
+ // We could be strict about internalized/string here, but as long as
+ // hydrogen doesn't care, the stub doesn't have to care either.
+ __ bind(&ok);
+}
+
+
+// On entry a1 and a2 are the values to be compared.
+// On exit a0 is 0, positive or negative to indicate the result of
+// the comparison.
+void ICCompareStub::GenerateGeneric(MacroAssembler* masm) {
+ Register lhs = a1;
+ Register rhs = a0;
+ Condition cc = GetCondition();
+
+ Label miss;
+ ICCompareStub_CheckInputType(masm, lhs, a2, left_, &miss);
+ ICCompareStub_CheckInputType(masm, rhs, a3, right_, &miss);
+
+ Label slow; // Call builtin.
+ Label not_smis, both_loaded_as_doubles;
+
+ Label not_two_smis, smi_done;
+ __ Or(a2, a1, a0);
+ __ JumpIfNotSmi(a2, &not_two_smis);
+ __ SmiUntag(a1);
+ __ SmiUntag(a0);
+
+ __ Ret(USE_DELAY_SLOT);
+ __ dsubu(v0, a1, a0);
+ __ bind(&not_two_smis);
+
+ // NOTICE! This code is only reached after a smi-fast-case check, so
+ // it is certain that at least one operand isn't a smi.
+
+ // Handle the case where the objects are identical. Either returns the answer
+ // or goes to slow. Only falls through if the objects were not identical.
+ EmitIdenticalObjectComparison(masm, &slow, cc);
+
+ // If either is a Smi (we know that not both are), then they can only
+ // be strictly equal if the other is a HeapNumber.
+ STATIC_ASSERT(kSmiTag == 0);
+ DCHECK_EQ(0, Smi::FromInt(0));
+ __ And(a6, lhs, Operand(rhs));
+ __ JumpIfNotSmi(a6, &not_smis, a4);
+ // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
+ // 1) Return the answer.
+ // 2) Go to slow.
+ // 3) Fall through to both_loaded_as_doubles.
+ // 4) Jump to rhs_not_nan.
+ // In cases 3 and 4 we have found out we were dealing with a number-number
+ // comparison and the numbers have been loaded into f12 and f14 as doubles,
+ // or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU.
+ EmitSmiNonsmiComparison(masm, lhs, rhs,
+ &both_loaded_as_doubles, &slow, strict());
+
+ __ bind(&both_loaded_as_doubles);
+ // f12, f14 are the double representations of the left hand side
+ // and the right hand side if we have FPU. Otherwise a2, a3 represent
+ // left hand side and a0, a1 represent right hand side.
+
+ Label nan;
+ __ li(a4, Operand(LESS));
+ __ li(a5, Operand(GREATER));
+ __ li(a6, Operand(EQUAL));
+
+ // Check if either rhs or lhs is NaN.
+ __ BranchF(NULL, &nan, eq, f12, f14);
+
+ // Check if LESS condition is satisfied. If true, move conditionally
+ // result to v0.
+ if (kArchVariant != kMips64r6) {
+ __ c(OLT, D, f12, f14);
+ __ Movt(v0, a4);
+ // Use previous check to store conditionally to v0 oposite condition
+ // (GREATER). If rhs is equal to lhs, this will be corrected in next
+ // check.
+ __ Movf(v0, a5);
+ // Check if EQUAL condition is satisfied. If true, move conditionally
+ // result to v0.
+ __ c(EQ, D, f12, f14);
+ __ Movt(v0, a6);
+ } else {
+ Label skip;
+ __ BranchF(USE_DELAY_SLOT, &skip, NULL, lt, f12, f14);
+ __ mov(v0, a4); // Return LESS as result.
+
+ __ BranchF(USE_DELAY_SLOT, &skip, NULL, eq, f12, f14);
+ __ mov(v0, a6); // Return EQUAL as result.
+
+ __ mov(v0, a5); // Return GREATER as result.
+ __ bind(&skip);
+ }
+ __ Ret();
+
+ __ bind(&nan);
+ // NaN comparisons always fail.
+ // Load whatever we need in v0 to make the comparison fail.
+ DCHECK(is_int16(GREATER) && is_int16(LESS));
+ __ Ret(USE_DELAY_SLOT);
+ if (cc == lt || cc == le) {
+ __ li(v0, Operand(GREATER));
+ } else {
+ __ li(v0, Operand(LESS));
+ }
+
+
+ __ bind(&not_smis);
+ // At this point we know we are dealing with two different objects,
+ // and neither of them is a Smi. The objects are in lhs_ and rhs_.
+ if (strict()) {
+ // This returns non-equal for some object types, or falls through if it
+ // was not lucky.
+ EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
+ }
+
+ Label check_for_internalized_strings;
+ Label flat_string_check;
+ // Check for heap-number-heap-number comparison. Can jump to slow case,
+ // or load both doubles and jump to the code that handles
+ // that case. If the inputs are not doubles then jumps to
+ // check_for_internalized_strings.
+ // In this case a2 will contain the type of lhs_.
+ EmitCheckForTwoHeapNumbers(masm,
+ lhs,
+ rhs,
+ &both_loaded_as_doubles,
+ &check_for_internalized_strings,
+ &flat_string_check);
+
+ __ bind(&check_for_internalized_strings);
+ if (cc == eq && !strict()) {
+ // Returns an answer for two internalized strings or two
+ // detectable objects.
+ // Otherwise jumps to string case or not both strings case.
+ // Assumes that a2 is the type of lhs_ on entry.
+ EmitCheckForInternalizedStringsOrObjects(
+ masm, lhs, rhs, &flat_string_check, &slow);
+ }
+
+ // Check for both being sequential ASCII strings, and inline if that is the
+ // case.
+ __ bind(&flat_string_check);
+
+ __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs, rhs, a2, a3, &slow);
+
+ __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a2,
+ a3);
+ if (cc == eq) {
+ StringCompareStub::GenerateFlatAsciiStringEquals(masm,
+ lhs,
+ rhs,
+ a2,
+ a3,
+ a4);
+ } else {
+ StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
+ lhs,
+ rhs,
+ a2,
+ a3,
+ a4,
+ a5);
+ }
+ // Never falls through to here.
+
+ __ bind(&slow);
+ // Prepare for call to builtin. Push object pointers, a0 (lhs) first,
+ // a1 (rhs) second.
+ __ Push(lhs, rhs);
+ // Figure out which native to call and setup the arguments.
+ Builtins::JavaScript native;
+ if (cc == eq) {
+ native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
+ } else {
+ native = Builtins::COMPARE;
+ int ncr; // NaN compare result.
+ if (cc == lt || cc == le) {
+ ncr = GREATER;
+ } else {
+ DCHECK(cc == gt || cc == ge); // Remaining cases.
+ ncr = LESS;
+ }
+ __ li(a0, Operand(Smi::FromInt(ncr)));
+ __ push(a0);
+ }
+
+ // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
+ // tagged as a small integer.
+ __ InvokeBuiltin(native, JUMP_FUNCTION);
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
+
+
+void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
+ __ mov(t9, ra);
+ __ pop(ra);
+ __ PushSafepointRegisters();
+ __ Jump(t9);
+}
+
+
+void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
+ __ mov(t9, ra);
+ __ pop(ra);
+ __ PopSafepointRegisters();
+ __ Jump(t9);
+}
+
+
+void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
+ // We don't allow a GC during a store buffer overflow so there is no need to
+ // store the registers in any particular way, but we do have to store and
+ // restore them.
+ __ MultiPush(kJSCallerSaved | ra.bit());
+ if (save_doubles_ == kSaveFPRegs) {
+ __ MultiPushFPU(kCallerSavedFPU);
+ }
+ const int argument_count = 1;
+ const int fp_argument_count = 0;
+ const Register scratch = a1;
+
+ AllowExternalCallThatCantCauseGC scope(masm);
+ __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
+ __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
+ __ CallCFunction(
+ ExternalReference::store_buffer_overflow_function(isolate()),
+ argument_count);
+ if (save_doubles_ == kSaveFPRegs) {
+ __ MultiPopFPU(kCallerSavedFPU);
+ }
+
+ __ MultiPop(kJSCallerSaved | ra.bit());
+ __ Ret();
+}
+
+
+void MathPowStub::Generate(MacroAssembler* masm) {
+ const Register base = a1;
+ const Register exponent = a2;
+ const Register heapnumbermap = a5;
+ const Register heapnumber = v0;
+ const DoubleRegister double_base = f2;
+ const DoubleRegister double_exponent = f4;
+ const DoubleRegister double_result = f0;
+ const DoubleRegister double_scratch = f6;
+ const FPURegister single_scratch = f8;
+ const Register scratch = t1;
+ const Register scratch2 = a7;
+
+ Label call_runtime, done, int_exponent;
+ if (exponent_type_ == ON_STACK) {
+ Label base_is_smi, unpack_exponent;
+ // The exponent and base are supplied as arguments on the stack.
+ // This can only happen if the stub is called from non-optimized code.
+ // Load input parameters from stack to double registers.
+ __ ld(base, MemOperand(sp, 1 * kPointerSize));
+ __ ld(exponent, MemOperand(sp, 0 * kPointerSize));
+
+ __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
+
+ __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
+ __ ld(scratch, FieldMemOperand(base, JSObject::kMapOffset));
+ __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
+
+ __ ldc1(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
+ __ jmp(&unpack_exponent);
+
+ __ bind(&base_is_smi);
+ __ mtc1(scratch, single_scratch);
+ __ cvt_d_w(double_base, single_scratch);
+ __ bind(&unpack_exponent);
+
+ __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
+
+ __ ld(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
+ __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
+ __ ldc1(double_exponent,
+ FieldMemOperand(exponent, HeapNumber::kValueOffset));
+ } else if (exponent_type_ == TAGGED) {
+ // Base is already in double_base.
+ __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
+
+ __ ldc1(double_exponent,
+ FieldMemOperand(exponent, HeapNumber::kValueOffset));
+ }
+
+ if (exponent_type_ != INTEGER) {
+ Label int_exponent_convert;
+ // Detect integer exponents stored as double.
+ __ EmitFPUTruncate(kRoundToMinusInf,
+ scratch,
+ double_exponent,
+ at,
+ double_scratch,
+ scratch2,
+ kCheckForInexactConversion);
+ // scratch2 == 0 means there was no conversion error.
+ __ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg));
+
+ if (exponent_type_ == ON_STACK) {
+ // Detect square root case. Crankshaft detects constant +/-0.5 at
+ // compile time and uses DoMathPowHalf instead. We then skip this check
+ // for non-constant cases of +/-0.5 as these hardly occur.
+ Label not_plus_half;
+
+ // Test for 0.5.
+ __ Move(double_scratch, 0.5);
+ __ BranchF(USE_DELAY_SLOT,
+ &not_plus_half,
+ NULL,
+ ne,
+ double_exponent,
+ double_scratch);
+ // double_scratch can be overwritten in the delay slot.
+ // Calculates square root of base. Check for the special case of
+ // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
+ __ Move(double_scratch, -V8_INFINITY);
+ __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
+ __ neg_d(double_result, double_scratch);
+
+ // Add +0 to convert -0 to +0.
+ __ add_d(double_scratch, double_base, kDoubleRegZero);
+ __ sqrt_d(double_result, double_scratch);
+ __ jmp(&done);
+
+ __ bind(&not_plus_half);
+ __ Move(double_scratch, -0.5);
+ __ BranchF(USE_DELAY_SLOT,
+ &call_runtime,
+ NULL,
+ ne,
+ double_exponent,
+ double_scratch);
+ // double_scratch can be overwritten in the delay slot.
+ // Calculates square root of base. Check for the special case of
+ // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
+ __ Move(double_scratch, -V8_INFINITY);
+ __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
+ __ Move(double_result, kDoubleRegZero);
+
+ // Add +0 to convert -0 to +0.
+ __ add_d(double_scratch, double_base, kDoubleRegZero);
+ __ Move(double_result, 1);
+ __ sqrt_d(double_scratch, double_scratch);
+ __ div_d(double_result, double_result, double_scratch);
+ __ jmp(&done);
+ }
+
+ __ push(ra);
+ {
+ AllowExternalCallThatCantCauseGC scope(masm);
+ __ PrepareCallCFunction(0, 2, scratch2);
+ __ MovToFloatParameters(double_base, double_exponent);
+ __ CallCFunction(
+ ExternalReference::power_double_double_function(isolate()),
+ 0, 2);
+ }
+ __ pop(ra);
+ __ MovFromFloatResult(double_result);
+ __ jmp(&done);
+
+ __ bind(&int_exponent_convert);
+ }
+
+ // Calculate power with integer exponent.
+ __ bind(&int_exponent);
+
+ // Get two copies of exponent in the registers scratch and exponent.
+ if (exponent_type_ == INTEGER) {
+ __ mov(scratch, exponent);
+ } else {
+ // Exponent has previously been stored into scratch as untagged integer.
+ __ mov(exponent, scratch);
+ }
+
+ __ mov_d(double_scratch, double_base); // Back up base.
+ __ Move(double_result, 1.0);
+
+ // Get absolute value of exponent.
+ Label positive_exponent;
+ __ Branch(&positive_exponent, ge, scratch, Operand(zero_reg));
+ __ Dsubu(scratch, zero_reg, scratch);
+ __ bind(&positive_exponent);
+
+ Label while_true, no_carry, loop_end;
+ __ bind(&while_true);
+
+ __ And(scratch2, scratch, 1);
+
+ __ Branch(&no_carry, eq, scratch2, Operand(zero_reg));
+ __ mul_d(double_result, double_result, double_scratch);
+ __ bind(&no_carry);
+
+ __ dsra(scratch, scratch, 1);
+
+ __ Branch(&loop_end, eq, scratch, Operand(zero_reg));
+ __ mul_d(double_scratch, double_scratch, double_scratch);
+
+ __ Branch(&while_true);
+
+ __ bind(&loop_end);
+
+ __ Branch(&done, ge, exponent, Operand(zero_reg));
+ __ Move(double_scratch, 1.0);
+ __ div_d(double_result, double_scratch, double_result);
+ // Test whether result is zero. Bail out to check for subnormal result.
+ // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
+ __ BranchF(&done, NULL, ne, double_result, kDoubleRegZero);
+
+ // double_exponent may not contain the exponent value if the input was a
+ // smi. We set it with exponent value before bailing out.
+ __ mtc1(exponent, single_scratch);
+ __ cvt_d_w(double_exponent, single_scratch);
+
+ // Returning or bailing out.
+ Counters* counters = isolate()->counters();
+ if (exponent_type_ == ON_STACK) {
+ // The arguments are still on the stack.
+ __ bind(&call_runtime);
+ __ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
+
+ // The stub is called from non-optimized code, which expects the result
+ // as heap number in exponent.
+ __ bind(&done);
+ __ AllocateHeapNumber(
+ heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
+ __ sdc1(double_result,
+ FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
+ DCHECK(heapnumber.is(v0));
+ __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
+ __ DropAndRet(2);
+ } else {
+ __ push(ra);
+ {
+ AllowExternalCallThatCantCauseGC scope(masm);
+ __ PrepareCallCFunction(0, 2, scratch);
+ __ MovToFloatParameters(double_base, double_exponent);
+ __ CallCFunction(
+ ExternalReference::power_double_double_function(isolate()),
+ 0, 2);
+ }
+ __ pop(ra);
+ __ MovFromFloatResult(double_result);
+
+ __ bind(&done);
+ __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
+ __ Ret();
+ }
+}
+
+
+bool CEntryStub::NeedsImmovableCode() {
+ return true;
+}
+
+
+void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
+ CEntryStub::GenerateAheadOfTime(isolate);
+ WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(isolate);
+ StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
+ StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
+ ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
+ CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
+ BinaryOpICStub::GenerateAheadOfTime(isolate);
+ StoreRegistersStateStub::GenerateAheadOfTime(isolate);
+ RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
+ BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
+}
+
+
+void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
+ StoreRegistersStateStub stub(isolate);
+ stub.GetCode();
+}
+
+
+void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
+ RestoreRegistersStateStub stub(isolate);
+ stub.GetCode();
+}
+
+
+void CodeStub::GenerateFPStubs(Isolate* isolate) {
+ SaveFPRegsMode mode = kSaveFPRegs;
+ CEntryStub save_doubles(isolate, 1, mode);
+ StoreBufferOverflowStub stub(isolate, mode);
+ // These stubs might already be in the snapshot, detect that and don't
+ // regenerate, which would lead to code stub initialization state being messed
+ // up.
+ Code* save_doubles_code;
+ if (!save_doubles.FindCodeInCache(&save_doubles_code)) {
+ save_doubles_code = *save_doubles.GetCode();
+ }
+ Code* store_buffer_overflow_code;
+ if (!stub.FindCodeInCache(&store_buffer_overflow_code)) {
+ store_buffer_overflow_code = *stub.GetCode();
+ }
+ isolate->set_fp_stubs_generated(true);
+}
+
+
+void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
+ CEntryStub stub(isolate, 1, kDontSaveFPRegs);
+ stub.GetCode();
+}
+
+
+void CEntryStub::Generate(MacroAssembler* masm) {
+ // Called from JavaScript; parameters are on stack as if calling JS function
+ // s0: number of arguments including receiver
+ // s1: size of arguments excluding receiver
+ // s2: pointer to builtin function
+ // fp: frame pointer (restored after C call)
+ // sp: stack pointer (restored as callee's sp after C call)
+ // cp: current context (C callee-saved)
+
+ ProfileEntryHookStub::MaybeCallEntryHook(masm);
+
+ // NOTE: s0-s2 hold the arguments of this function instead of a0-a2.
+ // The reason for this is that these arguments would need to be saved anyway
+ // so it's faster to set them up directly.
+ // See MacroAssembler::PrepareCEntryArgs and PrepareCEntryFunction.
+
+ // Compute the argv pointer in a callee-saved register.
+ __ Daddu(s1, sp, s1);
+
+ // Enter the exit frame that transitions from JavaScript to C++.
+ FrameScope scope(masm, StackFrame::MANUAL);
+ __ EnterExitFrame(save_doubles_);
+
+ // s0: number of arguments including receiver (C callee-saved)
+ // s1: pointer to first argument (C callee-saved)
+ // s2: pointer to builtin function (C callee-saved)
+
+ // Prepare arguments for C routine.
+ // a0 = argc
+ __ mov(a0, s0);
+ // a1 = argv (set in the delay slot after find_ra below).
+
+ // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
+ // also need to reserve the 4 argument slots on the stack.
+
+ __ AssertStackIsAligned();
+
+ __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
+
+ // To let the GC traverse the return address of the exit frames, we need to
+ // know where the return address is. The CEntryStub is unmovable, so
+ // we can store the address on the stack to be able to find it again and
+ // we never have to restore it, because it will not change.
+ { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
+ // This branch-and-link sequence is needed to find the current PC on mips,
+ // saved to the ra register.
+ // Use masm-> here instead of the double-underscore macro since extra
+ // coverage code can interfere with the proper calculation of ra.
+ Label find_ra;
+ masm->bal(&find_ra); // bal exposes branch delay slot.
+ masm->mov(a1, s1);
+ masm->bind(&find_ra);
+
+ // Adjust the value in ra to point to the correct return location, 2nd
+ // instruction past the real call into C code (the jalr(t9)), and push it.
+ // This is the return address of the exit frame.
+ const int kNumInstructionsToJump = 5;
+ masm->Daddu(ra, ra, kNumInstructionsToJump * kInt32Size);
+ masm->sd(ra, MemOperand(sp)); // This spot was reserved in EnterExitFrame.
+ // Stack space reservation moved to the branch delay slot below.
+ // Stack is still aligned.
+
+ // Call the C routine.
+ masm->mov(t9, s2); // Function pointer to t9 to conform to ABI for PIC.
+ masm->jalr(t9);
+ // Set up sp in the delay slot.
+ masm->daddiu(sp, sp, -kCArgsSlotsSize);
+ // Make sure the stored 'ra' points to this position.
+ DCHECK_EQ(kNumInstructionsToJump,
+ masm->InstructionsGeneratedSince(&find_ra));
+ }
+
+ // Runtime functions should not return 'the hole'. Allowing it to escape may
+ // lead to crashes in the IC code later.
+ if (FLAG_debug_code) {
+ Label okay;
+ __ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
+ __ Branch(&okay, ne, v0, Operand(a4));
+ __ stop("The hole escaped");
+ __ bind(&okay);
+ }
+
+ // Check result for exception sentinel.
+ Label exception_returned;
+ __ LoadRoot(a4, Heap::kExceptionRootIndex);
+ __ Branch(&exception_returned, eq, a4, Operand(v0));
+
+ ExternalReference pending_exception_address(
+ Isolate::kPendingExceptionAddress, isolate());
+
+ // Check that there is no pending exception, otherwise we
+ // should have returned the exception sentinel.
+ if (FLAG_debug_code) {
+ Label okay;
+ __ li(a2, Operand(pending_exception_address));
+ __ ld(a2, MemOperand(a2));
+ __ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
+ // Cannot use check here as it attempts to generate call into runtime.
+ __ Branch(&okay, eq, a4, Operand(a2));
+ __ stop("Unexpected pending exception");
+ __ bind(&okay);
+ }
+
+ // Exit C frame and return.
+ // v0:v1: result
+ // sp: stack pointer
+ // fp: frame pointer
+ // s0: still holds argc (callee-saved).
+ __ LeaveExitFrame(save_doubles_, s0, true, EMIT_RETURN);
+
+ // Handling of exception.
+ __ bind(&exception_returned);
+
+ // Retrieve the pending exception.
+ __ li(a2, Operand(pending_exception_address));
+ __ ld(v0, MemOperand(a2));
+
+ // Clear the pending exception.
+ __ li(a3, Operand(isolate()->factory()->the_hole_value()));
+ __ sd(a3, MemOperand(a2));
+
+ // Special handling of termination exceptions which are uncatchable
+ // by javascript code.
+ Label throw_termination_exception;
+ __ LoadRoot(a4, Heap::kTerminationExceptionRootIndex);
+ __ Branch(&throw_termination_exception, eq, v0, Operand(a4));
+
+ // Handle normal exception.
+ __ Throw(v0);
+
+ __ bind(&throw_termination_exception);
+ __ ThrowUncatchable(v0);
+}
+
+
+void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
+ Label invoke, handler_entry, exit;
+ Isolate* isolate = masm->isolate();
+
+ // TODO(plind): unify the ABI description here.
+ // Registers:
+ // a0: entry address
+ // a1: function
+ // a2: receiver
+ // a3: argc
+ // a4 (a4): on mips64
+
+ // Stack:
+ // 0 arg slots on mips64 (4 args slots on mips)
+ // args -- in a4/a4 on mips64, on stack on mips
+
+ ProfileEntryHookStub::MaybeCallEntryHook(masm);
+
+ // Save callee saved registers on the stack.
+ __ MultiPush(kCalleeSaved | ra.bit());
+
+ // Save callee-saved FPU registers.
+ __ MultiPushFPU(kCalleeSavedFPU);
+ // Set up the reserved register for 0.0.
+ __ Move(kDoubleRegZero, 0.0);
+
+ // Load argv in s0 register.
+ if (kMipsAbi == kN64) {
+ __ mov(s0, a4); // 5th parameter in mips64 a4 (a4) register.
+ } else { // Abi O32.
+ // 5th parameter on stack for O32 abi.
+ int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
+ offset_to_argv += kNumCalleeSavedFPU * kDoubleSize;
+ __ ld(s0, MemOperand(sp, offset_to_argv + kCArgsSlotsSize));
+ }
+
+ __ InitializeRootRegister();
+
+ // We build an EntryFrame.
+ __ li(a7, Operand(-1)); // Push a bad frame pointer to fail if it is used.
+ int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
+ __ li(a6, Operand(Smi::FromInt(marker)));
+ __ li(a5, Operand(Smi::FromInt(marker)));
+ ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate);
+ __ li(a4, Operand(c_entry_fp));
+ __ ld(a4, MemOperand(a4));
+ __ Push(a7, a6, a5, a4);
+ // Set up frame pointer for the frame to be pushed.
+ __ daddiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);
+
+ // Registers:
+ // a0: entry_address
+ // a1: function
+ // a2: receiver_pointer
+ // a3: argc
+ // s0: argv
+ //
+ // Stack:
+ // caller fp |
+ // function slot | entry frame
+ // context slot |
+ // bad fp (0xff...f) |
+ // callee saved registers + ra
+ // [ O32: 4 args slots]
+ // args
+
+ // If this is the outermost JS call, set js_entry_sp value.
+ Label non_outermost_js;
+ ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
+ __ li(a5, Operand(ExternalReference(js_entry_sp)));
+ __ ld(a6, MemOperand(a5));
+ __ Branch(&non_outermost_js, ne, a6, Operand(zero_reg));
+ __ sd(fp, MemOperand(a5));
+ __ li(a4, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
+ Label cont;
+ __ b(&cont);
+ __ nop(); // Branch delay slot nop.
+ __ bind(&non_outermost_js);
+ __ li(a4, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
+ __ bind(&cont);
+ __ push(a4);
+
+ // Jump to a faked try block that does the invoke, with a faked catch
+ // block that sets the pending exception.
+ __ jmp(&invoke);
+ __ bind(&handler_entry);
+ handler_offset_ = handler_entry.pos();
+ // Caught exception: Store result (exception) in the pending exception
+ // field in the JSEnv and return a failure sentinel. Coming in here the
+ // fp will be invalid because the PushTryHandler below sets it to 0 to
+ // signal the existence of the JSEntry frame.
+ __ li(a4, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
+ isolate)));
+ __ sd(v0, MemOperand(a4)); // We come back from 'invoke'. result is in v0.
+ __ LoadRoot(v0, Heap::kExceptionRootIndex);
+ __ b(&exit); // b exposes branch delay slot.
+ __ nop(); // Branch delay slot nop.
+
+ // Invoke: Link this frame into the handler chain. There's only one
+ // handler block in this code object, so its index is 0.
+ __ bind(&invoke);
+ __ PushTryHandler(StackHandler::JS_ENTRY, 0);
+ // If an exception not caught by another handler occurs, this handler
+ // returns control to the code after the bal(&invoke) above, which
+ // restores all kCalleeSaved registers (including cp and fp) to their
+ // saved values before returning a failure to C.
+
+ // Clear any pending exceptions.
+ __ LoadRoot(a5, Heap::kTheHoleValueRootIndex);
+ __ li(a4, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
+ isolate)));
+ __ sd(a5, MemOperand(a4));
+
+ // Invoke the function by calling through JS entry trampoline builtin.
+ // Notice that we cannot store a reference to the trampoline code directly in
+ // this stub, because runtime stubs are not traversed when doing GC.
+
+ // Registers:
+ // a0: entry_address
+ // a1: function
+ // a2: receiver_pointer
+ // a3: argc
+ // s0: argv
+ //
+ // Stack:
+ // handler frame
+ // entry frame
+ // callee saved registers + ra
+ // [ O32: 4 args slots]
+ // args
+
+ if (is_construct) {
+ ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
+ isolate);
+ __ li(a4, Operand(construct_entry));
+ } else {
+ ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate());
+ __ li(a4, Operand(entry));
+ }
+ __ ld(t9, MemOperand(a4)); // Deref address.
+ // Call JSEntryTrampoline.
+ __ daddiu(t9, t9, Code::kHeaderSize - kHeapObjectTag);
+ __ Call(t9);
+
+ // Unlink this frame from the handler chain.
+ __ PopTryHandler();
+
+ __ bind(&exit); // v0 holds result
+ // Check if the current stack frame is marked as the outermost JS frame.
+ Label non_outermost_js_2;
+ __ pop(a5);
+ __ Branch(&non_outermost_js_2,
+ ne,
+ a5,
+ Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
+ __ li(a5, Operand(ExternalReference(js_entry_sp)));
+ __ sd(zero_reg, MemOperand(a5));
+ __ bind(&non_outermost_js_2);
+
+ // Restore the top frame descriptors from the stack.
+ __ pop(a5);
+ __ li(a4, Operand(ExternalReference(Isolate::kCEntryFPAddress,
+ isolate)));
+ __ sd(a5, MemOperand(a4));
+
+ // Reset the stack to the callee saved registers.
+ __ daddiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);
+
+ // Restore callee-saved fpu registers.
+ __ MultiPopFPU(kCalleeSavedFPU);
+
+ // Restore callee saved registers from the stack.
+ __ MultiPop(kCalleeSaved | ra.bit());
+ // Return.
+ __ Jump(ra);
+}
+
+
+// Uses registers a0 to a4.
+// Expected input (depending on whether args are in registers or on the stack):
+// * object: a0 or at sp + 1 * kPointerSize.
+// * function: a1 or at sp.
+//
+// An inlined call site may have been generated before calling this stub.
+// In this case the offset to the inline site to patch is passed on the stack,
+// in the safepoint slot for register a4.
+void InstanceofStub::Generate(MacroAssembler* masm) {
+ // Call site inlining and patching implies arguments in registers.
+ DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
+ // ReturnTrueFalse is only implemented for inlined call sites.
+ DCHECK(!ReturnTrueFalseObject() || HasCallSiteInlineCheck());
+
+ // Fixed register usage throughout the stub:
+ const Register object = a0; // Object (lhs).
+ Register map = a3; // Map of the object.
+ const Register function = a1; // Function (rhs).
+ const Register prototype = a4; // Prototype of the function.
+ const Register inline_site = t1;
+ const Register scratch = a2;
+
+ const int32_t kDeltaToLoadBoolResult = 7 * Assembler::kInstrSize;
+
+ Label slow, loop, is_instance, is_not_instance, not_js_object;
+
+ if (!HasArgsInRegisters()) {
+ __ ld(object, MemOperand(sp, 1 * kPointerSize));
+ __ ld(function, MemOperand(sp, 0));
+ }
+
+ // Check that the left hand is a JS object and load map.
+ __ JumpIfSmi(object, &not_js_object);
+ __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
+
+ // If there is a call site cache don't look in the global cache, but do the
+ // real lookup and update the call site cache.
+ if (!HasCallSiteInlineCheck()) {
+ Label miss;
+ __ LoadRoot(at, Heap::kInstanceofCacheFunctionRootIndex);
+ __ Branch(&miss, ne, function, Operand(at));
+ __ LoadRoot(at, Heap::kInstanceofCacheMapRootIndex);
+ __ Branch(&miss, ne, map, Operand(at));
+ __ LoadRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
+ __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
+
+ __ bind(&miss);
+ }
+
+ // Get the prototype of the function.
+ __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
+
+ // Check that the function prototype is a JS object.
+ __ JumpIfSmi(prototype, &slow);
+ __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
+
+ // Update the global instanceof or call site inlined cache with the current
+ // map and function. The cached answer will be set when it is known below.
+ if (!HasCallSiteInlineCheck()) {
+ __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
+ __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
+ } else {
+ DCHECK(HasArgsInRegisters());
+ // Patch the (relocated) inlined map check.
+
+ // The offset was stored in a4 safepoint slot.
+ // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
+ __ LoadFromSafepointRegisterSlot(scratch, a4);
+ __ Dsubu(inline_site, ra, scratch);
+ // Get the map location in scratch and patch it.
+ __ GetRelocatedValue(inline_site, scratch, v1); // v1 used as scratch.
+ __ sd(map, FieldMemOperand(scratch, Cell::kValueOffset));
+ }
+
+ // Register mapping: a3 is object map and a4 is function prototype.
+ // Get prototype of object into a2.
+ __ ld(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
+
+ // We don't need map any more. Use it as a scratch register.
+ Register scratch2 = map;
+ map = no_reg;
+
+ // Loop through the prototype chain looking for the function prototype.
+ __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
+ __ bind(&loop);
+ __ Branch(&is_instance, eq, scratch, Operand(prototype));
+ __ Branch(&is_not_instance, eq, scratch, Operand(scratch2));
+ __ ld(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
+ __ ld(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
+ __ Branch(&loop);
+
+ __ bind(&is_instance);
+ DCHECK(Smi::FromInt(0) == 0);
+ if (!HasCallSiteInlineCheck()) {
+ __ mov(v0, zero_reg);
+ __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
+ } else {
+ // Patch the call site to return true.
+ __ LoadRoot(v0, Heap::kTrueValueRootIndex);
+ __ Daddu(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
+ // Get the boolean result location in scratch and patch it.
+ __ PatchRelocatedValue(inline_site, scratch, v0);
+
+ if (!ReturnTrueFalseObject()) {
+ DCHECK_EQ(Smi::FromInt(0), 0);
+ __ mov(v0, zero_reg);
+ }
+ }
+ __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
+
+ __ bind(&is_not_instance);
+ if (!HasCallSiteInlineCheck()) {
+ __ li(v0, Operand(Smi::FromInt(1)));
+ __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
+ } else {
+ // Patch the call site to return false.
+ __ LoadRoot(v0, Heap::kFalseValueRootIndex);
+ __ Daddu(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
+ // Get the boolean result location in scratch and patch it.
+ __ PatchRelocatedValue(inline_site, scratch, v0);
+
+ if (!ReturnTrueFalseObject()) {
+ __ li(v0, Operand(Smi::FromInt(1)));
+ }
+ }
+
+ __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
+
+ Label object_not_null, object_not_null_or_smi;
+ __ bind(&not_js_object);
+ // Before null, smi and string value checks, check that the rhs is a function
+ // as for a non-function rhs an exception needs to be thrown.
+ __ JumpIfSmi(function, &slow);
+ __ GetObjectType(function, scratch2, scratch);
+ __ Branch(&slow, ne, scratch, Operand(JS_FUNCTION_TYPE));
+
+ // Null is not instance of anything.
+ __ Branch(&object_not_null,
+ ne,
+ scratch,
+ Operand(isolate()->factory()->null_value()));
+ __ li(v0, Operand(Smi::FromInt(1)));
+ __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
+
+ __ bind(&object_not_null);
+ // Smi values are not instances of anything.
+ __ JumpIfNotSmi(object, &object_not_null_or_smi);
+ __ li(v0, Operand(Smi::FromInt(1)));
+ __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
+
+ __ bind(&object_not_null_or_smi);
+ // String values are not instances of anything.
+ __ IsObjectJSStringType(object, scratch, &slow);
+ __ li(v0, Operand(Smi::FromInt(1)));
+ __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
+
+ // Slow-case. Tail call builtin.
+ __ bind(&slow);
+ if (!ReturnTrueFalseObject()) {
+ if (HasArgsInRegisters()) {
+ __ Push(a0, a1);
+ }
+ __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
+ } else {
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ __ Push(a0, a1);
+ __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
+ }
+ __ mov(a0, v0);
+ __ LoadRoot(v0, Heap::kTrueValueRootIndex);
+ __ DropAndRet(HasArgsInRegisters() ? 0 : 2, eq, a0, Operand(zero_reg));
+ __ LoadRoot(v0, Heap::kFalseValueRootIndex);
+ __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
+ }
+}
+
+
+void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
+ Label miss;
+ Register receiver = LoadIC::ReceiverRegister();
+ NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, a3,
+ a4, &miss);
+ __ bind(&miss);
+ PropertyAccessCompiler::TailCallBuiltin(
+ masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
+}
+
+
+Register InstanceofStub::left() { return a0; }
+
+
+Register InstanceofStub::right() { return a1; }
+
+
+void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
+ // The displacement is the offset of the last parameter (if any)
+ // relative to the frame pointer.
+ const int kDisplacement =
+ StandardFrameConstants::kCallerSPOffset - kPointerSize;
+
+ // Check that the key is a smiGenerateReadElement.
+ Label slow;
+ __ JumpIfNotSmi(a1, &slow);
+
+ // Check if the calling frame is an arguments adaptor frame.
+ Label adaptor;
+ __ ld(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ ld(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
+ __ Branch(&adaptor,
+ eq,
+ a3,
+ Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+
+ // Check index (a1) against formal parameters count limit passed in
+ // through register a0. Use unsigned comparison to get negative
+ // check for free.
+ __ Branch(&slow, hs, a1, Operand(a0));
+
+ // Read the argument from the stack and return it.
+ __ dsubu(a3, a0, a1);
+ __ SmiScale(a7, a3, kPointerSizeLog2);
+ __ Daddu(a3, fp, Operand(a7));
+ __ Ret(USE_DELAY_SLOT);
+ __ ld(v0, MemOperand(a3, kDisplacement));
+
+ // Arguments adaptor case: Check index (a1) against actual arguments
+ // limit found in the arguments adaptor frame. Use unsigned
+ // comparison to get negative check for free.
+ __ bind(&adaptor);
+ __ ld(a0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ Branch(&slow, Ugreater_equal, a1, Operand(a0));
+
+ // Read the argument from the adaptor frame and return it.
+ __ dsubu(a3, a0, a1);
+ __ SmiScale(a7, a3, kPointerSizeLog2);
+ __ Daddu(a3, a2, Operand(a7));
+ __ Ret(USE_DELAY_SLOT);
+ __ ld(v0, MemOperand(a3, kDisplacement));
+
+ // Slow-case: Handle non-smi or out-of-bounds access to arguments
+ // by calling the runtime system.
+ __ bind(&slow);
+ __ push(a1);
+ __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
+}
+
+
+void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
+ // sp[0] : number of parameters
+ // sp[4] : receiver displacement
+ // sp[8] : function
+ // Check if the calling frame is an arguments adaptor frame.
+ Label runtime;
+ __ ld(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ ld(a2, MemOperand(a3, StandardFrameConstants::kContextOffset));
+ __ Branch(&runtime,
+ ne,
+ a2,
+ Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+
+ // Patch the arguments.length and the parameters pointer in the current frame.
+ __ ld(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ sd(a2, MemOperand(sp, 0 * kPointerSize));
+ __ SmiScale(a7, a2, kPointerSizeLog2);
+ __ Daddu(a3, a3, Operand(a7));
+ __ daddiu(a3, a3, StandardFrameConstants::kCallerSPOffset);
+ __ sd(a3, MemOperand(sp, 1 * kPointerSize));
+
+ __ bind(&runtime);
+ __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
+}
+
+
+void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
+ // Stack layout:
+ // sp[0] : number of parameters (tagged)
+ // sp[4] : address of receiver argument
+ // sp[8] : function
+ // Registers used over whole function:
+ // a6 : allocated object (tagged)
+ // t1 : mapped parameter count (tagged)
+
+ __ ld(a1, MemOperand(sp, 0 * kPointerSize));
+ // a1 = parameter count (tagged)
+
+ // Check if the calling frame is an arguments adaptor frame.
+ Label runtime;
+ Label adaptor_frame, try_allocate;
+ __ ld(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ ld(a2, MemOperand(a3, StandardFrameConstants::kContextOffset));
+ __ Branch(&adaptor_frame,
+ eq,
+ a2,
+ Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+
+ // No adaptor, parameter count = argument count.
+ __ mov(a2, a1);
+ __ Branch(&try_allocate);
+
+ // We have an adaptor frame. Patch the parameters pointer.
+ __ bind(&adaptor_frame);
+ __ ld(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ SmiScale(t2, a2, kPointerSizeLog2);
+ __ Daddu(a3, a3, Operand(t2));
+ __ Daddu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
+ __ sd(a3, MemOperand(sp, 1 * kPointerSize));
+
+ // a1 = parameter count (tagged)
+ // a2 = argument count (tagged)
+ // Compute the mapped parameter count = min(a1, a2) in a1.
+ Label skip_min;
+ __ Branch(&skip_min, lt, a1, Operand(a2));
+ __ mov(a1, a2);
+ __ bind(&skip_min);
+
+ __ bind(&try_allocate);
+
+ // Compute the sizes of backing store, parameter map, and arguments object.
+ // 1. Parameter map, has 2 extra words containing context and backing store.
+ const int kParameterMapHeaderSize =
+ FixedArray::kHeaderSize + 2 * kPointerSize;
+ // If there are no mapped parameters, we do not need the parameter_map.
+ Label param_map_size;
+ DCHECK_EQ(0, Smi::FromInt(0));
+ __ Branch(USE_DELAY_SLOT, &param_map_size, eq, a1, Operand(zero_reg));
+ __ mov(t1, zero_reg); // In delay slot: param map size = 0 when a1 == 0.
+ __ SmiScale(t1, a1, kPointerSizeLog2);
+ __ daddiu(t1, t1, kParameterMapHeaderSize);
+ __ bind(&param_map_size);
+
+ // 2. Backing store.
+ __ SmiScale(t2, a2, kPointerSizeLog2);
+ __ Daddu(t1, t1, Operand(t2));
+ __ Daddu(t1, t1, Operand(FixedArray::kHeaderSize));
+
+ // 3. Arguments object.
+ __ Daddu(t1, t1, Operand(Heap::kSloppyArgumentsObjectSize));
+
+ // Do the allocation of all three objects in one go.
+ __ Allocate(t1, v0, a3, a4, &runtime, TAG_OBJECT);
+
+ // v0 = address of new object(s) (tagged)
+ // a2 = argument count (smi-tagged)
+ // Get the arguments boilerplate from the current native context into a4.
+ const int kNormalOffset =
+ Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX);
+ const int kAliasedOffset =
+ Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX);
+
+ __ ld(a4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
+ __ ld(a4, FieldMemOperand(a4, GlobalObject::kNativeContextOffset));
+ Label skip2_ne, skip2_eq;
+ __ Branch(&skip2_ne, ne, a1, Operand(zero_reg));
+ __ ld(a4, MemOperand(a4, kNormalOffset));
+ __ bind(&skip2_ne);
+
+ __ Branch(&skip2_eq, eq, a1, Operand(zero_reg));
+ __ ld(a4, MemOperand(a4, kAliasedOffset));
+ __ bind(&skip2_eq);
+
+ // v0 = address of new object (tagged)
+ // a1 = mapped parameter count (tagged)
+ // a2 = argument count (smi-tagged)
+ // a4 = address of arguments map (tagged)
+ __ sd(a4, FieldMemOperand(v0, JSObject::kMapOffset));
+ __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
+ __ sd(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
+ __ sd(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
+
+ // Set up the callee in-object property.
+ STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
+ __ ld(a3, MemOperand(sp, 2 * kPointerSize));
+ __ AssertNotSmi(a3);
+ const int kCalleeOffset = JSObject::kHeaderSize +
+ Heap::kArgumentsCalleeIndex * kPointerSize;
+ __ sd(a3, FieldMemOperand(v0, kCalleeOffset));
+
+ // Use the length (smi tagged) and set that as an in-object property too.
+ STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
+ const int kLengthOffset = JSObject::kHeaderSize +
+ Heap::kArgumentsLengthIndex * kPointerSize;
+ __ sd(a2, FieldMemOperand(v0, kLengthOffset));
+
+ // Set up the elements pointer in the allocated arguments object.
+ // If we allocated a parameter map, a4 will point there, otherwise
+ // it will point to the backing store.
+ __ Daddu(a4, v0, Operand(Heap::kSloppyArgumentsObjectSize));
+ __ sd(a4, FieldMemOperand(v0, JSObject::kElementsOffset));
+
+ // v0 = address of new object (tagged)
+ // a1 = mapped parameter count (tagged)
+ // a2 = argument count (tagged)
+ // a4 = address of parameter map or backing store (tagged)
+ // Initialize parameter map. If there are no mapped arguments, we're done.
+ Label skip_parameter_map;
+ Label skip3;
+ __ Branch(&skip3, ne, a1, Operand(Smi::FromInt(0)));
+ // Move backing store address to a3, because it is
+ // expected there when filling in the unmapped arguments.
+ __ mov(a3, a4);
+ __ bind(&skip3);
+
+ __ Branch(&skip_parameter_map, eq, a1, Operand(Smi::FromInt(0)));
+
+ __ LoadRoot(a6, Heap::kSloppyArgumentsElementsMapRootIndex);
+ __ sd(a6, FieldMemOperand(a4, FixedArray::kMapOffset));
+ __ Daddu(a6, a1, Operand(Smi::FromInt(2)));
+ __ sd(a6, FieldMemOperand(a4, FixedArray::kLengthOffset));
+ __ sd(cp, FieldMemOperand(a4, FixedArray::kHeaderSize + 0 * kPointerSize));
+ __ SmiScale(t2, a1, kPointerSizeLog2);
+ __ Daddu(a6, a4, Operand(t2));
+ __ Daddu(a6, a6, Operand(kParameterMapHeaderSize));
+ __ sd(a6, FieldMemOperand(a4, FixedArray::kHeaderSize + 1 * kPointerSize));
+
+ // Copy the parameter slots and the holes in the arguments.
+ // We need to fill in mapped_parameter_count slots. They index the context,
+ // where parameters are stored in reverse order, at
+ // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
+ // The mapped parameter thus need to get indices
+ // MIN_CONTEXT_SLOTS+parameter_count-1 ..
+ // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
+ // We loop from right to left.
+ Label parameters_loop, parameters_test;
+ __ mov(a6, a1);
+ __ ld(t1, MemOperand(sp, 0 * kPointerSize));
+ __ Daddu(t1, t1, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
+ __ Dsubu(t1, t1, Operand(a1));
+ __ LoadRoot(a7, Heap::kTheHoleValueRootIndex);
+ __ SmiScale(t2, a6, kPointerSizeLog2);
+ __ Daddu(a3, a4, Operand(t2));
+ __ Daddu(a3, a3, Operand(kParameterMapHeaderSize));
+
+ // a6 = loop variable (tagged)
+ // a1 = mapping index (tagged)
+ // a3 = address of backing store (tagged)
+ // a4 = address of parameter map (tagged)
+ // a5 = temporary scratch (a.o., for address calculation)
+ // a7 = the hole value
+ __ jmp(&parameters_test);
+
+ __ bind(&parameters_loop);
+
+ __ Dsubu(a6, a6, Operand(Smi::FromInt(1)));
+ __ SmiScale(a5, a6, kPointerSizeLog2);
+ __ Daddu(a5, a5, Operand(kParameterMapHeaderSize - kHeapObjectTag));
+ __ Daddu(t2, a4, a5);
+ __ sd(t1, MemOperand(t2));
+ __ Dsubu(a5, a5, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
+ __ Daddu(t2, a3, a5);
+ __ sd(a7, MemOperand(t2));
+ __ Daddu(t1, t1, Operand(Smi::FromInt(1)));
+ __ bind(&parameters_test);
+ __ Branch(&parameters_loop, ne, a6, Operand(Smi::FromInt(0)));
+
+ __ bind(&skip_parameter_map);
+ // a2 = argument count (tagged)
+ // a3 = address of backing store (tagged)
+ // a5 = scratch
+ // Copy arguments header and remaining slots (if there are any).
+ __ LoadRoot(a5, Heap::kFixedArrayMapRootIndex);
+ __ sd(a5, FieldMemOperand(a3, FixedArray::kMapOffset));
+ __ sd(a2, FieldMemOperand(a3, FixedArray::kLengthOffset));
+
+ Label arguments_loop, arguments_test;
+ __ mov(t1, a1);
+ __ ld(a4, MemOperand(sp, 1 * kPointerSize));
+ __ SmiScale(t2, t1, kPointerSizeLog2);
+ __ Dsubu(a4, a4, Operand(t2));
+ __ jmp(&arguments_test);
+
+ __ bind(&arguments_loop);
+ __ Dsubu(a4, a4, Operand(kPointerSize));
+ __ ld(a6, MemOperand(a4, 0));
+ __ SmiScale(t2, t1, kPointerSizeLog2);
+ __ Daddu(a5, a3, Operand(t2));
+ __ sd(a6, FieldMemOperand(a5, FixedArray::kHeaderSize));
+ __ Daddu(t1, t1, Operand(Smi::FromInt(1)));
+
+ __ bind(&arguments_test);
+ __ Branch(&arguments_loop, lt, t1, Operand(a2));
+
+ // Return and remove the on-stack parameters.
+ __ DropAndRet(3);
+
+ // Do the runtime call to allocate the arguments object.
+ // a2 = argument count (tagged)
+ __ bind(&runtime);
+ __ sd(a2, MemOperand(sp, 0 * kPointerSize)); // Patch argument count.
+ __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
+}
+
+
+void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
+ // sp[0] : number of parameters
+ // sp[4] : receiver displacement
+ // sp[8] : function
+ // Check if the calling frame is an arguments adaptor frame.
+ Label adaptor_frame, try_allocate, runtime;
+ __ ld(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ ld(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
+ __ Branch(&adaptor_frame,
+ eq,
+ a3,
+ Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+
+ // Get the length from the frame.
+ __ ld(a1, MemOperand(sp, 0));
+ __ Branch(&try_allocate);
+
+ // Patch the arguments.length and the parameters pointer.
+ __ bind(&adaptor_frame);
+ __ ld(a1, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ sd(a1, MemOperand(sp, 0));
+ __ SmiScale(at, a1, kPointerSizeLog2);
+
+ __ Daddu(a3, a2, Operand(at));
+
+ __ Daddu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
+ __ sd(a3, MemOperand(sp, 1 * kPointerSize));
+
+ // Try the new space allocation. Start out with computing the size
+ // of the arguments object and the elements array in words.
+ Label add_arguments_object;
+ __ bind(&try_allocate);
+ __ Branch(&add_arguments_object, eq, a1, Operand(zero_reg));
+ __ SmiUntag(a1);
+
+ __ Daddu(a1, a1, Operand(FixedArray::kHeaderSize / kPointerSize));
+ __ bind(&add_arguments_object);
+ __ Daddu(a1, a1, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize));
+
+ // Do the allocation of both objects in one go.
+ __ Allocate(a1, v0, a2, a3, &runtime,
+ static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
+
+ // Get the arguments boilerplate from the current native context.
+ __ ld(a4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
+ __ ld(a4, FieldMemOperand(a4, GlobalObject::kNativeContextOffset));
+ __ ld(a4, MemOperand(a4, Context::SlotOffset(
+ Context::STRICT_ARGUMENTS_MAP_INDEX)));
+
+ __ sd(a4, FieldMemOperand(v0, JSObject::kMapOffset));
+ __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
+ __ sd(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
+ __ sd(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
+
+ // Get the length (smi tagged) and set that as an in-object property too.
+ STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
+ __ ld(a1, MemOperand(sp, 0 * kPointerSize));
+ __ AssertSmi(a1);
+ __ sd(a1, FieldMemOperand(v0, JSObject::kHeaderSize +
+ Heap::kArgumentsLengthIndex * kPointerSize));
+
+ Label done;
+ __ Branch(&done, eq, a1, Operand(zero_reg));
+
+ // Get the parameters pointer from the stack.
+ __ ld(a2, MemOperand(sp, 1 * kPointerSize));
+
+ // Set up the elements pointer in the allocated arguments object and
+ // initialize the header in the elements fixed array.
+ __ Daddu(a4, v0, Operand(Heap::kStrictArgumentsObjectSize));
+ __ sd(a4, FieldMemOperand(v0, JSObject::kElementsOffset));
+ __ LoadRoot(a3, Heap::kFixedArrayMapRootIndex);
+ __ sd(a3, FieldMemOperand(a4, FixedArray::kMapOffset));
+ __ sd(a1, FieldMemOperand(a4, FixedArray::kLengthOffset));
+ // Untag the length for the loop.
+ __ SmiUntag(a1);
+
+
+ // Copy the fixed array slots.
+ Label loop;
+ // Set up a4 to point to the first array slot.
+ __ Daddu(a4, a4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ __ bind(&loop);
+ // Pre-decrement a2 with kPointerSize on each iteration.
+ // Pre-decrement in order to skip receiver.
+ __ Daddu(a2, a2, Operand(-kPointerSize));
+ __ ld(a3, MemOperand(a2));
+ // Post-increment a4 with kPointerSize on each iteration.
+ __ sd(a3, MemOperand(a4));
+ __ Daddu(a4, a4, Operand(kPointerSize));
+ __ Dsubu(a1, a1, Operand(1));
+ __ Branch(&loop, ne, a1, Operand(zero_reg));
+
+ // Return and remove the on-stack parameters.
+ __ bind(&done);
+ __ DropAndRet(3);
+
+ // Do the runtime call to allocate the arguments object.
+ __ bind(&runtime);
+ __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
+}
+
+
+void RegExpExecStub::Generate(MacroAssembler* masm) {
+ // Just jump directly to runtime if native RegExp is not selected at compile
+ // time or if regexp entry in generated code is turned off runtime switch or
+ // at compilation.
+#ifdef V8_INTERPRETED_REGEXP
+ __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
+#else // V8_INTERPRETED_REGEXP
+
+ // Stack frame on entry.
+ // sp[0]: last_match_info (expected JSArray)
+ // sp[4]: previous index
+ // sp[8]: subject string
+ // sp[12]: JSRegExp object
+
+ const int kLastMatchInfoOffset = 0 * kPointerSize;
+ const int kPreviousIndexOffset = 1 * kPointerSize;
+ const int kSubjectOffset = 2 * kPointerSize;
+ const int kJSRegExpOffset = 3 * kPointerSize;
+
+ Label runtime;
+ // Allocation of registers for this function. These are in callee save
+ // registers and will be preserved by the call to the native RegExp code, as
+ // this code is called using the normal C calling convention. When calling
+ // directly from generated code the native RegExp code will not do a GC and
+ // therefore the content of these registers are safe to use after the call.
+ // MIPS - using s0..s2, since we are not using CEntry Stub.
+ Register subject = s0;
+ Register regexp_data = s1;
+ Register last_match_info_elements = s2;
+
+ // Ensure that a RegExp stack is allocated.
+ ExternalReference address_of_regexp_stack_memory_address =
+ ExternalReference::address_of_regexp_stack_memory_address(
+ isolate());
+ ExternalReference address_of_regexp_stack_memory_size =
+ ExternalReference::address_of_regexp_stack_memory_size(isolate());
+ __ li(a0, Operand(address_of_regexp_stack_memory_size));
+ __ ld(a0, MemOperand(a0, 0));
+ __ Branch(&runtime, eq, a0, Operand(zero_reg));
+
+ // Check that the first argument is a JSRegExp object.
+ __ ld(a0, MemOperand(sp, kJSRegExpOffset));
+ STATIC_ASSERT(kSmiTag == 0);
+ __ JumpIfSmi(a0, &runtime);
+ __ GetObjectType(a0, a1, a1);
+ __ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE));
+
+ // Check that the RegExp has been compiled (data contains a fixed array).
+ __ ld(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset));
+ if (FLAG_debug_code) {
+ __ SmiTst(regexp_data, a4);
+ __ Check(nz,
+ kUnexpectedTypeForRegExpDataFixedArrayExpected,
+ a4,
+ Operand(zero_reg));
+ __ GetObjectType(regexp_data, a0, a0);
+ __ Check(eq,
+ kUnexpectedTypeForRegExpDataFixedArrayExpected,
+ a0,
+ Operand(FIXED_ARRAY_TYPE));
+ }
+
+ // regexp_data: RegExp data (FixedArray)
+ // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
+ __ ld(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
+ __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
+
+ // regexp_data: RegExp data (FixedArray)
+ // Check that the number of captures fit in the static offsets vector buffer.
+ __ ld(a2,
+ FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
+ // Check (number_of_captures + 1) * 2 <= offsets vector size
+ // Or number_of_captures * 2 <= offsets vector size - 2
+ // Or number_of_captures <= offsets vector size / 2 - 1
+ // Multiplying by 2 comes for free since a2 is smi-tagged.
+ STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
+ int temp = Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1;
+ __ Branch(&runtime, hi, a2, Operand(Smi::FromInt(temp)));
+
+ // Reset offset for possibly sliced string.
+ __ mov(t0, zero_reg);
+ __ ld(subject, MemOperand(sp, kSubjectOffset));
+ __ JumpIfSmi(subject, &runtime);
+ __ mov(a3, subject); // Make a copy of the original subject string.
+ __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
+ __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
+ // subject: subject string
+ // a3: subject string
+ // a0: subject string instance type
+ // regexp_data: RegExp data (FixedArray)
+ // Handle subject string according to its encoding and representation:
+ // (1) Sequential string? If yes, go to (5).
+ // (2) Anything but sequential or cons? If yes, go to (6).
+ // (3) Cons string. If the string is flat, replace subject with first string.
+ // Otherwise bailout.
+ // (4) Is subject external? If yes, go to (7).
+ // (5) Sequential string. Load regexp code according to encoding.
+ // (E) Carry on.
+ /// [...]
+
+ // Deferred code at the end of the stub:
+ // (6) Not a long external string? If yes, go to (8).
+ // (7) External string. Make it, offset-wise, look like a sequential string.
+ // Go to (5).
+ // (8) Short external string or not a string? If yes, bail out to runtime.
+ // (9) Sliced string. Replace subject with parent. Go to (4).
+
+ Label check_underlying; // (4)
+ Label seq_string; // (5)
+ Label not_seq_nor_cons; // (6)
+ Label external_string; // (7)
+ Label not_long_external; // (8)
+
+ // (1) Sequential string? If yes, go to (5).
+ __ And(a1,
+ a0,
+ Operand(kIsNotStringMask |
+ kStringRepresentationMask |
+ kShortExternalStringMask));
+ STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
+ __ Branch(&seq_string, eq, a1, Operand(zero_reg)); // Go to (5).
+
+ // (2) Anything but sequential or cons? If yes, go to (6).
+ STATIC_ASSERT(kConsStringTag < kExternalStringTag);
+ STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
+ STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
+ STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
+ // Go to (6).
+ __ Branch(&not_seq_nor_cons, ge, a1, Operand(kExternalStringTag));
+
+ // (3) Cons string. Check that it's flat.
+ // Replace subject with first string and reload instance type.
+ __ ld(a0, FieldMemOperand(subject, ConsString::kSecondOffset));
+ __ LoadRoot(a1, Heap::kempty_stringRootIndex);
+ __ Branch(&runtime, ne, a0, Operand(a1));
+ __ ld(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
+
+ // (4) Is subject external? If yes, go to (7).
+ __ bind(&check_underlying);
+ __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
+ __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
+ STATIC_ASSERT(kSeqStringTag == 0);
+ __ And(at, a0, Operand(kStringRepresentationMask));
+ // The underlying external string is never a short external string.
+ STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
+ STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
+ __ Branch(&external_string, ne, at, Operand(zero_reg)); // Go to (7).
+
+ // (5) Sequential string. Load regexp code according to encoding.
+ __ bind(&seq_string);
+ // subject: sequential subject string (or look-alike, external string)
+ // a3: original subject string
+ // Load previous index and check range before a3 is overwritten. We have to
+ // use a3 instead of subject here because subject might have been only made
+ // to look like a sequential string when it actually is an external string.
+ __ ld(a1, MemOperand(sp, kPreviousIndexOffset));
+ __ JumpIfNotSmi(a1, &runtime);
+ __ ld(a3, FieldMemOperand(a3, String::kLengthOffset));
+ __ Branch(&runtime, ls, a3, Operand(a1));
+ __ SmiUntag(a1);
+
+ STATIC_ASSERT(kStringEncodingMask == 4);
+ STATIC_ASSERT(kOneByteStringTag == 4);
+ STATIC_ASSERT(kTwoByteStringTag == 0);
+ __ And(a0, a0, Operand(kStringEncodingMask)); // Non-zero for ASCII.
+ __ ld(t9, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset));
+ __ dsra(a3, a0, 2); // a3 is 1 for ASCII, 0 for UC16 (used below).
+ __ ld(a5, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
+ __ Movz(t9, a5, a0); // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset.
+
+ // (E) Carry on. String handling is done.
+ // t9: irregexp code
+ // Check that the irregexp code has been generated for the actual string
+ // encoding. If it has, the field contains a code object otherwise it contains
+ // a smi (code flushing support).
+ __ JumpIfSmi(t9, &runtime);
+
+ // a1: previous index
+ // a3: encoding of subject string (1 if ASCII, 0 if two_byte);
+ // t9: code
+ // subject: Subject string
+ // regexp_data: RegExp data (FixedArray)
+ // All checks done. Now push arguments for native regexp code.
+ __ IncrementCounter(isolate()->counters()->regexp_entry_native(),
+ 1, a0, a2);
+
+ // Isolates: note we add an additional parameter here (isolate pointer).
+ const int kRegExpExecuteArguments = 9;
+ const int kParameterRegisters = (kMipsAbi == kN64) ? 8 : 4;
+ __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
+
+ // Stack pointer now points to cell where return address is to be written.
+ // Arguments are before that on the stack or in registers, meaning we
+ // treat the return address as argument 5. Thus every argument after that
+ // needs to be shifted back by 1. Since DirectCEntryStub will handle
+ // allocating space for the c argument slots, we don't need to calculate
+ // that into the argument positions on the stack. This is how the stack will
+ // look (sp meaning the value of sp at this moment):
+ // Abi n64:
+ // [sp + 1] - Argument 9
+ // [sp + 0] - saved ra
+ // Abi O32:
+ // [sp + 5] - Argument 9
+ // [sp + 4] - Argument 8
+ // [sp + 3] - Argument 7
+ // [sp + 2] - Argument 6
+ // [sp + 1] - Argument 5
+ // [sp + 0] - saved ra
+
+ if (kMipsAbi == kN64) {
+ // Argument 9: Pass current isolate address.
+ __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
+ __ sd(a0, MemOperand(sp, 1 * kPointerSize));
+
+ // Argument 8: Indicate that this is a direct call from JavaScript.
+ __ li(a7, Operand(1));
+
+ // Argument 7: Start (high end) of backtracking stack memory area.
+ __ li(a0, Operand(address_of_regexp_stack_memory_address));
+ __ ld(a0, MemOperand(a0, 0));
+ __ li(a2, Operand(address_of_regexp_stack_memory_size));
+ __ ld(a2, MemOperand(a2, 0));
+ __ daddu(a6, a0, a2);
+
+ // Argument 6: Set the number of capture registers to zero to force global
+ // regexps to behave as non-global. This does not affect non-global regexps.
+ __ mov(a5, zero_reg);
+
+ // Argument 5: static offsets vector buffer.
+ __ li(a4, Operand(
+ ExternalReference::address_of_static_offsets_vector(isolate())));
+ } else { // O32.
+ DCHECK(kMipsAbi == kO32);
+
+ // Argument 9: Pass current isolate address.
+ // CFunctionArgumentOperand handles MIPS stack argument slots.
+ __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
+ __ sd(a0, MemOperand(sp, 5 * kPointerSize));
+
+ // Argument 8: Indicate that this is a direct call from JavaScript.
+ __ li(a0, Operand(1));
+ __ sd(a0, MemOperand(sp, 4 * kPointerSize));
+
+ // Argument 7: Start (high end) of backtracking stack memory area.
+ __ li(a0, Operand(address_of_regexp_stack_memory_address));
+ __ ld(a0, MemOperand(a0, 0));
+ __ li(a2, Operand(address_of_regexp_stack_memory_size));
+ __ ld(a2, MemOperand(a2, 0));
+ __ daddu(a0, a0, a2);
+ __ sd(a0, MemOperand(sp, 3 * kPointerSize));
+
+ // Argument 6: Set the number of capture registers to zero to force global
+ // regexps to behave as non-global. This does not affect non-global regexps.
+ __ mov(a0, zero_reg);
+ __ sd(a0, MemOperand(sp, 2 * kPointerSize));
+
+ // Argument 5: static offsets vector buffer.
+ __ li(a0, Operand(
+ ExternalReference::address_of_static_offsets_vector(isolate())));
+ __ sd(a0, MemOperand(sp, 1 * kPointerSize));
+ }
+
+ // For arguments 4 and 3 get string length, calculate start of string data
+ // and calculate the shift of the index (0 for ASCII and 1 for two byte).
+ __ Daddu(t2, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
+ __ Xor(a3, a3, Operand(1)); // 1 for 2-byte str, 0 for 1-byte.
+ // Load the length from the original subject string from the previous stack
+ // frame. Therefore we have to use fp, which points exactly to two pointer
+ // sizes below the previous sp. (Because creating a new stack frame pushes
+ // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
+ __ ld(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
+ // If slice offset is not 0, load the length from the original sliced string.
+ // Argument 4, a3: End of string data
+ // Argument 3, a2: Start of string data
+ // Prepare start and end index of the input.
+ __ dsllv(t1, t0, a3);
+ __ daddu(t0, t2, t1);
+ __ dsllv(t1, a1, a3);
+ __ daddu(a2, t0, t1);
+
+ __ ld(t2, FieldMemOperand(subject, String::kLengthOffset));
+
+ __ SmiUntag(t2);
+ __ dsllv(t1, t2, a3);
+ __ daddu(a3, t0, t1);
+ // Argument 2 (a1): Previous index.
+ // Already there
+
+ // Argument 1 (a0): Subject string.
+ __ mov(a0, subject);
+
+ // Locate the code entry and call it.
+ __ Daddu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
+ DirectCEntryStub stub(isolate());
+ stub.GenerateCall(masm, t9);
+
+ __ LeaveExitFrame(false, no_reg, true);
+
+ // v0: result
+ // subject: subject string (callee saved)
+ // regexp_data: RegExp data (callee saved)
+ // last_match_info_elements: Last match info elements (callee saved)
+ // Check the result.
+ Label success;
+ __ Branch(&success, eq, v0, Operand(1));
+ // We expect exactly one result since we force the called regexp to behave
+ // as non-global.
+ Label failure;
+ __ Branch(&failure, eq, v0, Operand(NativeRegExpMacroAssembler::FAILURE));
+ // If not exception it can only be retry. Handle that in the runtime system.
+ __ Branch(&runtime, ne, v0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
+ // Result must now be exception. If there is no pending exception already a
+ // stack overflow (on the backtrack stack) was detected in RegExp code but
+ // haven't created the exception yet. Handle that in the runtime system.
+ // TODO(592): Rerunning the RegExp to get the stack overflow exception.
+ __ li(a1, Operand(isolate()->factory()->the_hole_value()));
+ __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
+ isolate())));
+ __ ld(v0, MemOperand(a2, 0));
+ __ Branch(&runtime, eq, v0, Operand(a1));
+
+ __ sd(a1, MemOperand(a2, 0)); // Clear pending exception.
+
+ // Check if the exception is a termination. If so, throw as uncatchable.
+ __ LoadRoot(a0, Heap::kTerminationExceptionRootIndex);
+ Label termination_exception;
+ __ Branch(&termination_exception, eq, v0, Operand(a0));
+
+ __ Throw(v0);
+
+ __ bind(&termination_exception);
+ __ ThrowUncatchable(v0);
+
+ __ bind(&failure);
+ // For failure and exception return null.
+ __ li(v0, Operand(isolate()->factory()->null_value()));
+ __ DropAndRet(4);
+
+ // Process the result from the native regexp code.
+ __ bind(&success);
+
+ __ lw(a1, UntagSmiFieldMemOperand(
+ regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
+ // Calculate number of capture registers (number_of_captures + 1) * 2.
+ __ Daddu(a1, a1, Operand(1));
+ __ dsll(a1, a1, 1); // Multiply by 2.
+
+ __ ld(a0, MemOperand(sp, kLastMatchInfoOffset));
+ __ JumpIfSmi(a0, &runtime);
+ __ GetObjectType(a0, a2, a2);
+ __ Branch(&runtime, ne, a2, Operand(JS_ARRAY_TYPE));
+ // Check that the JSArray is in fast case.
+ __ ld(last_match_info_elements,
+ FieldMemOperand(a0, JSArray::kElementsOffset));
+ __ ld(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
+ __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
+ __ Branch(&runtime, ne, a0, Operand(at));
+ // Check that the last match info has space for the capture registers and the
+ // additional information.
+ __ ld(a0,
+ FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
+ __ Daddu(a2, a1, Operand(RegExpImpl::kLastMatchOverhead));
+
+ __ SmiUntag(at, a0);
+ __ Branch(&runtime, gt, a2, Operand(at));
+
+ // a1: number of capture registers
+ // subject: subject string
+ // Store the capture count.
+ __ SmiTag(a2, a1); // To smi.
+ __ sd(a2, FieldMemOperand(last_match_info_elements,
+ RegExpImpl::kLastCaptureCountOffset));
+ // Store last subject and last input.
+ __ sd(subject,
+ FieldMemOperand(last_match_info_elements,
+ RegExpImpl::kLastSubjectOffset));
+ __ mov(a2, subject);
+ __ RecordWriteField(last_match_info_elements,
+ RegExpImpl::kLastSubjectOffset,
+ subject,
+ a7,
+ kRAHasNotBeenSaved,
+ kDontSaveFPRegs);
+ __ mov(subject, a2);
+ __ sd(subject,
+ FieldMemOperand(last_match_info_elements,
+ RegExpImpl::kLastInputOffset));
+ __ RecordWriteField(last_match_info_elements,
+ RegExpImpl::kLastInputOffset,
+ subject,
+ a7,
+ kRAHasNotBeenSaved,
+ kDontSaveFPRegs);
+
+ // Get the static offsets vector filled by the native regexp code.
+ ExternalReference address_of_static_offsets_vector =
+ ExternalReference::address_of_static_offsets_vector(isolate());
+ __ li(a2, Operand(address_of_static_offsets_vector));
+
+ // a1: number of capture registers
+ // a2: offsets vector
+ Label next_capture, done;
+ // Capture register counter starts from number of capture registers and
+ // counts down until wrapping after zero.
+ __ Daddu(a0,
+ last_match_info_elements,
+ Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
+ __ bind(&next_capture);
+ __ Dsubu(a1, a1, Operand(1));
+ __ Branch(&done, lt, a1, Operand(zero_reg));
+ // Read the value from the static offsets vector buffer.
+ __ lw(a3, MemOperand(a2, 0));
+ __ daddiu(a2, a2, kIntSize);
+ // Store the smi value in the last match info.
+ __ SmiTag(a3);
+ __ sd(a3, MemOperand(a0, 0));
+ __ Branch(&next_capture, USE_DELAY_SLOT);
+ __ daddiu(a0, a0, kPointerSize); // In branch delay slot.
+
+ __ bind(&done);
+
+ // Return last match info.
+ __ ld(v0, MemOperand(sp, kLastMatchInfoOffset));
+ __ DropAndRet(4);
+
+ // Do the runtime call to execute the regexp.
+ __ bind(&runtime);
+ __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
+
+ // Deferred code for string handling.
+ // (6) Not a long external string? If yes, go to (8).
+ __ bind(&not_seq_nor_cons);
+ // Go to (8).
+ __ Branch(&not_long_external, gt, a1, Operand(kExternalStringTag));
+
+ // (7) External string. Make it, offset-wise, look like a sequential string.
+ __ bind(&external_string);
+ __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
+ __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
+ if (FLAG_debug_code) {
+ // Assert that we do not have a cons or slice (indirect strings) here.
+ // Sequential strings have already been ruled out.
+ __ And(at, a0, Operand(kIsIndirectStringMask));
+ __ Assert(eq,
+ kExternalStringExpectedButNotFound,
+ at,
+ Operand(zero_reg));
+ }
+ __ ld(subject,
+ FieldMemOperand(subject, ExternalString::kResourceDataOffset));
+ // Move the pointer so that offset-wise, it looks like a sequential string.
+ STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
+ __ Dsubu(subject,
+ subject,
+ SeqTwoByteString::kHeaderSize - kHeapObjectTag);
+ __ jmp(&seq_string); // Go to (5).
+
+ // (8) Short external string or not a string? If yes, bail out to runtime.
+ __ bind(&not_long_external);
+ STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
+ __ And(at, a1, Operand(kIsNotStringMask | kShortExternalStringMask));
+ __ Branch(&runtime, ne, at, Operand(zero_reg));
+
+ // (9) Sliced string. Replace subject with parent. Go to (4).
+ // Load offset into t0 and replace subject string with parent.
+ __ ld(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset));
+ __ SmiUntag(t0);
+ __ ld(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
+ __ jmp(&check_underlying); // Go to (4).
+#endif // V8_INTERPRETED_REGEXP
+}
+
+
+static void GenerateRecordCallTarget(MacroAssembler* masm) {
+ // Cache the called function in a feedback vector slot. Cache states
+ // are uninitialized, monomorphic (indicated by a JSFunction), and
+ // megamorphic.
+ // a0 : number of arguments to the construct function
+ // a1 : the function to call
+ // a2 : Feedback vector
+ // a3 : slot in feedback vector (Smi)
+ Label initialize, done, miss, megamorphic, not_array_function;
+
+ DCHECK_EQ(*TypeFeedbackInfo::MegamorphicSentinel(masm->isolate()),
+ masm->isolate()->heap()->megamorphic_symbol());
+ DCHECK_EQ(*TypeFeedbackInfo::UninitializedSentinel(masm->isolate()),
+ masm->isolate()->heap()->uninitialized_symbol());
+
+ // Load the cache state into a4.
+ __ dsrl(a4, a3, 32 - kPointerSizeLog2);
+ __ Daddu(a4, a2, Operand(a4));
+ __ ld(a4, FieldMemOperand(a4, FixedArray::kHeaderSize));
+
+ // A monomorphic cache hit or an already megamorphic state: invoke the
+ // function without changing the state.
+ __ Branch(&done, eq, a4, Operand(a1));
+
+ if (!FLAG_pretenuring_call_new) {
+ // If we came here, we need to see if we are the array function.
+ // If we didn't have a matching function, and we didn't find the megamorph
+ // sentinel, then we have in the slot either some other function or an
+ // AllocationSite. Do a map check on the object in a3.
+ __ ld(a5, FieldMemOperand(a4, 0));
+ __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
+ __ Branch(&miss, ne, a5, Operand(at));
+
+ // Make sure the function is the Array() function
+ __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, a4);
+ __ Branch(&megamorphic, ne, a1, Operand(a4));
+ __ jmp(&done);
+ }
+
+ __ bind(&miss);
+
+ // A monomorphic miss (i.e, here the cache is not uninitialized) goes
+ // megamorphic.
+ __ LoadRoot(at, Heap::kUninitializedSymbolRootIndex);
+ __ Branch(&initialize, eq, a4, Operand(at));
+ // MegamorphicSentinel is an immortal immovable object (undefined) so no
+ // write-barrier is needed.
+ __ bind(&megamorphic);
+ __ dsrl(a4, a3, 32- kPointerSizeLog2);
+ __ Daddu(a4, a2, Operand(a4));
+ __ LoadRoot(at, Heap::kMegamorphicSymbolRootIndex);
+ __ sd(at, FieldMemOperand(a4, FixedArray::kHeaderSize));
+ __ jmp(&done);
+
+ // An uninitialized cache is patched with the function.
+ __ bind(&initialize);
+ if (!FLAG_pretenuring_call_new) {
+ // Make sure the function is the Array() function.
+ __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, a4);
+ __ Branch(&not_array_function, ne, a1, Operand(a4));
+
+ // The target function is the Array constructor,
+ // Create an AllocationSite if we don't already have it, store it in the
+ // slot.
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ const RegList kSavedRegs =
+ 1 << 4 | // a0
+ 1 << 5 | // a1
+ 1 << 6 | // a2
+ 1 << 7; // a3
+
+ // Arguments register must be smi-tagged to call out.
+ __ SmiTag(a0);
+ __ MultiPush(kSavedRegs);
+
+ CreateAllocationSiteStub create_stub(masm->isolate());
+ __ CallStub(&create_stub);
+
+ __ MultiPop(kSavedRegs);
+ __ SmiUntag(a0);
+ }
+ __ Branch(&done);
+
+ __ bind(&not_array_function);
+ }
+
+ __ dsrl(a4, a3, 32 - kPointerSizeLog2);
+ __ Daddu(a4, a2, Operand(a4));
+ __ Daddu(a4, a4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ __ sd(a1, MemOperand(a4, 0));
+
+ __ Push(a4, a2, a1);
+ __ RecordWrite(a2, a4, a1, kRAHasNotBeenSaved, kDontSaveFPRegs,
+ EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
+ __ Pop(a4, a2, a1);
+
+ __ bind(&done);
+}
+
+
+static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
+ __ ld(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
+
+ // Do not transform the receiver for strict mode functions.
+ int32_t strict_mode_function_mask =
+ 1 << SharedFunctionInfo::kStrictModeBitWithinByte ;
+ // Do not transform the receiver for native (Compilerhints already in a3).
+ int32_t native_mask = 1 << SharedFunctionInfo::kNativeBitWithinByte;
+
+ __ lbu(a4, FieldMemOperand(a3, SharedFunctionInfo::kStrictModeByteOffset));
+ __ And(at, a4, Operand(strict_mode_function_mask));
+ __ Branch(cont, ne, at, Operand(zero_reg));
+ __ lbu(a4, FieldMemOperand(a3, SharedFunctionInfo::kNativeByteOffset));
+ __ And(at, a4, Operand(native_mask));
+ __ Branch(cont, ne, at, Operand(zero_reg));
+}
+
+
+static void EmitSlowCase(MacroAssembler* masm,
+ int argc,
+ Label* non_function) {
+ // Check for function proxy.
+ __ Branch(non_function, ne, a4, Operand(JS_FUNCTION_PROXY_TYPE));
+ __ push(a1); // put proxy as additional argument
+ __ li(a0, Operand(argc + 1, RelocInfo::NONE32));
+ __ mov(a2, zero_reg);
+ __ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY);
+ {
+ Handle<Code> adaptor =
+ masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
+ __ Jump(adaptor, RelocInfo::CODE_TARGET);
+ }
+
+ // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
+ // of the original receiver from the call site).
+ __ bind(non_function);
+ __ sd(a1, MemOperand(sp, argc * kPointerSize));
+ __ li(a0, Operand(argc)); // Set up the number of arguments.
+ __ mov(a2, zero_reg);
+ __ GetBuiltinFunction(a1, Builtins::CALL_NON_FUNCTION);
+ __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
+ RelocInfo::CODE_TARGET);
+}
+
+
+static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
+ // Wrap the receiver and patch it back onto the stack.
+ { FrameScope frame_scope(masm, StackFrame::INTERNAL);
+ __ Push(a1, a3);
+ __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
+ __ pop(a1);
+ }
+ __ Branch(USE_DELAY_SLOT, cont);
+ __ sd(v0, MemOperand(sp, argc * kPointerSize));
+}
+
+
+static void CallFunctionNoFeedback(MacroAssembler* masm,
+ int argc, bool needs_checks,
+ bool call_as_method) {
+ // a1 : the function to call
+ Label slow, non_function, wrap, cont;
+
+ if (needs_checks) {
+ // Check that the function is really a JavaScript function.
+ // a1: pushed function (to be verified)
+ __ JumpIfSmi(a1, &non_function);
+
+ // Goto slow case if we do not have a function.
+ __ GetObjectType(a1, a4, a4);
+ __ Branch(&slow, ne, a4, Operand(JS_FUNCTION_TYPE));
+ }
+
+ // Fast-case: Invoke the function now.
+ // a1: pushed function
+ ParameterCount actual(argc);
+
+ if (call_as_method) {
+ if (needs_checks) {
+ EmitContinueIfStrictOrNative(masm, &cont);
+ }
+
+ // Compute the receiver in sloppy mode.
+ __ ld(a3, MemOperand(sp, argc * kPointerSize));
+
+ if (needs_checks) {
+ __ JumpIfSmi(a3, &wrap);
+ __ GetObjectType(a3, a4, a4);
+ __ Branch(&wrap, lt, a4, Operand(FIRST_SPEC_OBJECT_TYPE));
+ } else {
+ __ jmp(&wrap);
+ }
+
+ __ bind(&cont);
+ }
+ __ InvokeFunction(a1, actual, JUMP_FUNCTION, NullCallWrapper());
+
+ if (needs_checks) {
+ // Slow-case: Non-function called.
+ __ bind(&slow);
+ EmitSlowCase(masm, argc, &non_function);
+ }
+
+ if (call_as_method) {
+ __ bind(&wrap);
+ // Wrap the receiver and patch it back onto the stack.
+ EmitWrapCase(masm, argc, &cont);
+ }
+}
+
+
+void CallFunctionStub::Generate(MacroAssembler* masm) {
+ CallFunctionNoFeedback(masm, argc_, NeedsChecks(), CallAsMethod());
+}
+
+
+void CallConstructStub::Generate(MacroAssembler* masm) {
+ // a0 : number of arguments
+ // a1 : the function to call
+ // a2 : feedback vector
+ // a3 : (only if a2 is not undefined) slot in feedback vector (Smi)
+ Label slow, non_function_call;
+ // Check that the function is not a smi.
+ __ JumpIfSmi(a1, &non_function_call);
+ // Check that the function is a JSFunction.
+ __ GetObjectType(a1, a4, a4);
+ __ Branch(&slow, ne, a4, Operand(JS_FUNCTION_TYPE));
+
+ if (RecordCallTarget()) {
+ GenerateRecordCallTarget(masm);
+
+ __ dsrl(at, a3, 32 - kPointerSizeLog2);
+ __ Daddu(a5, a2, at);
+ if (FLAG_pretenuring_call_new) {
+ // Put the AllocationSite from the feedback vector into a2.
+ // By adding kPointerSize we encode that we know the AllocationSite
+ // entry is at the feedback vector slot given by a3 + 1.
+ __ ld(a2, FieldMemOperand(a5, FixedArray::kHeaderSize + kPointerSize));
+ } else {
+ Label feedback_register_initialized;
+ // Put the AllocationSite from the feedback vector into a2, or undefined.
+ __ ld(a2, FieldMemOperand(a5, FixedArray::kHeaderSize));
+ __ ld(a5, FieldMemOperand(a2, AllocationSite::kMapOffset));
+ __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
+ __ Branch(&feedback_register_initialized, eq, a5, Operand(at));
+ __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
+ __ bind(&feedback_register_initialized);
+ }
+
+ __ AssertUndefinedOrAllocationSite(a2, a5);
+ }
+
+ // Jump to the function-specific construct stub.
+ Register jmp_reg = a4;
+ __ ld(jmp_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
+ __ ld(jmp_reg, FieldMemOperand(jmp_reg,
+ SharedFunctionInfo::kConstructStubOffset));
+ __ Daddu(at, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
+ __ Jump(at);
+
+ // a0: number of arguments
+ // a1: called object
+ // a4: object type
+ Label do_call;
+ __ bind(&slow);
+ __ Branch(&non_function_call, ne, a4, Operand(JS_FUNCTION_PROXY_TYPE));
+ __ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
+ __ jmp(&do_call);
+
+ __ bind(&non_function_call);
+ __ GetBuiltinFunction(a1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
+ __ bind(&do_call);
+ // Set expected number of arguments to zero (not changing r0).
+ __ li(a2, Operand(0, RelocInfo::NONE32));
+ __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
+ RelocInfo::CODE_TARGET);
+}
+
+
+// StringCharCodeAtGenerator.
+void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
+ Label flat_string;
+ Label ascii_string;
+ Label got_char_code;
+ Label sliced_string;
+
+ DCHECK(!a4.is(index_));
+ DCHECK(!a4.is(result_));
+ DCHECK(!a4.is(object_));
+
+ // If the receiver is a smi trigger the non-string case.
+ __ JumpIfSmi(object_, receiver_not_string_);
+
+ // Fetch the instance type of the receiver into result register.
+ __ ld(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
+ __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
+ // If the receiver is not a string trigger the non-string case.
+ __ And(a4, result_, Operand(kIsNotStringMask));
+ __ Branch(receiver_not_string_, ne, a4, Operand(zero_reg));
+
+ // If the index is non-smi trigger the non-smi case.
+ __ JumpIfNotSmi(index_, &index_not_smi_);
+
+ __ bind(&got_smi_index_);
+
+ // Check for index out of range.
+ __ ld(a4, FieldMemOperand(object_, String::kLengthOffset));
+ __ Branch(index_out_of_range_, ls, a4, Operand(index_));
+
+ __ SmiUntag(index_);
+
+ StringCharLoadGenerator::Generate(masm,
+ object_,
+ index_,
+ result_,
+ &call_runtime_);
+
+ __ SmiTag(result_);
+ __ bind(&exit_);
+}
+
+
+static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
+ __ ld(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ __ ld(vector, FieldMemOperand(vector,
+ JSFunction::kSharedFunctionInfoOffset));
+ __ ld(vector, FieldMemOperand(vector,
+ SharedFunctionInfo::kFeedbackVectorOffset));
+}
+
+
+void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
+ // a1 - function
+ // a3 - slot id
+ Label miss;
+
+ EmitLoadTypeFeedbackVector(masm, a2);
+
+ __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, at);
+ __ Branch(&miss, ne, a1, Operand(at));
+
+ __ li(a0, Operand(arg_count()));
+ __ dsrl(at, a3, 32 - kPointerSizeLog2);
+ __ Daddu(at, a2, Operand(at));
+ __ ld(a4, FieldMemOperand(at, FixedArray::kHeaderSize));
+
+ // Verify that a4 contains an AllocationSite
+ __ ld(a5, FieldMemOperand(a4, HeapObject::kMapOffset));
+ __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
+ __ Branch(&miss, ne, a5, Operand(at));
+
+ __ mov(a2, a4);
+ ArrayConstructorStub stub(masm->isolate(), arg_count());
+ __ TailCallStub(&stub);
+
+ __ bind(&miss);
+ GenerateMiss(masm, IC::kCallIC_Customization_Miss);
+
+ // The slow case, we need this no matter what to complete a call after a miss.
+ CallFunctionNoFeedback(masm,
+ arg_count(),
+ true,
+ CallAsMethod());
+
+ // Unreachable.
+ __ stop("Unexpected code address");
+}
+
+
+void CallICStub::Generate(MacroAssembler* masm) {
+ // a1 - function
+ // a3 - slot id (Smi)
+ Label extra_checks_or_miss, slow_start;
+ Label slow, non_function, wrap, cont;
+ Label have_js_function;
+ int argc = state_.arg_count();
+ ParameterCount actual(argc);
+
+ EmitLoadTypeFeedbackVector(masm, a2);
+
+ // The checks. First, does r1 match the recorded monomorphic target?
+ __ dsrl(a4, a3, 32 - kPointerSizeLog2);
+ __ Daddu(a4, a2, Operand(a4));
+ __ ld(a4, FieldMemOperand(a4, FixedArray::kHeaderSize));
+ __ Branch(&extra_checks_or_miss, ne, a1, Operand(a4));
+
+ __ bind(&have_js_function);
+ if (state_.CallAsMethod()) {
+ EmitContinueIfStrictOrNative(masm, &cont);
+ // Compute the receiver in sloppy mode.
+ __ ld(a3, MemOperand(sp, argc * kPointerSize));
+
+ __ JumpIfSmi(a3, &wrap);
+ __ GetObjectType(a3, a4, a4);
+ __ Branch(&wrap, lt, a4, Operand(FIRST_SPEC_OBJECT_TYPE));
+
+ __ bind(&cont);
+ }
+
+ __ InvokeFunction(a1, actual, JUMP_FUNCTION, NullCallWrapper());
+
+ __ bind(&slow);
+ EmitSlowCase(masm, argc, &non_function);
+
+ if (state_.CallAsMethod()) {
+ __ bind(&wrap);
+ EmitWrapCase(masm, argc, &cont);
+ }
+
+ __ bind(&extra_checks_or_miss);
+ Label miss;
+
+ __ LoadRoot(at, Heap::kMegamorphicSymbolRootIndex);
+ __ Branch(&slow_start, eq, a4, Operand(at));
+ __ LoadRoot(at, Heap::kUninitializedSymbolRootIndex);
+ __ Branch(&miss, eq, a4, Operand(at));
+
+ if (!FLAG_trace_ic) {
+ // We are going megamorphic. If the feedback is a JSFunction, it is fine
+ // to handle it here. More complex cases are dealt with in the runtime.
+ __ AssertNotSmi(a4);
+ __ GetObjectType(a4, a5, a5);
+ __ Branch(&miss, ne, a5, Operand(JS_FUNCTION_TYPE));
+ __ dsrl(a4, a3, 32 - kPointerSizeLog2);
+ __ Daddu(a4, a2, Operand(a4));
+ __ LoadRoot(at, Heap::kMegamorphicSymbolRootIndex);
+ __ sd(at, FieldMemOperand(a4, FixedArray::kHeaderSize));
+ __ Branch(&slow_start);
+ }
+
+ // We are here because tracing is on or we are going monomorphic.
+ __ bind(&miss);
+ GenerateMiss(masm, IC::kCallIC_Miss);
+
+ // the slow case
+ __ bind(&slow_start);
+ // Check that the function is really a JavaScript function.
+ // r1: pushed function (to be verified)
+ __ JumpIfSmi(a1, &non_function);
+
+ // Goto slow case if we do not have a function.
+ __ GetObjectType(a1, a4, a4);
+ __ Branch(&slow, ne, a4, Operand(JS_FUNCTION_TYPE));
+ __ Branch(&have_js_function);
+}
+
+
+void CallICStub::GenerateMiss(MacroAssembler* masm, IC::UtilityId id) {
+ // Get the receiver of the function from the stack; 1 ~ return address.
+ __ ld(a4, MemOperand(sp, (state_.arg_count() + 1) * kPointerSize));
+
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+
+ // Push the receiver and the function and feedback info.
+ __ Push(a4, a1, a2, a3);
+
+ // Call the entry.
+ ExternalReference miss = ExternalReference(IC_Utility(id),
+ masm->isolate());
+ __ CallExternalReference(miss, 4);
+
+ // Move result to a1 and exit the internal frame.
+ __ mov(a1, v0);
+ }
+}
+
+
+void StringCharCodeAtGenerator::GenerateSlow(
+ MacroAssembler* masm,
+ const RuntimeCallHelper& call_helper) {
+ __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
+
+ // Index is not a smi.
+ __ bind(&index_not_smi_);
+ // If index is a heap number, try converting it to an integer.
+ __ CheckMap(index_,
+ result_,
+ Heap::kHeapNumberMapRootIndex,
+ index_not_number_,
+ DONT_DO_SMI_CHECK);
+ call_helper.BeforeCall(masm);
+ // Consumed by runtime conversion function:
+ __ Push(object_, index_);
+ if (index_flags_ == STRING_INDEX_IS_NUMBER) {
+ __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
+ } else {
+ DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
+ // NumberToSmi discards numbers that are not exact integers.
+ __ CallRuntime(Runtime::kNumberToSmi, 1);
+ }
+
+ // Save the conversion result before the pop instructions below
+ // have a chance to overwrite it.
+
+ __ Move(index_, v0);
+ __ pop(object_);
+ // Reload the instance type.
+ __ ld(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
+ __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
+ call_helper.AfterCall(masm);
+ // If index is still not a smi, it must be out of range.
+ __ JumpIfNotSmi(index_, index_out_of_range_);
+ // Otherwise, return to the fast path.
+ __ Branch(&got_smi_index_);
+
+ // Call runtime. We get here when the receiver is a string and the
+ // index is a number, but the code of getting the actual character
+ // is too complex (e.g., when the string needs to be flattened).
+ __ bind(&call_runtime_);
+ call_helper.BeforeCall(masm);
+ __ SmiTag(index_);
+ __ Push(object_, index_);
+ __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
+
+ __ Move(result_, v0);
+
+ call_helper.AfterCall(masm);
+ __ jmp(&exit_);
+
+ __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
+}
+
+
+// -------------------------------------------------------------------------
+// StringCharFromCodeGenerator
+
+void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
+ // Fast case of Heap::LookupSingleCharacterStringFromCode.
+
+ DCHECK(!a4.is(result_));
+ DCHECK(!a4.is(code_));
+
+ STATIC_ASSERT(kSmiTag == 0);
+ DCHECK(IsPowerOf2(String::kMaxOneByteCharCode + 1));
+ __ And(a4,
+ code_,
+ Operand(kSmiTagMask |
+ ((~String::kMaxOneByteCharCode) << kSmiTagSize)));
+ __ Branch(&slow_case_, ne, a4, Operand(zero_reg));
+
+
+ __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
+ // At this point code register contains smi tagged ASCII char code.
+ STATIC_ASSERT(kSmiTag == 0);
+ __ SmiScale(a4, code_, kPointerSizeLog2);
+ __ Daddu(result_, result_, a4);
+ __ ld(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
+ __ LoadRoot(a4, Heap::kUndefinedValueRootIndex);
+ __ Branch(&slow_case_, eq, result_, Operand(a4));
+ __ bind(&exit_);
+}
+
+
+void StringCharFromCodeGenerator::GenerateSlow(
+ MacroAssembler* masm,
+ const RuntimeCallHelper& call_helper) {
+ __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
+
+ __ bind(&slow_case_);
+ call_helper.BeforeCall(masm);
+ __ push(code_);
+ __ CallRuntime(Runtime::kCharFromCode, 1);
+ __ Move(result_, v0);
+
+ call_helper.AfterCall(masm);
+ __ Branch(&exit_);
+
+ __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
+}
+
+
+enum CopyCharactersFlags {
+ COPY_ASCII = 1,
+ DEST_ALWAYS_ALIGNED = 2
+};
+
+
+void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
+ Register dest,
+ Register src,
+ Register count,
+ Register scratch,
+ String::Encoding encoding) {
+ if (FLAG_debug_code) {
+ // Check that destination is word aligned.
+ __ And(scratch, dest, Operand(kPointerAlignmentMask));
+ __ Check(eq,
+ kDestinationOfCopyNotAligned,
+ scratch,
+ Operand(zero_reg));
+ }
+
+ // Assumes word reads and writes are little endian.
+ // Nothing to do for zero characters.
+ Label done;
+
+ if (encoding == String::TWO_BYTE_ENCODING) {
+ __ Daddu(count, count, count);
+ }
+
+ Register limit = count; // Read until dest equals this.
+ __ Daddu(limit, dest, Operand(count));
+
+ Label loop_entry, loop;
+ // Copy bytes from src to dest until dest hits limit.
+ __ Branch(&loop_entry);
+ __ bind(&loop);
+ __ lbu(scratch, MemOperand(src));
+ __ daddiu(src, src, 1);
+ __ sb(scratch, MemOperand(dest));
+ __ daddiu(dest, dest, 1);
+ __ bind(&loop_entry);
+ __ Branch(&loop, lt, dest, Operand(limit));
+
+ __ bind(&done);
+}
+
+
+void StringHelper::GenerateHashInit(MacroAssembler* masm,
+ Register hash,
+ Register character) {
+ // hash = seed + character + ((seed + character) << 10);
+ __ LoadRoot(hash, Heap::kHashSeedRootIndex);
+ // Untag smi seed and add the character.
+ __ SmiUntag(hash);
+ __ addu(hash, hash, character);
+ __ sll(at, hash, 10);
+ __ addu(hash, hash, at);
+ // hash ^= hash >> 6;
+ __ srl(at, hash, 6);
+ __ xor_(hash, hash, at);
+}
+
+
+void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
+ Register hash,
+ Register character) {
+ // hash += character;
+ __ addu(hash, hash, character);
+ // hash += hash << 10;
+ __ sll(at, hash, 10);
+ __ addu(hash, hash, at);
+ // hash ^= hash >> 6;
+ __ srl(at, hash, 6);
+ __ xor_(hash, hash, at);
+}
+
+
+void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
+ Register hash) {
+ // hash += hash << 3;
+ __ sll(at, hash, 3);
+ __ addu(hash, hash, at);
+ // hash ^= hash >> 11;
+ __ srl(at, hash, 11);
+ __ xor_(hash, hash, at);
+ // hash += hash << 15;
+ __ sll(at, hash, 15);
+ __ addu(hash, hash, at);
+
+ __ li(at, Operand(String::kHashBitMask));
+ __ and_(hash, hash, at);
+
+ // if (hash == 0) hash = 27;
+ __ ori(at, zero_reg, StringHasher::kZeroHash);
+ __ Movz(hash, at, hash);
+}
+
+
+void SubStringStub::Generate(MacroAssembler* masm) {
+ Label runtime;
+ // Stack frame on entry.
+ // ra: return address
+ // sp[0]: to
+ // sp[4]: from
+ // sp[8]: string
+
+ // This stub is called from the native-call %_SubString(...), so
+ // nothing can be assumed about the arguments. It is tested that:
+ // "string" is a sequential string,
+ // both "from" and "to" are smis, and
+ // 0 <= from <= to <= string.length.
+ // If any of these assumptions fail, we call the runtime system.
+
+ const int kToOffset = 0 * kPointerSize;
+ const int kFromOffset = 1 * kPointerSize;
+ const int kStringOffset = 2 * kPointerSize;
+
+ __ ld(a2, MemOperand(sp, kToOffset));
+ __ ld(a3, MemOperand(sp, kFromOffset));
+// Does not needed?
+// STATIC_ASSERT(kFromOffset == kToOffset + 4);
+ STATIC_ASSERT(kSmiTag == 0);
+// Does not needed?
+// STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
+
+ // Utilize delay slots. SmiUntag doesn't emit a jump, everything else is
+ // safe in this case.
+ __ JumpIfNotSmi(a2, &runtime);
+ __ JumpIfNotSmi(a3, &runtime);
+ // Both a2 and a3 are untagged integers.
+
+ __ SmiUntag(a2, a2);
+ __ SmiUntag(a3, a3);
+ __ Branch(&runtime, lt, a3, Operand(zero_reg)); // From < 0.
+
+ __ Branch(&runtime, gt, a3, Operand(a2)); // Fail if from > to.
+ __ Dsubu(a2, a2, a3);
+
+ // Make sure first argument is a string.
+ __ ld(v0, MemOperand(sp, kStringOffset));
+ __ JumpIfSmi(v0, &runtime);
+ __ ld(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
+ __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
+ __ And(a4, a1, Operand(kIsNotStringMask));
+
+ __ Branch(&runtime, ne, a4, Operand(zero_reg));
+
+ Label single_char;
+ __ Branch(&single_char, eq, a2, Operand(1));
+
+ // Short-cut for the case of trivial substring.
+ Label return_v0;
+ // v0: original string
+ // a2: result string length
+ __ ld(a4, FieldMemOperand(v0, String::kLengthOffset));
+ __ SmiUntag(a4);
+ // Return original string.
+ __ Branch(&return_v0, eq, a2, Operand(a4));
+ // Longer than original string's length or negative: unsafe arguments.
+ __ Branch(&runtime, hi, a2, Operand(a4));
+ // Shorter than original string's length: an actual substring.
+
+ // Deal with different string types: update the index if necessary
+ // and put the underlying string into a5.
+ // v0: original string
+ // a1: instance type
+ // a2: length
+ // a3: from index (untagged)
+ Label underlying_unpacked, sliced_string, seq_or_external_string;
+ // If the string is not indirect, it can only be sequential or external.
+ STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
+ STATIC_ASSERT(kIsIndirectStringMask != 0);
+ __ And(a4, a1, Operand(kIsIndirectStringMask));
+ __ Branch(USE_DELAY_SLOT, &seq_or_external_string, eq, a4, Operand(zero_reg));
+ // a4 is used as a scratch register and can be overwritten in either case.
+ __ And(a4, a1, Operand(kSlicedNotConsMask));
+ __ Branch(&sliced_string, ne, a4, Operand(zero_reg));
+ // Cons string. Check whether it is flat, then fetch first part.
+ __ ld(a5, FieldMemOperand(v0, ConsString::kSecondOffset));
+ __ LoadRoot(a4, Heap::kempty_stringRootIndex);
+ __ Branch(&runtime, ne, a5, Operand(a4));
+ __ ld(a5, FieldMemOperand(v0, ConsString::kFirstOffset));
+ // Update instance type.
+ __ ld(a1, FieldMemOperand(a5, HeapObject::kMapOffset));
+ __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
+ __ jmp(&underlying_unpacked);
+
+ __ bind(&sliced_string);
+ // Sliced string. Fetch parent and correct start index by offset.
+ __ ld(a5, FieldMemOperand(v0, SlicedString::kParentOffset));
+ __ ld(a4, FieldMemOperand(v0, SlicedString::kOffsetOffset));
+ __ SmiUntag(a4); // Add offset to index.
+ __ Daddu(a3, a3, a4);
+ // Update instance type.
+ __ ld(a1, FieldMemOperand(a5, HeapObject::kMapOffset));
+ __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
+ __ jmp(&underlying_unpacked);
+
+ __ bind(&seq_or_external_string);
+ // Sequential or external string. Just move string to the expected register.
+ __ mov(a5, v0);
+
+ __ bind(&underlying_unpacked);
+
+ if (FLAG_string_slices) {
+ Label copy_routine;
+ // a5: underlying subject string
+ // a1: instance type of underlying subject string
+ // a2: length
+ // a3: adjusted start index (untagged)
+ // Short slice. Copy instead of slicing.
+ __ Branch(&copy_routine, lt, a2, Operand(SlicedString::kMinLength));
+ // Allocate new sliced string. At this point we do not reload the instance
+ // type including the string encoding because we simply rely on the info
+ // provided by the original string. It does not matter if the original
+ // string's encoding is wrong because we always have to recheck encoding of
+ // the newly created string's parent anyways due to externalized strings.
+ Label two_byte_slice, set_slice_header;
+ STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
+ STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
+ __ And(a4, a1, Operand(kStringEncodingMask));
+ __ Branch(&two_byte_slice, eq, a4, Operand(zero_reg));
+ __ AllocateAsciiSlicedString(v0, a2, a6, a7, &runtime);
+ __ jmp(&set_slice_header);
+ __ bind(&two_byte_slice);
+ __ AllocateTwoByteSlicedString(v0, a2, a6, a7, &runtime);
+ __ bind(&set_slice_header);
+ __ SmiTag(a3);
+ __ sd(a5, FieldMemOperand(v0, SlicedString::kParentOffset));
+ __ sd(a3, FieldMemOperand(v0, SlicedString::kOffsetOffset));
+ __ jmp(&return_v0);
+
+ __ bind(&copy_routine);
+ }
+
+ // a5: underlying subject string
+ // a1: instance type of underlying subject string
+ // a2: length
+ // a3: adjusted start index (untagged)
+ Label two_byte_sequential, sequential_string, allocate_result;
+ STATIC_ASSERT(kExternalStringTag != 0);
+ STATIC_ASSERT(kSeqStringTag == 0);
+ __ And(a4, a1, Operand(kExternalStringTag));
+ __ Branch(&sequential_string, eq, a4, Operand(zero_reg));
+
+ // Handle external string.
+ // Rule out short external strings.
+ STATIC_ASSERT(kShortExternalStringTag != 0);
+ __ And(a4, a1, Operand(kShortExternalStringTag));
+ __ Branch(&runtime, ne, a4, Operand(zero_reg));
+ __ ld(a5, FieldMemOperand(a5, ExternalString::kResourceDataOffset));
+ // a5 already points to the first character of underlying string.
+ __ jmp(&allocate_result);
+
+ __ bind(&sequential_string);
+ // Locate first character of underlying subject string.
+ STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
+ __ Daddu(a5, a5, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+
+ __ bind(&allocate_result);
+ // Sequential acii string. Allocate the result.
+ STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
+ __ And(a4, a1, Operand(kStringEncodingMask));
+ __ Branch(&two_byte_sequential, eq, a4, Operand(zero_reg));
+
+ // Allocate and copy the resulting ASCII string.
+ __ AllocateAsciiString(v0, a2, a4, a6, a7, &runtime);
+
+ // Locate first character of substring to copy.
+ __ Daddu(a5, a5, a3);
+
+ // Locate first character of result.
+ __ Daddu(a1, v0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+
+ // v0: result string
+ // a1: first character of result string
+ // a2: result string length
+ // a5: first character of substring to copy
+ STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
+ StringHelper::GenerateCopyCharacters(
+ masm, a1, a5, a2, a3, String::ONE_BYTE_ENCODING);
+ __ jmp(&return_v0);
+
+ // Allocate and copy the resulting two-byte string.
+ __ bind(&two_byte_sequential);
+ __ AllocateTwoByteString(v0, a2, a4, a6, a7, &runtime);
+
+ // Locate first character of substring to copy.
+ STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
+ __ dsll(a4, a3, 1);
+ __ Daddu(a5, a5, a4);
+ // Locate first character of result.
+ __ Daddu(a1, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+
+ // v0: result string.
+ // a1: first character of result.
+ // a2: result length.
+ // a5: first character of substring to copy.
+ STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
+ StringHelper::GenerateCopyCharacters(
+ masm, a1, a5, a2, a3, String::TWO_BYTE_ENCODING);
+
+ __ bind(&return_v0);
+ Counters* counters = isolate()->counters();
+ __ IncrementCounter(counters->sub_string_native(), 1, a3, a4);
+ __ DropAndRet(3);
+
+ // Just jump to runtime to create the sub string.
+ __ bind(&runtime);
+ __ TailCallRuntime(Runtime::kSubString, 3, 1);
+
+ __ bind(&single_char);
+ // v0: original string
+ // a1: instance type
+ // a2: length
+ // a3: from index (untagged)
+ StringCharAtGenerator generator(
+ v0, a3, a2, v0, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
+ generator.GenerateFast(masm);
+ __ DropAndRet(3);
+ generator.SkipSlow(masm, &runtime);
+}
+
+
+void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
+ Register left,
+ Register right,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3) {
+ Register length = scratch1;
+
+ // Compare lengths.
+ Label strings_not_equal, check_zero_length;
+ __ ld(length, FieldMemOperand(left, String::kLengthOffset));
+ __ ld(scratch2, FieldMemOperand(right, String::kLengthOffset));
+ __ Branch(&check_zero_length, eq, length, Operand(scratch2));
+ __ bind(&strings_not_equal);
+ // Can not put li in delayslot, it has multi instructions.
+ __ li(v0, Operand(Smi::FromInt(NOT_EQUAL)));
+ __ Ret();
+
+ // Check if the length is zero.
+ Label compare_chars;
+ __ bind(&check_zero_length);
+ STATIC_ASSERT(kSmiTag == 0);
+ __ Branch(&compare_chars, ne, length, Operand(zero_reg));
+ DCHECK(is_int16((intptr_t)Smi::FromInt(EQUAL)));
+ __ Ret(USE_DELAY_SLOT);
+ __ li(v0, Operand(Smi::FromInt(EQUAL)));
+
+ // Compare characters.
+ __ bind(&compare_chars);
+
+ GenerateAsciiCharsCompareLoop(masm,
+ left, right, length, scratch2, scratch3, v0,
+ &strings_not_equal);
+
+ // Characters are equal.
+ __ Ret(USE_DELAY_SLOT);
+ __ li(v0, Operand(Smi::FromInt(EQUAL)));
+}
+
+
+void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
+ Register left,
+ Register right,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Register scratch4) {
+ Label result_not_equal, compare_lengths;
+ // Find minimum length and length difference.
+ __ ld(scratch1, FieldMemOperand(left, String::kLengthOffset));
+ __ ld(scratch2, FieldMemOperand(right, String::kLengthOffset));
+ __ Dsubu(scratch3, scratch1, Operand(scratch2));
+ Register length_delta = scratch3;
+ __ slt(scratch4, scratch2, scratch1);
+ __ Movn(scratch1, scratch2, scratch4);
+ Register min_length = scratch1;
+ STATIC_ASSERT(kSmiTag == 0);
+ __ Branch(&compare_lengths, eq, min_length, Operand(zero_reg));
+
+ // Compare loop.
+ GenerateAsciiCharsCompareLoop(masm,
+ left, right, min_length, scratch2, scratch4, v0,
+ &result_not_equal);
+
+ // Compare lengths - strings up to min-length are equal.
+ __ bind(&compare_lengths);
+ DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
+ // Use length_delta as result if it's zero.
+ __ mov(scratch2, length_delta);
+ __ mov(scratch4, zero_reg);
+ __ mov(v0, zero_reg);
+
+ __ bind(&result_not_equal);
+ // Conditionally update the result based either on length_delta or
+ // the last comparion performed in the loop above.
+ Label ret;
+ __ Branch(&ret, eq, scratch2, Operand(scratch4));
+ __ li(v0, Operand(Smi::FromInt(GREATER)));
+ __ Branch(&ret, gt, scratch2, Operand(scratch4));
+ __ li(v0, Operand(Smi::FromInt(LESS)));
+ __ bind(&ret);
+ __ Ret();
+}
+
+
+void StringCompareStub::GenerateAsciiCharsCompareLoop(
+ MacroAssembler* masm,
+ Register left,
+ Register right,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* chars_not_equal) {
+ // Change index to run from -length to -1 by adding length to string
+ // start. This means that loop ends when index reaches zero, which
+ // doesn't need an additional compare.
+ __ SmiUntag(length);
+ __ Daddu(scratch1, length,
+ Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+ __ Daddu(left, left, Operand(scratch1));
+ __ Daddu(right, right, Operand(scratch1));
+ __ Dsubu(length, zero_reg, length);
+ Register index = length; // index = -length;
+
+
+ // Compare loop.
+ Label loop;
+ __ bind(&loop);
+ __ Daddu(scratch3, left, index);
+ __ lbu(scratch1, MemOperand(scratch3));
+ __ Daddu(scratch3, right, index);
+ __ lbu(scratch2, MemOperand(scratch3));
+ __ Branch(chars_not_equal, ne, scratch1, Operand(scratch2));
+ __ Daddu(index, index, 1);
+ __ Branch(&loop, ne, index, Operand(zero_reg));
+}
+
+
+void StringCompareStub::Generate(MacroAssembler* masm) {
+ Label runtime;
+
+ Counters* counters = isolate()->counters();
+
+ // Stack frame on entry.
+ // sp[0]: right string
+ // sp[4]: left string
+ __ ld(a1, MemOperand(sp, 1 * kPointerSize)); // Left.
+ __ ld(a0, MemOperand(sp, 0 * kPointerSize)); // Right.
+
+ Label not_same;
+ __ Branch(&not_same, ne, a0, Operand(a1));
+ STATIC_ASSERT(EQUAL == 0);
+ STATIC_ASSERT(kSmiTag == 0);
+ __ li(v0, Operand(Smi::FromInt(EQUAL)));
+ __ IncrementCounter(counters->string_compare_native(), 1, a1, a2);
+ __ DropAndRet(2);
+
+ __ bind(&not_same);
+
+ // Check that both objects are sequential ASCII strings.
+ __ JumpIfNotBothSequentialAsciiStrings(a1, a0, a2, a3, &runtime);
+
+ // Compare flat ASCII strings natively. Remove arguments from stack first.
+ __ IncrementCounter(counters->string_compare_native(), 1, a2, a3);
+ __ Daddu(sp, sp, Operand(2 * kPointerSize));
+ GenerateCompareFlatAsciiStrings(masm, a1, a0, a2, a3, a4, a5);
+
+ __ bind(&runtime);
+ __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
+}
+
+
+void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- a1 : left
+ // -- a0 : right
+ // -- ra : return address
+ // -----------------------------------
+
+ // Load a2 with the allocation site. We stick an undefined dummy value here
+ // and replace it with the real allocation site later when we instantiate this
+ // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
+ __ li(a2, handle(isolate()->heap()->undefined_value()));
+
+ // Make sure that we actually patched the allocation site.
+ if (FLAG_debug_code) {
+ __ And(at, a2, Operand(kSmiTagMask));
+ __ Assert(ne, kExpectedAllocationSite, at, Operand(zero_reg));
+ __ ld(a4, FieldMemOperand(a2, HeapObject::kMapOffset));
+ __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
+ __ Assert(eq, kExpectedAllocationSite, a4, Operand(at));
+ }
+
+ // Tail call into the stub that handles binary operations with allocation
+ // sites.
+ BinaryOpWithAllocationSiteStub stub(isolate(), state_);
+ __ TailCallStub(&stub);
+}
+
+
+void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
+ DCHECK(state_ == CompareIC::SMI);
+ Label miss;
+ __ Or(a2, a1, a0);
+ __ JumpIfNotSmi(a2, &miss);
+
+ if (GetCondition() == eq) {
+ // For equality we do not care about the sign of the result.
+ __ Ret(USE_DELAY_SLOT);
+ __ Dsubu(v0, a0, a1);
+ } else {
+ // Untag before subtracting to avoid handling overflow.
+ __ SmiUntag(a1);
+ __ SmiUntag(a0);
+ __ Ret(USE_DELAY_SLOT);
+ __ Dsubu(v0, a1, a0);
+ }
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
+
+
+void ICCompareStub::GenerateNumbers(MacroAssembler* masm) {
+ DCHECK(state_ == CompareIC::NUMBER);
+
+ Label generic_stub;
+ Label unordered, maybe_undefined1, maybe_undefined2;
+ Label miss;
+
+ if (left_ == CompareIC::SMI) {
+ __ JumpIfNotSmi(a1, &miss);
+ }
+ if (right_ == CompareIC::SMI) {
+ __ JumpIfNotSmi(a0, &miss);
+ }
+
+ // Inlining the double comparison and falling back to the general compare
+ // stub if NaN is involved.
+ // Load left and right operand.
+ Label done, left, left_smi, right_smi;
+ __ JumpIfSmi(a0, &right_smi);
+ __ CheckMap(a0, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
+ DONT_DO_SMI_CHECK);
+ __ Dsubu(a2, a0, Operand(kHeapObjectTag));
+ __ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset));
+ __ Branch(&left);
+ __ bind(&right_smi);
+ __ SmiUntag(a2, a0); // Can't clobber a0 yet.
+ FPURegister single_scratch = f6;
+ __ mtc1(a2, single_scratch);
+ __ cvt_d_w(f2, single_scratch);
+
+ __ bind(&left);
+ __ JumpIfSmi(a1, &left_smi);
+ __ CheckMap(a1, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
+ DONT_DO_SMI_CHECK);
+ __ Dsubu(a2, a1, Operand(kHeapObjectTag));
+ __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset));
+ __ Branch(&done);
+ __ bind(&left_smi);
+ __ SmiUntag(a2, a1); // Can't clobber a1 yet.
+ single_scratch = f8;
+ __ mtc1(a2, single_scratch);
+ __ cvt_d_w(f0, single_scratch);
+
+ __ bind(&done);
+
+ // Return a result of -1, 0, or 1, or use CompareStub for NaNs.
+ Label fpu_eq, fpu_lt;
+ // Test if equal, and also handle the unordered/NaN case.
+ __ BranchF(&fpu_eq, &unordered, eq, f0, f2);
+
+ // Test if less (unordered case is already handled).
+ __ BranchF(&fpu_lt, NULL, lt, f0, f2);
+
+ // Otherwise it's greater, so just fall thru, and return.
+ DCHECK(is_int16(GREATER) && is_int16(EQUAL) && is_int16(LESS));
+ __ Ret(USE_DELAY_SLOT);
+ __ li(v0, Operand(GREATER));
+
+ __ bind(&fpu_eq);
+ __ Ret(USE_DELAY_SLOT);
+ __ li(v0, Operand(EQUAL));
+
+ __ bind(&fpu_lt);
+ __ Ret(USE_DELAY_SLOT);
+ __ li(v0, Operand(LESS));
+
+ __ bind(&unordered);
+ __ bind(&generic_stub);
+ ICCompareStub stub(isolate(), op_, CompareIC::GENERIC, CompareIC::GENERIC,
+ CompareIC::GENERIC);
+ __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
+
+ __ bind(&maybe_undefined1);
+ if (Token::IsOrderedRelationalCompareOp(op_)) {
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+ __ Branch(&miss, ne, a0, Operand(at));
+ __ JumpIfSmi(a1, &unordered);
+ __ GetObjectType(a1, a2, a2);
+ __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE));
+ __ jmp(&unordered);
+ }
+
+ __ bind(&maybe_undefined2);
+ if (Token::IsOrderedRelationalCompareOp(op_)) {
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+ __ Branch(&unordered, eq, a1, Operand(at));
+ }
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
+
+
+void ICCompareStub::GenerateInternalizedStrings(MacroAssembler* masm) {
+ DCHECK(state_ == CompareIC::INTERNALIZED_STRING);
+ Label miss;
+
+ // Registers containing left and right operands respectively.
+ Register left = a1;
+ Register right = a0;
+ Register tmp1 = a2;
+ Register tmp2 = a3;
+
+ // Check that both operands are heap objects.
+ __ JumpIfEitherSmi(left, right, &miss);
+
+ // Check that both operands are internalized strings.
+ __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
+ __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
+ __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
+ __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
+ STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
+ __ Or(tmp1, tmp1, Operand(tmp2));
+ __ And(at, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
+ __ Branch(&miss, ne, at, Operand(zero_reg));
+
+ // Make sure a0 is non-zero. At this point input operands are
+ // guaranteed to be non-zero.
+ DCHECK(right.is(a0));
+ STATIC_ASSERT(EQUAL == 0);
+ STATIC_ASSERT(kSmiTag == 0);
+ __ mov(v0, right);
+ // Internalized strings are compared by identity.
+ __ Ret(ne, left, Operand(right));
+ DCHECK(is_int16(EQUAL));
+ __ Ret(USE_DELAY_SLOT);
+ __ li(v0, Operand(Smi::FromInt(EQUAL)));
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
+
+
+void ICCompareStub::GenerateUniqueNames(MacroAssembler* masm) {
+ DCHECK(state_ == CompareIC::UNIQUE_NAME);
+ DCHECK(GetCondition() == eq);
+ Label miss;
+
+ // Registers containing left and right operands respectively.
+ Register left = a1;
+ Register right = a0;
+ Register tmp1 = a2;
+ Register tmp2 = a3;
+
+ // Check that both operands are heap objects.
+ __ JumpIfEitherSmi(left, right, &miss);
+
+ // Check that both operands are unique names. This leaves the instance
+ // types loaded in tmp1 and tmp2.
+ __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
+ __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
+ __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
+ __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
+
+ __ JumpIfNotUniqueName(tmp1, &miss);
+ __ JumpIfNotUniqueName(tmp2, &miss);
+
+ // Use a0 as result
+ __ mov(v0, a0);
+
+ // Unique names are compared by identity.
+ Label done;
+ __ Branch(&done, ne, left, Operand(right));
+ // Make sure a0 is non-zero. At this point input operands are
+ // guaranteed to be non-zero.
+ DCHECK(right.is(a0));
+ STATIC_ASSERT(EQUAL == 0);
+ STATIC_ASSERT(kSmiTag == 0);
+ __ li(v0, Operand(Smi::FromInt(EQUAL)));
+ __ bind(&done);
+ __ Ret();
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
+
+
+void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
+ DCHECK(state_ == CompareIC::STRING);
+ Label miss;
+
+ bool equality = Token::IsEqualityOp(op_);
+
+ // Registers containing left and right operands respectively.
+ Register left = a1;
+ Register right = a0;
+ Register tmp1 = a2;
+ Register tmp2 = a3;
+ Register tmp3 = a4;
+ Register tmp4 = a5;
+ Register tmp5 = a6;
+
+ // Check that both operands are heap objects.
+ __ JumpIfEitherSmi(left, right, &miss);
+
+ // Check that both operands are strings. This leaves the instance
+ // types loaded in tmp1 and tmp2.
+ __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
+ __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
+ __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
+ __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
+ STATIC_ASSERT(kNotStringTag != 0);
+ __ Or(tmp3, tmp1, tmp2);
+ __ And(tmp5, tmp3, Operand(kIsNotStringMask));
+ __ Branch(&miss, ne, tmp5, Operand(zero_reg));
+
+ // Fast check for identical strings.
+ Label left_ne_right;
+ STATIC_ASSERT(EQUAL == 0);
+ STATIC_ASSERT(kSmiTag == 0);
+ __ Branch(&left_ne_right, ne, left, Operand(right));
+ __ Ret(USE_DELAY_SLOT);
+ __ mov(v0, zero_reg); // In the delay slot.
+ __ bind(&left_ne_right);
+
+ // Handle not identical strings.
+
+ // Check that both strings are internalized strings. If they are, we're done
+ // because we already know they are not identical. We know they are both
+ // strings.
+ if (equality) {
+ DCHECK(GetCondition() == eq);
+ STATIC_ASSERT(kInternalizedTag == 0);
+ __ Or(tmp3, tmp1, Operand(tmp2));
+ __ And(tmp5, tmp3, Operand(kIsNotInternalizedMask));
+ Label is_symbol;
+ __ Branch(&is_symbol, ne, tmp5, Operand(zero_reg));
+ // Make sure a0 is non-zero. At this point input operands are
+ // guaranteed to be non-zero.
+ DCHECK(right.is(a0));
+ __ Ret(USE_DELAY_SLOT);
+ __ mov(v0, a0); // In the delay slot.
+ __ bind(&is_symbol);
+ }
+
+ // Check that both strings are sequential ASCII.
+ Label runtime;
+ __ JumpIfBothInstanceTypesAreNotSequentialAscii(
+ tmp1, tmp2, tmp3, tmp4, &runtime);
+
+ // Compare flat ASCII strings. Returns when done.
+ if (equality) {
+ StringCompareStub::GenerateFlatAsciiStringEquals(
+ masm, left, right, tmp1, tmp2, tmp3);
+ } else {
+ StringCompareStub::GenerateCompareFlatAsciiStrings(
+ masm, left, right, tmp1, tmp2, tmp3, tmp4);
+ }
+
+ // Handle more complex cases in runtime.
+ __ bind(&runtime);
+ __ Push(left, right);
+ if (equality) {
+ __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
+ } else {
+ __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
+ }
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
+
+
+void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
+ DCHECK(state_ == CompareIC::OBJECT);
+ Label miss;
+ __ And(a2, a1, Operand(a0));
+ __ JumpIfSmi(a2, &miss);
+
+ __ GetObjectType(a0, a2, a2);
+ __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE));
+ __ GetObjectType(a1, a2, a2);
+ __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE));
+
+ DCHECK(GetCondition() == eq);
+ __ Ret(USE_DELAY_SLOT);
+ __ dsubu(v0, a0, a1);
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
+
+
+void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
+ Label miss;
+ __ And(a2, a1, a0);
+ __ JumpIfSmi(a2, &miss);
+ __ ld(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
+ __ ld(a3, FieldMemOperand(a1, HeapObject::kMapOffset));
+ __ Branch(&miss, ne, a2, Operand(known_map_));
+ __ Branch(&miss, ne, a3, Operand(known_map_));
+
+ __ Ret(USE_DELAY_SLOT);
+ __ dsubu(v0, a0, a1);
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
+
+
+void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
+ {
+ // Call the runtime system in a fresh internal frame.
+ ExternalReference miss =
+ ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate());
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ __ Push(a1, a0);
+ __ Push(ra, a1, a0);
+ __ li(a4, Operand(Smi::FromInt(op_)));
+ __ daddiu(sp, sp, -kPointerSize);
+ __ CallExternalReference(miss, 3, USE_DELAY_SLOT);
+ __ sd(a4, MemOperand(sp)); // In the delay slot.
+ // Compute the entry point of the rewritten stub.
+ __ Daddu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
+ // Restore registers.
+ __ Pop(a1, a0, ra);
+ }
+ __ Jump(a2);
+}
+
+
+void DirectCEntryStub::Generate(MacroAssembler* masm) {
+ // Make place for arguments to fit C calling convention. Most of the callers
+ // of DirectCEntryStub::GenerateCall are using EnterExitFrame/LeaveExitFrame
+ // so they handle stack restoring and we don't have to do that here.
+ // Any caller of DirectCEntryStub::GenerateCall must take care of dropping
+ // kCArgsSlotsSize stack space after the call.
+ __ daddiu(sp, sp, -kCArgsSlotsSize);
+ // Place the return address on the stack, making the call
+ // GC safe. The RegExp backend also relies on this.
+ __ sd(ra, MemOperand(sp, kCArgsSlotsSize));
+ __ Call(t9); // Call the C++ function.
+ __ ld(t9, MemOperand(sp, kCArgsSlotsSize));
+
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ // In case of an error the return address may point to a memory area
+ // filled with kZapValue by the GC.
+ // Dereference the address and check for this.
+ __ Uld(a4, MemOperand(t9));
+ __ Assert(ne, kReceivedInvalidReturnAddress, a4,
+ Operand(reinterpret_cast<uint64_t>(kZapValue)));
+ }
+ __ Jump(t9);
+}
+
+
+void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
+ Register target) {
+ intptr_t loc =
+ reinterpret_cast<intptr_t>(GetCode().location());
+ __ Move(t9, target);
+ __ li(ra, Operand(loc, RelocInfo::CODE_TARGET), CONSTANT_SIZE);
+ __ Call(ra);
+}
+
+
+void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
+ Label* miss,
+ Label* done,
+ Register receiver,
+ Register properties,
+ Handle<Name> name,
+ Register scratch0) {
+ DCHECK(name->IsUniqueName());
+ // If names of slots in range from 1 to kProbes - 1 for the hash value are
+ // not equal to the name and kProbes-th slot is not used (its name is the
+ // undefined value), it guarantees the hash table doesn't contain the
+ // property. It's true even if some slots represent deleted properties
+ // (their names are the hole value).
+ for (int i = 0; i < kInlinedProbes; i++) {
+ // scratch0 points to properties hash.
+ // Compute the masked index: (hash + i + i * i) & mask.
+ Register index = scratch0;
+ // Capacity is smi 2^n.
+ __ SmiLoadUntag(index, FieldMemOperand(properties, kCapacityOffset));
+ __ Dsubu(index, index, Operand(1));
+ __ And(index, index,
+ Operand(name->Hash() + NameDictionary::GetProbeOffset(i)));
+
+ // Scale the index by multiplying by the entry size.
+ DCHECK(NameDictionary::kEntrySize == 3);
+ __ dsll(at, index, 1);
+ __ Daddu(index, index, at); // index *= 3.
+
+ Register entity_name = scratch0;
+ // Having undefined at this place means the name is not contained.
+ DCHECK_EQ(kSmiTagSize, 1);
+ Register tmp = properties;
+
+ __ dsll(scratch0, index, kPointerSizeLog2);
+ __ Daddu(tmp, properties, scratch0);
+ __ ld(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
+
+ DCHECK(!tmp.is(entity_name));
+ __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
+ __ Branch(done, eq, entity_name, Operand(tmp));
+
+ // Load the hole ready for use below:
+ __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
+
+ // Stop if found the property.
+ __ Branch(miss, eq, entity_name, Operand(Handle<Name>(name)));
+
+ Label good;
+ __ Branch(&good, eq, entity_name, Operand(tmp));
+
+ // Check if the entry name is not a unique name.
+ __ ld(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
+ __ lbu(entity_name,
+ FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
+ __ JumpIfNotUniqueName(entity_name, miss);
+ __ bind(&good);
+
+ // Restore the properties.
+ __ ld(properties,
+ FieldMemOperand(receiver, JSObject::kPropertiesOffset));
+ }
+
+ const int spill_mask =
+ (ra.bit() | a6.bit() | a5.bit() | a4.bit() | a3.bit() |
+ a2.bit() | a1.bit() | a0.bit() | v0.bit());
+
+ __ MultiPush(spill_mask);
+ __ ld(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
+ __ li(a1, Operand(Handle<Name>(name)));
+ NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
+ __ CallStub(&stub);
+ __ mov(at, v0);
+ __ MultiPop(spill_mask);
+
+ __ Branch(done, eq, at, Operand(zero_reg));
+ __ Branch(miss, ne, at, Operand(zero_reg));
+}
+
+
+// Probe the name dictionary in the |elements| register. Jump to the
+// |done| label if a property with the given name is found. Jump to
+// the |miss| label otherwise.
+// If lookup was successful |scratch2| will be equal to elements + 4 * index.
+void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
+ Label* miss,
+ Label* done,
+ Register elements,
+ Register name,
+ Register scratch1,
+ Register scratch2) {
+ DCHECK(!elements.is(scratch1));
+ DCHECK(!elements.is(scratch2));
+ DCHECK(!name.is(scratch1));
+ DCHECK(!name.is(scratch2));
+
+ __ AssertName(name);
+
+ // Compute the capacity mask.
+ __ ld(scratch1, FieldMemOperand(elements, kCapacityOffset));
+ __ SmiUntag(scratch1);
+ __ Dsubu(scratch1, scratch1, Operand(1));
+
+ // Generate an unrolled loop that performs a few probes before
+ // giving up. Measurements done on Gmail indicate that 2 probes
+ // cover ~93% of loads from dictionaries.
+ for (int i = 0; i < kInlinedProbes; i++) {
+ // Compute the masked index: (hash + i + i * i) & mask.
+ __ lwu(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
+ if (i > 0) {
+ // Add the probe offset (i + i * i) left shifted to avoid right shifting
+ // the hash in a separate instruction. The value hash + i + i * i is right
+ // shifted in the following and instruction.
+ DCHECK(NameDictionary::GetProbeOffset(i) <
+ 1 << (32 - Name::kHashFieldOffset));
+ __ Daddu(scratch2, scratch2, Operand(
+ NameDictionary::GetProbeOffset(i) << Name::kHashShift));
+ }
+ __ dsrl(scratch2, scratch2, Name::kHashShift);
+ __ And(scratch2, scratch1, scratch2);
+
+ // Scale the index by multiplying by the element size.
+ DCHECK(NameDictionary::kEntrySize == 3);
+ // scratch2 = scratch2 * 3.
+
+ __ dsll(at, scratch2, 1);
+ __ Daddu(scratch2, scratch2, at);
+
+ // Check if the key is identical to the name.
+ __ dsll(at, scratch2, kPointerSizeLog2);
+ __ Daddu(scratch2, elements, at);
+ __ ld(at, FieldMemOperand(scratch2, kElementsStartOffset));
+ __ Branch(done, eq, name, Operand(at));
+ }
+
+ const int spill_mask =
+ (ra.bit() | a6.bit() | a5.bit() | a4.bit() |
+ a3.bit() | a2.bit() | a1.bit() | a0.bit() | v0.bit()) &
+ ~(scratch1.bit() | scratch2.bit());
+
+ __ MultiPush(spill_mask);
+ if (name.is(a0)) {
+ DCHECK(!elements.is(a1));
+ __ Move(a1, name);
+ __ Move(a0, elements);
+ } else {
+ __ Move(a0, elements);
+ __ Move(a1, name);
+ }
+ NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
+ __ CallStub(&stub);
+ __ mov(scratch2, a2);
+ __ mov(at, v0);
+ __ MultiPop(spill_mask);
+
+ __ Branch(done, ne, at, Operand(zero_reg));
+ __ Branch(miss, eq, at, Operand(zero_reg));
+}
+
+
+void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
+ // This stub overrides SometimesSetsUpAFrame() to return false. That means
+ // we cannot call anything that could cause a GC from this stub.
+ // Registers:
+ // result: NameDictionary to probe
+ // a1: key
+ // dictionary: NameDictionary to probe.
+ // index: will hold an index of entry if lookup is successful.
+ // might alias with result_.
+ // Returns:
+ // result_ is zero if lookup failed, non zero otherwise.
+
+ Register result = v0;
+ Register dictionary = a0;
+ Register key = a1;
+ Register index = a2;
+ Register mask = a3;
+ Register hash = a4;
+ Register undefined = a5;
+ Register entry_key = a6;
+
+ Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
+
+ __ ld(mask, FieldMemOperand(dictionary, kCapacityOffset));
+ __ SmiUntag(mask);
+ __ Dsubu(mask, mask, Operand(1));
+
+ __ lwu(hash, FieldMemOperand(key, Name::kHashFieldOffset));
+
+ __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
+
+ for (int i = kInlinedProbes; i < kTotalProbes; i++) {
+ // Compute the masked index: (hash + i + i * i) & mask.
+ // Capacity is smi 2^n.
+ if (i > 0) {
+ // Add the probe offset (i + i * i) left shifted to avoid right shifting
+ // the hash in a separate instruction. The value hash + i + i * i is right
+ // shifted in the following and instruction.
+ DCHECK(NameDictionary::GetProbeOffset(i) <
+ 1 << (32 - Name::kHashFieldOffset));
+ __ Daddu(index, hash, Operand(
+ NameDictionary::GetProbeOffset(i) << Name::kHashShift));
+ } else {
+ __ mov(index, hash);
+ }
+ __ dsrl(index, index, Name::kHashShift);
+ __ And(index, mask, index);
+
+ // Scale the index by multiplying by the entry size.
+ DCHECK(NameDictionary::kEntrySize == 3);
+ // index *= 3.
+ __ mov(at, index);
+ __ dsll(index, index, 1);
+ __ Daddu(index, index, at);
+
+
+ DCHECK_EQ(kSmiTagSize, 1);
+ __ dsll(index, index, kPointerSizeLog2);
+ __ Daddu(index, index, dictionary);
+ __ ld(entry_key, FieldMemOperand(index, kElementsStartOffset));
+
+ // Having undefined at this place means the name is not contained.
+ __ Branch(&not_in_dictionary, eq, entry_key, Operand(undefined));
+
+ // Stop if found the property.
+ __ Branch(&in_dictionary, eq, entry_key, Operand(key));
+
+ if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
+ // Check if the entry name is not a unique name.
+ __ ld(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
+ __ lbu(entry_key,
+ FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
+ __ JumpIfNotUniqueName(entry_key, &maybe_in_dictionary);
+ }
+ }
+
+ __ bind(&maybe_in_dictionary);
+ // If we are doing negative lookup then probing failure should be
+ // treated as a lookup success. For positive lookup probing failure
+ // should be treated as lookup failure.
+ if (mode_ == POSITIVE_LOOKUP) {
+ __ Ret(USE_DELAY_SLOT);
+ __ mov(result, zero_reg);
+ }
+
+ __ bind(&in_dictionary);
+ __ Ret(USE_DELAY_SLOT);
+ __ li(result, 1);
+
+ __ bind(&not_in_dictionary);
+ __ Ret(USE_DELAY_SLOT);
+ __ mov(result, zero_reg);
+}
+
+
+void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
+ Isolate* isolate) {
+ StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
+ stub1.GetCode();
+ // Hydrogen code stubs need stub2 at snapshot time.
+ StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
+ stub2.GetCode();
+}
+
+
+// Takes the input in 3 registers: address_ value_ and object_. A pointer to
+// the value has just been written into the object, now this stub makes sure
+// we keep the GC informed. The word in the object where the value has been
+// written is in the address register.
+void RecordWriteStub::Generate(MacroAssembler* masm) {
+ Label skip_to_incremental_noncompacting;
+ Label skip_to_incremental_compacting;
+
+ // The first two branch+nop instructions are generated with labels so as to
+ // get the offset fixed up correctly by the bind(Label*) call. We patch it
+ // back and forth between a "bne zero_reg, zero_reg, ..." (a nop in this
+ // position) and the "beq zero_reg, zero_reg, ..." when we start and stop
+ // incremental heap marking.
+ // See RecordWriteStub::Patch for details.
+ __ beq(zero_reg, zero_reg, &skip_to_incremental_noncompacting);
+ __ nop();
+ __ beq(zero_reg, zero_reg, &skip_to_incremental_compacting);
+ __ nop();
+
+ if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
+ __ RememberedSetHelper(object_,
+ address_,
+ value_,
+ save_fp_regs_mode_,
+ MacroAssembler::kReturnAtEnd);
+ }
+ __ Ret();
+
+ __ bind(&skip_to_incremental_noncompacting);
+ GenerateIncremental(masm, INCREMENTAL);
+
+ __ bind(&skip_to_incremental_compacting);
+ GenerateIncremental(masm, INCREMENTAL_COMPACTION);
+
+ // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
+ // Will be checked in IncrementalMarking::ActivateGeneratedStub.
+
+ PatchBranchIntoNop(masm, 0);
+ PatchBranchIntoNop(masm, 2 * Assembler::kInstrSize);
+}
+
+
+void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
+ regs_.Save(masm);
+
+ if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
+ Label dont_need_remembered_set;
+
+ __ ld(regs_.scratch0(), MemOperand(regs_.address(), 0));
+ __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
+ regs_.scratch0(),
+ &dont_need_remembered_set);
+
+ __ CheckPageFlag(regs_.object(),
+ regs_.scratch0(),
+ 1 << MemoryChunk::SCAN_ON_SCAVENGE,
+ ne,
+ &dont_need_remembered_set);
+
+ // First notify the incremental marker if necessary, then update the
+ // remembered set.
+ CheckNeedsToInformIncrementalMarker(
+ masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
+ InformIncrementalMarker(masm);
+ regs_.Restore(masm);
+ __ RememberedSetHelper(object_,
+ address_,
+ value_,
+ save_fp_regs_mode_,
+ MacroAssembler::kReturnAtEnd);
+
+ __ bind(&dont_need_remembered_set);
+ }
+
+ CheckNeedsToInformIncrementalMarker(
+ masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
+ InformIncrementalMarker(masm);
+ regs_.Restore(masm);
+ __ Ret();
+}
+
+
+void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
+ regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
+ int argument_count = 3;
+ __ PrepareCallCFunction(argument_count, regs_.scratch0());
+ Register address =
+ a0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
+ DCHECK(!address.is(regs_.object()));
+ DCHECK(!address.is(a0));
+ __ Move(address, regs_.address());
+ __ Move(a0, regs_.object());
+ __ Move(a1, address);
+ __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
+
+ AllowExternalCallThatCantCauseGC scope(masm);
+ __ CallCFunction(
+ ExternalReference::incremental_marking_record_write_function(isolate()),
+ argument_count);
+ regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
+}
+
+
+void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
+ MacroAssembler* masm,
+ OnNoNeedToInformIncrementalMarker on_no_need,
+ Mode mode) {
+ Label on_black;
+ Label need_incremental;
+ Label need_incremental_pop_scratch;
+
+ __ And(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask));
+ __ ld(regs_.scratch1(),
+ MemOperand(regs_.scratch0(),
+ MemoryChunk::kWriteBarrierCounterOffset));
+ __ Dsubu(regs_.scratch1(), regs_.scratch1(), Operand(1));
+ __ sd(regs_.scratch1(),
+ MemOperand(regs_.scratch0(),
+ MemoryChunk::kWriteBarrierCounterOffset));
+ __ Branch(&need_incremental, lt, regs_.scratch1(), Operand(zero_reg));
+
+ // Let's look at the color of the object: If it is not black we don't have
+ // to inform the incremental marker.
+ __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
+
+ regs_.Restore(masm);
+ if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
+ __ RememberedSetHelper(object_,
+ address_,
+ value_,
+ save_fp_regs_mode_,
+ MacroAssembler::kReturnAtEnd);
+ } else {
+ __ Ret();
+ }
+
+ __ bind(&on_black);
+
+ // Get the value from the slot.
+ __ ld(regs_.scratch0(), MemOperand(regs_.address(), 0));
+
+ if (mode == INCREMENTAL_COMPACTION) {
+ Label ensure_not_white;
+
+ __ CheckPageFlag(regs_.scratch0(), // Contains value.
+ regs_.scratch1(), // Scratch.
+ MemoryChunk::kEvacuationCandidateMask,
+ eq,
+ &ensure_not_white);
+
+ __ CheckPageFlag(regs_.object(),
+ regs_.scratch1(), // Scratch.
+ MemoryChunk::kSkipEvacuationSlotsRecordingMask,
+ eq,
+ &need_incremental);
+
+ __ bind(&ensure_not_white);
+ }
+
+ // We need extra registers for this, so we push the object and the address
+ // register temporarily.
+ __ Push(regs_.object(), regs_.address());
+ __ EnsureNotWhite(regs_.scratch0(), // The value.
+ regs_.scratch1(), // Scratch.
+ regs_.object(), // Scratch.
+ regs_.address(), // Scratch.
+ &need_incremental_pop_scratch);
+ __ Pop(regs_.object(), regs_.address());
+
+ regs_.Restore(masm);
+ if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
+ __ RememberedSetHelper(object_,
+ address_,
+ value_,
+ save_fp_regs_mode_,
+ MacroAssembler::kReturnAtEnd);
+ } else {
+ __ Ret();
+ }
+
+ __ bind(&need_incremental_pop_scratch);
+ __ Pop(regs_.object(), regs_.address());
+
+ __ bind(&need_incremental);
+
+ // Fall through when we need to inform the incremental marker.
+}
+
+
+void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- a0 : element value to store
+ // -- a3 : element index as smi
+ // -- sp[0] : array literal index in function as smi
+ // -- sp[4] : array literal
+ // clobbers a1, a2, a4
+ // -----------------------------------
+
+ Label element_done;
+ Label double_elements;
+ Label smi_element;
+ Label slow_elements;
+ Label fast_elements;
+
+ // Get array literal index, array literal and its map.
+ __ ld(a4, MemOperand(sp, 0 * kPointerSize));
+ __ ld(a1, MemOperand(sp, 1 * kPointerSize));
+ __ ld(a2, FieldMemOperand(a1, JSObject::kMapOffset));
+
+ __ CheckFastElements(a2, a5, &double_elements);
+ // Check for FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS elements
+ __ JumpIfSmi(a0, &smi_element);
+ __ CheckFastSmiElements(a2, a5, &fast_elements);
+
+ // Store into the array literal requires a elements transition. Call into
+ // the runtime.
+ __ bind(&slow_elements);
+ // call.
+ __ Push(a1, a3, a0);
+ __ ld(a5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ __ ld(a5, FieldMemOperand(a5, JSFunction::kLiteralsOffset));
+ __ Push(a5, a4);
+ __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
+
+ // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
+ __ bind(&fast_elements);
+ __ ld(a5, FieldMemOperand(a1, JSObject::kElementsOffset));
+ __ SmiScale(a6, a3, kPointerSizeLog2);
+ __ Daddu(a6, a5, a6);
+ __ Daddu(a6, a6, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ __ sd(a0, MemOperand(a6, 0));
+ // Update the write barrier for the array store.
+ __ RecordWrite(a5, a6, a0, kRAHasNotBeenSaved, kDontSaveFPRegs,
+ EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
+ __ Ret(USE_DELAY_SLOT);
+ __ mov(v0, a0);
+
+ // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
+ // and value is Smi.
+ __ bind(&smi_element);
+ __ ld(a5, FieldMemOperand(a1, JSObject::kElementsOffset));
+ __ SmiScale(a6, a3, kPointerSizeLog2);
+ __ Daddu(a6, a5, a6);
+ __ sd(a0, FieldMemOperand(a6, FixedArray::kHeaderSize));
+ __ Ret(USE_DELAY_SLOT);
+ __ mov(v0, a0);
+
+ // Array literal has ElementsKind of FAST_*_DOUBLE_ELEMENTS.
+ __ bind(&double_elements);
+ __ ld(a5, FieldMemOperand(a1, JSObject::kElementsOffset));
+ __ StoreNumberToDoubleElements(a0, a3, a5, a7, t1, a2, &slow_elements);
+ __ Ret(USE_DELAY_SLOT);
+ __ mov(v0, a0);
+}
+
+
+void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
+ CEntryStub ces(isolate(), 1, kSaveFPRegs);
+ __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
+ int parameter_count_offset =
+ StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
+ __ ld(a1, MemOperand(fp, parameter_count_offset));
+ if (function_mode_ == JS_FUNCTION_STUB_MODE) {
+ __ Daddu(a1, a1, Operand(1));
+ }
+ masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
+ __ dsll(a1, a1, kPointerSizeLog2);
+ __ Ret(USE_DELAY_SLOT);
+ __ Daddu(sp, sp, a1);
+}
+
+
+void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
+ if (masm->isolate()->function_entry_hook() != NULL) {
+ ProfileEntryHookStub stub(masm->isolate());
+ __ push(ra);
+ __ CallStub(&stub);
+ __ pop(ra);
+ }
+}
+
+
+void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
+ // The entry hook is a "push ra" instruction, followed by a call.
+ // Note: on MIPS "push" is 2 instruction
+ const int32_t kReturnAddressDistanceFromFunctionStart =
+ Assembler::kCallTargetAddressOffset + (2 * Assembler::kInstrSize);
+
+ // This should contain all kJSCallerSaved registers.
+ const RegList kSavedRegs =
+ kJSCallerSaved | // Caller saved registers.
+ s5.bit(); // Saved stack pointer.
+
+ // We also save ra, so the count here is one higher than the mask indicates.
+ const int32_t kNumSavedRegs = kNumJSCallerSaved + 2;
+
+ // Save all caller-save registers as this may be called from anywhere.
+ __ MultiPush(kSavedRegs | ra.bit());
+
+ // Compute the function's address for the first argument.
+ __ Dsubu(a0, ra, Operand(kReturnAddressDistanceFromFunctionStart));
+
+ // The caller's return address is above the saved temporaries.
+ // Grab that for the second argument to the hook.
+ __ Daddu(a1, sp, Operand(kNumSavedRegs * kPointerSize));
+
+ // Align the stack if necessary.
+ int frame_alignment = masm->ActivationFrameAlignment();
+ if (frame_alignment > kPointerSize) {
+ __ mov(s5, sp);
+ DCHECK(IsPowerOf2(frame_alignment));
+ __ And(sp, sp, Operand(-frame_alignment));
+ }
+
+ __ Dsubu(sp, sp, kCArgsSlotsSize);
+#if defined(V8_HOST_ARCH_MIPS) || defined(V8_HOST_ARCH_MIPS64)
+ int64_t entry_hook =
+ reinterpret_cast<int64_t>(isolate()->function_entry_hook());
+ __ li(t9, Operand(entry_hook));
+#else
+ // Under the simulator we need to indirect the entry hook through a
+ // trampoline function at a known address.
+ // It additionally takes an isolate as a third parameter.
+ __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
+
+ ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
+ __ li(t9, Operand(ExternalReference(&dispatcher,
+ ExternalReference::BUILTIN_CALL,
+ isolate())));
+#endif
+ // Call C function through t9 to conform ABI for PIC.
+ __ Call(t9);
+
+ // Restore the stack pointer if needed.
+ if (frame_alignment > kPointerSize) {
+ __ mov(sp, s5);
+ } else {
+ __ Daddu(sp, sp, kCArgsSlotsSize);
+ }
+
+ // Also pop ra to get Ret(0).
+ __ MultiPop(kSavedRegs | ra.bit());
+ __ Ret();
+}
+
+
+template<class T>
+static void CreateArrayDispatch(MacroAssembler* masm,
+ AllocationSiteOverrideMode mode) {
+ if (mode == DISABLE_ALLOCATION_SITES) {
+ T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
+ __ TailCallStub(&stub);
+ } else if (mode == DONT_OVERRIDE) {
+ int last_index = GetSequenceIndexFromFastElementsKind(
+ TERMINAL_FAST_ELEMENTS_KIND);
+ for (int i = 0; i <= last_index; ++i) {
+ ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
+ T stub(masm->isolate(), kind);
+ __ TailCallStub(&stub, eq, a3, Operand(kind));
+ }
+
+ // If we reached this point there is a problem.
+ __ Abort(kUnexpectedElementsKindInArrayConstructor);
+ } else {
+ UNREACHABLE();
+ }
+}
+
+
+static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
+ AllocationSiteOverrideMode mode) {
+ // a2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
+ // a3 - kind (if mode != DISABLE_ALLOCATION_SITES)
+ // a0 - number of arguments
+ // a1 - constructor?
+ // sp[0] - last argument
+ Label normal_sequence;
+ if (mode == DONT_OVERRIDE) {
+ DCHECK(FAST_SMI_ELEMENTS == 0);
+ DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
+ DCHECK(FAST_ELEMENTS == 2);
+ DCHECK(FAST_HOLEY_ELEMENTS == 3);
+ DCHECK(FAST_DOUBLE_ELEMENTS == 4);
+ DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
+
+ // is the low bit set? If so, we are holey and that is good.
+ __ And(at, a3, Operand(1));
+ __ Branch(&normal_sequence, ne, at, Operand(zero_reg));
+ }
+ // look at the first argument
+ __ ld(a5, MemOperand(sp, 0));
+ __ Branch(&normal_sequence, eq, a5, Operand(zero_reg));
+
+ if (mode == DISABLE_ALLOCATION_SITES) {
+ ElementsKind initial = GetInitialFastElementsKind();
+ ElementsKind holey_initial = GetHoleyElementsKind(initial);
+
+ ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
+ holey_initial,
+ DISABLE_ALLOCATION_SITES);
+ __ TailCallStub(&stub_holey);
+
+ __ bind(&normal_sequence);
+ ArraySingleArgumentConstructorStub stub(masm->isolate(),
+ initial,
+ DISABLE_ALLOCATION_SITES);
+ __ TailCallStub(&stub);
+ } else if (mode == DONT_OVERRIDE) {
+ // We are going to create a holey array, but our kind is non-holey.
+ // Fix kind and retry (only if we have an allocation site in the slot).
+ __ Daddu(a3, a3, Operand(1));
+
+ if (FLAG_debug_code) {
+ __ ld(a5, FieldMemOperand(a2, 0));
+ __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
+ __ Assert(eq, kExpectedAllocationSite, a5, Operand(at));
+ }
+
+ // Save the resulting elements kind in type info. We can't just store a3
+ // in the AllocationSite::transition_info field because elements kind is
+ // restricted to a portion of the field...upper bits need to be left alone.
+ STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
+ __ ld(a4, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
+ __ Daddu(a4, a4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
+ __ sd(a4, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
+
+
+ __ bind(&normal_sequence);
+ int last_index = GetSequenceIndexFromFastElementsKind(
+ TERMINAL_FAST_ELEMENTS_KIND);
+ for (int i = 0; i <= last_index; ++i) {
+ ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
+ ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
+ __ TailCallStub(&stub, eq, a3, Operand(kind));
+ }
+
+ // If we reached this point there is a problem.
+ __ Abort(kUnexpectedElementsKindInArrayConstructor);
+ } else {
+ UNREACHABLE();
+ }
+}
+
+
+template<class T>
+static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
+ int to_index = GetSequenceIndexFromFastElementsKind(
+ TERMINAL_FAST_ELEMENTS_KIND);
+ for (int i = 0; i <= to_index; ++i) {
+ ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
+ T stub(isolate, kind);
+ stub.GetCode();
+ if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
+ T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
+ stub1.GetCode();
+ }
+ }
+}
+
+
+void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
+ ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
+ isolate);
+ ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
+ isolate);
+ ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
+ isolate);
+}
+
+
+void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
+ Isolate* isolate) {
+ ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
+ for (int i = 0; i < 2; i++) {
+ // For internal arrays we only need a few things.
+ InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
+ stubh1.GetCode();
+ InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
+ stubh2.GetCode();
+ InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
+ stubh3.GetCode();
+ }
+}
+
+
+void ArrayConstructorStub::GenerateDispatchToArrayStub(
+ MacroAssembler* masm,
+ AllocationSiteOverrideMode mode) {
+ if (argument_count_ == ANY) {
+ Label not_zero_case, not_one_case;
+ __ And(at, a0, a0);
+ __ Branch(&not_zero_case, ne, at, Operand(zero_reg));
+ CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
+
+ __ bind(&not_zero_case);
+ __ Branch(&not_one_case, gt, a0, Operand(1));
+ CreateArrayDispatchOneArgument(masm, mode);
+
+ __ bind(&not_one_case);
+ CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
+ } else if (argument_count_ == NONE) {
+ CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
+ } else if (argument_count_ == ONE) {
+ CreateArrayDispatchOneArgument(masm, mode);
+ } else if (argument_count_ == MORE_THAN_ONE) {
+ CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
+ } else {
+ UNREACHABLE();
+ }
+}
+
+
+void ArrayConstructorStub::Generate(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- a0 : argc (only if argument_count_ == ANY)
+ // -- a1 : constructor
+ // -- a2 : AllocationSite or undefined
+ // -- sp[0] : return address
+ // -- sp[4] : last argument
+ // -----------------------------------
+
+ if (FLAG_debug_code) {
+ // The array construct code is only set for the global and natives
+ // builtin Array functions which always have maps.
+
+ // Initial map for the builtin Array function should be a map.
+ __ ld(a4, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
+ // Will both indicate a NULL and a Smi.
+ __ SmiTst(a4, at);
+ __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
+ at, Operand(zero_reg));
+ __ GetObjectType(a4, a4, a5);
+ __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
+ a5, Operand(MAP_TYPE));
+
+ // We should either have undefined in a2 or a valid AllocationSite
+ __ AssertUndefinedOrAllocationSite(a2, a4);
+ }
+
+ Label no_info;
+ // Get the elements kind and case on that.
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+ __ Branch(&no_info, eq, a2, Operand(at));
+
+ __ ld(a3, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
+ __ SmiUntag(a3);
+ STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
+ __ And(a3, a3, Operand(AllocationSite::ElementsKindBits::kMask));
+ GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
+
+ __ bind(&no_info);
+ GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
+}
+
+
+void InternalArrayConstructorStub::GenerateCase(
+ MacroAssembler* masm, ElementsKind kind) {
+
+ InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
+ __ TailCallStub(&stub0, lo, a0, Operand(1));
+
+ InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
+ __ TailCallStub(&stubN, hi, a0, Operand(1));
+
+ if (IsFastPackedElementsKind(kind)) {
+ // We might need to create a holey array
+ // look at the first argument.
+ __ ld(at, MemOperand(sp, 0));
+
+ InternalArraySingleArgumentConstructorStub
+ stub1_holey(isolate(), GetHoleyElementsKind(kind));
+ __ TailCallStub(&stub1_holey, ne, at, Operand(zero_reg));
+ }
+
+ InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
+ __ TailCallStub(&stub1);
+}
+
+
+void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- a0 : argc
+ // -- a1 : constructor
+ // -- sp[0] : return address
+ // -- sp[4] : last argument
+ // -----------------------------------
+
+ if (FLAG_debug_code) {
+ // The array construct code is only set for the global and natives
+ // builtin Array functions which always have maps.
+
+ // Initial map for the builtin Array function should be a map.
+ __ ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
+ // Will both indicate a NULL and a Smi.
+ __ SmiTst(a3, at);
+ __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
+ at, Operand(zero_reg));
+ __ GetObjectType(a3, a3, a4);
+ __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
+ a4, Operand(MAP_TYPE));
+ }
+
+ // Figure out the right elements kind.
+ __ ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
+
+ // Load the map's "bit field 2" into a3. We only need the first byte,
+ // but the following bit field extraction takes care of that anyway.
+ __ lbu(a3, FieldMemOperand(a3, Map::kBitField2Offset));
+ // Retrieve elements_kind from bit field 2.
+ __ DecodeField<Map::ElementsKindBits>(a3);
+
+ if (FLAG_debug_code) {
+ Label done;
+ __ Branch(&done, eq, a3, Operand(FAST_ELEMENTS));
+ __ Assert(
+ eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray,
+ a3, Operand(FAST_HOLEY_ELEMENTS));
+ __ bind(&done);
+ }
+
+ Label fast_elements_case;
+ __ Branch(&fast_elements_case, eq, a3, Operand(FAST_ELEMENTS));
+ GenerateCase(masm, FAST_HOLEY_ELEMENTS);
+
+ __ bind(&fast_elements_case);
+ GenerateCase(masm, FAST_ELEMENTS);
+}
+
+
+void CallApiFunctionStub::Generate(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- a0 : callee
+ // -- a4 : call_data
+ // -- a2 : holder
+ // -- a1 : api_function_address
+ // -- cp : context
+ // --
+ // -- sp[0] : last argument
+ // -- ...
+ // -- sp[(argc - 1)* 4] : first argument
+ // -- sp[argc * 4] : receiver
+ // -----------------------------------
+
+ Register callee = a0;
+ Register call_data = a4;
+ Register holder = a2;
+ Register api_function_address = a1;
+ Register context = cp;
+
+ int argc = ArgumentBits::decode(bit_field_);
+ bool is_store = IsStoreBits::decode(bit_field_);
+ bool call_data_undefined = CallDataUndefinedBits::decode(bit_field_);
+
+ typedef FunctionCallbackArguments FCA;
+
+ STATIC_ASSERT(FCA::kContextSaveIndex == 6);
+ STATIC_ASSERT(FCA::kCalleeIndex == 5);
+ STATIC_ASSERT(FCA::kDataIndex == 4);
+ STATIC_ASSERT(FCA::kReturnValueOffset == 3);
+ STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
+ STATIC_ASSERT(FCA::kIsolateIndex == 1);
+ STATIC_ASSERT(FCA::kHolderIndex == 0);
+ STATIC_ASSERT(FCA::kArgsLength == 7);
+
+ // Save context, callee and call data.
+ __ Push(context, callee, call_data);
+ // Load context from callee.
+ __ ld(context, FieldMemOperand(callee, JSFunction::kContextOffset));
+
+ Register scratch = call_data;
+ if (!call_data_undefined) {
+ __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
+ }
+ // Push return value and default return value.
+ __ Push(scratch, scratch);
+ __ li(scratch,
+ Operand(ExternalReference::isolate_address(isolate())));
+ // Push isolate and holder.
+ __ Push(scratch, holder);
+
+ // Prepare arguments.
+ __ mov(scratch, sp);
+
+ // Allocate the v8::Arguments structure in the arguments' space since
+ // it's not controlled by GC.
+ const int kApiStackSpace = 4;
+
+ FrameScope frame_scope(masm, StackFrame::MANUAL);
+ __ EnterExitFrame(false, kApiStackSpace);
+
+ DCHECK(!api_function_address.is(a0) && !scratch.is(a0));
+ // a0 = FunctionCallbackInfo&
+ // Arguments is after the return address.
+ __ Daddu(a0, sp, Operand(1 * kPointerSize));
+ // FunctionCallbackInfo::implicit_args_
+ __ sd(scratch, MemOperand(a0, 0 * kPointerSize));
+ // FunctionCallbackInfo::values_
+ __ Daddu(at, scratch, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize));
+ __ sd(at, MemOperand(a0, 1 * kPointerSize));
+ // FunctionCallbackInfo::length_ = argc
+ __ li(at, Operand(argc));
+ __ sd(at, MemOperand(a0, 2 * kPointerSize));
+ // FunctionCallbackInfo::is_construct_call = 0
+ __ sd(zero_reg, MemOperand(a0, 3 * kPointerSize));
+
+ const int kStackUnwindSpace = argc + FCA::kArgsLength + 1;
+ ExternalReference thunk_ref =
+ ExternalReference::invoke_function_callback(isolate());
+
+ AllowExternalCallThatCantCauseGC scope(masm);
+ MemOperand context_restore_operand(
+ fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
+ // Stores return the first js argument.
+ int return_value_offset = 0;
+ if (is_store) {
+ return_value_offset = 2 + FCA::kArgsLength;
+ } else {
+ return_value_offset = 2 + FCA::kReturnValueOffset;
+ }
+ MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
+
+ __ CallApiFunctionAndReturn(api_function_address,
+ thunk_ref,
+ kStackUnwindSpace,
+ return_value_operand,
+ &context_restore_operand);
+}
+
+
+void CallApiGetterStub::Generate(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- sp[0] : name
+ // -- sp[4 - kArgsLength*4] : PropertyCallbackArguments object
+ // -- ...
+ // -- a2 : api_function_address
+ // -----------------------------------
+
+ Register api_function_address = a2;
+
+ __ mov(a0, sp); // a0 = Handle<Name>
+ __ Daddu(a1, a0, Operand(1 * kPointerSize)); // a1 = PCA
+
+ const int kApiStackSpace = 1;
+ FrameScope frame_scope(masm, StackFrame::MANUAL);
+ __ EnterExitFrame(false, kApiStackSpace);
+
+ // Create PropertyAccessorInfo instance on the stack above the exit frame with
+ // a1 (internal::Object** args_) as the data.
+ __ sd(a1, MemOperand(sp, 1 * kPointerSize));
+ __ Daddu(a1, sp, Operand(1 * kPointerSize)); // a1 = AccessorInfo&
+
+ const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
+
+ ExternalReference thunk_ref =
+ ExternalReference::invoke_accessor_getter_callback(isolate());
+ __ CallApiFunctionAndReturn(api_function_address,
+ thunk_ref,
+ kStackUnwindSpace,
+ MemOperand(fp, 6 * kPointerSize),
+ NULL);
+}
+
+
+#undef __
+
+} } // namespace v8::internal
+
+#endif // V8_TARGET_ARCH_MIPS64