summaryrefslogtreecommitdiff
path: root/deps/v8/src/ia32/codegen-ia32.cc
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/ia32/codegen-ia32.cc')
-rw-r--r--deps/v8/src/ia32/codegen-ia32.cc410
1 files changed, 318 insertions, 92 deletions
diff --git a/deps/v8/src/ia32/codegen-ia32.cc b/deps/v8/src/ia32/codegen-ia32.cc
index ba7785b2d..3c22defac 100644
--- a/deps/v8/src/ia32/codegen-ia32.cc
+++ b/deps/v8/src/ia32/codegen-ia32.cc
@@ -1038,7 +1038,11 @@ const char* GenericBinaryOpStub::GetName() {
}
-// Call the specialized stub for a binary operation.
+// Perform or call the specialized stub for a binary operation. Requires the
+// three registers left, right and dst to be distinct and spilled. This
+// deferred operation has up to three entry points: The main one calls the
+// runtime system. The second is for when the result is a non-Smi. The
+// third is for when at least one of the inputs is non-Smi and we have SSE2.
class DeferredInlineBinaryOperation: public DeferredCode {
public:
DeferredInlineBinaryOperation(Token::Value op,
@@ -1051,11 +1055,23 @@ class DeferredInlineBinaryOperation: public DeferredCode {
: op_(op), dst_(dst), left_(left), right_(right),
left_info_(left_info), right_info_(right_info), mode_(mode) {
set_comment("[ DeferredInlineBinaryOperation");
+ ASSERT(!left.is(right));
}
virtual void Generate();
+ // This stub makes explicit calls to SaveRegisters(), RestoreRegisters() and
+ // Exit().
+ virtual bool AutoSaveAndRestore() { return false; }
+
+ void JumpToAnswerOutOfRange(Condition cond);
+ void JumpToConstantRhs(Condition cond, Smi* smi_value);
+ Label* NonSmiInputLabel();
+
private:
+ void GenerateAnswerOutOfRange();
+ void GenerateNonSmiInput();
+
Token::Value op_;
Register dst_;
Register left_;
@@ -1063,15 +1079,42 @@ class DeferredInlineBinaryOperation: public DeferredCode {
TypeInfo left_info_;
TypeInfo right_info_;
OverwriteMode mode_;
+ Label answer_out_of_range_;
+ Label non_smi_input_;
+ Label constant_rhs_;
+ Smi* smi_value_;
};
+Label* DeferredInlineBinaryOperation::NonSmiInputLabel() {
+ if (Token::IsBitOp(op_) && CpuFeatures::IsSupported(SSE2)) {
+ return &non_smi_input_;
+ } else {
+ return entry_label();
+ }
+}
+
+
+void DeferredInlineBinaryOperation::JumpToAnswerOutOfRange(Condition cond) {
+ __ j(cond, &answer_out_of_range_);
+}
+
+
+void DeferredInlineBinaryOperation::JumpToConstantRhs(Condition cond,
+ Smi* smi_value) {
+ smi_value_ = smi_value;
+ __ j(cond, &constant_rhs_);
+}
+
+
void DeferredInlineBinaryOperation::Generate() {
- Label done;
- if (CpuFeatures::IsSupported(SSE2) && ((op_ == Token::ADD) ||
- (op_ ==Token::SUB) ||
- (op_ == Token::MUL) ||
- (op_ == Token::DIV))) {
+ // Registers are not saved implicitly for this stub, so we should not
+ // tread on the registers that were not passed to us.
+ if (CpuFeatures::IsSupported(SSE2) &&
+ ((op_ == Token::ADD) ||
+ (op_ == Token::SUB) ||
+ (op_ == Token::MUL) ||
+ (op_ == Token::DIV))) {
CpuFeatures::Scope use_sse2(SSE2);
Label call_runtime, after_alloc_failure;
Label left_smi, right_smi, load_right, do_op;
@@ -1131,7 +1174,6 @@ void DeferredInlineBinaryOperation::Generate() {
__ cvtsi2sd(xmm1, Operand(right_));
__ SmiTag(right_);
if (mode_ == OVERWRITE_RIGHT || mode_ == NO_OVERWRITE) {
- Label alloc_failure;
__ push(left_);
__ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure);
__ pop(left_);
@@ -1146,19 +1188,200 @@ void DeferredInlineBinaryOperation::Generate() {
default: UNREACHABLE();
}
__ movdbl(FieldOperand(dst_, HeapNumber::kValueOffset), xmm0);
- __ jmp(&done);
+ Exit();
+
__ bind(&after_alloc_failure);
__ pop(left_);
__ bind(&call_runtime);
}
+ // Register spilling is not done implicitly for this stub.
+ // We can't postpone it any more now though.
+ SaveRegisters();
+
GenericBinaryOpStub stub(op_,
mode_,
NO_SMI_CODE_IN_STUB,
TypeInfo::Combine(left_info_, right_info_));
stub.GenerateCall(masm_, left_, right_);
if (!dst_.is(eax)) __ mov(dst_, eax);
- __ bind(&done);
+ RestoreRegisters();
+ Exit();
+
+ if (non_smi_input_.is_linked() || constant_rhs_.is_linked()) {
+ GenerateNonSmiInput();
+ }
+ if (answer_out_of_range_.is_linked()) {
+ GenerateAnswerOutOfRange();
+ }
+}
+
+
+void DeferredInlineBinaryOperation::GenerateNonSmiInput() {
+ // We know at least one of the inputs was not a Smi.
+ // This is a third entry point into the deferred code.
+ // We may not overwrite left_ because we want to be able
+ // to call the handling code for non-smi answer and it
+ // might want to overwrite the heap number in left_.
+ ASSERT(!right_.is(dst_));
+ ASSERT(!left_.is(dst_));
+ ASSERT(!left_.is(right_));
+ // This entry point is used for bit ops where the right hand side
+ // is a constant Smi and the left hand side is a heap object. It
+ // is also used for bit ops where both sides are unknown, but where
+ // at least one of them is a heap object.
+ bool rhs_is_constant = constant_rhs_.is_linked();
+ // We can't generate code for both cases.
+ ASSERT(!non_smi_input_.is_linked() || !constant_rhs_.is_linked());
+
+ if (FLAG_debug_code) {
+ __ int3(); // We don't fall through into this code.
+ }
+
+ __ bind(&non_smi_input_);
+
+ if (rhs_is_constant) {
+ __ bind(&constant_rhs_);
+ // In this case the input is a heap object and it is in the dst_ register.
+ // The left_ and right_ registers have not been initialized yet.
+ __ mov(right_, Immediate(smi_value_));
+ __ mov(left_, Operand(dst_));
+ if (!CpuFeatures::IsSupported(SSE2)) {
+ __ jmp(entry_label());
+ return;
+ } else {
+ CpuFeatures::Scope use_sse2(SSE2);
+ __ JumpIfNotNumber(dst_, left_info_, entry_label());
+ __ ConvertToInt32(dst_, left_, dst_, left_info_, entry_label());
+ __ SmiUntag(right_);
+ }
+ } else {
+ // We know we have SSE2 here because otherwise the label is not linked (see
+ // NonSmiInputLabel).
+ CpuFeatures::Scope use_sse2(SSE2);
+ // Handle the non-constant right hand side situation:
+ if (left_info_.IsSmi()) {
+ // Right is a heap object.
+ __ JumpIfNotNumber(right_, right_info_, entry_label());
+ __ ConvertToInt32(right_, right_, dst_, left_info_, entry_label());
+ __ mov(dst_, Operand(left_));
+ __ SmiUntag(dst_);
+ } else if (right_info_.IsSmi()) {
+ // Left is a heap object.
+ __ JumpIfNotNumber(left_, left_info_, entry_label());
+ __ ConvertToInt32(dst_, left_, dst_, left_info_, entry_label());
+ __ SmiUntag(right_);
+ } else {
+ // Here we don't know if it's one or both that is a heap object.
+ Label only_right_is_heap_object, got_both;
+ __ mov(dst_, Operand(left_));
+ __ SmiUntag(dst_, &only_right_is_heap_object);
+ // Left was a heap object.
+ __ JumpIfNotNumber(left_, left_info_, entry_label());
+ __ ConvertToInt32(dst_, left_, dst_, left_info_, entry_label());
+ __ SmiUntag(right_, &got_both);
+ // Both were heap objects.
+ __ rcl(right_, 1); // Put tag back.
+ __ JumpIfNotNumber(right_, right_info_, entry_label());
+ __ ConvertToInt32(right_, right_, no_reg, left_info_, entry_label());
+ __ jmp(&got_both);
+ __ bind(&only_right_is_heap_object);
+ __ JumpIfNotNumber(right_, right_info_, entry_label());
+ __ ConvertToInt32(right_, right_, no_reg, left_info_, entry_label());
+ __ bind(&got_both);
+ }
+ }
+ ASSERT(op_ == Token::BIT_AND ||
+ op_ == Token::BIT_OR ||
+ op_ == Token::BIT_XOR ||
+ right_.is(ecx));
+ switch (op_) {
+ case Token::BIT_AND: __ and_(dst_, Operand(right_)); break;
+ case Token::BIT_OR: __ or_(dst_, Operand(right_)); break;
+ case Token::BIT_XOR: __ xor_(dst_, Operand(right_)); break;
+ case Token::SHR: __ shr_cl(dst_); break;
+ case Token::SAR: __ sar_cl(dst_); break;
+ case Token::SHL: __ shl_cl(dst_); break;
+ default: UNREACHABLE();
+ }
+ if (op_ == Token::SHR) {
+ // Check that the *unsigned* result fits in a smi. Neither of
+ // the two high-order bits can be set:
+ // * 0x80000000: high bit would be lost when smi tagging.
+ // * 0x40000000: this number would convert to negative when smi
+ // tagging.
+ __ test(dst_, Immediate(0xc0000000));
+ __ j(not_zero, &answer_out_of_range_);
+ } else {
+ // Check that the *signed* result fits in a smi.
+ __ cmp(dst_, 0xc0000000);
+ __ j(negative, &answer_out_of_range_);
+ }
+ __ SmiTag(dst_);
+ Exit();
+}
+
+
+void DeferredInlineBinaryOperation::GenerateAnswerOutOfRange() {
+ Label after_alloc_failure2;
+ Label allocation_ok;
+ __ bind(&after_alloc_failure2);
+ // We have to allocate a number, causing a GC, while keeping hold of
+ // the answer in dst_. The answer is not a Smi. We can't just call the
+ // runtime shift function here because we already threw away the inputs.
+ __ xor_(left_, Operand(left_));
+ __ shl(dst_, 1); // Put top bit in carry flag and Smi tag the low bits.
+ __ rcr(left_, 1); // Rotate with carry.
+ __ push(dst_); // Smi tagged low 31 bits.
+ __ push(left_); // 0 or 0x80000000, which is Smi tagged in both cases.
+ __ CallRuntime(Runtime::kNumberAlloc, 0);
+ if (!left_.is(eax)) {
+ __ mov(left_, eax);
+ }
+ __ pop(right_); // High bit.
+ __ pop(dst_); // Low 31 bits.
+ __ shr(dst_, 1); // Put 0 in top bit.
+ __ or_(dst_, Operand(right_));
+ __ jmp(&allocation_ok);
+
+ // This is the second entry point to the deferred code. It is used only by
+ // the bit operations.
+ // The dst_ register has the answer. It is not Smi tagged. If mode_ is
+ // OVERWRITE_LEFT then left_ must contain either an overwritable heap number
+ // or a Smi.
+ // Put a heap number pointer in left_.
+ __ bind(&answer_out_of_range_);
+ SaveRegisters();
+ if (mode_ == OVERWRITE_LEFT) {
+ __ test(left_, Immediate(kSmiTagMask));
+ __ j(not_zero, &allocation_ok);
+ }
+ // This trashes right_.
+ __ AllocateHeapNumber(left_, right_, no_reg, &after_alloc_failure2);
+ __ bind(&allocation_ok);
+ if (CpuFeatures::IsSupported(SSE2) && op_ != Token::SHR) {
+ CpuFeatures::Scope use_sse2(SSE2);
+ ASSERT(Token::IsBitOp(op_));
+ // Signed conversion.
+ __ cvtsi2sd(xmm0, Operand(dst_));
+ __ movdbl(FieldOperand(left_, HeapNumber::kValueOffset), xmm0);
+ } else {
+ if (op_ == Token::SHR) {
+ __ push(Immediate(0)); // High word of unsigned value.
+ __ push(dst_);
+ __ fild_d(Operand(esp, 0));
+ __ Drop(2);
+ } else {
+ ASSERT(Token::IsBitOp(op_));
+ __ push(dst_);
+ __ fild_s(Operand(esp, 0)); // Signed conversion.
+ __ pop(dst_);
+ }
+ __ fstp_d(FieldOperand(left_, HeapNumber::kValueOffset));
+ }
+ __ mov(dst_, left_);
+ RestoreRegisters();
+ Exit();
}
@@ -1499,10 +1722,25 @@ void CodeGenerator::JumpIfNotBothSmiUsingTypeInfo(Register left,
TypeInfo left_info,
TypeInfo right_info,
DeferredCode* deferred) {
+ JumpIfNotBothSmiUsingTypeInfo(left,
+ right,
+ scratch,
+ left_info,
+ right_info,
+ deferred->entry_label());
+}
+
+
+void CodeGenerator::JumpIfNotBothSmiUsingTypeInfo(Register left,
+ Register right,
+ Register scratch,
+ TypeInfo left_info,
+ TypeInfo right_info,
+ Label* on_not_smi) {
if (left.is(right)) {
if (!left_info.IsSmi()) {
__ test(left, Immediate(kSmiTagMask));
- deferred->Branch(not_zero);
+ __ j(not_zero, on_not_smi);
} else {
if (FLAG_debug_code) __ AbortIfNotSmi(left);
}
@@ -1511,17 +1749,17 @@ void CodeGenerator::JumpIfNotBothSmiUsingTypeInfo(Register left,
__ mov(scratch, left);
__ or_(scratch, Operand(right));
__ test(scratch, Immediate(kSmiTagMask));
- deferred->Branch(not_zero);
+ __ j(not_zero, on_not_smi);
} else {
__ test(left, Immediate(kSmiTagMask));
- deferred->Branch(not_zero);
+ __ j(not_zero, on_not_smi);
if (FLAG_debug_code) __ AbortIfNotSmi(right);
}
} else {
if (FLAG_debug_code) __ AbortIfNotSmi(left);
if (!right_info.IsSmi()) {
__ test(right, Immediate(kSmiTagMask));
- deferred->Branch(not_zero);
+ __ j(not_zero, on_not_smi);
} else {
if (FLAG_debug_code) __ AbortIfNotSmi(right);
}
@@ -1606,13 +1844,16 @@ Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr,
right->ToRegister();
frame_->Spill(eax);
frame_->Spill(edx);
+ // DeferredInlineBinaryOperation requires all the registers that it is
+ // told about to be spilled and distinct.
+ Result distinct_right = frame_->MakeDistinctAndSpilled(left, right);
// Check that left and right are smi tagged.
DeferredInlineBinaryOperation* deferred =
new DeferredInlineBinaryOperation(op,
(op == Token::DIV) ? eax : edx,
left->reg(),
- right->reg(),
+ distinct_right.reg(),
left_type_info,
right_type_info,
overwrite_mode);
@@ -1695,15 +1936,23 @@ Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr,
left->ToRegister();
ASSERT(left->is_register() && !left->reg().is(ecx));
ASSERT(right->is_register() && right->reg().is(ecx));
+ if (left_type_info.IsSmi()) {
+ if (FLAG_debug_code) __ AbortIfNotSmi(left->reg());
+ }
+ if (right_type_info.IsSmi()) {
+ if (FLAG_debug_code) __ AbortIfNotSmi(right->reg());
+ }
// We will modify right, it must be spilled.
frame_->Spill(ecx);
+ // DeferredInlineBinaryOperation requires all the registers that it is told
+ // about to be spilled and distinct. We know that right is ecx and left is
+ // not ecx.
+ frame_->Spill(left->reg());
// Use a fresh answer register to avoid spilling the left operand.
answer = allocator_->Allocate();
ASSERT(answer.is_valid());
- // Check that both operands are smis using the answer register as a
- // temporary.
DeferredInlineBinaryOperation* deferred =
new DeferredInlineBinaryOperation(op,
answer.reg(),
@@ -1712,55 +1961,28 @@ Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr,
left_type_info,
right_type_info,
overwrite_mode);
+ JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), answer.reg(),
+ left_type_info, right_type_info,
+ deferred->NonSmiInputLabel());
- Label do_op, left_nonsmi;
- // If right is a smi we make a fast case if left is either a smi
- // or a heapnumber.
- if (CpuFeatures::IsSupported(SSE2) && right_type_info.IsSmi()) {
- CpuFeatures::Scope use_sse2(SSE2);
- __ mov(answer.reg(), left->reg());
- // Fast case - both are actually smis.
- if (!left_type_info.IsSmi()) {
- __ test(answer.reg(), Immediate(kSmiTagMask));
- __ j(not_zero, &left_nonsmi);
- } else {
- if (FLAG_debug_code) __ AbortIfNotSmi(left->reg());
- }
- if (FLAG_debug_code) __ AbortIfNotSmi(right->reg());
- __ SmiUntag(answer.reg());
- __ jmp(&do_op);
+ // Untag both operands.
+ __ mov(answer.reg(), left->reg());
+ __ SmiUntag(answer.reg());
+ __ SmiUntag(right->reg()); // Right is ecx.
- __ bind(&left_nonsmi);
- // Branch if not a heapnumber.
- __ cmp(FieldOperand(answer.reg(), HeapObject::kMapOffset),
- Factory::heap_number_map());
- deferred->Branch(not_equal);
-
- // Load integer value into answer register using truncation.
- __ cvttsd2si(answer.reg(),
- FieldOperand(answer.reg(), HeapNumber::kValueOffset));
- // Branch if we do not fit in a smi.
- __ cmp(answer.reg(), 0xc0000000);
- deferred->Branch(negative);
- } else {
- JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), answer.reg(),
- left_type_info, right_type_info, deferred);
-
- // Untag both operands.
- __ mov(answer.reg(), left->reg());
- __ SmiUntag(answer.reg());
- }
-
- __ bind(&do_op);
- __ SmiUntag(ecx);
// Perform the operation.
+ ASSERT(right->reg().is(ecx));
switch (op) {
- case Token::SAR:
+ case Token::SAR: {
__ sar_cl(answer.reg());
- // No checks of result necessary
+ if (!left_type_info.IsSmi()) {
+ // Check that the *signed* result fits in a smi.
+ __ cmp(answer.reg(), 0xc0000000);
+ deferred->JumpToAnswerOutOfRange(negative);
+ }
break;
+ }
case Token::SHR: {
- Label result_ok;
__ shr_cl(answer.reg());
// Check that the *unsigned* result fits in a smi. Neither of
// the two high-order bits can be set:
@@ -1773,21 +1995,14 @@ Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr,
// case. The low bit of the left argument may be lost, but only
// in a case where it is dropped anyway.
__ test(answer.reg(), Immediate(0xc0000000));
- __ j(zero, &result_ok);
- __ SmiTag(ecx);
- deferred->Jump();
- __ bind(&result_ok);
+ deferred->JumpToAnswerOutOfRange(not_zero);
break;
}
case Token::SHL: {
- Label result_ok;
__ shl_cl(answer.reg());
// Check that the *signed* result fits in a smi.
__ cmp(answer.reg(), 0xc0000000);
- __ j(positive, &result_ok);
- __ SmiTag(ecx);
- deferred->Jump();
- __ bind(&result_ok);
+ deferred->JumpToAnswerOutOfRange(negative);
break;
}
default:
@@ -1805,6 +2020,9 @@ Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr,
// Handle the other binary operations.
left->ToRegister();
right->ToRegister();
+ // DeferredInlineBinaryOperation requires all the registers that it is told
+ // about to be spilled.
+ Result distinct_right = frame_->MakeDistinctAndSpilled(left, right);
// A newly allocated register answer is used to hold the answer. The
// registers containing left and right are not modified so they don't
// need to be spilled in the fast case.
@@ -1816,12 +2034,16 @@ Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr,
new DeferredInlineBinaryOperation(op,
answer.reg(),
left->reg(),
- right->reg(),
+ distinct_right.reg(),
left_type_info,
right_type_info,
overwrite_mode);
- JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), answer.reg(),
- left_type_info, right_type_info, deferred);
+ Label non_smi_bit_op;
+ if (op != Token::BIT_OR) {
+ JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), answer.reg(),
+ left_type_info, right_type_info,
+ deferred->NonSmiInputLabel());
+ }
__ mov(answer.reg(), left->reg());
switch (op) {
@@ -1864,6 +2086,8 @@ Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr,
case Token::BIT_OR:
__ or_(answer.reg(), Operand(right->reg()));
+ __ test(answer.reg(), Immediate(kSmiTagMask));
+ __ j(not_zero, deferred->NonSmiInputLabel());
break;
case Token::BIT_AND:
@@ -1878,6 +2102,7 @@ Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr,
UNREACHABLE();
break;
}
+
deferred->BindExit();
left->Unuse();
right->Unuse();
@@ -2363,27 +2588,25 @@ Result CodeGenerator::ConstantSmiBinaryOperation(BinaryOperation* expr,
case Token::BIT_XOR:
case Token::BIT_AND: {
operand->ToRegister();
+ // DeferredInlineBinaryOperation requires all the registers that it is
+ // told about to be spilled.
frame_->Spill(operand->reg());
- DeferredCode* deferred = NULL;
- if (reversed) {
- deferred =
- new DeferredInlineSmiOperationReversed(op,
- operand->reg(),
- smi_value,
- operand->reg(),
- operand->type_info(),
- overwrite_mode);
- } else {
- deferred = new DeferredInlineSmiOperation(op,
- operand->reg(),
- operand->reg(),
- operand->type_info(),
- smi_value,
- overwrite_mode);
- }
+ DeferredInlineBinaryOperation* deferred = NULL;
if (!operand->type_info().IsSmi()) {
+ Result left = allocator()->Allocate();
+ ASSERT(left.is_valid());
+ Result right = allocator()->Allocate();
+ ASSERT(right.is_valid());
+ deferred = new DeferredInlineBinaryOperation(
+ op,
+ operand->reg(),
+ left.reg(),
+ right.reg(),
+ operand->type_info(),
+ TypeInfo::Smi(),
+ overwrite_mode == NO_OVERWRITE ? NO_OVERWRITE : OVERWRITE_LEFT);
__ test(operand->reg(), Immediate(kSmiTagMask));
- deferred->Branch(not_zero);
+ deferred->JumpToConstantRhs(not_zero, smi_value);
} else if (FLAG_debug_code) {
__ AbortIfNotSmi(operand->reg());
}
@@ -2399,7 +2622,7 @@ Result CodeGenerator::ConstantSmiBinaryOperation(BinaryOperation* expr,
__ or_(Operand(operand->reg()), Immediate(value));
}
}
- deferred->BindExit();
+ if (deferred != NULL) deferred->BindExit();
answer = *operand;
break;
}
@@ -3212,10 +3435,8 @@ void CodeGenerator::CallApplyLazy(Expression* applicand,
__ j(zero, &build_args);
__ CmpObjectType(eax, JS_FUNCTION_TYPE, ecx);
__ j(not_equal, &build_args);
- __ mov(ecx, FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset));
Handle<Code> apply_code(Builtins::builtin(Builtins::FunctionApply));
- __ cmp(FieldOperand(ecx, SharedFunctionInfo::kCodeOffset),
- Immediate(apply_code));
+ __ cmp(FieldOperand(eax, JSFunction::kCodeOffset), Immediate(apply_code));
__ j(not_equal, &build_args);
// Check that applicand is a function.
@@ -9467,6 +9688,11 @@ void FastNewClosureStub::Generate(MacroAssembler* masm) {
__ mov(FieldOperand(eax, JSFunction::kContextOffset), esi);
__ mov(FieldOperand(eax, JSFunction::kLiteralsOffset), ebx);
+ // Initialize the code pointer in the function to be the one
+ // found in the shared function info object.
+ __ mov(edx, FieldOperand(edx, SharedFunctionInfo::kCodeOffset));
+ __ mov(FieldOperand(eax, JSFunction::kCodeOffset), edx);
+
// Return and remove the on-stack parameter.
__ ret(1 * kPointerSize);