diff options
Diffstat (limited to 'deps/v8/src/ia32/codegen-ia32.cc')
-rw-r--r-- | deps/v8/src/ia32/codegen-ia32.cc | 10115 |
1 files changed, 13 insertions, 10102 deletions
diff --git a/deps/v8/src/ia32/codegen-ia32.cc b/deps/v8/src/ia32/codegen-ia32.cc index 3a2753d27..572c36c88 100644 --- a/deps/v8/src/ia32/codegen-ia32.cc +++ b/deps/v8/src/ia32/codegen-ia32.cc @@ -1,4 +1,4 @@ -// Copyright 2010 the V8 project authors. All rights reserved. +// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: @@ -29,81 +29,15 @@ #if defined(V8_TARGET_ARCH_IA32) -#include "codegen-inl.h" -#include "bootstrapper.h" -#include "code-stubs.h" -#include "compiler.h" -#include "debug.h" -#include "ic-inl.h" -#include "parser.h" -#include "regexp-macro-assembler.h" -#include "register-allocator-inl.h" -#include "scopes.h" -#include "virtual-frame-inl.h" +#include "codegen.h" namespace v8 { namespace internal { -#define __ ACCESS_MASM(masm) - -// ------------------------------------------------------------------------- -// Platform-specific FrameRegisterState functions. - -void FrameRegisterState::Save(MacroAssembler* masm) const { - for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) { - int action = registers_[i]; - if (action == kPush) { - __ push(RegisterAllocator::ToRegister(i)); - } else if (action != kIgnore && (action & kSyncedFlag) == 0) { - __ mov(Operand(ebp, action), RegisterAllocator::ToRegister(i)); - } - } -} - - -void FrameRegisterState::Restore(MacroAssembler* masm) const { - // Restore registers in reverse order due to the stack. - for (int i = RegisterAllocator::kNumRegisters - 1; i >= 0; i--) { - int action = registers_[i]; - if (action == kPush) { - __ pop(RegisterAllocator::ToRegister(i)); - } else if (action != kIgnore) { - action &= ~kSyncedFlag; - __ mov(RegisterAllocator::ToRegister(i), Operand(ebp, action)); - } - } -} - - -#undef __ -#define __ ACCESS_MASM(masm_) - -// ------------------------------------------------------------------------- -// Platform-specific DeferredCode functions. - -void DeferredCode::SaveRegisters() { - frame_state_.Save(masm_); -} - - -void DeferredCode::RestoreRegisters() { - frame_state_.Restore(masm_); -} - // ------------------------------------------------------------------------- // Platform-specific RuntimeCallHelper functions. -void VirtualFrameRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { - frame_state_->Save(masm); -} - - -void VirtualFrameRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { - frame_state_->Restore(masm); -} - - void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { masm->EnterInternalFrame(); } @@ -114,10036 +48,21 @@ void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { } -// ------------------------------------------------------------------------- -// CodeGenState implementation. - -CodeGenState::CodeGenState(CodeGenerator* owner) - : owner_(owner), - destination_(NULL), - previous_(NULL) { - owner_->set_state(this); -} - - -CodeGenState::CodeGenState(CodeGenerator* owner, - ControlDestination* destination) - : owner_(owner), - destination_(destination), - previous_(owner->state()) { - owner_->set_state(this); -} - - -CodeGenState::~CodeGenState() { - ASSERT(owner_->state() == this); - owner_->set_state(previous_); -} - -// ------------------------------------------------------------------------- -// CodeGenerator implementation. - -CodeGenerator::CodeGenerator(MacroAssembler* masm) - : deferred_(8), - masm_(masm), - info_(NULL), - frame_(NULL), - allocator_(NULL), - state_(NULL), - loop_nesting_(0), - in_safe_int32_mode_(false), - safe_int32_mode_enabled_(true), - function_return_is_shadowed_(false), - in_spilled_code_(false), - jit_cookie_((FLAG_mask_constants_with_cookie) ? V8::RandomPrivate() : 0) { -} - - -// Calling conventions: -// ebp: caller's frame pointer -// esp: stack pointer -// edi: called JS function -// esi: callee's context - -void CodeGenerator::Generate(CompilationInfo* info) { - // Record the position for debugging purposes. - CodeForFunctionPosition(info->function()); - Comment cmnt(masm_, "[ function compiled by virtual frame code generator"); - - // Initialize state. - info_ = info; - ASSERT(allocator_ == NULL); - RegisterAllocator register_allocator(this); - allocator_ = ®ister_allocator; - ASSERT(frame_ == NULL); - frame_ = new VirtualFrame(); - set_in_spilled_code(false); - - // Adjust for function-level loop nesting. - ASSERT_EQ(0, loop_nesting_); - loop_nesting_ = info->is_in_loop() ? 1 : 0; - - JumpTarget::set_compiling_deferred_code(false); - - { - CodeGenState state(this); - - // Entry: - // Stack: receiver, arguments, return address. - // ebp: caller's frame pointer - // esp: stack pointer - // edi: called JS function - // esi: callee's context - allocator_->Initialize(); - -#ifdef DEBUG - if (strlen(FLAG_stop_at) > 0 && - info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { - frame_->SpillAll(); - __ int3(); - } -#endif - - frame_->Enter(); - - // Allocate space for locals and initialize them. - frame_->AllocateStackSlots(); - - // Allocate the local context if needed. - int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; - if (heap_slots > 0) { - Comment cmnt(masm_, "[ allocate local context"); - // Allocate local context. - // Get outer context and create a new context based on it. - frame_->PushFunction(); - Result context; - if (heap_slots <= FastNewContextStub::kMaximumSlots) { - FastNewContextStub stub(heap_slots); - context = frame_->CallStub(&stub, 1); - } else { - context = frame_->CallRuntime(Runtime::kNewContext, 1); - } - - // Update context local. - frame_->SaveContextRegister(); - - // Verify that the runtime call result and esi agree. - if (FLAG_debug_code) { - __ cmp(context.reg(), Operand(esi)); - __ Assert(equal, "Runtime::NewContext should end up in esi"); - } - } - - // TODO(1241774): Improve this code: - // 1) only needed if we have a context - // 2) no need to recompute context ptr every single time - // 3) don't copy parameter operand code from SlotOperand! - { - Comment cmnt2(masm_, "[ copy context parameters into .context"); - // Note that iteration order is relevant here! If we have the same - // parameter twice (e.g., function (x, y, x)), and that parameter - // needs to be copied into the context, it must be the last argument - // passed to the parameter that needs to be copied. This is a rare - // case so we don't check for it, instead we rely on the copying - // order: such a parameter is copied repeatedly into the same - // context location and thus the last value is what is seen inside - // the function. - for (int i = 0; i < scope()->num_parameters(); i++) { - Variable* par = scope()->parameter(i); - Slot* slot = par->AsSlot(); - if (slot != NULL && slot->type() == Slot::CONTEXT) { - // The use of SlotOperand below is safe in unspilled code - // because the slot is guaranteed to be a context slot. - // - // There are no parameters in the global scope. - ASSERT(!scope()->is_global_scope()); - frame_->PushParameterAt(i); - Result value = frame_->Pop(); - value.ToRegister(); - - // SlotOperand loads context.reg() with the context object - // stored to, used below in RecordWrite. - Result context = allocator_->Allocate(); - ASSERT(context.is_valid()); - __ mov(SlotOperand(slot, context.reg()), value.reg()); - int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; - Result scratch = allocator_->Allocate(); - ASSERT(scratch.is_valid()); - frame_->Spill(context.reg()); - frame_->Spill(value.reg()); - __ RecordWrite(context.reg(), offset, value.reg(), scratch.reg()); - } - } - } - - // Store the arguments object. This must happen after context - // initialization because the arguments object may be stored in - // the context. - if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) { - StoreArgumentsObject(true); - } - - // Initialize ThisFunction reference if present. - if (scope()->is_function_scope() && scope()->function() != NULL) { - frame_->Push(Factory::the_hole_value()); - StoreToSlot(scope()->function()->AsSlot(), NOT_CONST_INIT); - } - - - // Initialize the function return target after the locals are set - // up, because it needs the expected frame height from the frame. - function_return_.set_direction(JumpTarget::BIDIRECTIONAL); - function_return_is_shadowed_ = false; - - // Generate code to 'execute' declarations and initialize functions - // (source elements). In case of an illegal redeclaration we need to - // handle that instead of processing the declarations. - if (scope()->HasIllegalRedeclaration()) { - Comment cmnt(masm_, "[ illegal redeclarations"); - scope()->VisitIllegalRedeclaration(this); - } else { - Comment cmnt(masm_, "[ declarations"); - ProcessDeclarations(scope()->declarations()); - // Bail out if a stack-overflow exception occurred when processing - // declarations. - if (HasStackOverflow()) return; - } - - if (FLAG_trace) { - frame_->CallRuntime(Runtime::kTraceEnter, 0); - // Ignore the return value. - } - CheckStack(); - - // Compile the body of the function in a vanilla state. Don't - // bother compiling all the code if the scope has an illegal - // redeclaration. - if (!scope()->HasIllegalRedeclaration()) { - Comment cmnt(masm_, "[ function body"); -#ifdef DEBUG - bool is_builtin = Bootstrapper::IsActive(); - bool should_trace = - is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls; - if (should_trace) { - frame_->CallRuntime(Runtime::kDebugTrace, 0); - // Ignore the return value. - } -#endif - VisitStatements(info->function()->body()); - - // Handle the return from the function. - if (has_valid_frame()) { - // If there is a valid frame, control flow can fall off the end of - // the body. In that case there is an implicit return statement. - ASSERT(!function_return_is_shadowed_); - CodeForReturnPosition(info->function()); - frame_->PrepareForReturn(); - Result undefined(Factory::undefined_value()); - if (function_return_.is_bound()) { - function_return_.Jump(&undefined); - } else { - function_return_.Bind(&undefined); - GenerateReturnSequence(&undefined); - } - } else if (function_return_.is_linked()) { - // If the return target has dangling jumps to it, then we have not - // yet generated the return sequence. This can happen when (a) - // control does not flow off the end of the body so we did not - // compile an artificial return statement just above, and (b) there - // are return statements in the body but (c) they are all shadowed. - Result return_value; - function_return_.Bind(&return_value); - GenerateReturnSequence(&return_value); - } - } - } - - // Adjust for function-level loop nesting. - ASSERT_EQ(loop_nesting_, info->is_in_loop() ? 1 : 0); - loop_nesting_ = 0; - - // Code generation state must be reset. - ASSERT(state_ == NULL); - ASSERT(!function_return_is_shadowed_); - function_return_.Unuse(); - DeleteFrame(); - - // Process any deferred code using the register allocator. - if (!HasStackOverflow()) { - JumpTarget::set_compiling_deferred_code(true); - ProcessDeferred(); - JumpTarget::set_compiling_deferred_code(false); - } - - // There is no need to delete the register allocator, it is a - // stack-allocated local. - allocator_ = NULL; -} - - -Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) { - // Currently, this assertion will fail if we try to assign to - // a constant variable that is constant because it is read-only - // (such as the variable referring to a named function expression). - // We need to implement assignments to read-only variables. - // Ideally, we should do this during AST generation (by converting - // such assignments into expression statements); however, in general - // we may not be able to make the decision until past AST generation, - // that is when the entire program is known. - ASSERT(slot != NULL); - int index = slot->index(); - switch (slot->type()) { - case Slot::PARAMETER: - return frame_->ParameterAt(index); - - case Slot::LOCAL: - return frame_->LocalAt(index); - - case Slot::CONTEXT: { - // Follow the context chain if necessary. - ASSERT(!tmp.is(esi)); // do not overwrite context register - Register context = esi; - int chain_length = scope()->ContextChainLength(slot->var()->scope()); - for (int i = 0; i < chain_length; i++) { - // Load the closure. - // (All contexts, even 'with' contexts, have a closure, - // and it is the same for all contexts inside a function. - // There is no need to go to the function context first.) - __ mov(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); - // Load the function context (which is the incoming, outer context). - __ mov(tmp, FieldOperand(tmp, JSFunction::kContextOffset)); - context = tmp; - } - // We may have a 'with' context now. Get the function context. - // (In fact this mov may never be the needed, since the scope analysis - // may not permit a direct context access in this case and thus we are - // always at a function context. However it is safe to dereference be- - // cause the function context of a function context is itself. Before - // deleting this mov we should try to create a counter-example first, - // though...) - __ mov(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); - return ContextOperand(tmp, index); - } - - default: - UNREACHABLE(); - return Operand(eax); - } -} - - -Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot, - Result tmp, - JumpTarget* slow) { - ASSERT(slot->type() == Slot::CONTEXT); - ASSERT(tmp.is_register()); - Register context = esi; - - for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) { - if (s->num_heap_slots() > 0) { - if (s->calls_eval()) { - // Check that extension is NULL. - __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), - Immediate(0)); - slow->Branch(not_equal, not_taken); - } - __ mov(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX)); - __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); - context = tmp.reg(); - } - } - // Check that last extension is NULL. - __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); - slow->Branch(not_equal, not_taken); - __ mov(tmp.reg(), ContextOperand(context, Context::FCONTEXT_INDEX)); - return ContextOperand(tmp.reg(), slot->index()); -} - - -// Emit code to load the value of an expression to the top of the -// frame. If the expression is boolean-valued it may be compiled (or -// partially compiled) into control flow to the control destination. -// If force_control is true, control flow is forced. -void CodeGenerator::LoadCondition(Expression* expr, - ControlDestination* dest, - bool force_control) { - ASSERT(!in_spilled_code()); - int original_height = frame_->height(); - - { CodeGenState new_state(this, dest); - Visit(expr); - - // If we hit a stack overflow, we may not have actually visited - // the expression. In that case, we ensure that we have a - // valid-looking frame state because we will continue to generate - // code as we unwind the C++ stack. - // - // It's possible to have both a stack overflow and a valid frame - // state (eg, a subexpression overflowed, visiting it returned - // with a dummied frame state, and visiting this expression - // returned with a normal-looking state). - if (HasStackOverflow() && - !dest->is_used() && - frame_->height() == original_height) { - dest->Goto(true); - } - } - - if (force_control && !dest->is_used()) { - // Convert the TOS value into flow to the control destination. - ToBoolean(dest); - } - - ASSERT(!(force_control && !dest->is_used())); - ASSERT(dest->is_used() || frame_->height() == original_height + 1); -} - - -void CodeGenerator::LoadAndSpill(Expression* expression) { - ASSERT(in_spilled_code()); - set_in_spilled_code(false); - Load(expression); - frame_->SpillAll(); - set_in_spilled_code(true); -} - - -void CodeGenerator::LoadInSafeInt32Mode(Expression* expr, - BreakTarget* unsafe_bailout) { - set_unsafe_bailout(unsafe_bailout); - set_in_safe_int32_mode(true); - Load(expr); - Result value = frame_->Pop(); - ASSERT(frame_->HasNoUntaggedInt32Elements()); - if (expr->GuaranteedSmiResult()) { - ConvertInt32ResultToSmi(&value); - } else { - ConvertInt32ResultToNumber(&value); - } - set_in_safe_int32_mode(false); - set_unsafe_bailout(NULL); - frame_->Push(&value); -} - - -void CodeGenerator::LoadWithSafeInt32ModeDisabled(Expression* expr) { - set_safe_int32_mode_enabled(false); - Load(expr); - set_safe_int32_mode_enabled(true); -} - - -void CodeGenerator::ConvertInt32ResultToSmi(Result* value) { - ASSERT(value->is_untagged_int32()); - if (value->is_register()) { - __ add(value->reg(), Operand(value->reg())); - } else { - ASSERT(value->is_constant()); - ASSERT(value->handle()->IsSmi()); - } - value->set_untagged_int32(false); - value->set_type_info(TypeInfo::Smi()); -} - - -void CodeGenerator::ConvertInt32ResultToNumber(Result* value) { - ASSERT(value->is_untagged_int32()); - if (value->is_register()) { - Register val = value->reg(); - JumpTarget done; - __ add(val, Operand(val)); - done.Branch(no_overflow, value); - __ sar(val, 1); - // If there was an overflow, bits 30 and 31 of the original number disagree. - __ xor_(val, 0x80000000u); - if (CpuFeatures::IsSupported(SSE2)) { - CpuFeatures::Scope fscope(SSE2); - __ cvtsi2sd(xmm0, Operand(val)); - } else { - // Move val to ST[0] in the FPU - // Push and pop are safe with respect to the virtual frame because - // all synced elements are below the actual stack pointer. - __ push(val); - __ fild_s(Operand(esp, 0)); - __ pop(val); - } - Result scratch = allocator_->Allocate(); - ASSERT(scratch.is_register()); - Label allocation_failed; - __ AllocateHeapNumber(val, scratch.reg(), - no_reg, &allocation_failed); - VirtualFrame* clone = new VirtualFrame(frame_); - scratch.Unuse(); - if (CpuFeatures::IsSupported(SSE2)) { - CpuFeatures::Scope fscope(SSE2); - __ movdbl(FieldOperand(val, HeapNumber::kValueOffset), xmm0); - } else { - __ fstp_d(FieldOperand(val, HeapNumber::kValueOffset)); - } - done.Jump(value); - - // Establish the virtual frame, cloned from where AllocateHeapNumber - // jumped to allocation_failed. - RegisterFile empty_regs; - SetFrame(clone, &empty_regs); - __ bind(&allocation_failed); - if (!CpuFeatures::IsSupported(SSE2)) { - // Pop the value from the floating point stack. - __ fstp(0); - } - unsafe_bailout_->Jump(); - - done.Bind(value); - } else { - ASSERT(value->is_constant()); - } - value->set_untagged_int32(false); - value->set_type_info(TypeInfo::Integer32()); -} - - -void CodeGenerator::Load(Expression* expr) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - ASSERT(!in_spilled_code()); - - // If the expression should be a side-effect-free 32-bit int computation, - // compile that SafeInt32 path, and a bailout path. - if (!in_safe_int32_mode() && - safe_int32_mode_enabled() && - expr->side_effect_free() && - expr->num_bit_ops() > 2 && - CpuFeatures::IsSupported(SSE2)) { - BreakTarget unsafe_bailout; - JumpTarget done; - unsafe_bailout.set_expected_height(frame_->height()); - LoadInSafeInt32Mode(expr, &unsafe_bailout); - done.Jump(); - - if (unsafe_bailout.is_linked()) { - unsafe_bailout.Bind(); - LoadWithSafeInt32ModeDisabled(expr); - } - done.Bind(); - } else { - JumpTarget true_target; - JumpTarget false_target; - ControlDestination dest(&true_target, &false_target, true); - LoadCondition(expr, &dest, false); - - if (dest.false_was_fall_through()) { - // The false target was just bound. - JumpTarget loaded; - frame_->Push(Factory::false_value()); - // There may be dangling jumps to the true target. - if (true_target.is_linked()) { - loaded.Jump(); - true_target.Bind(); - frame_->Push(Factory::true_value()); - loaded.Bind(); - } - - } else if (dest.is_used()) { - // There is true, and possibly false, control flow (with true as - // the fall through). - JumpTarget loaded; - frame_->Push(Factory::true_value()); - if (false_target.is_linked()) { - loaded.Jump(); - false_target.Bind(); - frame_->Push(Factory::false_value()); - loaded.Bind(); - } - - } else { - // We have a valid value on top of the frame, but we still may - // have dangling jumps to the true and false targets from nested - // subexpressions (eg, the left subexpressions of the - // short-circuited boolean operators). - ASSERT(has_valid_frame()); - if (true_target.is_linked() || false_target.is_linked()) { - JumpTarget loaded; - loaded.Jump(); // Don't lose the current TOS. - if (true_target.is_linked()) { - true_target.Bind(); - frame_->Push(Factory::true_value()); - if (false_target.is_linked()) { - loaded.Jump(); - } - } - if (false_target.is_linked()) { - false_target.Bind(); - frame_->Push(Factory::false_value()); - } - loaded.Bind(); - } - } - } - ASSERT(has_valid_frame()); - ASSERT(frame_->height() == original_height + 1); -} - - -void CodeGenerator::LoadGlobal() { - if (in_spilled_code()) { - frame_->EmitPush(GlobalObjectOperand()); - } else { - Result temp = allocator_->Allocate(); - __ mov(temp.reg(), GlobalObjectOperand()); - frame_->Push(&temp); - } -} - - -void CodeGenerator::LoadGlobalReceiver() { - Result temp = allocator_->Allocate(); - Register reg = temp.reg(); - __ mov(reg, GlobalObjectOperand()); - __ mov(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset)); - frame_->Push(&temp); -} - - -void CodeGenerator::LoadTypeofExpression(Expression* expr) { - // Special handling of identifiers as subexpressions of typeof. - Variable* variable = expr->AsVariableProxy()->AsVariable(); - if (variable != NULL && !variable->is_this() && variable->is_global()) { - // For a global variable we build the property reference - // <global>.<variable> and perform a (regular non-contextual) property - // load to make sure we do not get reference errors. - Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX); - Literal key(variable->name()); - Property property(&global, &key, RelocInfo::kNoPosition); - Reference ref(this, &property); - ref.GetValue(); - } else if (variable != NULL && variable->AsSlot() != NULL) { - // For a variable that rewrites to a slot, we signal it is the immediate - // subexpression of a typeof. - LoadFromSlotCheckForArguments(variable->AsSlot(), INSIDE_TYPEOF); - } else { - // Anything else can be handled normally. - Load(expr); - } -} - - -ArgumentsAllocationMode CodeGenerator::ArgumentsMode() { - if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION; - ASSERT(scope()->arguments_shadow() != NULL); - // We don't want to do lazy arguments allocation for functions that - // have heap-allocated contexts, because it interfers with the - // uninitialized const tracking in the context objects. - return (scope()->num_heap_slots() > 0) - ? EAGER_ARGUMENTS_ALLOCATION - : LAZY_ARGUMENTS_ALLOCATION; -} - - -Result CodeGenerator::StoreArgumentsObject(bool initial) { - ArgumentsAllocationMode mode = ArgumentsMode(); - ASSERT(mode != NO_ARGUMENTS_ALLOCATION); - - Comment cmnt(masm_, "[ store arguments object"); - if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) { - // When using lazy arguments allocation, we store the arguments marker value - // as a sentinel indicating that the arguments object hasn't been - // allocated yet. - frame_->Push(Factory::arguments_marker()); - } else { - ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT); - frame_->PushFunction(); - frame_->PushReceiverSlotAddress(); - frame_->Push(Smi::FromInt(scope()->num_parameters())); - Result result = frame_->CallStub(&stub, 3); - frame_->Push(&result); - } - - Variable* arguments = scope()->arguments(); - Variable* shadow = scope()->arguments_shadow(); - ASSERT(arguments != NULL && arguments->AsSlot() != NULL); - ASSERT(shadow != NULL && shadow->AsSlot() != NULL); - JumpTarget done; - bool skip_arguments = false; - if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) { - // We have to skip storing into the arguments slot if it has - // already been written to. This can happen if the a function - // has a local variable named 'arguments'. - LoadFromSlot(arguments->AsSlot(), NOT_INSIDE_TYPEOF); - Result probe = frame_->Pop(); - if (probe.is_constant()) { - // We have to skip updating the arguments object if it has - // been assigned a proper value. - skip_arguments = !probe.handle()->IsArgumentsMarker(); - } else { - __ cmp(Operand(probe.reg()), Immediate(Factory::arguments_marker())); - probe.Unuse(); - done.Branch(not_equal); - } - } - if (!skip_arguments) { - StoreToSlot(arguments->AsSlot(), NOT_CONST_INIT); - if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind(); - } - StoreToSlot(shadow->AsSlot(), NOT_CONST_INIT); - return frame_->Pop(); -} - -//------------------------------------------------------------------------------ -// CodeGenerator implementation of variables, lookups, and stores. - -Reference::Reference(CodeGenerator* cgen, - Expression* expression, - bool persist_after_get) - : cgen_(cgen), - expression_(expression), - type_(ILLEGAL), - persist_after_get_(persist_after_get) { - cgen->LoadReference(this); -} - - -Reference::~Reference() { - ASSERT(is_unloaded() || is_illegal()); -} - - -void CodeGenerator::LoadReference(Reference* ref) { - // References are loaded from both spilled and unspilled code. Set the - // state to unspilled to allow that (and explicitly spill after - // construction at the construction sites). - bool was_in_spilled_code = in_spilled_code_; - in_spilled_code_ = false; - - Comment cmnt(masm_, "[ LoadReference"); - Expression* e = ref->expression(); - Property* property = e->AsProperty(); - Variable* var = e->AsVariableProxy()->AsVariable(); - - if (property != NULL) { - // The expression is either a property or a variable proxy that rewrites - // to a property. - Load(property->obj()); - if (property->key()->IsPropertyName()) { - ref->set_type(Reference::NAMED); - } else { - Load(property->key()); - ref->set_type(Reference::KEYED); - } - } else if (var != NULL) { - // The expression is a variable proxy that does not rewrite to a - // property. Global variables are treated as named property references. - if (var->is_global()) { - // If eax is free, the register allocator prefers it. Thus the code - // generator will load the global object into eax, which is where - // LoadIC wants it. Most uses of Reference call LoadIC directly - // after the reference is created. - frame_->Spill(eax); - LoadGlobal(); - ref->set_type(Reference::NAMED); - } else { - ASSERT(var->AsSlot() != NULL); - ref->set_type(Reference::SLOT); - } - } else { - // Anything else is a runtime error. - Load(e); - frame_->CallRuntime(Runtime::kThrowReferenceError, 1); - } - - in_spilled_code_ = was_in_spilled_code; -} - - -// ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and -// convert it to a boolean in the condition code register or jump to -// 'false_target'/'true_target' as appropriate. -void CodeGenerator::ToBoolean(ControlDestination* dest) { - Comment cmnt(masm_, "[ ToBoolean"); - - // The value to convert should be popped from the frame. - Result value = frame_->Pop(); - value.ToRegister(); - - if (value.is_integer32()) { // Also takes Smi case. - Comment cmnt(masm_, "ONLY_INTEGER_32"); - if (FLAG_debug_code) { - Label ok; - __ AbortIfNotNumber(value.reg()); - __ test(value.reg(), Immediate(kSmiTagMask)); - __ j(zero, &ok); - __ fldz(); - __ fld_d(FieldOperand(value.reg(), HeapNumber::kValueOffset)); - __ FCmp(); - __ j(not_zero, &ok); - __ Abort("Smi was wrapped in HeapNumber in output from bitop"); - __ bind(&ok); - } - // In the integer32 case there are no Smis hidden in heap numbers, so we - // need only test for Smi zero. - __ test(value.reg(), Operand(value.reg())); - dest->false_target()->Branch(zero); - value.Unuse(); - dest->Split(not_zero); - } else if (value.is_number()) { - Comment cmnt(masm_, "ONLY_NUMBER"); - // Fast case if TypeInfo indicates only numbers. - if (FLAG_debug_code) { - __ AbortIfNotNumber(value.reg()); - } - // Smi => false iff zero. - STATIC_ASSERT(kSmiTag == 0); - __ test(value.reg(), Operand(value.reg())); - dest->false_target()->Branch(zero); - __ test(value.reg(), Immediate(kSmiTagMask)); - dest->true_target()->Branch(zero); - __ fldz(); - __ fld_d(FieldOperand(value.reg(), HeapNumber::kValueOffset)); - __ FCmp(); - value.Unuse(); - dest->Split(not_zero); - } else { - // Fast case checks. - // 'false' => false. - __ cmp(value.reg(), Factory::false_value()); - dest->false_target()->Branch(equal); - - // 'true' => true. - __ cmp(value.reg(), Factory::true_value()); - dest->true_target()->Branch(equal); - - // 'undefined' => false. - __ cmp(value.reg(), Factory::undefined_value()); - dest->false_target()->Branch(equal); - - // Smi => false iff zero. - STATIC_ASSERT(kSmiTag == 0); - __ test(value.reg(), Operand(value.reg())); - dest->false_target()->Branch(zero); - __ test(value.reg(), Immediate(kSmiTagMask)); - dest->true_target()->Branch(zero); - - // Call the stub for all other cases. - frame_->Push(&value); // Undo the Pop() from above. - ToBooleanStub stub; - Result temp = frame_->CallStub(&stub, 1); - // Convert the result to a condition code. - __ test(temp.reg(), Operand(temp.reg())); - temp.Unuse(); - dest->Split(not_equal); - } -} - - -// Perform or call the specialized stub for a binary operation. Requires the -// three registers left, right and dst to be distinct and spilled. This -// deferred operation has up to three entry points: The main one calls the -// runtime system. The second is for when the result is a non-Smi. The -// third is for when at least one of the inputs is non-Smi and we have SSE2. -class DeferredInlineBinaryOperation: public DeferredCode { - public: - DeferredInlineBinaryOperation(Token::Value op, - Register dst, - Register left, - Register right, - TypeInfo left_info, - TypeInfo right_info, - OverwriteMode mode) - : op_(op), dst_(dst), left_(left), right_(right), - left_info_(left_info), right_info_(right_info), mode_(mode) { - set_comment("[ DeferredInlineBinaryOperation"); - ASSERT(!left.is(right)); - } - - virtual void Generate(); - - // This stub makes explicit calls to SaveRegisters(), RestoreRegisters() and - // Exit(). - virtual bool AutoSaveAndRestore() { return false; } - - void JumpToAnswerOutOfRange(Condition cond); - void JumpToConstantRhs(Condition cond, Smi* smi_value); - Label* NonSmiInputLabel(); - - private: - void GenerateAnswerOutOfRange(); - void GenerateNonSmiInput(); - - Token::Value op_; - Register dst_; - Register left_; - Register right_; - TypeInfo left_info_; - TypeInfo right_info_; - OverwriteMode mode_; - Label answer_out_of_range_; - Label non_smi_input_; - Label constant_rhs_; - Smi* smi_value_; -}; - - -Label* DeferredInlineBinaryOperation::NonSmiInputLabel() { - if (Token::IsBitOp(op_) && CpuFeatures::IsSupported(SSE2)) { - return &non_smi_input_; - } else { - return entry_label(); - } -} - - -void DeferredInlineBinaryOperation::JumpToAnswerOutOfRange(Condition cond) { - __ j(cond, &answer_out_of_range_); -} - - -void DeferredInlineBinaryOperation::JumpToConstantRhs(Condition cond, - Smi* smi_value) { - smi_value_ = smi_value; - __ j(cond, &constant_rhs_); -} - - -void DeferredInlineBinaryOperation::Generate() { - // Registers are not saved implicitly for this stub, so we should not - // tread on the registers that were not passed to us. - if (CpuFeatures::IsSupported(SSE2) && - ((op_ == Token::ADD) || - (op_ == Token::SUB) || - (op_ == Token::MUL) || - (op_ == Token::DIV))) { - CpuFeatures::Scope use_sse2(SSE2); - Label call_runtime, after_alloc_failure; - Label left_smi, right_smi, load_right, do_op; - if (!left_info_.IsSmi()) { - __ test(left_, Immediate(kSmiTagMask)); - __ j(zero, &left_smi); - if (!left_info_.IsNumber()) { - __ cmp(FieldOperand(left_, HeapObject::kMapOffset), - Factory::heap_number_map()); - __ j(not_equal, &call_runtime); - } - __ movdbl(xmm0, FieldOperand(left_, HeapNumber::kValueOffset)); - if (mode_ == OVERWRITE_LEFT) { - __ mov(dst_, left_); - } - __ jmp(&load_right); - - __ bind(&left_smi); - } else { - if (FLAG_debug_code) __ AbortIfNotSmi(left_); - } - __ SmiUntag(left_); - __ cvtsi2sd(xmm0, Operand(left_)); - __ SmiTag(left_); - if (mode_ == OVERWRITE_LEFT) { - Label alloc_failure; - __ push(left_); - __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure); - __ pop(left_); - } - - __ bind(&load_right); - if (!right_info_.IsSmi()) { - __ test(right_, Immediate(kSmiTagMask)); - __ j(zero, &right_smi); - if (!right_info_.IsNumber()) { - __ cmp(FieldOperand(right_, HeapObject::kMapOffset), - Factory::heap_number_map()); - __ j(not_equal, &call_runtime); - } - __ movdbl(xmm1, FieldOperand(right_, HeapNumber::kValueOffset)); - if (mode_ == OVERWRITE_RIGHT) { - __ mov(dst_, right_); - } else if (mode_ == NO_OVERWRITE) { - Label alloc_failure; - __ push(left_); - __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure); - __ pop(left_); - } - __ jmp(&do_op); - - __ bind(&right_smi); - } else { - if (FLAG_debug_code) __ AbortIfNotSmi(right_); - } - __ SmiUntag(right_); - __ cvtsi2sd(xmm1, Operand(right_)); - __ SmiTag(right_); - if (mode_ == OVERWRITE_RIGHT || mode_ == NO_OVERWRITE) { - __ push(left_); - __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure); - __ pop(left_); - } - - __ bind(&do_op); - switch (op_) { - case Token::ADD: __ addsd(xmm0, xmm1); break; - case Token::SUB: __ subsd(xmm0, xmm1); break; - case Token::MUL: __ mulsd(xmm0, xmm1); break; - case Token::DIV: __ divsd(xmm0, xmm1); break; - default: UNREACHABLE(); - } - __ movdbl(FieldOperand(dst_, HeapNumber::kValueOffset), xmm0); - Exit(); - - - __ bind(&after_alloc_failure); - __ pop(left_); - __ bind(&call_runtime); - } - // Register spilling is not done implicitly for this stub. - // We can't postpone it any more now though. - SaveRegisters(); - - GenericBinaryOpStub stub(op_, - mode_, - NO_SMI_CODE_IN_STUB, - TypeInfo::Combine(left_info_, right_info_)); - stub.GenerateCall(masm_, left_, right_); - if (!dst_.is(eax)) __ mov(dst_, eax); - RestoreRegisters(); - Exit(); - - if (non_smi_input_.is_linked() || constant_rhs_.is_linked()) { - GenerateNonSmiInput(); - } - if (answer_out_of_range_.is_linked()) { - GenerateAnswerOutOfRange(); - } -} - - -void DeferredInlineBinaryOperation::GenerateNonSmiInput() { - // We know at least one of the inputs was not a Smi. - // This is a third entry point into the deferred code. - // We may not overwrite left_ because we want to be able - // to call the handling code for non-smi answer and it - // might want to overwrite the heap number in left_. - ASSERT(!right_.is(dst_)); - ASSERT(!left_.is(dst_)); - ASSERT(!left_.is(right_)); - // This entry point is used for bit ops where the right hand side - // is a constant Smi and the left hand side is a heap object. It - // is also used for bit ops where both sides are unknown, but where - // at least one of them is a heap object. - bool rhs_is_constant = constant_rhs_.is_linked(); - // We can't generate code for both cases. - ASSERT(!non_smi_input_.is_linked() || !constant_rhs_.is_linked()); - - if (FLAG_debug_code) { - __ int3(); // We don't fall through into this code. - } - - __ bind(&non_smi_input_); - - if (rhs_is_constant) { - __ bind(&constant_rhs_); - // In this case the input is a heap object and it is in the dst_ register. - // The left_ and right_ registers have not been initialized yet. - __ mov(right_, Immediate(smi_value_)); - __ mov(left_, Operand(dst_)); - if (!CpuFeatures::IsSupported(SSE2)) { - __ jmp(entry_label()); - return; - } else { - CpuFeatures::Scope use_sse2(SSE2); - __ JumpIfNotNumber(dst_, left_info_, entry_label()); - __ ConvertToInt32(dst_, left_, dst_, left_info_, entry_label()); - __ SmiUntag(right_); - } - } else { - // We know we have SSE2 here because otherwise the label is not linked (see - // NonSmiInputLabel). - CpuFeatures::Scope use_sse2(SSE2); - // Handle the non-constant right hand side situation: - if (left_info_.IsSmi()) { - // Right is a heap object. - __ JumpIfNotNumber(right_, right_info_, entry_label()); - __ ConvertToInt32(right_, right_, dst_, right_info_, entry_label()); - __ mov(dst_, Operand(left_)); - __ SmiUntag(dst_); - } else if (right_info_.IsSmi()) { - // Left is a heap object. - __ JumpIfNotNumber(left_, left_info_, entry_label()); - __ ConvertToInt32(dst_, left_, dst_, left_info_, entry_label()); - __ SmiUntag(right_); - } else { - // Here we don't know if it's one or both that is a heap object. - Label only_right_is_heap_object, got_both; - __ mov(dst_, Operand(left_)); - __ SmiUntag(dst_, &only_right_is_heap_object); - // Left was a heap object. - __ JumpIfNotNumber(left_, left_info_, entry_label()); - __ ConvertToInt32(dst_, left_, dst_, left_info_, entry_label()); - __ SmiUntag(right_, &got_both); - // Both were heap objects. - __ rcl(right_, 1); // Put tag back. - __ JumpIfNotNumber(right_, right_info_, entry_label()); - __ ConvertToInt32(right_, right_, no_reg, right_info_, entry_label()); - __ jmp(&got_both); - __ bind(&only_right_is_heap_object); - __ JumpIfNotNumber(right_, right_info_, entry_label()); - __ ConvertToInt32(right_, right_, no_reg, right_info_, entry_label()); - __ bind(&got_both); - } - } - ASSERT(op_ == Token::BIT_AND || - op_ == Token::BIT_OR || - op_ == Token::BIT_XOR || - right_.is(ecx)); - switch (op_) { - case Token::BIT_AND: __ and_(dst_, Operand(right_)); break; - case Token::BIT_OR: __ or_(dst_, Operand(right_)); break; - case Token::BIT_XOR: __ xor_(dst_, Operand(right_)); break; - case Token::SHR: __ shr_cl(dst_); break; - case Token::SAR: __ sar_cl(dst_); break; - case Token::SHL: __ shl_cl(dst_); break; - default: UNREACHABLE(); - } - if (op_ == Token::SHR) { - // Check that the *unsigned* result fits in a smi. Neither of - // the two high-order bits can be set: - // * 0x80000000: high bit would be lost when smi tagging. - // * 0x40000000: this number would convert to negative when smi - // tagging. - __ test(dst_, Immediate(0xc0000000)); - __ j(not_zero, &answer_out_of_range_); - } else { - // Check that the *signed* result fits in a smi. - __ cmp(dst_, 0xc0000000); - __ j(negative, &answer_out_of_range_); - } - __ SmiTag(dst_); - Exit(); -} - - -void DeferredInlineBinaryOperation::GenerateAnswerOutOfRange() { - Label after_alloc_failure2; - Label allocation_ok; - __ bind(&after_alloc_failure2); - // We have to allocate a number, causing a GC, while keeping hold of - // the answer in dst_. The answer is not a Smi. We can't just call the - // runtime shift function here because we already threw away the inputs. - __ xor_(left_, Operand(left_)); - __ shl(dst_, 1); // Put top bit in carry flag and Smi tag the low bits. - __ rcr(left_, 1); // Rotate with carry. - __ push(dst_); // Smi tagged low 31 bits. - __ push(left_); // 0 or 0x80000000, which is Smi tagged in both cases. - __ CallRuntime(Runtime::kNumberAlloc, 0); - if (!left_.is(eax)) { - __ mov(left_, eax); - } - __ pop(right_); // High bit. - __ pop(dst_); // Low 31 bits. - __ shr(dst_, 1); // Put 0 in top bit. - __ or_(dst_, Operand(right_)); - __ jmp(&allocation_ok); - - // This is the second entry point to the deferred code. It is used only by - // the bit operations. - // The dst_ register has the answer. It is not Smi tagged. If mode_ is - // OVERWRITE_LEFT then left_ must contain either an overwritable heap number - // or a Smi. - // Put a heap number pointer in left_. - __ bind(&answer_out_of_range_); - SaveRegisters(); - if (mode_ == OVERWRITE_LEFT) { - __ test(left_, Immediate(kSmiTagMask)); - __ j(not_zero, &allocation_ok); - } - // This trashes right_. - __ AllocateHeapNumber(left_, right_, no_reg, &after_alloc_failure2); - __ bind(&allocation_ok); - if (CpuFeatures::IsSupported(SSE2) && op_ != Token::SHR) { - CpuFeatures::Scope use_sse2(SSE2); - ASSERT(Token::IsBitOp(op_)); - // Signed conversion. - __ cvtsi2sd(xmm0, Operand(dst_)); - __ movdbl(FieldOperand(left_, HeapNumber::kValueOffset), xmm0); - } else { - if (op_ == Token::SHR) { - __ push(Immediate(0)); // High word of unsigned value. - __ push(dst_); - __ fild_d(Operand(esp, 0)); - __ Drop(2); - } else { - ASSERT(Token::IsBitOp(op_)); - __ push(dst_); - __ fild_s(Operand(esp, 0)); // Signed conversion. - __ pop(dst_); - } - __ fstp_d(FieldOperand(left_, HeapNumber::kValueOffset)); - } - __ mov(dst_, left_); - RestoreRegisters(); - Exit(); -} - - -static TypeInfo CalculateTypeInfo(TypeInfo operands_type, - Token::Value op, - const Result& right, - const Result& left) { - // Set TypeInfo of result according to the operation performed. - // Rely on the fact that smis have a 31 bit payload on ia32. - STATIC_ASSERT(kSmiValueSize == 31); - switch (op) { - case Token::COMMA: - return right.type_info(); - case Token::OR: - case Token::AND: - // Result type can be either of the two input types. - return operands_type; - case Token::BIT_AND: { - // Anding with positive Smis will give you a Smi. - if (right.is_constant() && right.handle()->IsSmi() && - Smi::cast(*right.handle())->value() >= 0) { - return TypeInfo::Smi(); - } else if (left.is_constant() && left.handle()->IsSmi() && - Smi::cast(*left.handle())->value() >= 0) { - return TypeInfo::Smi(); - } - return (operands_type.IsSmi()) - ? TypeInfo::Smi() - : TypeInfo::Integer32(); - } - case Token::BIT_OR: { - // Oring with negative Smis will give you a Smi. - if (right.is_constant() && right.handle()->IsSmi() && - Smi::cast(*right.handle())->value() < 0) { - return TypeInfo::Smi(); - } else if (left.is_constant() && left.handle()->IsSmi() && - Smi::cast(*left.handle())->value() < 0) { - return TypeInfo::Smi(); - } - return (operands_type.IsSmi()) - ? TypeInfo::Smi() - : TypeInfo::Integer32(); - } - case Token::BIT_XOR: - // Result is always a 32 bit integer. Smi property of inputs is preserved. - return (operands_type.IsSmi()) - ? TypeInfo::Smi() - : TypeInfo::Integer32(); - case Token::SAR: - if (left.is_smi()) return TypeInfo::Smi(); - // Result is a smi if we shift by a constant >= 1, otherwise an integer32. - // Shift amount is masked with 0x1F (ECMA standard 11.7.2). - return (right.is_constant() && right.handle()->IsSmi() - && (Smi::cast(*right.handle())->value() & 0x1F) >= 1) - ? TypeInfo::Smi() - : TypeInfo::Integer32(); - case Token::SHR: - // Result is a smi if we shift by a constant >= 2, an integer32 if - // we shift by 1, and an unsigned 32-bit integer if we shift by 0. - if (right.is_constant() && right.handle()->IsSmi()) { - int shift_amount = Smi::cast(*right.handle())->value() & 0x1F; - if (shift_amount > 1) { - return TypeInfo::Smi(); - } else if (shift_amount > 0) { - return TypeInfo::Integer32(); - } - } - return TypeInfo::Number(); - case Token::ADD: - if (operands_type.IsSmi()) { - // The Integer32 range is big enough to take the sum of any two Smis. - return TypeInfo::Integer32(); - } else if (operands_type.IsNumber()) { - return TypeInfo::Number(); - } else if (left.type_info().IsString() || right.type_info().IsString()) { - return TypeInfo::String(); - } else { - return TypeInfo::Unknown(); - } - case Token::SHL: - return TypeInfo::Integer32(); - case Token::SUB: - // The Integer32 range is big enough to take the difference of any two - // Smis. - return (operands_type.IsSmi()) ? - TypeInfo::Integer32() : - TypeInfo::Number(); - case Token::MUL: - case Token::DIV: - case Token::MOD: - // Result is always a number. - return TypeInfo::Number(); - default: - UNREACHABLE(); - } - UNREACHABLE(); - return TypeInfo::Unknown(); -} - - -void CodeGenerator::GenericBinaryOperation(BinaryOperation* expr, - OverwriteMode overwrite_mode) { - Comment cmnt(masm_, "[ BinaryOperation"); - Token::Value op = expr->op(); - Comment cmnt_token(masm_, Token::String(op)); - - if (op == Token::COMMA) { - // Simply discard left value. - frame_->Nip(1); - return; - } - - Result right = frame_->Pop(); - Result left = frame_->Pop(); - - if (op == Token::ADD) { - const bool left_is_string = left.type_info().IsString(); - const bool right_is_string = right.type_info().IsString(); - // Make sure constant strings have string type info. - ASSERT(!(left.is_constant() && left.handle()->IsString()) || - left_is_string); - ASSERT(!(right.is_constant() && right.handle()->IsString()) || - right_is_string); - if (left_is_string || right_is_string) { - frame_->Push(&left); - frame_->Push(&right); - Result answer; - if (left_is_string) { - if (right_is_string) { - StringAddStub stub(NO_STRING_CHECK_IN_STUB); - answer = frame_->CallStub(&stub, 2); - } else { - StringAddStub stub(NO_STRING_CHECK_LEFT_IN_STUB); - answer = frame_->CallStub(&stub, 2); - } - } else if (right_is_string) { - StringAddStub stub(NO_STRING_CHECK_RIGHT_IN_STUB); - answer = frame_->CallStub(&stub, 2); - } - answer.set_type_info(TypeInfo::String()); - frame_->Push(&answer); - return; - } - // Neither operand is known to be a string. - } - - bool left_is_smi_constant = left.is_constant() && left.handle()->IsSmi(); - bool left_is_non_smi_constant = left.is_constant() && !left.handle()->IsSmi(); - bool right_is_smi_constant = right.is_constant() && right.handle()->IsSmi(); - bool right_is_non_smi_constant = - right.is_constant() && !right.handle()->IsSmi(); - - if (left_is_smi_constant && right_is_smi_constant) { - // Compute the constant result at compile time, and leave it on the frame. - int left_int = Smi::cast(*left.handle())->value(); - int right_int = Smi::cast(*right.handle())->value(); - if (FoldConstantSmis(op, left_int, right_int)) return; - } - - // Get number type of left and right sub-expressions. - TypeInfo operands_type = - TypeInfo::Combine(left.type_info(), right.type_info()); - - TypeInfo result_type = CalculateTypeInfo(operands_type, op, right, left); - - Result answer; - if (left_is_non_smi_constant || right_is_non_smi_constant) { - // Go straight to the slow case, with no smi code. - GenericBinaryOpStub stub(op, - overwrite_mode, - NO_SMI_CODE_IN_STUB, - operands_type); - answer = GenerateGenericBinaryOpStubCall(&stub, &left, &right); - } else if (right_is_smi_constant) { - answer = ConstantSmiBinaryOperation(expr, &left, right.handle(), - false, overwrite_mode); - } else if (left_is_smi_constant) { - answer = ConstantSmiBinaryOperation(expr, &right, left.handle(), - true, overwrite_mode); - } else { - // Set the flags based on the operation, type and loop nesting level. - // Bit operations always assume they likely operate on Smis. Still only - // generate the inline Smi check code if this operation is part of a loop. - // For all other operations only inline the Smi check code for likely smis - // if the operation is part of a loop. - if (loop_nesting() > 0 && - (Token::IsBitOp(op) || - operands_type.IsInteger32() || - expr->type()->IsLikelySmi())) { - answer = LikelySmiBinaryOperation(expr, &left, &right, overwrite_mode); - } else { - GenericBinaryOpStub stub(op, - overwrite_mode, - NO_GENERIC_BINARY_FLAGS, - operands_type); - answer = GenerateGenericBinaryOpStubCall(&stub, &left, &right); - } - } - - answer.set_type_info(result_type); - frame_->Push(&answer); -} - - -Result CodeGenerator::GenerateGenericBinaryOpStubCall(GenericBinaryOpStub* stub, - Result* left, - Result* right) { - if (stub->ArgsInRegistersSupported()) { - stub->SetArgsInRegisters(); - return frame_->CallStub(stub, left, right); - } else { - frame_->Push(left); - frame_->Push(right); - return frame_->CallStub(stub, 2); - } -} - - -bool CodeGenerator::FoldConstantSmis(Token::Value op, int left, int right) { - Object* answer_object = Heap::undefined_value(); - switch (op) { - case Token::ADD: - if (Smi::IsValid(left + right)) { - answer_object = Smi::FromInt(left + right); - } - break; - case Token::SUB: - if (Smi::IsValid(left - right)) { - answer_object = Smi::FromInt(left - right); - } - break; - case Token::MUL: { - double answer = static_cast<double>(left) * right; - if (answer >= Smi::kMinValue && answer <= Smi::kMaxValue) { - // If the product is zero and the non-zero factor is negative, - // the spec requires us to return floating point negative zero. - if (answer != 0 || (left >= 0 && right >= 0)) { - answer_object = Smi::FromInt(static_cast<int>(answer)); - } - } - } - break; - case Token::DIV: - case Token::MOD: - break; - case Token::BIT_OR: - answer_object = Smi::FromInt(left | right); - break; - case Token::BIT_AND: - answer_object = Smi::FromInt(left & right); - break; - case Token::BIT_XOR: - answer_object = Smi::FromInt(left ^ right); - break; - - case Token::SHL: { - int shift_amount = right & 0x1F; - if (Smi::IsValid(left << shift_amount)) { - answer_object = Smi::FromInt(left << shift_amount); - } - break; - } - case Token::SHR: { - int shift_amount = right & 0x1F; - unsigned int unsigned_left = left; - unsigned_left >>= shift_amount; - if (unsigned_left <= static_cast<unsigned int>(Smi::kMaxValue)) { - answer_object = Smi::FromInt(unsigned_left); - } - break; - } - case Token::SAR: { - int shift_amount = right & 0x1F; - unsigned int unsigned_left = left; - if (left < 0) { - // Perform arithmetic shift of a negative number by - // complementing number, logical shifting, complementing again. - unsigned_left = ~unsigned_left; - unsigned_left >>= shift_amount; - unsigned_left = ~unsigned_left; - } else { - unsigned_left >>= shift_amount; - } - ASSERT(Smi::IsValid(static_cast<int32_t>(unsigned_left))); - answer_object = Smi::FromInt(static_cast<int32_t>(unsigned_left)); - break; - } - default: - UNREACHABLE(); - break; - } - if (answer_object == Heap::undefined_value()) { - return false; - } - frame_->Push(Handle<Object>(answer_object)); - return true; -} - - -void CodeGenerator::JumpIfBothSmiUsingTypeInfo(Result* left, - Result* right, - JumpTarget* both_smi) { - TypeInfo left_info = left->type_info(); - TypeInfo right_info = right->type_info(); - if (left_info.IsDouble() || left_info.IsString() || - right_info.IsDouble() || right_info.IsString()) { - // We know that left and right are not both smi. Don't do any tests. - return; - } - - if (left->reg().is(right->reg())) { - if (!left_info.IsSmi()) { - __ test(left->reg(), Immediate(kSmiTagMask)); - both_smi->Branch(zero); - } else { - if (FLAG_debug_code) __ AbortIfNotSmi(left->reg()); - left->Unuse(); - right->Unuse(); - both_smi->Jump(); - } - } else if (!left_info.IsSmi()) { - if (!right_info.IsSmi()) { - Result temp = allocator_->Allocate(); - ASSERT(temp.is_valid()); - __ mov(temp.reg(), left->reg()); - __ or_(temp.reg(), Operand(right->reg())); - __ test(temp.reg(), Immediate(kSmiTagMask)); - temp.Unuse(); - both_smi->Branch(zero); - } else { - __ test(left->reg(), Immediate(kSmiTagMask)); - both_smi->Branch(zero); - } - } else { - if (FLAG_debug_code) __ AbortIfNotSmi(left->reg()); - if (!right_info.IsSmi()) { - __ test(right->reg(), Immediate(kSmiTagMask)); - both_smi->Branch(zero); - } else { - if (FLAG_debug_code) __ AbortIfNotSmi(right->reg()); - left->Unuse(); - right->Unuse(); - both_smi->Jump(); - } - } -} - - -void CodeGenerator::JumpIfNotBothSmiUsingTypeInfo(Register left, - Register right, - Register scratch, - TypeInfo left_info, - TypeInfo right_info, - DeferredCode* deferred) { - JumpIfNotBothSmiUsingTypeInfo(left, - right, - scratch, - left_info, - right_info, - deferred->entry_label()); -} - - -void CodeGenerator::JumpIfNotBothSmiUsingTypeInfo(Register left, - Register right, - Register scratch, - TypeInfo left_info, - TypeInfo right_info, - Label* on_not_smi) { - if (left.is(right)) { - if (!left_info.IsSmi()) { - __ test(left, Immediate(kSmiTagMask)); - __ j(not_zero, on_not_smi); - } else { - if (FLAG_debug_code) __ AbortIfNotSmi(left); - } - } else if (!left_info.IsSmi()) { - if (!right_info.IsSmi()) { - __ mov(scratch, left); - __ or_(scratch, Operand(right)); - __ test(scratch, Immediate(kSmiTagMask)); - __ j(not_zero, on_not_smi); - } else { - __ test(left, Immediate(kSmiTagMask)); - __ j(not_zero, on_not_smi); - if (FLAG_debug_code) __ AbortIfNotSmi(right); - } - } else { - if (FLAG_debug_code) __ AbortIfNotSmi(left); - if (!right_info.IsSmi()) { - __ test(right, Immediate(kSmiTagMask)); - __ j(not_zero, on_not_smi); - } else { - if (FLAG_debug_code) __ AbortIfNotSmi(right); - } - } -} - - -// Implements a binary operation using a deferred code object and some -// inline code to operate on smis quickly. -Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr, - Result* left, - Result* right, - OverwriteMode overwrite_mode) { - // Copy the type info because left and right may be overwritten. - TypeInfo left_type_info = left->type_info(); - TypeInfo right_type_info = right->type_info(); - Token::Value op = expr->op(); - Result answer; - // Special handling of div and mod because they use fixed registers. - if (op == Token::DIV || op == Token::MOD) { - // We need eax as the quotient register, edx as the remainder - // register, neither left nor right in eax or edx, and left copied - // to eax. - Result quotient; - Result remainder; - bool left_is_in_eax = false; - // Step 1: get eax for quotient. - if ((left->is_register() && left->reg().is(eax)) || - (right->is_register() && right->reg().is(eax))) { - // One or both is in eax. Use a fresh non-edx register for - // them. - Result fresh = allocator_->Allocate(); - ASSERT(fresh.is_valid()); - if (fresh.reg().is(edx)) { - remainder = fresh; - fresh = allocator_->Allocate(); - ASSERT(fresh.is_valid()); - } - if (left->is_register() && left->reg().is(eax)) { - quotient = *left; - *left = fresh; - left_is_in_eax = true; - } - if (right->is_register() && right->reg().is(eax)) { - quotient = *right; - *right = fresh; - } - __ mov(fresh.reg(), eax); - } else { - // Neither left nor right is in eax. - quotient = allocator_->Allocate(eax); - } - ASSERT(quotient.is_register() && quotient.reg().is(eax)); - ASSERT(!(left->is_register() && left->reg().is(eax))); - ASSERT(!(right->is_register() && right->reg().is(eax))); - - // Step 2: get edx for remainder if necessary. - if (!remainder.is_valid()) { - if ((left->is_register() && left->reg().is(edx)) || - (right->is_register() && right->reg().is(edx))) { - Result fresh = allocator_->Allocate(); - ASSERT(fresh.is_valid()); - if (left->is_register() && left->reg().is(edx)) { - remainder = *left; - *left = fresh; - } - if (right->is_register() && right->reg().is(edx)) { - remainder = *right; - *right = fresh; - } - __ mov(fresh.reg(), edx); - } else { - // Neither left nor right is in edx. - remainder = allocator_->Allocate(edx); - } - } - ASSERT(remainder.is_register() && remainder.reg().is(edx)); - ASSERT(!(left->is_register() && left->reg().is(edx))); - ASSERT(!(right->is_register() && right->reg().is(edx))); - - left->ToRegister(); - right->ToRegister(); - frame_->Spill(eax); - frame_->Spill(edx); - // DeferredInlineBinaryOperation requires all the registers that it is - // told about to be spilled and distinct. - Result distinct_right = frame_->MakeDistinctAndSpilled(left, right); - - // Check that left and right are smi tagged. - DeferredInlineBinaryOperation* deferred = - new DeferredInlineBinaryOperation(op, - (op == Token::DIV) ? eax : edx, - left->reg(), - distinct_right.reg(), - left_type_info, - right_type_info, - overwrite_mode); - JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), edx, - left_type_info, right_type_info, deferred); - if (!left_is_in_eax) { - __ mov(eax, left->reg()); - } - // Sign extend eax into edx:eax. - __ cdq(); - // Check for 0 divisor. - __ test(right->reg(), Operand(right->reg())); - deferred->Branch(zero); - // Divide edx:eax by the right operand. - __ idiv(right->reg()); - - // Complete the operation. - if (op == Token::DIV) { - // Check for negative zero result. If result is zero, and divisor - // is negative, return a floating point negative zero. The - // virtual frame is unchanged in this block, so local control flow - // can use a Label rather than a JumpTarget. If the context of this - // expression will treat -0 like 0, do not do this test. - if (!expr->no_negative_zero()) { - Label non_zero_result; - __ test(left->reg(), Operand(left->reg())); - __ j(not_zero, &non_zero_result); - __ test(right->reg(), Operand(right->reg())); - deferred->Branch(negative); - __ bind(&non_zero_result); - } - // Check for the corner case of dividing the most negative smi by - // -1. We cannot use the overflow flag, since it is not set by - // idiv instruction. - STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); - __ cmp(eax, 0x40000000); - deferred->Branch(equal); - // Check that the remainder is zero. - __ test(edx, Operand(edx)); - deferred->Branch(not_zero); - // Tag the result and store it in the quotient register. - __ SmiTag(eax); - deferred->BindExit(); - left->Unuse(); - right->Unuse(); - answer = quotient; - } else { - ASSERT(op == Token::MOD); - // Check for a negative zero result. If the result is zero, and - // the dividend is negative, return a floating point negative - // zero. The frame is unchanged in this block, so local control - // flow can use a Label rather than a JumpTarget. - if (!expr->no_negative_zero()) { - Label non_zero_result; - __ test(edx, Operand(edx)); - __ j(not_zero, &non_zero_result, taken); - __ test(left->reg(), Operand(left->reg())); - deferred->Branch(negative); - __ bind(&non_zero_result); - } - deferred->BindExit(); - left->Unuse(); - right->Unuse(); - answer = remainder; - } - ASSERT(answer.is_valid()); - return answer; - } - - // Special handling of shift operations because they use fixed - // registers. - if (op == Token::SHL || op == Token::SHR || op == Token::SAR) { - // Move left out of ecx if necessary. - if (left->is_register() && left->reg().is(ecx)) { - *left = allocator_->Allocate(); - ASSERT(left->is_valid()); - __ mov(left->reg(), ecx); - } - right->ToRegister(ecx); - left->ToRegister(); - ASSERT(left->is_register() && !left->reg().is(ecx)); - ASSERT(right->is_register() && right->reg().is(ecx)); - if (left_type_info.IsSmi()) { - if (FLAG_debug_code) __ AbortIfNotSmi(left->reg()); - } - if (right_type_info.IsSmi()) { - if (FLAG_debug_code) __ AbortIfNotSmi(right->reg()); - } - - // We will modify right, it must be spilled. - frame_->Spill(ecx); - // DeferredInlineBinaryOperation requires all the registers that it is told - // about to be spilled and distinct. We know that right is ecx and left is - // not ecx. - frame_->Spill(left->reg()); - - // Use a fresh answer register to avoid spilling the left operand. - answer = allocator_->Allocate(); - ASSERT(answer.is_valid()); - - DeferredInlineBinaryOperation* deferred = - new DeferredInlineBinaryOperation(op, - answer.reg(), - left->reg(), - ecx, - left_type_info, - right_type_info, - overwrite_mode); - JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), answer.reg(), - left_type_info, right_type_info, - deferred->NonSmiInputLabel()); - - // Untag both operands. - __ mov(answer.reg(), left->reg()); - __ SmiUntag(answer.reg()); - __ SmiUntag(right->reg()); // Right is ecx. - - // Perform the operation. - ASSERT(right->reg().is(ecx)); - switch (op) { - case Token::SAR: { - __ sar_cl(answer.reg()); - if (!left_type_info.IsSmi()) { - // Check that the *signed* result fits in a smi. - __ cmp(answer.reg(), 0xc0000000); - deferred->JumpToAnswerOutOfRange(negative); - } - break; - } - case Token::SHR: { - __ shr_cl(answer.reg()); - // Check that the *unsigned* result fits in a smi. Neither of - // the two high-order bits can be set: - // * 0x80000000: high bit would be lost when smi tagging. - // * 0x40000000: this number would convert to negative when smi - // tagging. - // These two cases can only happen with shifts by 0 or 1 when - // handed a valid smi. If the answer cannot be represented by a - // smi, restore the left and right arguments, and jump to slow - // case. The low bit of the left argument may be lost, but only - // in a case where it is dropped anyway. - __ test(answer.reg(), Immediate(0xc0000000)); - deferred->JumpToAnswerOutOfRange(not_zero); - break; - } - case Token::SHL: { - __ shl_cl(answer.reg()); - // Check that the *signed* result fits in a smi. - __ cmp(answer.reg(), 0xc0000000); - deferred->JumpToAnswerOutOfRange(negative); - break; - } - default: - UNREACHABLE(); - } - // Smi-tag the result in answer. - __ SmiTag(answer.reg()); - deferred->BindExit(); - left->Unuse(); - right->Unuse(); - ASSERT(answer.is_valid()); - return answer; - } - - // Handle the other binary operations. - left->ToRegister(); - right->ToRegister(); - // DeferredInlineBinaryOperation requires all the registers that it is told - // about to be spilled. - Result distinct_right = frame_->MakeDistinctAndSpilled(left, right); - // A newly allocated register answer is used to hold the answer. The - // registers containing left and right are not modified so they don't - // need to be spilled in the fast case. - answer = allocator_->Allocate(); - ASSERT(answer.is_valid()); - - // Perform the smi tag check. - DeferredInlineBinaryOperation* deferred = - new DeferredInlineBinaryOperation(op, - answer.reg(), - left->reg(), - distinct_right.reg(), - left_type_info, - right_type_info, - overwrite_mode); - Label non_smi_bit_op; - if (op != Token::BIT_OR) { - JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), answer.reg(), - left_type_info, right_type_info, - deferred->NonSmiInputLabel()); - } - - __ mov(answer.reg(), left->reg()); - switch (op) { - case Token::ADD: - __ add(answer.reg(), Operand(right->reg())); - deferred->Branch(overflow); - break; - - case Token::SUB: - __ sub(answer.reg(), Operand(right->reg())); - deferred->Branch(overflow); - break; - - case Token::MUL: { - // If the smi tag is 0 we can just leave the tag on one operand. - STATIC_ASSERT(kSmiTag == 0); // Adjust code below if not the case. - // Remove smi tag from the left operand (but keep sign). - // Left-hand operand has been copied into answer. - __ SmiUntag(answer.reg()); - // Do multiplication of smis, leaving result in answer. - __ imul(answer.reg(), Operand(right->reg())); - // Go slow on overflows. - deferred->Branch(overflow); - // Check for negative zero result. If product is zero, and one - // argument is negative, go to slow case. The frame is unchanged - // in this block, so local control flow can use a Label rather - // than a JumpTarget. - if (!expr->no_negative_zero()) { - Label non_zero_result; - __ test(answer.reg(), Operand(answer.reg())); - __ j(not_zero, &non_zero_result, taken); - __ mov(answer.reg(), left->reg()); - __ or_(answer.reg(), Operand(right->reg())); - deferred->Branch(negative); - __ xor_(answer.reg(), Operand(answer.reg())); // Positive 0 is correct. - __ bind(&non_zero_result); - } - break; - } - - case Token::BIT_OR: - __ or_(answer.reg(), Operand(right->reg())); - __ test(answer.reg(), Immediate(kSmiTagMask)); - __ j(not_zero, deferred->NonSmiInputLabel()); - break; - - case Token::BIT_AND: - __ and_(answer.reg(), Operand(right->reg())); - break; - - case Token::BIT_XOR: - __ xor_(answer.reg(), Operand(right->reg())); - break; - - default: - UNREACHABLE(); - break; - } - - deferred->BindExit(); - left->Unuse(); - right->Unuse(); - ASSERT(answer.is_valid()); - return answer; -} - - -// Call the appropriate binary operation stub to compute src op value -// and leave the result in dst. -class DeferredInlineSmiOperation: public DeferredCode { - public: - DeferredInlineSmiOperation(Token::Value op, - Register dst, - Register src, - TypeInfo type_info, - Smi* value, - OverwriteMode overwrite_mode) - : op_(op), - dst_(dst), - src_(src), - type_info_(type_info), - value_(value), - overwrite_mode_(overwrite_mode) { - if (type_info.IsSmi()) overwrite_mode_ = NO_OVERWRITE; - set_comment("[ DeferredInlineSmiOperation"); - } - - virtual void Generate(); - - private: - Token::Value op_; - Register dst_; - Register src_; - TypeInfo type_info_; - Smi* value_; - OverwriteMode overwrite_mode_; -}; - - -void DeferredInlineSmiOperation::Generate() { - // For mod we don't generate all the Smi code inline. - GenericBinaryOpStub stub( - op_, - overwrite_mode_, - (op_ == Token::MOD) ? NO_GENERIC_BINARY_FLAGS : NO_SMI_CODE_IN_STUB, - TypeInfo::Combine(TypeInfo::Smi(), type_info_)); - stub.GenerateCall(masm_, src_, value_); - if (!dst_.is(eax)) __ mov(dst_, eax); -} - - -// Call the appropriate binary operation stub to compute value op src -// and leave the result in dst. -class DeferredInlineSmiOperationReversed: public DeferredCode { - public: - DeferredInlineSmiOperationReversed(Token::Value op, - Register dst, - Smi* value, - Register src, - TypeInfo type_info, - OverwriteMode overwrite_mode) - : op_(op), - dst_(dst), - type_info_(type_info), - value_(value), - src_(src), - overwrite_mode_(overwrite_mode) { - set_comment("[ DeferredInlineSmiOperationReversed"); - } - - virtual void Generate(); - - private: - Token::Value op_; - Register dst_; - TypeInfo type_info_; - Smi* value_; - Register src_; - OverwriteMode overwrite_mode_; -}; - - -void DeferredInlineSmiOperationReversed::Generate() { - GenericBinaryOpStub stub( - op_, - overwrite_mode_, - NO_SMI_CODE_IN_STUB, - TypeInfo::Combine(TypeInfo::Smi(), type_info_)); - stub.GenerateCall(masm_, value_, src_); - if (!dst_.is(eax)) __ mov(dst_, eax); -} - - -// The result of src + value is in dst. It either overflowed or was not -// smi tagged. Undo the speculative addition and call the appropriate -// specialized stub for add. The result is left in dst. -class DeferredInlineSmiAdd: public DeferredCode { - public: - DeferredInlineSmiAdd(Register dst, - TypeInfo type_info, - Smi* value, - OverwriteMode overwrite_mode) - : dst_(dst), - type_info_(type_info), - value_(value), - overwrite_mode_(overwrite_mode) { - if (type_info_.IsSmi()) overwrite_mode_ = NO_OVERWRITE; - set_comment("[ DeferredInlineSmiAdd"); - } - - virtual void Generate(); - - private: - Register dst_; - TypeInfo type_info_; - Smi* value_; - OverwriteMode overwrite_mode_; -}; - - -void DeferredInlineSmiAdd::Generate() { - // Undo the optimistic add operation and call the shared stub. - __ sub(Operand(dst_), Immediate(value_)); - GenericBinaryOpStub igostub( - Token::ADD, - overwrite_mode_, - NO_SMI_CODE_IN_STUB, - TypeInfo::Combine(TypeInfo::Smi(), type_info_)); - igostub.GenerateCall(masm_, dst_, value_); - if (!dst_.is(eax)) __ mov(dst_, eax); -} - - -// The result of value + src is in dst. It either overflowed or was not -// smi tagged. Undo the speculative addition and call the appropriate -// specialized stub for add. The result is left in dst. -class DeferredInlineSmiAddReversed: public DeferredCode { - public: - DeferredInlineSmiAddReversed(Register dst, - TypeInfo type_info, - Smi* value, - OverwriteMode overwrite_mode) - : dst_(dst), - type_info_(type_info), - value_(value), - overwrite_mode_(overwrite_mode) { - set_comment("[ DeferredInlineSmiAddReversed"); - } - - virtual void Generate(); - - private: - Register dst_; - TypeInfo type_info_; - Smi* value_; - OverwriteMode overwrite_mode_; -}; - - -void DeferredInlineSmiAddReversed::Generate() { - // Undo the optimistic add operation and call the shared stub. - __ sub(Operand(dst_), Immediate(value_)); - GenericBinaryOpStub igostub( - Token::ADD, - overwrite_mode_, - NO_SMI_CODE_IN_STUB, - TypeInfo::Combine(TypeInfo::Smi(), type_info_)); - igostub.GenerateCall(masm_, value_, dst_); - if (!dst_.is(eax)) __ mov(dst_, eax); -} - - -// The result of src - value is in dst. It either overflowed or was not -// smi tagged. Undo the speculative subtraction and call the -// appropriate specialized stub for subtract. The result is left in -// dst. -class DeferredInlineSmiSub: public DeferredCode { - public: - DeferredInlineSmiSub(Register dst, - TypeInfo type_info, - Smi* value, - OverwriteMode overwrite_mode) - : dst_(dst), - type_info_(type_info), - value_(value), - overwrite_mode_(overwrite_mode) { - if (type_info.IsSmi()) overwrite_mode_ = NO_OVERWRITE; - set_comment("[ DeferredInlineSmiSub"); - } - - virtual void Generate(); - - private: - Register dst_; - TypeInfo type_info_; - Smi* value_; - OverwriteMode overwrite_mode_; -}; - - -void DeferredInlineSmiSub::Generate() { - // Undo the optimistic sub operation and call the shared stub. - __ add(Operand(dst_), Immediate(value_)); - GenericBinaryOpStub igostub( - Token::SUB, - overwrite_mode_, - NO_SMI_CODE_IN_STUB, - TypeInfo::Combine(TypeInfo::Smi(), type_info_)); - igostub.GenerateCall(masm_, dst_, value_); - if (!dst_.is(eax)) __ mov(dst_, eax); -} - - -Result CodeGenerator::ConstantSmiBinaryOperation(BinaryOperation* expr, - Result* operand, - Handle<Object> value, - bool reversed, - OverwriteMode overwrite_mode) { - // Generate inline code for a binary operation when one of the - // operands is a constant smi. Consumes the argument "operand". - if (IsUnsafeSmi(value)) { - Result unsafe_operand(value); - if (reversed) { - return LikelySmiBinaryOperation(expr, &unsafe_operand, operand, - overwrite_mode); - } else { - return LikelySmiBinaryOperation(expr, operand, &unsafe_operand, - overwrite_mode); - } - } - - // Get the literal value. - Smi* smi_value = Smi::cast(*value); - int int_value = smi_value->value(); - - Token::Value op = expr->op(); - Result answer; - switch (op) { - case Token::ADD: { - operand->ToRegister(); - frame_->Spill(operand->reg()); - - // Optimistically add. Call the specialized add stub if the - // result is not a smi or overflows. - DeferredCode* deferred = NULL; - if (reversed) { - deferred = new DeferredInlineSmiAddReversed(operand->reg(), - operand->type_info(), - smi_value, - overwrite_mode); - } else { - deferred = new DeferredInlineSmiAdd(operand->reg(), - operand->type_info(), - smi_value, - overwrite_mode); - } - __ add(Operand(operand->reg()), Immediate(value)); - deferred->Branch(overflow); - if (!operand->type_info().IsSmi()) { - __ test(operand->reg(), Immediate(kSmiTagMask)); - deferred->Branch(not_zero); - } else if (FLAG_debug_code) { - __ AbortIfNotSmi(operand->reg()); - } - deferred->BindExit(); - answer = *operand; - break; - } - - case Token::SUB: { - DeferredCode* deferred = NULL; - if (reversed) { - // The reversed case is only hit when the right operand is not a - // constant. - ASSERT(operand->is_register()); - answer = allocator()->Allocate(); - ASSERT(answer.is_valid()); - __ Set(answer.reg(), Immediate(value)); - deferred = - new DeferredInlineSmiOperationReversed(op, - answer.reg(), - smi_value, - operand->reg(), - operand->type_info(), - overwrite_mode); - __ sub(answer.reg(), Operand(operand->reg())); - } else { - operand->ToRegister(); - frame_->Spill(operand->reg()); - answer = *operand; - deferred = new DeferredInlineSmiSub(operand->reg(), - operand->type_info(), - smi_value, - overwrite_mode); - __ sub(Operand(operand->reg()), Immediate(value)); - } - deferred->Branch(overflow); - if (!operand->type_info().IsSmi()) { - __ test(answer.reg(), Immediate(kSmiTagMask)); - deferred->Branch(not_zero); - } else if (FLAG_debug_code) { - __ AbortIfNotSmi(operand->reg()); - } - deferred->BindExit(); - operand->Unuse(); - break; - } - - case Token::SAR: - if (reversed) { - Result constant_operand(value); - answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, - overwrite_mode); - } else { - // Only the least significant 5 bits of the shift value are used. - // In the slow case, this masking is done inside the runtime call. - int shift_value = int_value & 0x1f; - operand->ToRegister(); - frame_->Spill(operand->reg()); - if (!operand->type_info().IsSmi()) { - DeferredInlineSmiOperation* deferred = - new DeferredInlineSmiOperation(op, - operand->reg(), - operand->reg(), - operand->type_info(), - smi_value, - overwrite_mode); - __ test(operand->reg(), Immediate(kSmiTagMask)); - deferred->Branch(not_zero); - if (shift_value > 0) { - __ sar(operand->reg(), shift_value); - __ and_(operand->reg(), ~kSmiTagMask); - } - deferred->BindExit(); - } else { - if (FLAG_debug_code) { - __ AbortIfNotSmi(operand->reg()); - } - if (shift_value > 0) { - __ sar(operand->reg(), shift_value); - __ and_(operand->reg(), ~kSmiTagMask); - } - } - answer = *operand; - } - break; - - case Token::SHR: - if (reversed) { - Result constant_operand(value); - answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, - overwrite_mode); - } else { - // Only the least significant 5 bits of the shift value are used. - // In the slow case, this masking is done inside the runtime call. - int shift_value = int_value & 0x1f; - operand->ToRegister(); - answer = allocator()->Allocate(); - ASSERT(answer.is_valid()); - DeferredInlineSmiOperation* deferred = - new DeferredInlineSmiOperation(op, - answer.reg(), - operand->reg(), - operand->type_info(), - smi_value, - overwrite_mode); - if (!operand->type_info().IsSmi()) { - __ test(operand->reg(), Immediate(kSmiTagMask)); - deferred->Branch(not_zero); - } else if (FLAG_debug_code) { - __ AbortIfNotSmi(operand->reg()); - } - __ mov(answer.reg(), operand->reg()); - __ SmiUntag(answer.reg()); - __ shr(answer.reg(), shift_value); - // A negative Smi shifted right two is in the positive Smi range. - if (shift_value < 2) { - __ test(answer.reg(), Immediate(0xc0000000)); - deferred->Branch(not_zero); - } - operand->Unuse(); - __ SmiTag(answer.reg()); - deferred->BindExit(); - } - break; - - case Token::SHL: - if (reversed) { - // Move operand into ecx and also into a second register. - // If operand is already in a register, take advantage of that. - // This lets us modify ecx, but still bail out to deferred code. - Result right; - Result right_copy_in_ecx; - TypeInfo right_type_info = operand->type_info(); - operand->ToRegister(); - if (operand->reg().is(ecx)) { - right = allocator()->Allocate(); - __ mov(right.reg(), ecx); - frame_->Spill(ecx); - right_copy_in_ecx = *operand; - } else { - right_copy_in_ecx = allocator()->Allocate(ecx); - __ mov(ecx, operand->reg()); - right = *operand; - } - operand->Unuse(); - - answer = allocator()->Allocate(); - DeferredInlineSmiOperationReversed* deferred = - new DeferredInlineSmiOperationReversed(op, - answer.reg(), - smi_value, - right.reg(), - right_type_info, - overwrite_mode); - __ mov(answer.reg(), Immediate(int_value)); - __ sar(ecx, kSmiTagSize); - if (!right_type_info.IsSmi()) { - deferred->Branch(carry); - } else if (FLAG_debug_code) { - __ AbortIfNotSmi(right.reg()); - } - __ shl_cl(answer.reg()); - __ cmp(answer.reg(), 0xc0000000); - deferred->Branch(sign); - __ SmiTag(answer.reg()); - - deferred->BindExit(); - } else { - // Only the least significant 5 bits of the shift value are used. - // In the slow case, this masking is done inside the runtime call. - int shift_value = int_value & 0x1f; - operand->ToRegister(); - if (shift_value == 0) { - // Spill operand so it can be overwritten in the slow case. - frame_->Spill(operand->reg()); - DeferredInlineSmiOperation* deferred = - new DeferredInlineSmiOperation(op, - operand->reg(), - operand->reg(), - operand->type_info(), - smi_value, - overwrite_mode); - __ test(operand->reg(), Immediate(kSmiTagMask)); - deferred->Branch(not_zero); - deferred->BindExit(); - answer = *operand; - } else { - // Use a fresh temporary for nonzero shift values. - answer = allocator()->Allocate(); - ASSERT(answer.is_valid()); - DeferredInlineSmiOperation* deferred = - new DeferredInlineSmiOperation(op, - answer.reg(), - operand->reg(), - operand->type_info(), - smi_value, - overwrite_mode); - if (!operand->type_info().IsSmi()) { - __ test(operand->reg(), Immediate(kSmiTagMask)); - deferred->Branch(not_zero); - } else if (FLAG_debug_code) { - __ AbortIfNotSmi(operand->reg()); - } - __ mov(answer.reg(), operand->reg()); - STATIC_ASSERT(kSmiTag == 0); // adjust code if not the case - // We do no shifts, only the Smi conversion, if shift_value is 1. - if (shift_value > 1) { - __ shl(answer.reg(), shift_value - 1); - } - // Convert int result to Smi, checking that it is in int range. - STATIC_ASSERT(kSmiTagSize == 1); // adjust code if not the case - __ add(answer.reg(), Operand(answer.reg())); - deferred->Branch(overflow); - deferred->BindExit(); - operand->Unuse(); - } - } - break; - - case Token::BIT_OR: - case Token::BIT_XOR: - case Token::BIT_AND: { - operand->ToRegister(); - // DeferredInlineBinaryOperation requires all the registers that it is - // told about to be spilled. - frame_->Spill(operand->reg()); - DeferredInlineBinaryOperation* deferred = NULL; - if (!operand->type_info().IsSmi()) { - Result left = allocator()->Allocate(); - ASSERT(left.is_valid()); - Result right = allocator()->Allocate(); - ASSERT(right.is_valid()); - deferred = new DeferredInlineBinaryOperation( - op, - operand->reg(), - left.reg(), - right.reg(), - operand->type_info(), - TypeInfo::Smi(), - overwrite_mode == NO_OVERWRITE ? NO_OVERWRITE : OVERWRITE_LEFT); - __ test(operand->reg(), Immediate(kSmiTagMask)); - deferred->JumpToConstantRhs(not_zero, smi_value); - } else if (FLAG_debug_code) { - __ AbortIfNotSmi(operand->reg()); - } - if (op == Token::BIT_AND) { - __ and_(Operand(operand->reg()), Immediate(value)); - } else if (op == Token::BIT_XOR) { - if (int_value != 0) { - __ xor_(Operand(operand->reg()), Immediate(value)); - } - } else { - ASSERT(op == Token::BIT_OR); - if (int_value != 0) { - __ or_(Operand(operand->reg()), Immediate(value)); - } - } - if (deferred != NULL) deferred->BindExit(); - answer = *operand; - break; - } - - case Token::DIV: - if (!reversed && int_value == 2) { - operand->ToRegister(); - frame_->Spill(operand->reg()); - - DeferredInlineSmiOperation* deferred = - new DeferredInlineSmiOperation(op, - operand->reg(), - operand->reg(), - operand->type_info(), - smi_value, - overwrite_mode); - // Check that lowest log2(value) bits of operand are zero, and test - // smi tag at the same time. - STATIC_ASSERT(kSmiTag == 0); - STATIC_ASSERT(kSmiTagSize == 1); - __ test(operand->reg(), Immediate(3)); - deferred->Branch(not_zero); // Branch if non-smi or odd smi. - __ sar(operand->reg(), 1); - deferred->BindExit(); - answer = *operand; - } else { - // Cannot fall through MOD to default case, so we duplicate the - // default case here. - Result constant_operand(value); - if (reversed) { - answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, - overwrite_mode); - } else { - answer = LikelySmiBinaryOperation(expr, operand, &constant_operand, - overwrite_mode); - } - } - break; - - // Generate inline code for mod of powers of 2 and negative powers of 2. - case Token::MOD: - if (!reversed && - int_value != 0 && - (IsPowerOf2(int_value) || IsPowerOf2(-int_value))) { - operand->ToRegister(); - frame_->Spill(operand->reg()); - DeferredCode* deferred = - new DeferredInlineSmiOperation(op, - operand->reg(), - operand->reg(), - operand->type_info(), - smi_value, - overwrite_mode); - // Check for negative or non-Smi left hand side. - __ test(operand->reg(), Immediate(kSmiTagMask | kSmiSignMask)); - deferred->Branch(not_zero); - if (int_value < 0) int_value = -int_value; - if (int_value == 1) { - __ mov(operand->reg(), Immediate(Smi::FromInt(0))); - } else { - __ and_(operand->reg(), (int_value << kSmiTagSize) - 1); - } - deferred->BindExit(); - answer = *operand; - break; - } - // Fall through if we did not find a power of 2 on the right hand side! - // The next case must be the default. - - default: { - Result constant_operand(value); - if (reversed) { - answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, - overwrite_mode); - } else { - answer = LikelySmiBinaryOperation(expr, operand, &constant_operand, - overwrite_mode); - } - break; - } - } - ASSERT(answer.is_valid()); - return answer; -} - - -static bool CouldBeNaN(const Result& result) { - if (result.type_info().IsSmi()) return false; - if (result.type_info().IsInteger32()) return false; - if (!result.is_constant()) return true; - if (!result.handle()->IsHeapNumber()) return false; - return isnan(HeapNumber::cast(*result.handle())->value()); -} - - -// Convert from signed to unsigned comparison to match the way EFLAGS are set -// by FPU and XMM compare instructions. -static Condition DoubleCondition(Condition cc) { - switch (cc) { - case less: return below; - case equal: return equal; - case less_equal: return below_equal; - case greater: return above; - case greater_equal: return above_equal; - default: UNREACHABLE(); - } - UNREACHABLE(); - return equal; -} - - -static CompareFlags ComputeCompareFlags(NaNInformation nan_info, - bool inline_number_compare) { - CompareFlags flags = NO_SMI_COMPARE_IN_STUB; - if (nan_info == kCantBothBeNaN) { - flags = static_cast<CompareFlags>(flags | CANT_BOTH_BE_NAN); - } - if (inline_number_compare) { - flags = static_cast<CompareFlags>(flags | NO_NUMBER_COMPARE_IN_STUB); - } - return flags; -} - - -void CodeGenerator::Comparison(AstNode* node, - Condition cc, - bool strict, - ControlDestination* dest) { - // Strict only makes sense for equality comparisons. - ASSERT(!strict || cc == equal); - - Result left_side; - Result right_side; - // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order. - if (cc == greater || cc == less_equal) { - cc = ReverseCondition(cc); - left_side = frame_->Pop(); - right_side = frame_->Pop(); - } else { - right_side = frame_->Pop(); - left_side = frame_->Pop(); - } - ASSERT(cc == less || cc == equal || cc == greater_equal); - - // If either side is a constant smi, optimize the comparison. - bool left_side_constant_smi = false; - bool left_side_constant_null = false; - bool left_side_constant_1_char_string = false; - if (left_side.is_constant()) { - left_side_constant_smi = left_side.handle()->IsSmi(); - left_side_constant_null = left_side.handle()->IsNull(); - left_side_constant_1_char_string = - (left_side.handle()->IsString() && - String::cast(*left_side.handle())->length() == 1 && - String::cast(*left_side.handle())->IsAsciiRepresentation()); - } - bool right_side_constant_smi = false; - bool right_side_constant_null = false; - bool right_side_constant_1_char_string = false; - if (right_side.is_constant()) { - right_side_constant_smi = right_side.handle()->IsSmi(); - right_side_constant_null = right_side.handle()->IsNull(); - right_side_constant_1_char_string = - (right_side.handle()->IsString() && - String::cast(*right_side.handle())->length() == 1 && - String::cast(*right_side.handle())->IsAsciiRepresentation()); - } - - if (left_side_constant_smi || right_side_constant_smi) { - bool is_loop_condition = (node->AsExpression() != NULL) && - node->AsExpression()->is_loop_condition(); - ConstantSmiComparison(cc, strict, dest, &left_side, &right_side, - left_side_constant_smi, right_side_constant_smi, - is_loop_condition); - } else if (left_side_constant_1_char_string || - right_side_constant_1_char_string) { - if (left_side_constant_1_char_string && right_side_constant_1_char_string) { - // Trivial case, comparing two constants. - int left_value = String::cast(*left_side.handle())->Get(0); - int right_value = String::cast(*right_side.handle())->Get(0); - switch (cc) { - case less: - dest->Goto(left_value < right_value); - break; - case equal: - dest->Goto(left_value == right_value); - break; - case greater_equal: - dest->Goto(left_value >= right_value); - break; - default: - UNREACHABLE(); - } - } else { - // Only one side is a constant 1 character string. - // If left side is a constant 1-character string, reverse the operands. - // Since one side is a constant string, conversion order does not matter. - if (left_side_constant_1_char_string) { - Result temp = left_side; - left_side = right_side; - right_side = temp; - cc = ReverseCondition(cc); - // This may reintroduce greater or less_equal as the value of cc. - // CompareStub and the inline code both support all values of cc. - } - // Implement comparison against a constant string, inlining the case - // where both sides are strings. - left_side.ToRegister(); - - // Here we split control flow to the stub call and inlined cases - // before finally splitting it to the control destination. We use - // a jump target and branching to duplicate the virtual frame at - // the first split. We manually handle the off-frame references - // by reconstituting them on the non-fall-through path. - JumpTarget is_not_string, is_string; - Register left_reg = left_side.reg(); - Handle<Object> right_val = right_side.handle(); - ASSERT(StringShape(String::cast(*right_val)).IsSymbol()); - __ test(left_side.reg(), Immediate(kSmiTagMask)); - is_not_string.Branch(zero, &left_side); - Result temp = allocator_->Allocate(); - ASSERT(temp.is_valid()); - __ mov(temp.reg(), - FieldOperand(left_side.reg(), HeapObject::kMapOffset)); - __ movzx_b(temp.reg(), - FieldOperand(temp.reg(), Map::kInstanceTypeOffset)); - // If we are testing for equality then make use of the symbol shortcut. - // Check if the right left hand side has the same type as the left hand - // side (which is always a symbol). - if (cc == equal) { - Label not_a_symbol; - STATIC_ASSERT(kSymbolTag != 0); - // Ensure that no non-strings have the symbol bit set. - STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask); - __ test(temp.reg(), Immediate(kIsSymbolMask)); // Test the symbol bit. - __ j(zero, ¬_a_symbol); - // They are symbols, so do identity compare. - __ cmp(left_side.reg(), right_side.handle()); - dest->true_target()->Branch(equal); - dest->false_target()->Branch(not_equal); - __ bind(¬_a_symbol); - } - // Call the compare stub if the left side is not a flat ascii string. - __ and_(temp.reg(), - kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask); - __ cmp(temp.reg(), kStringTag | kSeqStringTag | kAsciiStringTag); - temp.Unuse(); - is_string.Branch(equal, &left_side); - - // Setup and call the compare stub. - is_not_string.Bind(&left_side); - CompareFlags flags = - static_cast<CompareFlags>(CANT_BOTH_BE_NAN | NO_SMI_COMPARE_IN_STUB); - CompareStub stub(cc, strict, flags); - Result result = frame_->CallStub(&stub, &left_side, &right_side); - result.ToRegister(); - __ cmp(result.reg(), 0); - result.Unuse(); - dest->true_target()->Branch(cc); - dest->false_target()->Jump(); - - is_string.Bind(&left_side); - // left_side is a sequential ASCII string. - left_side = Result(left_reg); - right_side = Result(right_val); - // Test string equality and comparison. - Label comparison_done; - if (cc == equal) { - __ cmp(FieldOperand(left_side.reg(), String::kLengthOffset), - Immediate(Smi::FromInt(1))); - __ j(not_equal, &comparison_done); - uint8_t char_value = - static_cast<uint8_t>(String::cast(*right_val)->Get(0)); - __ cmpb(FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize), - char_value); - } else { - __ cmp(FieldOperand(left_side.reg(), String::kLengthOffset), - Immediate(Smi::FromInt(1))); - // If the length is 0 then the jump is taken and the flags - // correctly represent being less than the one-character string. - __ j(below, &comparison_done); - // Compare the first character of the string with the - // constant 1-character string. - uint8_t char_value = - static_cast<uint8_t>(String::cast(*right_val)->Get(0)); - __ cmpb(FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize), - char_value); - __ j(not_equal, &comparison_done); - // If the first character is the same then the long string sorts after - // the short one. - __ cmp(FieldOperand(left_side.reg(), String::kLengthOffset), - Immediate(Smi::FromInt(1))); - } - __ bind(&comparison_done); - left_side.Unuse(); - right_side.Unuse(); - dest->Split(cc); - } - } else { - // Neither side is a constant Smi, constant 1-char string or constant null. - // If either side is a non-smi constant, or known to be a heap number, - // skip the smi check. - bool known_non_smi = - (left_side.is_constant() && !left_side.handle()->IsSmi()) || - (right_side.is_constant() && !right_side.handle()->IsSmi()) || - left_side.type_info().IsDouble() || - right_side.type_info().IsDouble(); - - NaNInformation nan_info = - (CouldBeNaN(left_side) && CouldBeNaN(right_side)) ? - kBothCouldBeNaN : - kCantBothBeNaN; - - // Inline number comparison handling any combination of smi's and heap - // numbers if: - // code is in a loop - // the compare operation is different from equal - // compare is not a for-loop comparison - // The reason for excluding equal is that it will most likely be done - // with smi's (not heap numbers) and the code to comparing smi's is inlined - // separately. The same reason applies for for-loop comparison which will - // also most likely be smi comparisons. - bool is_loop_condition = (node->AsExpression() != NULL) - && node->AsExpression()->is_loop_condition(); - bool inline_number_compare = - loop_nesting() > 0 && cc != equal && !is_loop_condition; - - // Left and right needed in registers for the following code. - left_side.ToRegister(); - right_side.ToRegister(); - - if (known_non_smi) { - // Inlined equality check: - // If at least one of the objects is not NaN, then if the objects - // are identical, they are equal. - if (nan_info == kCantBothBeNaN && cc == equal) { - __ cmp(left_side.reg(), Operand(right_side.reg())); - dest->true_target()->Branch(equal); - } - - // Inlined number comparison: - if (inline_number_compare) { - GenerateInlineNumberComparison(&left_side, &right_side, cc, dest); - } - - // End of in-line compare, call out to the compare stub. Don't include - // number comparison in the stub if it was inlined. - CompareFlags flags = ComputeCompareFlags(nan_info, inline_number_compare); - CompareStub stub(cc, strict, flags); - Result answer = frame_->CallStub(&stub, &left_side, &right_side); - __ test(answer.reg(), Operand(answer.reg())); - answer.Unuse(); - dest->Split(cc); - } else { - // Here we split control flow to the stub call and inlined cases - // before finally splitting it to the control destination. We use - // a jump target and branching to duplicate the virtual frame at - // the first split. We manually handle the off-frame references - // by reconstituting them on the non-fall-through path. - JumpTarget is_smi; - Register left_reg = left_side.reg(); - Register right_reg = right_side.reg(); - - // In-line check for comparing two smis. - JumpIfBothSmiUsingTypeInfo(&left_side, &right_side, &is_smi); - - if (has_valid_frame()) { - // Inline the equality check if both operands can't be a NaN. If both - // objects are the same they are equal. - if (nan_info == kCantBothBeNaN && cc == equal) { - __ cmp(left_side.reg(), Operand(right_side.reg())); - dest->true_target()->Branch(equal); - } - - // Inlined number comparison: - if (inline_number_compare) { - GenerateInlineNumberComparison(&left_side, &right_side, cc, dest); - } - - // End of in-line compare, call out to the compare stub. Don't include - // number comparison in the stub if it was inlined. - CompareFlags flags = - ComputeCompareFlags(nan_info, inline_number_compare); - CompareStub stub(cc, strict, flags); - Result answer = frame_->CallStub(&stub, &left_side, &right_side); - __ test(answer.reg(), Operand(answer.reg())); - answer.Unuse(); - if (is_smi.is_linked()) { - dest->true_target()->Branch(cc); - dest->false_target()->Jump(); - } else { - dest->Split(cc); - } - } - - if (is_smi.is_linked()) { - is_smi.Bind(); - left_side = Result(left_reg); - right_side = Result(right_reg); - __ cmp(left_side.reg(), Operand(right_side.reg())); - right_side.Unuse(); - left_side.Unuse(); - dest->Split(cc); - } - } - } -} - - -void CodeGenerator::ConstantSmiComparison(Condition cc, - bool strict, - ControlDestination* dest, - Result* left_side, - Result* right_side, - bool left_side_constant_smi, - bool right_side_constant_smi, - bool is_loop_condition) { - if (left_side_constant_smi && right_side_constant_smi) { - // Trivial case, comparing two constants. - int left_value = Smi::cast(*left_side->handle())->value(); - int right_value = Smi::cast(*right_side->handle())->value(); - switch (cc) { - case less: - dest->Goto(left_value < right_value); - break; - case equal: - dest->Goto(left_value == right_value); - break; - case greater_equal: - dest->Goto(left_value >= right_value); - break; - default: - UNREACHABLE(); - } - } else { - // Only one side is a constant Smi. - // If left side is a constant Smi, reverse the operands. - // Since one side is a constant Smi, conversion order does not matter. - if (left_side_constant_smi) { - Result* temp = left_side; - left_side = right_side; - right_side = temp; - cc = ReverseCondition(cc); - // This may re-introduce greater or less_equal as the value of cc. - // CompareStub and the inline code both support all values of cc. - } - // Implement comparison against a constant Smi, inlining the case - // where both sides are Smis. - left_side->ToRegister(); - Register left_reg = left_side->reg(); - Handle<Object> right_val = right_side->handle(); - - if (left_side->is_smi()) { - if (FLAG_debug_code) { - __ AbortIfNotSmi(left_reg); - } - // Test smi equality and comparison by signed int comparison. - if (IsUnsafeSmi(right_side->handle())) { - right_side->ToRegister(); - __ cmp(left_reg, Operand(right_side->reg())); - } else { - __ cmp(Operand(left_reg), Immediate(right_side->handle())); - } - left_side->Unuse(); - right_side->Unuse(); - dest->Split(cc); - } else { - // Only the case where the left side could possibly be a non-smi is left. - JumpTarget is_smi; - if (cc == equal) { - // We can do the equality comparison before the smi check. - __ cmp(Operand(left_reg), Immediate(right_side->handle())); - dest->true_target()->Branch(equal); - __ test(left_reg, Immediate(kSmiTagMask)); - dest->false_target()->Branch(zero); - } else { - // Do the smi check, then the comparison. - __ test(left_reg, Immediate(kSmiTagMask)); - is_smi.Branch(zero, left_side, right_side); - } - - // Jump or fall through to here if we are comparing a non-smi to a - // constant smi. If the non-smi is a heap number and this is not - // a loop condition, inline the floating point code. - if (!is_loop_condition && CpuFeatures::IsSupported(SSE2)) { - // Right side is a constant smi and left side has been checked - // not to be a smi. - CpuFeatures::Scope use_sse2(SSE2); - JumpTarget not_number; - __ cmp(FieldOperand(left_reg, HeapObject::kMapOffset), - Immediate(Factory::heap_number_map())); - not_number.Branch(not_equal, left_side); - __ movdbl(xmm1, - FieldOperand(left_reg, HeapNumber::kValueOffset)); - int value = Smi::cast(*right_val)->value(); - if (value == 0) { - __ xorpd(xmm0, xmm0); - } else { - Result temp = allocator()->Allocate(); - __ mov(temp.reg(), Immediate(value)); - __ cvtsi2sd(xmm0, Operand(temp.reg())); - temp.Unuse(); - } - __ ucomisd(xmm1, xmm0); - // Jump to builtin for NaN. - not_number.Branch(parity_even, left_side); - left_side->Unuse(); - dest->true_target()->Branch(DoubleCondition(cc)); - dest->false_target()->Jump(); - not_number.Bind(left_side); - } - - // Setup and call the compare stub. - CompareFlags flags = - static_cast<CompareFlags>(CANT_BOTH_BE_NAN | NO_SMI_CODE_IN_STUB); - CompareStub stub(cc, strict, flags); - Result result = frame_->CallStub(&stub, left_side, right_side); - result.ToRegister(); - __ test(result.reg(), Operand(result.reg())); - result.Unuse(); - if (cc == equal) { - dest->Split(cc); - } else { - dest->true_target()->Branch(cc); - dest->false_target()->Jump(); - - // It is important for performance for this case to be at the end. - is_smi.Bind(left_side, right_side); - if (IsUnsafeSmi(right_side->handle())) { - right_side->ToRegister(); - __ cmp(left_reg, Operand(right_side->reg())); - } else { - __ cmp(Operand(left_reg), Immediate(right_side->handle())); - } - left_side->Unuse(); - right_side->Unuse(); - dest->Split(cc); - } - } - } -} - - -// Check that the comparison operand is a number. Jump to not_numbers jump -// target passing the left and right result if the operand is not a number. -static void CheckComparisonOperand(MacroAssembler* masm_, - Result* operand, - Result* left_side, - Result* right_side, - JumpTarget* not_numbers) { - // Perform check if operand is not known to be a number. - if (!operand->type_info().IsNumber()) { - Label done; - __ test(operand->reg(), Immediate(kSmiTagMask)); - __ j(zero, &done); - __ cmp(FieldOperand(operand->reg(), HeapObject::kMapOffset), - Immediate(Factory::heap_number_map())); - not_numbers->Branch(not_equal, left_side, right_side, not_taken); - __ bind(&done); - } -} - - -// Load a comparison operand to the FPU stack. This assumes that the operand has -// already been checked and is a number. -static void LoadComparisonOperand(MacroAssembler* masm_, - Result* operand) { - Label done; - if (operand->type_info().IsDouble()) { - // Operand is known to be a heap number, just load it. - __ fld_d(FieldOperand(operand->reg(), HeapNumber::kValueOffset)); - } else if (operand->type_info().IsSmi()) { - // Operand is known to be a smi. Convert it to double and keep the original - // smi. - __ SmiUntag(operand->reg()); - __ push(operand->reg()); - __ fild_s(Operand(esp, 0)); - __ pop(operand->reg()); - __ SmiTag(operand->reg()); - } else { - // Operand type not known, check for smi otherwise assume heap number. - Label smi; - __ test(operand->reg(), Immediate(kSmiTagMask)); - __ j(zero, &smi); - __ fld_d(FieldOperand(operand->reg(), HeapNumber::kValueOffset)); - __ jmp(&done); - __ bind(&smi); - __ SmiUntag(operand->reg()); - __ push(operand->reg()); - __ fild_s(Operand(esp, 0)); - __ pop(operand->reg()); - __ SmiTag(operand->reg()); - __ jmp(&done); - } - __ bind(&done); -} - - -// Load a comparison operand into into a XMM register. Jump to not_numbers jump -// target passing the left and right result if the operand is not a number. -static void LoadComparisonOperandSSE2(MacroAssembler* masm_, - Result* operand, - XMMRegister xmm_reg, - Result* left_side, - Result* right_side, - JumpTarget* not_numbers) { - Label done; - if (operand->type_info().IsDouble()) { - // Operand is known to be a heap number, just load it. - __ movdbl(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset)); - } else if (operand->type_info().IsSmi()) { - // Operand is known to be a smi. Convert it to double and keep the original - // smi. - __ SmiUntag(operand->reg()); - __ cvtsi2sd(xmm_reg, Operand(operand->reg())); - __ SmiTag(operand->reg()); - } else { - // Operand type not known, check for smi or heap number. - Label smi; - __ test(operand->reg(), Immediate(kSmiTagMask)); - __ j(zero, &smi); - if (!operand->type_info().IsNumber()) { - __ cmp(FieldOperand(operand->reg(), HeapObject::kMapOffset), - Immediate(Factory::heap_number_map())); - not_numbers->Branch(not_equal, left_side, right_side, taken); - } - __ movdbl(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset)); - __ jmp(&done); - - __ bind(&smi); - // Comvert smi to float and keep the original smi. - __ SmiUntag(operand->reg()); - __ cvtsi2sd(xmm_reg, Operand(operand->reg())); - __ SmiTag(operand->reg()); - __ jmp(&done); - } - __ bind(&done); -} - - -void CodeGenerator::GenerateInlineNumberComparison(Result* left_side, - Result* right_side, - Condition cc, - ControlDestination* dest) { - ASSERT(left_side->is_register()); - ASSERT(right_side->is_register()); - - JumpTarget not_numbers; - if (CpuFeatures::IsSupported(SSE2)) { - CpuFeatures::Scope use_sse2(SSE2); - - // Load left and right operand into registers xmm0 and xmm1 and compare. - LoadComparisonOperandSSE2(masm_, left_side, xmm0, left_side, right_side, - ¬_numbers); - LoadComparisonOperandSSE2(masm_, right_side, xmm1, left_side, right_side, - ¬_numbers); - __ ucomisd(xmm0, xmm1); - } else { - Label check_right, compare; - - // Make sure that both comparison operands are numbers. - CheckComparisonOperand(masm_, left_side, left_side, right_side, - ¬_numbers); - CheckComparisonOperand(masm_, right_side, left_side, right_side, - ¬_numbers); - - // Load right and left operand to FPU stack and compare. - LoadComparisonOperand(masm_, right_side); - LoadComparisonOperand(masm_, left_side); - __ FCmp(); - } - - // Bail out if a NaN is involved. - not_numbers.Branch(parity_even, left_side, right_side, not_taken); - - // Split to destination targets based on comparison. - left_side->Unuse(); - right_side->Unuse(); - dest->true_target()->Branch(DoubleCondition(cc)); - dest->false_target()->Jump(); - - not_numbers.Bind(left_side, right_side); -} - - -// Call the function just below TOS on the stack with the given -// arguments. The receiver is the TOS. -void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args, - CallFunctionFlags flags, - int position) { - // Push the arguments ("left-to-right") on the stack. - int arg_count = args->length(); - for (int i = 0; i < arg_count; i++) { - Load(args->at(i)); - frame_->SpillTop(); - } - - // Record the position for debugging purposes. - CodeForSourcePosition(position); - - // Use the shared code stub to call the function. - InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; - CallFunctionStub call_function(arg_count, in_loop, flags); - Result answer = frame_->CallStub(&call_function, arg_count + 1); - // Restore context and replace function on the stack with the - // result of the stub invocation. - frame_->RestoreContextRegister(); - frame_->SetElementAt(0, &answer); -} - - -void CodeGenerator::CallApplyLazy(Expression* applicand, - Expression* receiver, - VariableProxy* arguments, - int position) { - // An optimized implementation of expressions of the form - // x.apply(y, arguments). - // If the arguments object of the scope has not been allocated, - // and x.apply is Function.prototype.apply, this optimization - // just copies y and the arguments of the current function on the - // stack, as receiver and arguments, and calls x. - // In the implementation comments, we call x the applicand - // and y the receiver. - ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION); - ASSERT(arguments->IsArguments()); - - // Load applicand.apply onto the stack. This will usually - // give us a megamorphic load site. Not super, but it works. - Load(applicand); - frame()->Dup(); - Handle<String> name = Factory::LookupAsciiSymbol("apply"); - frame()->Push(name); - Result answer = frame()->CallLoadIC(RelocInfo::CODE_TARGET); - __ nop(); - frame()->Push(&answer); - - // Load the receiver and the existing arguments object onto the - // expression stack. Avoid allocating the arguments object here. - Load(receiver); - LoadFromSlot(scope()->arguments()->AsSlot(), NOT_INSIDE_TYPEOF); - - // Emit the source position information after having loaded the - // receiver and the arguments. - CodeForSourcePosition(position); - // Contents of frame at this point: - // Frame[0]: arguments object of the current function or the hole. - // Frame[1]: receiver - // Frame[2]: applicand.apply - // Frame[3]: applicand. - - // Check if the arguments object has been lazily allocated - // already. If so, just use that instead of copying the arguments - // from the stack. This also deals with cases where a local variable - // named 'arguments' has been introduced. - frame_->Dup(); - Result probe = frame_->Pop(); - { VirtualFrame::SpilledScope spilled_scope; - Label slow, done; - bool try_lazy = true; - if (probe.is_constant()) { - try_lazy = probe.handle()->IsArgumentsMarker(); - } else { - __ cmp(Operand(probe.reg()), Immediate(Factory::arguments_marker())); - probe.Unuse(); - __ j(not_equal, &slow); - } - - if (try_lazy) { - Label build_args; - // Get rid of the arguments object probe. - frame_->Drop(); // Can be called on a spilled frame. - // Stack now has 3 elements on it. - // Contents of stack at this point: - // esp[0]: receiver - // esp[1]: applicand.apply - // esp[2]: applicand. - - // Check that the receiver really is a JavaScript object. - __ mov(eax, Operand(esp, 0)); - __ test(eax, Immediate(kSmiTagMask)); - __ j(zero, &build_args); - // We allow all JSObjects including JSFunctions. As long as - // JS_FUNCTION_TYPE is the last instance type and it is right - // after LAST_JS_OBJECT_TYPE, we do not have to check the upper - // bound. - STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); - STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); - __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx); - __ j(below, &build_args); - - // Check that applicand.apply is Function.prototype.apply. - __ mov(eax, Operand(esp, kPointerSize)); - __ test(eax, Immediate(kSmiTagMask)); - __ j(zero, &build_args); - __ CmpObjectType(eax, JS_FUNCTION_TYPE, ecx); - __ j(not_equal, &build_args); - __ mov(ecx, FieldOperand(eax, JSFunction::kCodeEntryOffset)); - __ sub(Operand(ecx), Immediate(Code::kHeaderSize - kHeapObjectTag)); - Handle<Code> apply_code(Builtins::builtin(Builtins::FunctionApply)); - __ cmp(Operand(ecx), Immediate(apply_code)); - __ j(not_equal, &build_args); - - // Check that applicand is a function. - __ mov(edi, Operand(esp, 2 * kPointerSize)); - __ test(edi, Immediate(kSmiTagMask)); - __ j(zero, &build_args); - __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); - __ j(not_equal, &build_args); - - // Copy the arguments to this function possibly from the - // adaptor frame below it. - Label invoke, adapted; - __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); - __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); - __ cmp(Operand(ecx), - Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); - __ j(equal, &adapted); - - // No arguments adaptor frame. Copy fixed number of arguments. - __ mov(eax, Immediate(scope()->num_parameters())); - for (int i = 0; i < scope()->num_parameters(); i++) { - __ push(frame_->ParameterAt(i)); - } - __ jmp(&invoke); - - // Arguments adaptor frame present. Copy arguments from there, but - // avoid copying too many arguments to avoid stack overflows. - __ bind(&adapted); - static const uint32_t kArgumentsLimit = 1 * KB; - __ mov(eax, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); - __ SmiUntag(eax); - __ mov(ecx, Operand(eax)); - __ cmp(eax, kArgumentsLimit); - __ j(above, &build_args); - - // Loop through the arguments pushing them onto the execution - // stack. We don't inform the virtual frame of the push, so we don't - // have to worry about getting rid of the elements from the virtual - // frame. - Label loop; - // ecx is a small non-negative integer, due to the test above. - __ test(ecx, Operand(ecx)); - __ j(zero, &invoke); - __ bind(&loop); - __ push(Operand(edx, ecx, times_pointer_size, 1 * kPointerSize)); - __ dec(ecx); - __ j(not_zero, &loop); - - // Invoke the function. - __ bind(&invoke); - ParameterCount actual(eax); - __ InvokeFunction(edi, actual, CALL_FUNCTION); - // Drop applicand.apply and applicand from the stack, and push - // the result of the function call, but leave the spilled frame - // unchanged, with 3 elements, so it is correct when we compile the - // slow-case code. - __ add(Operand(esp), Immediate(2 * kPointerSize)); - __ push(eax); - // Stack now has 1 element: - // esp[0]: result - __ jmp(&done); - - // Slow-case: Allocate the arguments object since we know it isn't - // there, and fall-through to the slow-case where we call - // applicand.apply. - __ bind(&build_args); - // Stack now has 3 elements, because we have jumped from where: - // esp[0]: receiver - // esp[1]: applicand.apply - // esp[2]: applicand. - - // StoreArgumentsObject requires a correct frame, and may modify it. - Result arguments_object = StoreArgumentsObject(false); - frame_->SpillAll(); - arguments_object.ToRegister(); - frame_->EmitPush(arguments_object.reg()); - arguments_object.Unuse(); - // Stack and frame now have 4 elements. - __ bind(&slow); - } - - // Generic computation of x.apply(y, args) with no special optimization. - // Flip applicand.apply and applicand on the stack, so - // applicand looks like the receiver of the applicand.apply call. - // Then process it as a normal function call. - __ mov(eax, Operand(esp, 3 * kPointerSize)); - __ mov(ebx, Operand(esp, 2 * kPointerSize)); - __ mov(Operand(esp, 2 * kPointerSize), eax); - __ mov(Operand(esp, 3 * kPointerSize), ebx); - - CallFunctionStub call_function(2, NOT_IN_LOOP, NO_CALL_FUNCTION_FLAGS); - Result res = frame_->CallStub(&call_function, 3); - // The function and its two arguments have been dropped. - frame_->Drop(1); // Drop the receiver as well. - res.ToRegister(); - frame_->EmitPush(res.reg()); - // Stack now has 1 element: - // esp[0]: result - if (try_lazy) __ bind(&done); - } // End of spilled scope. - // Restore the context register after a call. - frame_->RestoreContextRegister(); -} - - -class DeferredStackCheck: public DeferredCode { - public: - DeferredStackCheck() { - set_comment("[ DeferredStackCheck"); - } - - virtual void Generate(); -}; - - -void DeferredStackCheck::Generate() { - StackCheckStub stub; - __ CallStub(&stub); -} - - -void CodeGenerator::CheckStack() { - DeferredStackCheck* deferred = new DeferredStackCheck; - ExternalReference stack_limit = - ExternalReference::address_of_stack_limit(); - __ cmp(esp, Operand::StaticVariable(stack_limit)); - deferred->Branch(below); - deferred->BindExit(); -} - - -void CodeGenerator::VisitAndSpill(Statement* statement) { - ASSERT(in_spilled_code()); - set_in_spilled_code(false); - Visit(statement); - if (frame_ != NULL) { - frame_->SpillAll(); - } - set_in_spilled_code(true); -} - - -void CodeGenerator::VisitStatementsAndSpill(ZoneList<Statement*>* statements) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - ASSERT(in_spilled_code()); - set_in_spilled_code(false); - VisitStatements(statements); - if (frame_ != NULL) { - frame_->SpillAll(); - } - set_in_spilled_code(true); - - ASSERT(!has_valid_frame() || frame_->height() == original_height); -} - - -void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - ASSERT(!in_spilled_code()); - for (int i = 0; has_valid_frame() && i < statements->length(); i++) { - Visit(statements->at(i)); - } - ASSERT(!has_valid_frame() || frame_->height() == original_height); -} - - -void CodeGenerator::VisitBlock(Block* node) { - ASSERT(!in_spilled_code()); - Comment cmnt(masm_, "[ Block"); - CodeForStatementPosition(node); - node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); - VisitStatements(node->statements()); - if (node->break_target()->is_linked()) { - node->break_target()->Bind(); - } - node->break_target()->Unuse(); -} - - -void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { - // Call the runtime to declare the globals. The inevitable call - // will sync frame elements to memory anyway, so we do it eagerly to - // allow us to push the arguments directly into place. - frame_->SyncRange(0, frame_->element_count() - 1); - - frame_->EmitPush(esi); // The context is the first argument. - frame_->EmitPush(Immediate(pairs)); - frame_->EmitPush(Immediate(Smi::FromInt(is_eval() ? 1 : 0))); - frame_->EmitPush(Immediate(Smi::FromInt(strict_mode_flag()))); - Result ignored = frame_->CallRuntime(Runtime::kDeclareGlobals, 4); - // Return value is ignored. -} - - -void CodeGenerator::VisitDeclaration(Declaration* node) { - Comment cmnt(masm_, "[ Declaration"); - Variable* var = node->proxy()->var(); - ASSERT(var != NULL); // must have been resolved - Slot* slot = var->AsSlot(); - - // If it was not possible to allocate the variable at compile time, - // we need to "declare" it at runtime to make sure it actually - // exists in the local context. - if (slot != NULL && slot->type() == Slot::LOOKUP) { - // Variables with a "LOOKUP" slot were introduced as non-locals - // during variable resolution and must have mode DYNAMIC. - ASSERT(var->is_dynamic()); - // For now, just do a runtime call. Sync the virtual frame eagerly - // so we can simply push the arguments into place. - frame_->SyncRange(0, frame_->element_count() - 1); - frame_->EmitPush(esi); - frame_->EmitPush(Immediate(var->name())); - // Declaration nodes are always introduced in one of two modes. - ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST); - PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY; - frame_->EmitPush(Immediate(Smi::FromInt(attr))); - // Push initial value, if any. - // Note: For variables we must not push an initial value (such as - // 'undefined') because we may have a (legal) redeclaration and we - // must not destroy the current value. - if (node->mode() == Variable::CONST) { - frame_->EmitPush(Immediate(Factory::the_hole_value())); - } else if (node->fun() != NULL) { - Load(node->fun()); - } else { - frame_->EmitPush(Immediate(Smi::FromInt(0))); // no initial value! - } - Result ignored = frame_->CallRuntime(Runtime::kDeclareContextSlot, 4); - // Ignore the return value (declarations are statements). - return; - } - - ASSERT(!var->is_global()); - - // If we have a function or a constant, we need to initialize the variable. - Expression* val = NULL; - if (node->mode() == Variable::CONST) { - val = new Literal(Factory::the_hole_value()); - } else { - val = node->fun(); // NULL if we don't have a function - } - - if (val != NULL) { - { - // Set the initial value. - Reference target(this, node->proxy()); - Load(val); - target.SetValue(NOT_CONST_INIT); - // The reference is removed from the stack (preserving TOS) when - // it goes out of scope. - } - // Get rid of the assigned value (declarations are statements). - frame_->Drop(); - } -} - - -void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) { - ASSERT(!in_spilled_code()); - Comment cmnt(masm_, "[ ExpressionStatement"); - CodeForStatementPosition(node); - Expression* expression = node->expression(); - expression->MarkAsStatement(); - Load(expression); - // Remove the lingering expression result from the top of stack. - frame_->Drop(); -} - - -void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) { - ASSERT(!in_spilled_code()); - Comment cmnt(masm_, "// EmptyStatement"); - CodeForStatementPosition(node); - // nothing to do -} - - -void CodeGenerator::VisitIfStatement(IfStatement* node) { - ASSERT(!in_spilled_code()); - Comment cmnt(masm_, "[ IfStatement"); - // Generate different code depending on which parts of the if statement - // are present or not. - bool has_then_stm = node->HasThenStatement(); - bool has_else_stm = node->HasElseStatement(); - - CodeForStatementPosition(node); - JumpTarget exit; - if (has_then_stm && has_else_stm) { - JumpTarget then; - JumpTarget else_; - ControlDestination dest(&then, &else_, true); - LoadCondition(node->condition(), &dest, true); - - if (dest.false_was_fall_through()) { - // The else target was bound, so we compile the else part first. - Visit(node->else_statement()); - - // We may have dangling jumps to the then part. - if (then.is_linked()) { - if (has_valid_frame()) exit.Jump(); - then.Bind(); - Visit(node->then_statement()); - } - } else { - // The then target was bound, so we compile the then part first. - Visit(node->then_statement()); - - if (else_.is_linked()) { - if (has_valid_frame()) exit.Jump(); - else_.Bind(); - Visit(node->else_statement()); - } - } - - } else if (has_then_stm) { - ASSERT(!has_else_stm); - JumpTarget then; - ControlDestination dest(&then, &exit, true); - LoadCondition(node->condition(), &dest, true); - - if (dest.false_was_fall_through()) { - // The exit label was bound. We may have dangling jumps to the - // then part. - if (then.is_linked()) { - exit.Unuse(); - exit.Jump(); - then.Bind(); - Visit(node->then_statement()); - } - } else { - // The then label was bound. - Visit(node->then_statement()); - } - - } else if (has_else_stm) { - ASSERT(!has_then_stm); - JumpTarget else_; - ControlDestination dest(&exit, &else_, false); - LoadCondition(node->condition(), &dest, true); - - if (dest.true_was_fall_through()) { - // The exit label was bound. We may have dangling jumps to the - // else part. - if (else_.is_linked()) { - exit.Unuse(); - exit.Jump(); - else_.Bind(); - Visit(node->else_statement()); - } - } else { - // The else label was bound. - Visit(node->else_statement()); - } - - } else { - ASSERT(!has_then_stm && !has_else_stm); - // We only care about the condition's side effects (not its value - // or control flow effect). LoadCondition is called without - // forcing control flow. - ControlDestination dest(&exit, &exit, true); - LoadCondition(node->condition(), &dest, false); - if (!dest.is_used()) { - // We got a value on the frame rather than (or in addition to) - // control flow. - frame_->Drop(); - } - } - - if (exit.is_linked()) { - exit.Bind(); - } -} - - -void CodeGenerator::VisitContinueStatement(ContinueStatement* node) { - ASSERT(!in_spilled_code()); - Comment cmnt(masm_, "[ ContinueStatement"); - CodeForStatementPosition(node); - node->target()->continue_target()->Jump(); -} - - -void CodeGenerator::VisitBreakStatement(BreakStatement* node) { - ASSERT(!in_spilled_code()); - Comment cmnt(masm_, "[ BreakStatement"); - CodeForStatementPosition(node); - node->target()->break_target()->Jump(); -} - - -void CodeGenerator::VisitReturnStatement(ReturnStatement* node) { - ASSERT(!in_spilled_code()); - Comment cmnt(masm_, "[ ReturnStatement"); - - CodeForStatementPosition(node); - Load(node->expression()); - Result return_value = frame_->Pop(); - masm()->positions_recorder()->WriteRecordedPositions(); - if (function_return_is_shadowed_) { - function_return_.Jump(&return_value); - } else { - frame_->PrepareForReturn(); - if (function_return_.is_bound()) { - // If the function return label is already bound we reuse the - // code by jumping to the return site. - function_return_.Jump(&return_value); - } else { - function_return_.Bind(&return_value); - GenerateReturnSequence(&return_value); - } - } -} - - -void CodeGenerator::GenerateReturnSequence(Result* return_value) { - // The return value is a live (but not currently reference counted) - // reference to eax. This is safe because the current frame does not - // contain a reference to eax (it is prepared for the return by spilling - // all registers). - if (FLAG_trace) { - frame_->Push(return_value); - *return_value = frame_->CallRuntime(Runtime::kTraceExit, 1); - } - return_value->ToRegister(eax); - - // Add a label for checking the size of the code used for returning. -#ifdef DEBUG - Label check_exit_codesize; - masm_->bind(&check_exit_codesize); -#endif - - // Leave the frame and return popping the arguments and the - // receiver. - frame_->Exit(); - int arguments_bytes = (scope()->num_parameters() + 1) * kPointerSize; - __ Ret(arguments_bytes, ecx); - DeleteFrame(); - -#ifdef ENABLE_DEBUGGER_SUPPORT - // Check that the size of the code used for returning is large enough - // for the debugger's requirements. - ASSERT(Assembler::kJSReturnSequenceLength <= - masm_->SizeOfCodeGeneratedSince(&check_exit_codesize)); -#endif -} - - -void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) { - ASSERT(!in_spilled_code()); - Comment cmnt(masm_, "[ WithEnterStatement"); - CodeForStatementPosition(node); - Load(node->expression()); - Result context; - if (node->is_catch_block()) { - context = frame_->CallRuntime(Runtime::kPushCatchContext, 1); - } else { - context = frame_->CallRuntime(Runtime::kPushContext, 1); - } - - // Update context local. - frame_->SaveContextRegister(); - - // Verify that the runtime call result and esi agree. - if (FLAG_debug_code) { - __ cmp(context.reg(), Operand(esi)); - __ Assert(equal, "Runtime::NewContext should end up in esi"); - } -} - - -void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) { - ASSERT(!in_spilled_code()); - Comment cmnt(masm_, "[ WithExitStatement"); - CodeForStatementPosition(node); - // Pop context. - __ mov(esi, ContextOperand(esi, Context::PREVIOUS_INDEX)); - // Update context local. - frame_->SaveContextRegister(); -} - - -void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) { - ASSERT(!in_spilled_code()); - Comment cmnt(masm_, "[ SwitchStatement"); - CodeForStatementPosition(node); - node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); - - // Compile the switch value. - Load(node->tag()); - - ZoneList<CaseClause*>* cases = node->cases(); - int length = cases->length(); - CaseClause* default_clause = NULL; - - JumpTarget next_test; - // Compile the case label expressions and comparisons. Exit early - // if a comparison is unconditionally true. The target next_test is - // bound before the loop in order to indicate control flow to the - // first comparison. - next_test.Bind(); - for (int i = 0; i < length && !next_test.is_unused(); i++) { - CaseClause* clause = cases->at(i); - // The default is not a test, but remember it for later. - if (clause->is_default()) { - default_clause = clause; - continue; - } - - Comment cmnt(masm_, "[ Case comparison"); - // We recycle the same target next_test for each test. Bind it if - // the previous test has not done so and then unuse it for the - // loop. - if (next_test.is_linked()) { - next_test.Bind(); - } - next_test.Unuse(); - - // Duplicate the switch value. - frame_->Dup(); - - // Compile the label expression. - Load(clause->label()); - - // Compare and branch to the body if true or the next test if - // false. Prefer the next test as a fall through. - ControlDestination dest(clause->body_target(), &next_test, false); - Comparison(node, equal, true, &dest); - - // If the comparison fell through to the true target, jump to the - // actual body. - if (dest.true_was_fall_through()) { - clause->body_target()->Unuse(); - clause->body_target()->Jump(); - } - } - - // If there was control flow to a next test from the last one - // compiled, compile a jump to the default or break target. - if (!next_test.is_unused()) { - if (next_test.is_linked()) { - next_test.Bind(); - } - // Drop the switch value. - frame_->Drop(); - if (default_clause != NULL) { - default_clause->body_target()->Jump(); - } else { - node->break_target()->Jump(); - } - } - - // The last instruction emitted was a jump, either to the default - // clause or the break target, or else to a case body from the loop - // that compiles the tests. - ASSERT(!has_valid_frame()); - // Compile case bodies as needed. - for (int i = 0; i < length; i++) { - CaseClause* clause = cases->at(i); - - // There are two ways to reach the body: from the corresponding - // test or as the fall through of the previous body. - if (clause->body_target()->is_linked() || has_valid_frame()) { - if (clause->body_target()->is_linked()) { - if (has_valid_frame()) { - // If we have both a jump to the test and a fall through, put - // a jump on the fall through path to avoid the dropping of - // the switch value on the test path. The exception is the - // default which has already had the switch value dropped. - if (clause->is_default()) { - clause->body_target()->Bind(); - } else { - JumpTarget body; - body.Jump(); - clause->body_target()->Bind(); - frame_->Drop(); - body.Bind(); - } - } else { - // No fall through to worry about. - clause->body_target()->Bind(); - if (!clause->is_default()) { - frame_->Drop(); - } - } - } else { - // Otherwise, we have only fall through. - ASSERT(has_valid_frame()); - } - - // We are now prepared to compile the body. - Comment cmnt(masm_, "[ Case body"); - VisitStatements(clause->statements()); - } - clause->body_target()->Unuse(); - } - - // We may not have a valid frame here so bind the break target only - // if needed. - if (node->break_target()->is_linked()) { - node->break_target()->Bind(); - } - node->break_target()->Unuse(); -} - - -void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) { - ASSERT(!in_spilled_code()); - Comment cmnt(masm_, "[ DoWhileStatement"); - CodeForStatementPosition(node); - node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); - JumpTarget body(JumpTarget::BIDIRECTIONAL); - IncrementLoopNesting(); - - ConditionAnalysis info = AnalyzeCondition(node->cond()); - // Label the top of the loop for the backward jump if necessary. - switch (info) { - case ALWAYS_TRUE: - // Use the continue target. - node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); - node->continue_target()->Bind(); - break; - case ALWAYS_FALSE: - // No need to label it. - node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); - break; - case DONT_KNOW: - // Continue is the test, so use the backward body target. - node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); - body.Bind(); - break; - } - - CheckStack(); // TODO(1222600): ignore if body contains calls. - Visit(node->body()); - - // Compile the test. - switch (info) { - case ALWAYS_TRUE: - // If control flow can fall off the end of the body, jump back - // to the top and bind the break target at the exit. - if (has_valid_frame()) { - node->continue_target()->Jump(); - } - if (node->break_target()->is_linked()) { - node->break_target()->Bind(); - } - break; - case ALWAYS_FALSE: - // We may have had continues or breaks in the body. - if (node->continue_target()->is_linked()) { - node->continue_target()->Bind(); - } - if (node->break_target()->is_linked()) { - node->break_target()->Bind(); - } - break; - case DONT_KNOW: - // We have to compile the test expression if it can be reached by - // control flow falling out of the body or via continue. - if (node->continue_target()->is_linked()) { - node->continue_target()->Bind(); - } - if (has_valid_frame()) { - Comment cmnt(masm_, "[ DoWhileCondition"); - CodeForDoWhileConditionPosition(node); - ControlDestination dest(&body, node->break_target(), false); - LoadCondition(node->cond(), &dest, true); - } - if (node->break_target()->is_linked()) { - node->break_target()->Bind(); - } - break; - } - - DecrementLoopNesting(); - node->continue_target()->Unuse(); - node->break_target()->Unuse(); -} - - -void CodeGenerator::VisitWhileStatement(WhileStatement* node) { - ASSERT(!in_spilled_code()); - Comment cmnt(masm_, "[ WhileStatement"); - CodeForStatementPosition(node); - - // If the condition is always false and has no side effects, we do not - // need to compile anything. - ConditionAnalysis info = AnalyzeCondition(node->cond()); - if (info == ALWAYS_FALSE) return; - - // Do not duplicate conditions that may have function literal - // subexpressions. This can cause us to compile the function literal - // twice. - bool test_at_bottom = !node->may_have_function_literal(); - node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); - IncrementLoopNesting(); - JumpTarget body; - if (test_at_bottom) { - body.set_direction(JumpTarget::BIDIRECTIONAL); - } - - // Based on the condition analysis, compile the test as necessary. - switch (info) { - case ALWAYS_TRUE: - // We will not compile the test expression. Label the top of the - // loop with the continue target. - node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); - node->continue_target()->Bind(); - break; - case DONT_KNOW: { - if (test_at_bottom) { - // Continue is the test at the bottom, no need to label the test - // at the top. The body is a backward target. - node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); - } else { - // Label the test at the top as the continue target. The body - // is a forward-only target. - node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); - node->continue_target()->Bind(); - } - // Compile the test with the body as the true target and preferred - // fall-through and with the break target as the false target. - ControlDestination dest(&body, node->break_target(), true); - LoadCondition(node->cond(), &dest, true); - - if (dest.false_was_fall_through()) { - // If we got the break target as fall-through, the test may have - // been unconditionally false (if there are no jumps to the - // body). - if (!body.is_linked()) { - DecrementLoopNesting(); - return; - } - - // Otherwise, jump around the body on the fall through and then - // bind the body target. - node->break_target()->Unuse(); - node->break_target()->Jump(); - body.Bind(); - } - break; - } - case ALWAYS_FALSE: - UNREACHABLE(); - break; - } - - CheckStack(); // TODO(1222600): ignore if body contains calls. - Visit(node->body()); - - // Based on the condition analysis, compile the backward jump as - // necessary. - switch (info) { - case ALWAYS_TRUE: - // The loop body has been labeled with the continue target. - if (has_valid_frame()) { - node->continue_target()->Jump(); - } - break; - case DONT_KNOW: - if (test_at_bottom) { - // If we have chosen to recompile the test at the bottom, - // then it is the continue target. - if (node->continue_target()->is_linked()) { - node->continue_target()->Bind(); - } - if (has_valid_frame()) { - // The break target is the fall-through (body is a backward - // jump from here and thus an invalid fall-through). - ControlDestination dest(&body, node->break_target(), false); - LoadCondition(node->cond(), &dest, true); - } - } else { - // If we have chosen not to recompile the test at the bottom, - // jump back to the one at the top. - if (has_valid_frame()) { - node->continue_target()->Jump(); - } - } - break; - case ALWAYS_FALSE: - UNREACHABLE(); - break; - } - - // The break target may be already bound (by the condition), or there - // may not be a valid frame. Bind it only if needed. - if (node->break_target()->is_linked()) { - node->break_target()->Bind(); - } - DecrementLoopNesting(); -} - - -void CodeGenerator::SetTypeForStackSlot(Slot* slot, TypeInfo info) { - ASSERT(slot->type() == Slot::LOCAL || slot->type() == Slot::PARAMETER); - if (slot->type() == Slot::LOCAL) { - frame_->SetTypeForLocalAt(slot->index(), info); - } else { - frame_->SetTypeForParamAt(slot->index(), info); - } - if (FLAG_debug_code && info.IsSmi()) { - if (slot->type() == Slot::LOCAL) { - frame_->PushLocalAt(slot->index()); - } else { - frame_->PushParameterAt(slot->index()); - } - Result var = frame_->Pop(); - var.ToRegister(); - __ AbortIfNotSmi(var.reg()); - } -} - - -void CodeGenerator::VisitForStatement(ForStatement* node) { - ASSERT(!in_spilled_code()); - Comment cmnt(masm_, "[ ForStatement"); - CodeForStatementPosition(node); - - // Compile the init expression if present. - if (node->init() != NULL) { - Visit(node->init()); - } - - // If the condition is always false and has no side effects, we do not - // need to compile anything else. - ConditionAnalysis info = AnalyzeCondition(node->cond()); - if (info == ALWAYS_FALSE) return; - - // Do not duplicate conditions that may have function literal - // subexpressions. This can cause us to compile the function literal - // twice. - bool test_at_bottom = !node->may_have_function_literal(); - node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); - IncrementLoopNesting(); - - // Target for backward edge if no test at the bottom, otherwise - // unused. - JumpTarget loop(JumpTarget::BIDIRECTIONAL); - - // Target for backward edge if there is a test at the bottom, - // otherwise used as target for test at the top. - JumpTarget body; - if (test_at_bottom) { - body.set_direction(JumpTarget::BIDIRECTIONAL); - } - - // Based on the condition analysis, compile the test as necessary. - switch (info) { - case ALWAYS_TRUE: - // We will not compile the test expression. Label the top of the - // loop. - if (node->next() == NULL) { - // Use the continue target if there is no update expression. - node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); - node->continue_target()->Bind(); - } else { - // Otherwise use the backward loop target. - node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); - loop.Bind(); - } - break; - case DONT_KNOW: { - if (test_at_bottom) { - // Continue is either the update expression or the test at the - // bottom, no need to label the test at the top. - node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); - } else if (node->next() == NULL) { - // We are not recompiling the test at the bottom and there is no - // update expression. - node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); - node->continue_target()->Bind(); - } else { - // We are not recompiling the test at the bottom and there is an - // update expression. - node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); - loop.Bind(); - } - - // Compile the test with the body as the true target and preferred - // fall-through and with the break target as the false target. - ControlDestination dest(&body, node->break_target(), true); - LoadCondition(node->cond(), &dest, true); - - if (dest.false_was_fall_through()) { - // If we got the break target as fall-through, the test may have - // been unconditionally false (if there are no jumps to the - // body). - if (!body.is_linked()) { - DecrementLoopNesting(); - return; - } - - // Otherwise, jump around the body on the fall through and then - // bind the body target. - node->break_target()->Unuse(); - node->break_target()->Jump(); - body.Bind(); - } - break; - } - case ALWAYS_FALSE: - UNREACHABLE(); - break; - } - - CheckStack(); // TODO(1222600): ignore if body contains calls. - - // We know that the loop index is a smi if it is not modified in the - // loop body and it is checked against a constant limit in the loop - // condition. In this case, we reset the static type information of the - // loop index to smi before compiling the body, the update expression, and - // the bottom check of the loop condition. - if (node->is_fast_smi_loop()) { - // Set number type of the loop variable to smi. - SetTypeForStackSlot(node->loop_variable()->AsSlot(), TypeInfo::Smi()); - } - - Visit(node->body()); - - // If there is an update expression, compile it if necessary. - if (node->next() != NULL) { - if (node->continue_target()->is_linked()) { - node->continue_target()->Bind(); - } - - // Control can reach the update by falling out of the body or by a - // continue. - if (has_valid_frame()) { - // Record the source position of the statement as this code which - // is after the code for the body actually belongs to the loop - // statement and not the body. - CodeForStatementPosition(node); - Visit(node->next()); - } - } - - // Set the type of the loop variable to smi before compiling the test - // expression if we are in a fast smi loop condition. - if (node->is_fast_smi_loop() && has_valid_frame()) { - // Set number type of the loop variable to smi. - SetTypeForStackSlot(node->loop_variable()->AsSlot(), TypeInfo::Smi()); - } - - // Based on the condition analysis, compile the backward jump as - // necessary. - switch (info) { - case ALWAYS_TRUE: - if (has_valid_frame()) { - if (node->next() == NULL) { - node->continue_target()->Jump(); - } else { - loop.Jump(); - } - } - break; - case DONT_KNOW: - if (test_at_bottom) { - if (node->continue_target()->is_linked()) { - // We can have dangling jumps to the continue target if there - // was no update expression. - node->continue_target()->Bind(); - } - // Control can reach the test at the bottom by falling out of - // the body, by a continue in the body, or from the update - // expression. - if (has_valid_frame()) { - // The break target is the fall-through (body is a backward - // jump from here). - ControlDestination dest(&body, node->break_target(), false); - LoadCondition(node->cond(), &dest, true); - } - } else { - // Otherwise, jump back to the test at the top. - if (has_valid_frame()) { - if (node->next() == NULL) { - node->continue_target()->Jump(); - } else { - loop.Jump(); - } - } - } - break; - case ALWAYS_FALSE: - UNREACHABLE(); - break; - } - - // The break target may be already bound (by the condition), or there - // may not be a valid frame. Bind it only if needed. - if (node->break_target()->is_linked()) { - node->break_target()->Bind(); - } - DecrementLoopNesting(); -} - - -void CodeGenerator::VisitForInStatement(ForInStatement* node) { - ASSERT(!in_spilled_code()); - VirtualFrame::SpilledScope spilled_scope; - Comment cmnt(masm_, "[ ForInStatement"); - CodeForStatementPosition(node); - - JumpTarget primitive; - JumpTarget jsobject; - JumpTarget fixed_array; - JumpTarget entry(JumpTarget::BIDIRECTIONAL); - JumpTarget end_del_check; - JumpTarget exit; - - // Get the object to enumerate over (converted to JSObject). - LoadAndSpill(node->enumerable()); - - // Both SpiderMonkey and kjs ignore null and undefined in contrast - // to the specification. 12.6.4 mandates a call to ToObject. - frame_->EmitPop(eax); - - // eax: value to be iterated over - __ cmp(eax, Factory::undefined_value()); - exit.Branch(equal); - __ cmp(eax, Factory::null_value()); - exit.Branch(equal); - - // Stack layout in body: - // [iteration counter (smi)] <- slot 0 - // [length of array] <- slot 1 - // [FixedArray] <- slot 2 - // [Map or 0] <- slot 3 - // [Object] <- slot 4 - - // Check if enumerable is already a JSObject - // eax: value to be iterated over - __ test(eax, Immediate(kSmiTagMask)); - primitive.Branch(zero); - __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx); - jsobject.Branch(above_equal); - - primitive.Bind(); - frame_->EmitPush(eax); - frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION, 1); - // function call returns the value in eax, which is where we want it below - - jsobject.Bind(); - // Get the set of properties (as a FixedArray or Map). - // eax: value to be iterated over - frame_->EmitPush(eax); // Push the object being iterated over. - - // Check cache validity in generated code. This is a fast case for - // the JSObject::IsSimpleEnum cache validity checks. If we cannot - // guarantee cache validity, call the runtime system to check cache - // validity or get the property names in a fixed array. - JumpTarget call_runtime; - JumpTarget loop(JumpTarget::BIDIRECTIONAL); - JumpTarget check_prototype; - JumpTarget use_cache; - __ mov(ecx, eax); - loop.Bind(); - // Check that there are no elements. - __ mov(edx, FieldOperand(ecx, JSObject::kElementsOffset)); - __ cmp(Operand(edx), Immediate(Factory::empty_fixed_array())); - call_runtime.Branch(not_equal); - // Check that instance descriptors are not empty so that we can - // check for an enum cache. Leave the map in ebx for the subsequent - // prototype load. - __ mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset)); - __ mov(edx, FieldOperand(ebx, Map::kInstanceDescriptorsOffset)); - __ cmp(Operand(edx), Immediate(Factory::empty_descriptor_array())); - call_runtime.Branch(equal); - // Check that there in an enum cache in the non-empty instance - // descriptors. This is the case if the next enumeration index - // field does not contain a smi. - __ mov(edx, FieldOperand(edx, DescriptorArray::kEnumerationIndexOffset)); - __ test(edx, Immediate(kSmiTagMask)); - call_runtime.Branch(zero); - // For all objects but the receiver, check that the cache is empty. - __ cmp(ecx, Operand(eax)); - check_prototype.Branch(equal); - __ mov(edx, FieldOperand(edx, DescriptorArray::kEnumCacheBridgeCacheOffset)); - __ cmp(Operand(edx), Immediate(Factory::empty_fixed_array())); - call_runtime.Branch(not_equal); - check_prototype.Bind(); - // Load the prototype from the map and loop if non-null. - __ mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset)); - __ cmp(Operand(ecx), Immediate(Factory::null_value())); - loop.Branch(not_equal); - // The enum cache is valid. Load the map of the object being - // iterated over and use the cache for the iteration. - __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset)); - use_cache.Jump(); - - call_runtime.Bind(); - // Call the runtime to get the property names for the object. - frame_->EmitPush(eax); // push the Object (slot 4) for the runtime call - frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1); - - // If we got a map from the runtime call, we can do a fast - // modification check. Otherwise, we got a fixed array, and we have - // to do a slow check. - // eax: map or fixed array (result from call to - // Runtime::kGetPropertyNamesFast) - __ mov(edx, Operand(eax)); - __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); - __ cmp(ecx, Factory::meta_map()); - fixed_array.Branch(not_equal); - - use_cache.Bind(); - // Get enum cache - // eax: map (either the result from a call to - // Runtime::kGetPropertyNamesFast or has been fetched directly from - // the object) - __ mov(ecx, Operand(eax)); - - __ mov(ecx, FieldOperand(ecx, Map::kInstanceDescriptorsOffset)); - // Get the bridge array held in the enumeration index field. - __ mov(ecx, FieldOperand(ecx, DescriptorArray::kEnumerationIndexOffset)); - // Get the cache from the bridge array. - __ mov(edx, FieldOperand(ecx, DescriptorArray::kEnumCacheBridgeCacheOffset)); - - frame_->EmitPush(eax); // <- slot 3 - frame_->EmitPush(edx); // <- slot 2 - __ mov(eax, FieldOperand(edx, FixedArray::kLengthOffset)); - frame_->EmitPush(eax); // <- slot 1 - frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 0 - entry.Jump(); - - fixed_array.Bind(); - // eax: fixed array (result from call to Runtime::kGetPropertyNamesFast) - frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 3 - frame_->EmitPush(eax); // <- slot 2 - - // Push the length of the array and the initial index onto the stack. - __ mov(eax, FieldOperand(eax, FixedArray::kLengthOffset)); - frame_->EmitPush(eax); // <- slot 1 - frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 0 - - // Condition. - entry.Bind(); - // Grab the current frame's height for the break and continue - // targets only after all the state is pushed on the frame. - node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); - node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); - - __ mov(eax, frame_->ElementAt(0)); // load the current count - __ cmp(eax, frame_->ElementAt(1)); // compare to the array length - node->break_target()->Branch(above_equal); - - // Get the i'th entry of the array. - __ mov(edx, frame_->ElementAt(2)); - __ mov(ebx, FixedArrayElementOperand(edx, eax)); - - // Get the expected map from the stack or a zero map in the - // permanent slow case eax: current iteration count ebx: i'th entry - // of the enum cache - __ mov(edx, frame_->ElementAt(3)); - // Check if the expected map still matches that of the enumerable. - // If not, we have to filter the key. - // eax: current iteration count - // ebx: i'th entry of the enum cache - // edx: expected map value - __ mov(ecx, frame_->ElementAt(4)); - __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset)); - __ cmp(ecx, Operand(edx)); - end_del_check.Branch(equal); - - // Convert the entry to a string (or null if it isn't a property anymore). - frame_->EmitPush(frame_->ElementAt(4)); // push enumerable - frame_->EmitPush(ebx); // push entry - frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION, 2); - __ mov(ebx, Operand(eax)); - - // If the property has been removed while iterating, we just skip it. - __ test(ebx, Operand(ebx)); - node->continue_target()->Branch(equal); - - end_del_check.Bind(); - // Store the entry in the 'each' expression and take another spin in the - // loop. edx: i'th entry of the enum cache (or string there of) - frame_->EmitPush(ebx); - { Reference each(this, node->each()); - if (!each.is_illegal()) { - if (each.size() > 0) { - // Loading a reference may leave the frame in an unspilled state. - frame_->SpillAll(); - // Get the value (under the reference on the stack) from memory. - frame_->EmitPush(frame_->ElementAt(each.size())); - each.SetValue(NOT_CONST_INIT); - frame_->Drop(2); - } else { - // If the reference was to a slot we rely on the convenient property - // that it doesn't matter whether a value (eg, ebx pushed above) is - // right on top of or right underneath a zero-sized reference. - each.SetValue(NOT_CONST_INIT); - frame_->Drop(); - } - } - } - // Unloading a reference may leave the frame in an unspilled state. - frame_->SpillAll(); - - // Body. - CheckStack(); // TODO(1222600): ignore if body contains calls. - VisitAndSpill(node->body()); - - // Next. Reestablish a spilled frame in case we are coming here via - // a continue in the body. - node->continue_target()->Bind(); - frame_->SpillAll(); - frame_->EmitPop(eax); - __ add(Operand(eax), Immediate(Smi::FromInt(1))); - frame_->EmitPush(eax); - entry.Jump(); - - // Cleanup. No need to spill because VirtualFrame::Drop is safe for - // any frame. - node->break_target()->Bind(); - frame_->Drop(5); - - // Exit. - exit.Bind(); - - node->continue_target()->Unuse(); - node->break_target()->Unuse(); -} - - -void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) { - ASSERT(!in_spilled_code()); - VirtualFrame::SpilledScope spilled_scope; - Comment cmnt(masm_, "[ TryCatchStatement"); - CodeForStatementPosition(node); - - JumpTarget try_block; - JumpTarget exit; - - try_block.Call(); - // --- Catch block --- - frame_->EmitPush(eax); - - // Store the caught exception in the catch variable. - Variable* catch_var = node->catch_var()->var(); - ASSERT(catch_var != NULL && catch_var->AsSlot() != NULL); - StoreToSlot(catch_var->AsSlot(), NOT_CONST_INIT); - - // Remove the exception from the stack. - frame_->Drop(); - - VisitStatementsAndSpill(node->catch_block()->statements()); - if (has_valid_frame()) { - exit.Jump(); - } - - - // --- Try block --- - try_block.Bind(); - - frame_->PushTryHandler(TRY_CATCH_HANDLER); - int handler_height = frame_->height(); - - // Shadow the jump targets for all escapes from the try block, including - // returns. During shadowing, the original target is hidden as the - // ShadowTarget and operations on the original actually affect the - // shadowing target. - // - // We should probably try to unify the escaping targets and the return - // target. - int nof_escapes = node->escaping_targets()->length(); - List<ShadowTarget*> shadows(1 + nof_escapes); - - // Add the shadow target for the function return. - static const int kReturnShadowIndex = 0; - shadows.Add(new ShadowTarget(&function_return_)); - bool function_return_was_shadowed = function_return_is_shadowed_; - function_return_is_shadowed_ = true; - ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); - - // Add the remaining shadow targets. - for (int i = 0; i < nof_escapes; i++) { - shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); - } - - // Generate code for the statements in the try block. - VisitStatementsAndSpill(node->try_block()->statements()); - - // Stop the introduced shadowing and count the number of required unlinks. - // After shadowing stops, the original targets are unshadowed and the - // ShadowTargets represent the formerly shadowing targets. - bool has_unlinks = false; - for (int i = 0; i < shadows.length(); i++) { - shadows[i]->StopShadowing(); - has_unlinks = has_unlinks || shadows[i]->is_linked(); - } - function_return_is_shadowed_ = function_return_was_shadowed; - - // Get an external reference to the handler address. - ExternalReference handler_address(Top::k_handler_address); - - // Make sure that there's nothing left on the stack above the - // handler structure. - if (FLAG_debug_code) { - __ mov(eax, Operand::StaticVariable(handler_address)); - __ cmp(esp, Operand(eax)); - __ Assert(equal, "stack pointer should point to top handler"); - } - - // If we can fall off the end of the try block, unlink from try chain. - if (has_valid_frame()) { - // The next handler address is on top of the frame. Unlink from - // the handler list and drop the rest of this handler from the - // frame. - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); - frame_->EmitPop(Operand::StaticVariable(handler_address)); - frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); - if (has_unlinks) { - exit.Jump(); - } - } - - // Generate unlink code for the (formerly) shadowing targets that - // have been jumped to. Deallocate each shadow target. - Result return_value; - for (int i = 0; i < shadows.length(); i++) { - if (shadows[i]->is_linked()) { - // Unlink from try chain; be careful not to destroy the TOS if - // there is one. - if (i == kReturnShadowIndex) { - shadows[i]->Bind(&return_value); - return_value.ToRegister(eax); - } else { - shadows[i]->Bind(); - } - // Because we can be jumping here (to spilled code) from - // unspilled code, we need to reestablish a spilled frame at - // this block. - frame_->SpillAll(); - - // Reload sp from the top handler, because some statements that we - // break from (eg, for...in) may have left stuff on the stack. - __ mov(esp, Operand::StaticVariable(handler_address)); - frame_->Forget(frame_->height() - handler_height); - - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); - frame_->EmitPop(Operand::StaticVariable(handler_address)); - frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); - - if (i == kReturnShadowIndex) { - if (!function_return_is_shadowed_) frame_->PrepareForReturn(); - shadows[i]->other_target()->Jump(&return_value); - } else { - shadows[i]->other_target()->Jump(); - } - } - } - - exit.Bind(); -} - - -void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) { - ASSERT(!in_spilled_code()); - VirtualFrame::SpilledScope spilled_scope; - Comment cmnt(masm_, "[ TryFinallyStatement"); - CodeForStatementPosition(node); - - // State: Used to keep track of reason for entering the finally - // block. Should probably be extended to hold information for - // break/continue from within the try block. - enum { FALLING, THROWING, JUMPING }; - - JumpTarget try_block; - JumpTarget finally_block; - - try_block.Call(); - - frame_->EmitPush(eax); - // In case of thrown exceptions, this is where we continue. - __ Set(ecx, Immediate(Smi::FromInt(THROWING))); - finally_block.Jump(); - - // --- Try block --- - try_block.Bind(); - - frame_->PushTryHandler(TRY_FINALLY_HANDLER); - int handler_height = frame_->height(); - - // Shadow the jump targets for all escapes from the try block, including - // returns. During shadowing, the original target is hidden as the - // ShadowTarget and operations on the original actually affect the - // shadowing target. - // - // We should probably try to unify the escaping targets and the return - // target. - int nof_escapes = node->escaping_targets()->length(); - List<ShadowTarget*> shadows(1 + nof_escapes); - - // Add the shadow target for the function return. - static const int kReturnShadowIndex = 0; - shadows.Add(new ShadowTarget(&function_return_)); - bool function_return_was_shadowed = function_return_is_shadowed_; - function_return_is_shadowed_ = true; - ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); - - // Add the remaining shadow targets. - for (int i = 0; i < nof_escapes; i++) { - shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); - } - - // Generate code for the statements in the try block. - VisitStatementsAndSpill(node->try_block()->statements()); - - // Stop the introduced shadowing and count the number of required unlinks. - // After shadowing stops, the original targets are unshadowed and the - // ShadowTargets represent the formerly shadowing targets. - int nof_unlinks = 0; - for (int i = 0; i < shadows.length(); i++) { - shadows[i]->StopShadowing(); - if (shadows[i]->is_linked()) nof_unlinks++; - } - function_return_is_shadowed_ = function_return_was_shadowed; - - // Get an external reference to the handler address. - ExternalReference handler_address(Top::k_handler_address); - - // If we can fall off the end of the try block, unlink from the try - // chain and set the state on the frame to FALLING. - if (has_valid_frame()) { - // The next handler address is on top of the frame. - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); - frame_->EmitPop(Operand::StaticVariable(handler_address)); - frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); - - // Fake a top of stack value (unneeded when FALLING) and set the - // state in ecx, then jump around the unlink blocks if any. - frame_->EmitPush(Immediate(Factory::undefined_value())); - __ Set(ecx, Immediate(Smi::FromInt(FALLING))); - if (nof_unlinks > 0) { - finally_block.Jump(); - } - } - - // Generate code to unlink and set the state for the (formerly) - // shadowing targets that have been jumped to. - for (int i = 0; i < shadows.length(); i++) { - if (shadows[i]->is_linked()) { - // If we have come from the shadowed return, the return value is - // on the virtual frame. We must preserve it until it is - // pushed. - if (i == kReturnShadowIndex) { - Result return_value; - shadows[i]->Bind(&return_value); - return_value.ToRegister(eax); - } else { - shadows[i]->Bind(); - } - // Because we can be jumping here (to spilled code) from - // unspilled code, we need to reestablish a spilled frame at - // this block. - frame_->SpillAll(); - - // Reload sp from the top handler, because some statements that - // we break from (eg, for...in) may have left stuff on the - // stack. - __ mov(esp, Operand::StaticVariable(handler_address)); - frame_->Forget(frame_->height() - handler_height); - - // Unlink this handler and drop it from the frame. - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); - frame_->EmitPop(Operand::StaticVariable(handler_address)); - frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); - - if (i == kReturnShadowIndex) { - // If this target shadowed the function return, materialize - // the return value on the stack. - frame_->EmitPush(eax); - } else { - // Fake TOS for targets that shadowed breaks and continues. - frame_->EmitPush(Immediate(Factory::undefined_value())); - } - __ Set(ecx, Immediate(Smi::FromInt(JUMPING + i))); - if (--nof_unlinks > 0) { - // If this is not the last unlink block, jump around the next. - finally_block.Jump(); - } - } - } - - // --- Finally block --- - finally_block.Bind(); - - // Push the state on the stack. - frame_->EmitPush(ecx); - - // We keep two elements on the stack - the (possibly faked) result - // and the state - while evaluating the finally block. - // - // Generate code for the statements in the finally block. - VisitStatementsAndSpill(node->finally_block()->statements()); - - if (has_valid_frame()) { - // Restore state and return value or faked TOS. - frame_->EmitPop(ecx); - frame_->EmitPop(eax); - } - - // Generate code to jump to the right destination for all used - // formerly shadowing targets. Deallocate each shadow target. - for (int i = 0; i < shadows.length(); i++) { - if (has_valid_frame() && shadows[i]->is_bound()) { - BreakTarget* original = shadows[i]->other_target(); - __ cmp(Operand(ecx), Immediate(Smi::FromInt(JUMPING + i))); - if (i == kReturnShadowIndex) { - // The return value is (already) in eax. - Result return_value = allocator_->Allocate(eax); - ASSERT(return_value.is_valid()); - if (function_return_is_shadowed_) { - original->Branch(equal, &return_value); - } else { - // Branch around the preparation for return which may emit - // code. - JumpTarget skip; - skip.Branch(not_equal); - frame_->PrepareForReturn(); - original->Jump(&return_value); - skip.Bind(); - } - } else { - original->Branch(equal); - } - } - } - - if (has_valid_frame()) { - // Check if we need to rethrow the exception. - JumpTarget exit; - __ cmp(Operand(ecx), Immediate(Smi::FromInt(THROWING))); - exit.Branch(not_equal); - - // Rethrow exception. - frame_->EmitPush(eax); // undo pop from above - frame_->CallRuntime(Runtime::kReThrow, 1); - - // Done. - exit.Bind(); - } -} - - -void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) { - ASSERT(!in_spilled_code()); - Comment cmnt(masm_, "[ DebuggerStatement"); - CodeForStatementPosition(node); -#ifdef ENABLE_DEBUGGER_SUPPORT - // Spill everything, even constants, to the frame. - frame_->SpillAll(); - - frame_->DebugBreak(); - // Ignore the return value. -#endif -} - - -Result CodeGenerator::InstantiateFunction( - Handle<SharedFunctionInfo> function_info, - bool pretenure) { - // The inevitable call will sync frame elements to memory anyway, so - // we do it eagerly to allow us to push the arguments directly into - // place. - frame()->SyncRange(0, frame()->element_count() - 1); - - // Use the fast case closure allocation code that allocates in new - // space for nested functions that don't need literals cloning. - if (scope()->is_function_scope() && - function_info->num_literals() == 0 && - !pretenure) { - FastNewClosureStub stub; - frame()->EmitPush(Immediate(function_info)); - return frame()->CallStub(&stub, 1); - } else { - // Call the runtime to instantiate the function based on the - // shared function info. - frame()->EmitPush(esi); - frame()->EmitPush(Immediate(function_info)); - frame()->EmitPush(Immediate(pretenure - ? Factory::true_value() - : Factory::false_value())); - return frame()->CallRuntime(Runtime::kNewClosure, 3); - } -} - - -void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) { - Comment cmnt(masm_, "[ FunctionLiteral"); - ASSERT(!in_safe_int32_mode()); - // Build the function info and instantiate it. - Handle<SharedFunctionInfo> function_info = - Compiler::BuildFunctionInfo(node, script()); - // Check for stack-overflow exception. - if (function_info.is_null()) { - SetStackOverflow(); - return; - } - Result result = InstantiateFunction(function_info, node->pretenure()); - frame()->Push(&result); -} - - -void CodeGenerator::VisitSharedFunctionInfoLiteral( - SharedFunctionInfoLiteral* node) { - ASSERT(!in_safe_int32_mode()); - Comment cmnt(masm_, "[ SharedFunctionInfoLiteral"); - Result result = InstantiateFunction(node->shared_function_info(), false); - frame()->Push(&result); -} - - -void CodeGenerator::VisitConditional(Conditional* node) { - Comment cmnt(masm_, "[ Conditional"); - ASSERT(!in_safe_int32_mode()); - JumpTarget then; - JumpTarget else_; - JumpTarget exit; - ControlDestination dest(&then, &else_, true); - LoadCondition(node->condition(), &dest, true); - - if (dest.false_was_fall_through()) { - // The else target was bound, so we compile the else part first. - Load(node->else_expression()); - - if (then.is_linked()) { - exit.Jump(); - then.Bind(); - Load(node->then_expression()); - } - } else { - // The then target was bound, so we compile the then part first. - Load(node->then_expression()); - - if (else_.is_linked()) { - exit.Jump(); - else_.Bind(); - Load(node->else_expression()); - } - } - - exit.Bind(); -} - - -void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) { - if (slot->type() == Slot::LOOKUP) { - ASSERT(slot->var()->is_dynamic()); - JumpTarget slow; - JumpTarget done; - Result value; - - // Generate fast case for loading from slots that correspond to - // local/global variables or arguments unless they are shadowed by - // eval-introduced bindings. - EmitDynamicLoadFromSlotFastCase(slot, - typeof_state, - &value, - &slow, - &done); - - slow.Bind(); - // A runtime call is inevitable. We eagerly sync frame elements - // to memory so that we can push the arguments directly into place - // on top of the frame. - frame()->SyncRange(0, frame()->element_count() - 1); - frame()->EmitPush(esi); - frame()->EmitPush(Immediate(slot->var()->name())); - if (typeof_state == INSIDE_TYPEOF) { - value = - frame()->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); - } else { - value = frame()->CallRuntime(Runtime::kLoadContextSlot, 2); - } - - done.Bind(&value); - frame_->Push(&value); - - } else if (slot->var()->mode() == Variable::CONST) { - // Const slots may contain 'the hole' value (the constant hasn't been - // initialized yet) which needs to be converted into the 'undefined' - // value. - // - // We currently spill the virtual frame because constants use the - // potentially unsafe direct-frame access of SlotOperand. - VirtualFrame::SpilledScope spilled_scope; - Comment cmnt(masm_, "[ Load const"); - Label exit; - __ mov(ecx, SlotOperand(slot, ecx)); - __ cmp(ecx, Factory::the_hole_value()); - __ j(not_equal, &exit); - __ mov(ecx, Factory::undefined_value()); - __ bind(&exit); - frame()->EmitPush(ecx); - - } else if (slot->type() == Slot::PARAMETER) { - frame()->PushParameterAt(slot->index()); - - } else if (slot->type() == Slot::LOCAL) { - frame()->PushLocalAt(slot->index()); - - } else { - // The other remaining slot types (LOOKUP and GLOBAL) cannot reach - // here. - // - // The use of SlotOperand below is safe for an unspilled frame - // because it will always be a context slot. - ASSERT(slot->type() == Slot::CONTEXT); - Result temp = allocator()->Allocate(); - ASSERT(temp.is_valid()); - __ mov(temp.reg(), SlotOperand(slot, temp.reg())); - frame()->Push(&temp); - } -} - - -void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot, - TypeofState state) { - LoadFromSlot(slot, state); - - // Bail out quickly if we're not using lazy arguments allocation. - if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return; - - // ... or if the slot isn't a non-parameter arguments slot. - if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return; - - // If the loaded value is a constant, we know if the arguments - // object has been lazily loaded yet. - Result result = frame()->Pop(); - if (result.is_constant()) { - if (result.handle()->IsArgumentsMarker()) { - result = StoreArgumentsObject(false); - } - frame()->Push(&result); - return; - } - ASSERT(result.is_register()); - // The loaded value is in a register. If it is the sentinel that - // indicates that we haven't loaded the arguments object yet, we - // need to do it now. - JumpTarget exit; - __ cmp(Operand(result.reg()), Immediate(Factory::arguments_marker())); - frame()->Push(&result); - exit.Branch(not_equal); - - result = StoreArgumentsObject(false); - frame()->SetElementAt(0, &result); - result.Unuse(); - exit.Bind(); - return; -} - - -Result CodeGenerator::LoadFromGlobalSlotCheckExtensions( - Slot* slot, - TypeofState typeof_state, - JumpTarget* slow) { - ASSERT(!in_safe_int32_mode()); - // Check that no extension objects have been created by calls to - // eval from the current scope to the global scope. - Register context = esi; - Result tmp = allocator_->Allocate(); - ASSERT(tmp.is_valid()); // All non-reserved registers were available. - - Scope* s = scope(); - while (s != NULL) { - if (s->num_heap_slots() > 0) { - if (s->calls_eval()) { - // Check that extension is NULL. - __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), - Immediate(0)); - slow->Branch(not_equal, not_taken); - } - // Load next context in chain. - __ mov(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX)); - __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); - context = tmp.reg(); - } - // If no outer scope calls eval, we do not need to check more - // context extensions. If we have reached an eval scope, we check - // all extensions from this point. - if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break; - s = s->outer_scope(); - } - - if (s != NULL && s->is_eval_scope()) { - // Loop up the context chain. There is no frame effect so it is - // safe to use raw labels here. - Label next, fast; - if (!context.is(tmp.reg())) { - __ mov(tmp.reg(), context); - } - __ bind(&next); - // Terminate at global context. - __ cmp(FieldOperand(tmp.reg(), HeapObject::kMapOffset), - Immediate(Factory::global_context_map())); - __ j(equal, &fast); - // Check that extension is NULL. - __ cmp(ContextOperand(tmp.reg(), Context::EXTENSION_INDEX), Immediate(0)); - slow->Branch(not_equal, not_taken); - // Load next context in chain. - __ mov(tmp.reg(), ContextOperand(tmp.reg(), Context::CLOSURE_INDEX)); - __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); - __ jmp(&next); - __ bind(&fast); - } - tmp.Unuse(); - - // All extension objects were empty and it is safe to use a global - // load IC call. - // The register allocator prefers eax if it is free, so the code generator - // will load the global object directly into eax, which is where the LoadIC - // expects it. - frame_->Spill(eax); - LoadGlobal(); - frame_->Push(slot->var()->name()); - RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF) - ? RelocInfo::CODE_TARGET - : RelocInfo::CODE_TARGET_CONTEXT; - Result answer = frame_->CallLoadIC(mode); - // A test eax instruction following the call signals that the inobject - // property case was inlined. Ensure that there is not a test eax - // instruction here. - __ nop(); - return answer; -} - - -void CodeGenerator::EmitDynamicLoadFromSlotFastCase(Slot* slot, - TypeofState typeof_state, - Result* result, - JumpTarget* slow, - JumpTarget* done) { - // Generate fast-case code for variables that might be shadowed by - // eval-introduced variables. Eval is used a lot without - // introducing variables. In those cases, we do not want to - // perform a runtime call for all variables in the scope - // containing the eval. - if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) { - *result = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, slow); - done->Jump(result); - - } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) { - Slot* potential_slot = slot->var()->local_if_not_shadowed()->AsSlot(); - Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite(); - if (potential_slot != NULL) { - // Generate fast case for locals that rewrite to slots. - // Allocate a fresh register to use as a temp in - // ContextSlotOperandCheckExtensions and to hold the result - // value. - *result = allocator()->Allocate(); - ASSERT(result->is_valid()); - __ mov(result->reg(), - ContextSlotOperandCheckExtensions(potential_slot, *result, slow)); - if (potential_slot->var()->mode() == Variable::CONST) { - __ cmp(result->reg(), Factory::the_hole_value()); - done->Branch(not_equal, result); - __ mov(result->reg(), Factory::undefined_value()); - } - done->Jump(result); - } else if (rewrite != NULL) { - // Generate fast case for calls of an argument function. - Property* property = rewrite->AsProperty(); - if (property != NULL) { - VariableProxy* obj_proxy = property->obj()->AsVariableProxy(); - Literal* key_literal = property->key()->AsLiteral(); - if (obj_proxy != NULL && - key_literal != NULL && - obj_proxy->IsArguments() && - key_literal->handle()->IsSmi()) { - // Load arguments object if there are no eval-introduced - // variables. Then load the argument from the arguments - // object using keyed load. - Result arguments = allocator()->Allocate(); - ASSERT(arguments.is_valid()); - __ mov(arguments.reg(), - ContextSlotOperandCheckExtensions(obj_proxy->var()->AsSlot(), - arguments, - slow)); - frame_->Push(&arguments); - frame_->Push(key_literal->handle()); - *result = EmitKeyedLoad(); - done->Jump(result); - } - } - } - } -} - - -void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) { - if (slot->type() == Slot::LOOKUP) { - ASSERT(slot->var()->is_dynamic()); - - // For now, just do a runtime call. Since the call is inevitable, - // we eagerly sync the virtual frame so we can directly push the - // arguments into place. - frame_->SyncRange(0, frame_->element_count() - 1); - - frame_->EmitPush(esi); - frame_->EmitPush(Immediate(slot->var()->name())); - - Result value; - if (init_state == CONST_INIT) { - // Same as the case for a normal store, but ignores attribute - // (e.g. READ_ONLY) of context slot so that we can initialize const - // properties (introduced via eval("const foo = (some expr);")). Also, - // uses the current function context instead of the top context. - // - // Note that we must declare the foo upon entry of eval(), via a - // context slot declaration, but we cannot initialize it at the same - // time, because the const declaration may be at the end of the eval - // code (sigh...) and the const variable may have been used before - // (where its value is 'undefined'). Thus, we can only do the - // initialization when we actually encounter the expression and when - // the expression operands are defined and valid, and thus we need the - // split into 2 operations: declaration of the context slot followed - // by initialization. - value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3); - } else { - frame_->Push(Smi::FromInt(strict_mode_flag())); - value = frame_->CallRuntime(Runtime::kStoreContextSlot, 4); - } - // Storing a variable must keep the (new) value on the expression - // stack. This is necessary for compiling chained assignment - // expressions. - frame_->Push(&value); - - } else { - ASSERT(!slot->var()->is_dynamic()); - - JumpTarget exit; - if (init_state == CONST_INIT) { - ASSERT(slot->var()->mode() == Variable::CONST); - // Only the first const initialization must be executed (the slot - // still contains 'the hole' value). When the assignment is executed, - // the code is identical to a normal store (see below). - // - // We spill the frame in the code below because the direct-frame - // access of SlotOperand is potentially unsafe with an unspilled - // frame. - VirtualFrame::SpilledScope spilled_scope; - Comment cmnt(masm_, "[ Init const"); - __ mov(ecx, SlotOperand(slot, ecx)); - __ cmp(ecx, Factory::the_hole_value()); - exit.Branch(not_equal); - } - - // We must execute the store. Storing a variable must keep the (new) - // value on the stack. This is necessary for compiling assignment - // expressions. - // - // Note: We will reach here even with slot->var()->mode() == - // Variable::CONST because of const declarations which will initialize - // consts to 'the hole' value and by doing so, end up calling this code. - if (slot->type() == Slot::PARAMETER) { - frame_->StoreToParameterAt(slot->index()); - } else if (slot->type() == Slot::LOCAL) { - frame_->StoreToLocalAt(slot->index()); - } else { - // The other slot types (LOOKUP and GLOBAL) cannot reach here. - // - // The use of SlotOperand below is safe for an unspilled frame - // because the slot is a context slot. - ASSERT(slot->type() == Slot::CONTEXT); - frame_->Dup(); - Result value = frame_->Pop(); - value.ToRegister(); - Result start = allocator_->Allocate(); - ASSERT(start.is_valid()); - __ mov(SlotOperand(slot, start.reg()), value.reg()); - // RecordWrite may destroy the value registers. - // - // TODO(204): Avoid actually spilling when the value is not - // needed (probably the common case). - frame_->Spill(value.reg()); - int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; - Result temp = allocator_->Allocate(); - ASSERT(temp.is_valid()); - __ RecordWrite(start.reg(), offset, value.reg(), temp.reg()); - // The results start, value, and temp are unused by going out of - // scope. - } - - exit.Bind(); - } -} - - -void CodeGenerator::VisitSlot(Slot* slot) { - Comment cmnt(masm_, "[ Slot"); - if (in_safe_int32_mode()) { - if ((slot->type() == Slot::LOCAL && !slot->is_arguments())) { - frame()->UntaggedPushLocalAt(slot->index()); - } else if (slot->type() == Slot::PARAMETER) { - frame()->UntaggedPushParameterAt(slot->index()); - } else { - UNREACHABLE(); - } - } else { - LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); - } -} - - -void CodeGenerator::VisitVariableProxy(VariableProxy* node) { - Comment cmnt(masm_, "[ VariableProxy"); - Variable* var = node->var(); - Expression* expr = var->rewrite(); - if (expr != NULL) { - Visit(expr); - } else { - ASSERT(var->is_global()); - ASSERT(!in_safe_int32_mode()); - Reference ref(this, node); - ref.GetValue(); - } -} - - -void CodeGenerator::VisitLiteral(Literal* node) { - Comment cmnt(masm_, "[ Literal"); - if (frame_->ConstantPoolOverflowed()) { - Result temp = allocator_->Allocate(); - ASSERT(temp.is_valid()); - if (in_safe_int32_mode()) { - temp.set_untagged_int32(true); - } - __ Set(temp.reg(), Immediate(node->handle())); - frame_->Push(&temp); - } else { - if (in_safe_int32_mode()) { - frame_->PushUntaggedElement(node->handle()); - } else { - frame_->Push(node->handle()); - } - } -} - - -void CodeGenerator::PushUnsafeSmi(Handle<Object> value) { - ASSERT(value->IsSmi()); - int bits = reinterpret_cast<int>(*value); - __ push(Immediate(bits ^ jit_cookie_)); - __ xor_(Operand(esp, 0), Immediate(jit_cookie_)); -} - - -void CodeGenerator::StoreUnsafeSmiToLocal(int offset, Handle<Object> value) { - ASSERT(value->IsSmi()); - int bits = reinterpret_cast<int>(*value); - __ mov(Operand(ebp, offset), Immediate(bits ^ jit_cookie_)); - __ xor_(Operand(ebp, offset), Immediate(jit_cookie_)); -} - - -void CodeGenerator::MoveUnsafeSmi(Register target, Handle<Object> value) { - ASSERT(target.is_valid()); - ASSERT(value->IsSmi()); - int bits = reinterpret_cast<int>(*value); - __ Set(target, Immediate(bits ^ jit_cookie_)); - __ xor_(target, jit_cookie_); -} - - -bool CodeGenerator::IsUnsafeSmi(Handle<Object> value) { - if (!value->IsSmi()) return false; - int int_value = Smi::cast(*value)->value(); - return !is_intn(int_value, kMaxSmiInlinedBits); -} - - -// Materialize the regexp literal 'node' in the literals array -// 'literals' of the function. Leave the regexp boilerplate in -// 'boilerplate'. -class DeferredRegExpLiteral: public DeferredCode { - public: - DeferredRegExpLiteral(Register boilerplate, - Register literals, - RegExpLiteral* node) - : boilerplate_(boilerplate), literals_(literals), node_(node) { - set_comment("[ DeferredRegExpLiteral"); - } - - void Generate(); - - private: - Register boilerplate_; - Register literals_; - RegExpLiteral* node_; -}; - - -void DeferredRegExpLiteral::Generate() { - // Since the entry is undefined we call the runtime system to - // compute the literal. - // Literal array (0). - __ push(literals_); - // Literal index (1). - __ push(Immediate(Smi::FromInt(node_->literal_index()))); - // RegExp pattern (2). - __ push(Immediate(node_->pattern())); - // RegExp flags (3). - __ push(Immediate(node_->flags())); - __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); - if (!boilerplate_.is(eax)) __ mov(boilerplate_, eax); -} - - -class DeferredAllocateInNewSpace: public DeferredCode { - public: - DeferredAllocateInNewSpace(int size, - Register target, - int registers_to_save = 0) - : size_(size), target_(target), registers_to_save_(registers_to_save) { - ASSERT(size >= kPointerSize && size <= Heap::MaxObjectSizeInNewSpace()); - ASSERT_EQ(0, registers_to_save & target.bit()); - set_comment("[ DeferredAllocateInNewSpace"); - } - void Generate(); - - private: - int size_; - Register target_; - int registers_to_save_; -}; - - -void DeferredAllocateInNewSpace::Generate() { - for (int i = 0; i < kNumRegs; i++) { - if (registers_to_save_ & (1 << i)) { - Register save_register = { i }; - __ push(save_register); - } - } - __ push(Immediate(Smi::FromInt(size_))); - __ CallRuntime(Runtime::kAllocateInNewSpace, 1); - if (!target_.is(eax)) { - __ mov(target_, eax); - } - for (int i = kNumRegs - 1; i >= 0; i--) { - if (registers_to_save_ & (1 << i)) { - Register save_register = { i }; - __ pop(save_register); - } - } -} - - -void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) { - ASSERT(!in_safe_int32_mode()); - Comment cmnt(masm_, "[ RegExp Literal"); - - // Retrieve the literals array and check the allocated entry. Begin - // with a writable copy of the function of this activation in a - // register. - frame_->PushFunction(); - Result literals = frame_->Pop(); - literals.ToRegister(); - frame_->Spill(literals.reg()); - - // Load the literals array of the function. - __ mov(literals.reg(), - FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); - - // Load the literal at the ast saved index. - Result boilerplate = allocator_->Allocate(); - ASSERT(boilerplate.is_valid()); - int literal_offset = - FixedArray::kHeaderSize + node->literal_index() * kPointerSize; - __ mov(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset)); - - // Check whether we need to materialize the RegExp object. If so, - // jump to the deferred code passing the literals array. - DeferredRegExpLiteral* deferred = - new DeferredRegExpLiteral(boilerplate.reg(), literals.reg(), node); - __ cmp(boilerplate.reg(), Factory::undefined_value()); - deferred->Branch(equal); - deferred->BindExit(); - - // Register of boilerplate contains RegExp object. - - Result tmp = allocator()->Allocate(); - ASSERT(tmp.is_valid()); - - int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; - - DeferredAllocateInNewSpace* allocate_fallback = - new DeferredAllocateInNewSpace(size, literals.reg()); - frame_->Push(&boilerplate); - frame_->SpillTop(); - __ AllocateInNewSpace(size, - literals.reg(), - tmp.reg(), - no_reg, - allocate_fallback->entry_label(), - TAG_OBJECT); - allocate_fallback->BindExit(); - boilerplate = frame_->Pop(); - // Copy from boilerplate to clone and return clone. - - for (int i = 0; i < size; i += kPointerSize) { - __ mov(tmp.reg(), FieldOperand(boilerplate.reg(), i)); - __ mov(FieldOperand(literals.reg(), i), tmp.reg()); - } - frame_->Push(&literals); -} - - -void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) { - ASSERT(!in_safe_int32_mode()); - Comment cmnt(masm_, "[ ObjectLiteral"); - - // Load a writable copy of the function of this activation in a - // register. - frame_->PushFunction(); - Result literals = frame_->Pop(); - literals.ToRegister(); - frame_->Spill(literals.reg()); - - // Load the literals array of the function. - __ mov(literals.reg(), - FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); - // Literal array. - frame_->Push(&literals); - // Literal index. - frame_->Push(Smi::FromInt(node->literal_index())); - // Constant properties. - frame_->Push(node->constant_properties()); - // Should the object literal have fast elements? - frame_->Push(Smi::FromInt(node->fast_elements() ? 1 : 0)); - Result clone; - if (node->depth() > 1) { - clone = frame_->CallRuntime(Runtime::kCreateObjectLiteral, 4); - } else { - clone = frame_->CallRuntime(Runtime::kCreateObjectLiteralShallow, 4); - } - frame_->Push(&clone); - - // Mark all computed expressions that are bound to a key that - // is shadowed by a later occurrence of the same key. For the - // marked expressions, no store code is emitted. - node->CalculateEmitStore(); - - for (int i = 0; i < node->properties()->length(); i++) { - ObjectLiteral::Property* property = node->properties()->at(i); - switch (property->kind()) { - case ObjectLiteral::Property::CONSTANT: - break; - case ObjectLiteral::Property::MATERIALIZED_LITERAL: - if (CompileTimeValue::IsCompileTimeValue(property->value())) break; - // else fall through. - case ObjectLiteral::Property::COMPUTED: { - Handle<Object> key(property->key()->handle()); - if (key->IsSymbol()) { - // Duplicate the object as the IC receiver. - frame_->Dup(); - Load(property->value()); - if (property->emit_store()) { - Result ignored = - frame_->CallStoreIC(Handle<String>::cast(key), false, - strict_mode_flag()); - // A test eax instruction following the store IC call would - // indicate the presence of an inlined version of the - // store. Add a nop to indicate that there is no such - // inlined version. - __ nop(); - } else { - frame_->Drop(2); - } - break; - } - // Fall through - } - case ObjectLiteral::Property::PROTOTYPE: { - // Duplicate the object as an argument to the runtime call. - frame_->Dup(); - Load(property->key()); - Load(property->value()); - if (property->emit_store()) { - frame_->Push(Smi::FromInt(NONE)); // PropertyAttributes - // Ignore the result. - Result ignored = frame_->CallRuntime(Runtime::kSetProperty, 4); - } else { - frame_->Drop(3); - } - break; - } - case ObjectLiteral::Property::SETTER: { - // Duplicate the object as an argument to the runtime call. - frame_->Dup(); - Load(property->key()); - frame_->Push(Smi::FromInt(1)); - Load(property->value()); - Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4); - // Ignore the result. - break; - } - case ObjectLiteral::Property::GETTER: { - // Duplicate the object as an argument to the runtime call. - frame_->Dup(); - Load(property->key()); - frame_->Push(Smi::FromInt(0)); - Load(property->value()); - Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4); - // Ignore the result. - break; - } - default: UNREACHABLE(); - } - } -} - - -void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) { - ASSERT(!in_safe_int32_mode()); - Comment cmnt(masm_, "[ ArrayLiteral"); - - // Load a writable copy of the function of this activation in a - // register. - frame_->PushFunction(); - Result literals = frame_->Pop(); - literals.ToRegister(); - frame_->Spill(literals.reg()); - - // Load the literals array of the function. - __ mov(literals.reg(), - FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); - - frame_->Push(&literals); - frame_->Push(Smi::FromInt(node->literal_index())); - frame_->Push(node->constant_elements()); - int length = node->values()->length(); - Result clone; - if (node->constant_elements()->map() == Heap::fixed_cow_array_map()) { - FastCloneShallowArrayStub stub( - FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length); - clone = frame_->CallStub(&stub, 3); - __ IncrementCounter(&Counters::cow_arrays_created_stub, 1); - } else if (node->depth() > 1) { - clone = frame_->CallRuntime(Runtime::kCreateArrayLiteral, 3); - } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) { - clone = frame_->CallRuntime(Runtime::kCreateArrayLiteralShallow, 3); - } else { - FastCloneShallowArrayStub stub( - FastCloneShallowArrayStub::CLONE_ELEMENTS, length); - clone = frame_->CallStub(&stub, 3); - } - frame_->Push(&clone); - - // Generate code to set the elements in the array that are not - // literals. - for (int i = 0; i < length; i++) { - Expression* value = node->values()->at(i); - - if (!CompileTimeValue::ArrayLiteralElementNeedsInitialization(value)) { - continue; - } - - // The property must be set by generated code. - Load(value); - - // Get the property value off the stack. - Result prop_value = frame_->Pop(); - prop_value.ToRegister(); - - // Fetch the array literal while leaving a copy on the stack and - // use it to get the elements array. - frame_->Dup(); - Result elements = frame_->Pop(); - elements.ToRegister(); - frame_->Spill(elements.reg()); - // Get the elements array. - __ mov(elements.reg(), - FieldOperand(elements.reg(), JSObject::kElementsOffset)); - - // Write to the indexed properties array. - int offset = i * kPointerSize + FixedArray::kHeaderSize; - __ mov(FieldOperand(elements.reg(), offset), prop_value.reg()); - - // Update the write barrier for the array address. - frame_->Spill(prop_value.reg()); // Overwritten by the write barrier. - Result scratch = allocator_->Allocate(); - ASSERT(scratch.is_valid()); - __ RecordWrite(elements.reg(), offset, prop_value.reg(), scratch.reg()); - } -} - - -void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) { - ASSERT(!in_safe_int32_mode()); - ASSERT(!in_spilled_code()); - // Call runtime routine to allocate the catch extension object and - // assign the exception value to the catch variable. - Comment cmnt(masm_, "[ CatchExtensionObject"); - Load(node->key()); - Load(node->value()); - Result result = - frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2); - frame_->Push(&result); -} - - -void CodeGenerator::EmitSlotAssignment(Assignment* node) { -#ifdef DEBUG - int original_height = frame()->height(); -#endif - Comment cmnt(masm(), "[ Variable Assignment"); - Variable* var = node->target()->AsVariableProxy()->AsVariable(); - ASSERT(var != NULL); - Slot* slot = var->AsSlot(); - ASSERT(slot != NULL); - - // Evaluate the right-hand side. - if (node->is_compound()) { - // For a compound assignment the right-hand side is a binary operation - // between the current property value and the actual right-hand side. - LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); - Load(node->value()); - - // Perform the binary operation. - bool overwrite_value = node->value()->ResultOverwriteAllowed(); - // Construct the implicit binary operation. - BinaryOperation expr(node); - GenericBinaryOperation(&expr, - overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); - } else { - // For non-compound assignment just load the right-hand side. - Load(node->value()); - } - - // Perform the assignment. - if (var->mode() != Variable::CONST || node->op() == Token::INIT_CONST) { - CodeForSourcePosition(node->position()); - StoreToSlot(slot, - node->op() == Token::INIT_CONST ? CONST_INIT : NOT_CONST_INIT); - } - ASSERT(frame()->height() == original_height + 1); -} - - -void CodeGenerator::EmitNamedPropertyAssignment(Assignment* node) { -#ifdef DEBUG - int original_height = frame()->height(); -#endif - Comment cmnt(masm(), "[ Named Property Assignment"); - Variable* var = node->target()->AsVariableProxy()->AsVariable(); - Property* prop = node->target()->AsProperty(); - ASSERT(var == NULL || (prop == NULL && var->is_global())); - - // Initialize name and evaluate the receiver sub-expression if necessary. If - // the receiver is trivial it is not placed on the stack at this point, but - // loaded whenever actually needed. - Handle<String> name; - bool is_trivial_receiver = false; - if (var != NULL) { - name = var->name(); - } else { - Literal* lit = prop->key()->AsLiteral(); - ASSERT_NOT_NULL(lit); - name = Handle<String>::cast(lit->handle()); - // Do not materialize the receiver on the frame if it is trivial. - is_trivial_receiver = prop->obj()->IsTrivial(); - if (!is_trivial_receiver) Load(prop->obj()); - } - - // Change to slow case in the beginning of an initialization block to - // avoid the quadratic behavior of repeatedly adding fast properties. - if (node->starts_initialization_block()) { - // Initialization block consists of assignments of the form expr.x = ..., so - // this will never be an assignment to a variable, so there must be a - // receiver object. - ASSERT_EQ(NULL, var); - if (is_trivial_receiver) { - frame()->Push(prop->obj()); - } else { - frame()->Dup(); - } - Result ignored = frame()->CallRuntime(Runtime::kToSlowProperties, 1); - } - - // Change to fast case at the end of an initialization block. To prepare for - // that add an extra copy of the receiver to the frame, so that it can be - // converted back to fast case after the assignment. - if (node->ends_initialization_block() && !is_trivial_receiver) { - frame()->Dup(); - } - - // Stack layout: - // [tos] : receiver (only materialized if non-trivial) - // [tos+1] : receiver if at the end of an initialization block - - // Evaluate the right-hand side. - if (node->is_compound()) { - // For a compound assignment the right-hand side is a binary operation - // between the current property value and the actual right-hand side. - if (is_trivial_receiver) { - frame()->Push(prop->obj()); - } else if (var != NULL) { - // The LoadIC stub expects the object in eax. - // Freeing eax causes the code generator to load the global into it. - frame_->Spill(eax); - LoadGlobal(); - } else { - frame()->Dup(); - } - Result value = EmitNamedLoad(name, var != NULL); - frame()->Push(&value); - Load(node->value()); - - bool overwrite_value = node->value()->ResultOverwriteAllowed(); - // Construct the implicit binary operation. - BinaryOperation expr(node); - GenericBinaryOperation(&expr, - overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); - } else { - // For non-compound assignment just load the right-hand side. - Load(node->value()); - } - - // Stack layout: - // [tos] : value - // [tos+1] : receiver (only materialized if non-trivial) - // [tos+2] : receiver if at the end of an initialization block - - // Perform the assignment. It is safe to ignore constants here. - ASSERT(var == NULL || var->mode() != Variable::CONST); - ASSERT_NE(Token::INIT_CONST, node->op()); - if (is_trivial_receiver) { - Result value = frame()->Pop(); - frame()->Push(prop->obj()); - frame()->Push(&value); - } - CodeForSourcePosition(node->position()); - bool is_contextual = (var != NULL); - Result answer = EmitNamedStore(name, is_contextual); - frame()->Push(&answer); - - // Stack layout: - // [tos] : result - // [tos+1] : receiver if at the end of an initialization block - - if (node->ends_initialization_block()) { - ASSERT_EQ(NULL, var); - // The argument to the runtime call is the receiver. - if (is_trivial_receiver) { - frame()->Push(prop->obj()); - } else { - // A copy of the receiver is below the value of the assignment. Swap - // the receiver and the value of the assignment expression. - Result result = frame()->Pop(); - Result receiver = frame()->Pop(); - frame()->Push(&result); - frame()->Push(&receiver); - } - Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1); - } - - // Stack layout: - // [tos] : result - - ASSERT_EQ(frame()->height(), original_height + 1); -} - - -void CodeGenerator::EmitKeyedPropertyAssignment(Assignment* node) { -#ifdef DEBUG - int original_height = frame()->height(); -#endif - Comment cmnt(masm_, "[ Keyed Property Assignment"); - Property* prop = node->target()->AsProperty(); - ASSERT_NOT_NULL(prop); - - // Evaluate the receiver subexpression. - Load(prop->obj()); - - // Change to slow case in the beginning of an initialization block to - // avoid the quadratic behavior of repeatedly adding fast properties. - if (node->starts_initialization_block()) { - frame_->Dup(); - Result ignored = frame_->CallRuntime(Runtime::kToSlowProperties, 1); - } - - // Change to fast case at the end of an initialization block. To prepare for - // that add an extra copy of the receiver to the frame, so that it can be - // converted back to fast case after the assignment. - if (node->ends_initialization_block()) { - frame_->Dup(); - } - - // Evaluate the key subexpression. - Load(prop->key()); - - // Stack layout: - // [tos] : key - // [tos+1] : receiver - // [tos+2] : receiver if at the end of an initialization block - - // Evaluate the right-hand side. - if (node->is_compound()) { - // For a compound assignment the right-hand side is a binary operation - // between the current property value and the actual right-hand side. - // Duplicate receiver and key for loading the current property value. - frame()->PushElementAt(1); - frame()->PushElementAt(1); - Result value = EmitKeyedLoad(); - frame()->Push(&value); - Load(node->value()); - - // Perform the binary operation. - bool overwrite_value = node->value()->ResultOverwriteAllowed(); - BinaryOperation expr(node); - GenericBinaryOperation(&expr, - overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); - } else { - // For non-compound assignment just load the right-hand side. - Load(node->value()); - } - - // Stack layout: - // [tos] : value - // [tos+1] : key - // [tos+2] : receiver - // [tos+3] : receiver if at the end of an initialization block - - // Perform the assignment. It is safe to ignore constants here. - ASSERT(node->op() != Token::INIT_CONST); - CodeForSourcePosition(node->position()); - Result answer = EmitKeyedStore(prop->key()->type()); - frame()->Push(&answer); - - // Stack layout: - // [tos] : result - // [tos+1] : receiver if at the end of an initialization block - - // Change to fast case at the end of an initialization block. - if (node->ends_initialization_block()) { - // The argument to the runtime call is the extra copy of the receiver, - // which is below the value of the assignment. Swap the receiver and - // the value of the assignment expression. - Result result = frame()->Pop(); - Result receiver = frame()->Pop(); - frame()->Push(&result); - frame()->Push(&receiver); - Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1); - } - - // Stack layout: - // [tos] : result - - ASSERT(frame()->height() == original_height + 1); -} - - -void CodeGenerator::VisitAssignment(Assignment* node) { - ASSERT(!in_safe_int32_mode()); -#ifdef DEBUG - int original_height = frame()->height(); -#endif - Variable* var = node->target()->AsVariableProxy()->AsVariable(); - Property* prop = node->target()->AsProperty(); - - if (var != NULL && !var->is_global()) { - EmitSlotAssignment(node); - - } else if ((prop != NULL && prop->key()->IsPropertyName()) || - (var != NULL && var->is_global())) { - // Properties whose keys are property names and global variables are - // treated as named property references. We do not need to consider - // global 'this' because it is not a valid left-hand side. - EmitNamedPropertyAssignment(node); - - } else if (prop != NULL) { - // Other properties (including rewritten parameters for a function that - // uses arguments) are keyed property assignments. - EmitKeyedPropertyAssignment(node); - - } else { - // Invalid left-hand side. - Load(node->target()); - Result result = frame()->CallRuntime(Runtime::kThrowReferenceError, 1); - // The runtime call doesn't actually return but the code generator will - // still generate code and expects a certain frame height. - frame()->Push(&result); - } - - ASSERT(frame()->height() == original_height + 1); -} - - -void CodeGenerator::VisitThrow(Throw* node) { - ASSERT(!in_safe_int32_mode()); - Comment cmnt(masm_, "[ Throw"); - Load(node->exception()); - Result result = frame_->CallRuntime(Runtime::kThrow, 1); - frame_->Push(&result); -} - - -void CodeGenerator::VisitProperty(Property* node) { - ASSERT(!in_safe_int32_mode()); - Comment cmnt(masm_, "[ Property"); - Reference property(this, node); - property.GetValue(); -} - - -void CodeGenerator::VisitCall(Call* node) { - ASSERT(!in_safe_int32_mode()); - Comment cmnt(masm_, "[ Call"); - - Expression* function = node->expression(); - ZoneList<Expression*>* args = node->arguments(); - - // Check if the function is a variable or a property. - Variable* var = function->AsVariableProxy()->AsVariable(); - Property* property = function->AsProperty(); - - // ------------------------------------------------------------------------ - // Fast-case: Use inline caching. - // --- - // According to ECMA-262, section 11.2.3, page 44, the function to call - // must be resolved after the arguments have been evaluated. The IC code - // automatically handles this by loading the arguments before the function - // is resolved in cache misses (this also holds for megamorphic calls). - // ------------------------------------------------------------------------ - - if (var != NULL && var->is_possibly_eval()) { - // ---------------------------------- - // JavaScript example: 'eval(arg)' // eval is not known to be shadowed - // ---------------------------------- - - // In a call to eval, we first call %ResolvePossiblyDirectEval to - // resolve the function we need to call and the receiver of the - // call. Then we call the resolved function using the given - // arguments. - - // Prepare the stack for the call to the resolved function. - Load(function); - - // Allocate a frame slot for the receiver. - frame_->Push(Factory::undefined_value()); - - // Load the arguments. - int arg_count = args->length(); - for (int i = 0; i < arg_count; i++) { - Load(args->at(i)); - frame_->SpillTop(); - } - - // Result to hold the result of the function resolution and the - // final result of the eval call. - Result result; - - // If we know that eval can only be shadowed by eval-introduced - // variables we attempt to load the global eval function directly - // in generated code. If we succeed, there is no need to perform a - // context lookup in the runtime system. - JumpTarget done; - if (var->AsSlot() != NULL && var->mode() == Variable::DYNAMIC_GLOBAL) { - ASSERT(var->AsSlot()->type() == Slot::LOOKUP); - JumpTarget slow; - // Prepare the stack for the call to - // ResolvePossiblyDirectEvalNoLookup by pushing the loaded - // function, the first argument to the eval call and the - // receiver. - Result fun = LoadFromGlobalSlotCheckExtensions(var->AsSlot(), - NOT_INSIDE_TYPEOF, - &slow); - frame_->Push(&fun); - if (arg_count > 0) { - frame_->PushElementAt(arg_count); - } else { - frame_->Push(Factory::undefined_value()); - } - frame_->PushParameterAt(-1); - - // Push the strict mode flag. - frame_->Push(Smi::FromInt(strict_mode_flag())); - - // Resolve the call. - result = - frame_->CallRuntime(Runtime::kResolvePossiblyDirectEvalNoLookup, 4); - - done.Jump(&result); - slow.Bind(); - } - - // Prepare the stack for the call to ResolvePossiblyDirectEval by - // pushing the loaded function, the first argument to the eval - // call and the receiver. - frame_->PushElementAt(arg_count + 1); - if (arg_count > 0) { - frame_->PushElementAt(arg_count); - } else { - frame_->Push(Factory::undefined_value()); - } - frame_->PushParameterAt(-1); - - // Push the strict mode flag. - frame_->Push(Smi::FromInt(strict_mode_flag())); - - // Resolve the call. - result = frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 4); - - // If we generated fast-case code bind the jump-target where fast - // and slow case merge. - if (done.is_linked()) done.Bind(&result); - - // The runtime call returns a pair of values in eax (function) and - // edx (receiver). Touch up the stack with the right values. - Result receiver = allocator_->Allocate(edx); - frame_->SetElementAt(arg_count + 1, &result); - frame_->SetElementAt(arg_count, &receiver); - receiver.Unuse(); - - // Call the function. - CodeForSourcePosition(node->position()); - InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; - CallFunctionStub call_function(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE); - result = frame_->CallStub(&call_function, arg_count + 1); - - // Restore the context and overwrite the function on the stack with - // the result. - frame_->RestoreContextRegister(); - frame_->SetElementAt(0, &result); - - } else if (var != NULL && !var->is_this() && var->is_global()) { - // ---------------------------------- - // JavaScript example: 'foo(1, 2, 3)' // foo is global - // ---------------------------------- - - // Pass the global object as the receiver and let the IC stub - // patch the stack to use the global proxy as 'this' in the - // invoked function. - LoadGlobal(); - - // Load the arguments. - int arg_count = args->length(); - for (int i = 0; i < arg_count; i++) { - Load(args->at(i)); - frame_->SpillTop(); - } - - // Push the name of the function onto the frame. - frame_->Push(var->name()); - - // Call the IC initialization code. - CodeForSourcePosition(node->position()); - Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET_CONTEXT, - arg_count, - loop_nesting()); - frame_->RestoreContextRegister(); - frame_->Push(&result); - - } else if (var != NULL && var->AsSlot() != NULL && - var->AsSlot()->type() == Slot::LOOKUP) { - // ---------------------------------- - // JavaScript examples: - // - // with (obj) foo(1, 2, 3) // foo may be in obj. - // - // function f() {}; - // function g() { - // eval(...); - // f(); // f could be in extension object. - // } - // ---------------------------------- - - JumpTarget slow, done; - Result function; - - // Generate fast case for loading functions from slots that - // correspond to local/global variables or arguments unless they - // are shadowed by eval-introduced bindings. - EmitDynamicLoadFromSlotFastCase(var->AsSlot(), - NOT_INSIDE_TYPEOF, - &function, - &slow, - &done); - - slow.Bind(); - // Enter the runtime system to load the function from the context. - // Sync the frame so we can push the arguments directly into - // place. - frame_->SyncRange(0, frame_->element_count() - 1); - frame_->EmitPush(esi); - frame_->EmitPush(Immediate(var->name())); - frame_->CallRuntime(Runtime::kLoadContextSlot, 2); - // The runtime call returns a pair of values in eax and edx. The - // looked-up function is in eax and the receiver is in edx. These - // register references are not ref counted here. We spill them - // eagerly since they are arguments to an inevitable call (and are - // not sharable by the arguments). - ASSERT(!allocator()->is_used(eax)); - frame_->EmitPush(eax); - - // Load the receiver. - ASSERT(!allocator()->is_used(edx)); - frame_->EmitPush(edx); - - // If fast case code has been generated, emit code to push the - // function and receiver and have the slow path jump around this - // code. - if (done.is_linked()) { - JumpTarget call; - call.Jump(); - done.Bind(&function); - frame_->Push(&function); - LoadGlobalReceiver(); - call.Bind(); - } - - // Call the function. - CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); - - } else if (property != NULL) { - // Check if the key is a literal string. - Literal* literal = property->key()->AsLiteral(); - - if (literal != NULL && literal->handle()->IsSymbol()) { - // ------------------------------------------------------------------ - // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)' - // ------------------------------------------------------------------ - - Handle<String> name = Handle<String>::cast(literal->handle()); - - if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION && - name->IsEqualTo(CStrVector("apply")) && - args->length() == 2 && - args->at(1)->AsVariableProxy() != NULL && - args->at(1)->AsVariableProxy()->IsArguments()) { - // Use the optimized Function.prototype.apply that avoids - // allocating lazily allocated arguments objects. - CallApplyLazy(property->obj(), - args->at(0), - args->at(1)->AsVariableProxy(), - node->position()); - - } else { - // Push the receiver onto the frame. - Load(property->obj()); - - // Load the arguments. - int arg_count = args->length(); - for (int i = 0; i < arg_count; i++) { - Load(args->at(i)); - frame_->SpillTop(); - } - - // Push the name of the function onto the frame. - frame_->Push(name); - - // Call the IC initialization code. - CodeForSourcePosition(node->position()); - Result result = - frame_->CallCallIC(RelocInfo::CODE_TARGET, arg_count, - loop_nesting()); - frame_->RestoreContextRegister(); - frame_->Push(&result); - } - - } else { - // ------------------------------------------- - // JavaScript example: 'array[index](1, 2, 3)' - // ------------------------------------------- - - // Load the function to call from the property through a reference. - - // Pass receiver to called function. - if (property->is_synthetic()) { - Reference ref(this, property); - ref.GetValue(); - // Use global object as receiver. - LoadGlobalReceiver(); - // Call the function. - CallWithArguments(args, RECEIVER_MIGHT_BE_VALUE, node->position()); - } else { - // Push the receiver onto the frame. - Load(property->obj()); - - // Load the name of the function. - Load(property->key()); - - // Swap the name of the function and the receiver on the stack to follow - // the calling convention for call ICs. - Result key = frame_->Pop(); - Result receiver = frame_->Pop(); - frame_->Push(&key); - frame_->Push(&receiver); - key.Unuse(); - receiver.Unuse(); - - // Load the arguments. - int arg_count = args->length(); - for (int i = 0; i < arg_count; i++) { - Load(args->at(i)); - frame_->SpillTop(); - } - - // Place the key on top of stack and call the IC initialization code. - frame_->PushElementAt(arg_count + 1); - CodeForSourcePosition(node->position()); - Result result = - frame_->CallKeyedCallIC(RelocInfo::CODE_TARGET, - arg_count, - loop_nesting()); - frame_->Drop(); // Drop the key still on the stack. - frame_->RestoreContextRegister(); - frame_->Push(&result); - } - } - - } else { - // ---------------------------------- - // JavaScript example: 'foo(1, 2, 3)' // foo is not global - // ---------------------------------- - - // Load the function. - Load(function); - - // Pass the global proxy as the receiver. - LoadGlobalReceiver(); - - // Call the function. - CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); - } -} - - -void CodeGenerator::VisitCallNew(CallNew* node) { - ASSERT(!in_safe_int32_mode()); - Comment cmnt(masm_, "[ CallNew"); - - // According to ECMA-262, section 11.2.2, page 44, the function - // expression in new calls must be evaluated before the - // arguments. This is different from ordinary calls, where the - // actual function to call is resolved after the arguments have been - // evaluated. - - // Push constructor on the stack. If it's not a function it's used as - // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is - // ignored. - Load(node->expression()); - - // Push the arguments ("left-to-right") on the stack. - ZoneList<Expression*>* args = node->arguments(); - int arg_count = args->length(); - for (int i = 0; i < arg_count; i++) { - Load(args->at(i)); - } - - // Call the construct call builtin that handles allocation and - // constructor invocation. - CodeForSourcePosition(node->position()); - Result result = frame_->CallConstructor(arg_count); - frame_->Push(&result); -} - - -void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) { - ASSERT(args->length() == 1); - Load(args->at(0)); - Result value = frame_->Pop(); - value.ToRegister(); - ASSERT(value.is_valid()); - __ test(value.reg(), Immediate(kSmiTagMask)); - value.Unuse(); - destination()->Split(zero); -} - - -void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) { - // Conditionally generate a log call. - // Args: - // 0 (literal string): The type of logging (corresponds to the flags). - // This is used to determine whether or not to generate the log call. - // 1 (string): Format string. Access the string at argument index 2 - // with '%2s' (see Logger::LogRuntime for all the formats). - // 2 (array): Arguments to the format string. - ASSERT_EQ(args->length(), 3); -#ifdef ENABLE_LOGGING_AND_PROFILING - if (ShouldGenerateLog(args->at(0))) { - Load(args->at(1)); - Load(args->at(2)); - frame_->CallRuntime(Runtime::kLog, 2); - } -#endif - // Finally, we're expected to leave a value on the top of the stack. - frame_->Push(Factory::undefined_value()); -} - - -void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) { - ASSERT(args->length() == 1); - Load(args->at(0)); - Result value = frame_->Pop(); - value.ToRegister(); - ASSERT(value.is_valid()); - __ test(value.reg(), Immediate(kSmiTagMask | kSmiSignMask)); - value.Unuse(); - destination()->Split(zero); -} - - -class DeferredStringCharCodeAt : public DeferredCode { - public: - DeferredStringCharCodeAt(Register object, - Register index, - Register scratch, - Register result) - : result_(result), - char_code_at_generator_(object, - index, - scratch, - result, - &need_conversion_, - &need_conversion_, - &index_out_of_range_, - STRING_INDEX_IS_NUMBER) {} - - StringCharCodeAtGenerator* fast_case_generator() { - return &char_code_at_generator_; - } - - virtual void Generate() { - VirtualFrameRuntimeCallHelper call_helper(frame_state()); - char_code_at_generator_.GenerateSlow(masm(), call_helper); - - __ bind(&need_conversion_); - // Move the undefined value into the result register, which will - // trigger conversion. - __ Set(result_, Immediate(Factory::undefined_value())); - __ jmp(exit_label()); - - __ bind(&index_out_of_range_); - // When the index is out of range, the spec requires us to return - // NaN. - __ Set(result_, Immediate(Factory::nan_value())); - __ jmp(exit_label()); - } - - private: - Register result_; - - Label need_conversion_; - Label index_out_of_range_; - - StringCharCodeAtGenerator char_code_at_generator_; -}; - - -// This generates code that performs a String.prototype.charCodeAt() call -// or returns a smi in order to trigger conversion. -void CodeGenerator::GenerateStringCharCodeAt(ZoneList<Expression*>* args) { - Comment(masm_, "[ GenerateStringCharCodeAt"); - ASSERT(args->length() == 2); - - Load(args->at(0)); - Load(args->at(1)); - Result index = frame_->Pop(); - Result object = frame_->Pop(); - object.ToRegister(); - index.ToRegister(); - // We might mutate the object register. - frame_->Spill(object.reg()); - - // We need two extra registers. - Result result = allocator()->Allocate(); - ASSERT(result.is_valid()); - Result scratch = allocator()->Allocate(); - ASSERT(scratch.is_valid()); - - DeferredStringCharCodeAt* deferred = - new DeferredStringCharCodeAt(object.reg(), - index.reg(), - scratch.reg(), - result.reg()); - deferred->fast_case_generator()->GenerateFast(masm_); - deferred->BindExit(); - frame_->Push(&result); -} - - -class DeferredStringCharFromCode : public DeferredCode { - public: - DeferredStringCharFromCode(Register code, - Register result) - : char_from_code_generator_(code, result) {} - - StringCharFromCodeGenerator* fast_case_generator() { - return &char_from_code_generator_; - } - - virtual void Generate() { - VirtualFrameRuntimeCallHelper call_helper(frame_state()); - char_from_code_generator_.GenerateSlow(masm(), call_helper); - } - - private: - StringCharFromCodeGenerator char_from_code_generator_; -}; - - -// Generates code for creating a one-char string from a char code. -void CodeGenerator::GenerateStringCharFromCode(ZoneList<Expression*>* args) { - Comment(masm_, "[ GenerateStringCharFromCode"); - ASSERT(args->length() == 1); - - Load(args->at(0)); - - Result code = frame_->Pop(); - code.ToRegister(); - ASSERT(code.is_valid()); - - Result result = allocator()->Allocate(); - ASSERT(result.is_valid()); - - DeferredStringCharFromCode* deferred = new DeferredStringCharFromCode( - code.reg(), result.reg()); - deferred->fast_case_generator()->GenerateFast(masm_); - deferred->BindExit(); - frame_->Push(&result); -} - - -class DeferredStringCharAt : public DeferredCode { - public: - DeferredStringCharAt(Register object, - Register index, - Register scratch1, - Register scratch2, - Register result) - : result_(result), - char_at_generator_(object, - index, - scratch1, - scratch2, - result, - &need_conversion_, - &need_conversion_, - &index_out_of_range_, - STRING_INDEX_IS_NUMBER) {} - - StringCharAtGenerator* fast_case_generator() { - return &char_at_generator_; - } - - virtual void Generate() { - VirtualFrameRuntimeCallHelper call_helper(frame_state()); - char_at_generator_.GenerateSlow(masm(), call_helper); - - __ bind(&need_conversion_); - // Move smi zero into the result register, which will trigger - // conversion. - __ Set(result_, Immediate(Smi::FromInt(0))); - __ jmp(exit_label()); - - __ bind(&index_out_of_range_); - // When the index is out of range, the spec requires us to return - // the empty string. - __ Set(result_, Immediate(Factory::empty_string())); - __ jmp(exit_label()); - } - - private: - Register result_; - - Label need_conversion_; - Label index_out_of_range_; - - StringCharAtGenerator char_at_generator_; -}; - - -// This generates code that performs a String.prototype.charAt() call -// or returns a smi in order to trigger conversion. -void CodeGenerator::GenerateStringCharAt(ZoneList<Expression*>* args) { - Comment(masm_, "[ GenerateStringCharAt"); - ASSERT(args->length() == 2); - - Load(args->at(0)); - Load(args->at(1)); - Result index = frame_->Pop(); - Result object = frame_->Pop(); - object.ToRegister(); - index.ToRegister(); - // We might mutate the object register. - frame_->Spill(object.reg()); - - // We need three extra registers. - Result result = allocator()->Allocate(); - ASSERT(result.is_valid()); - Result scratch1 = allocator()->Allocate(); - ASSERT(scratch1.is_valid()); - Result scratch2 = allocator()->Allocate(); - ASSERT(scratch2.is_valid()); - - DeferredStringCharAt* deferred = - new DeferredStringCharAt(object.reg(), - index.reg(), - scratch1.reg(), - scratch2.reg(), - result.reg()); - deferred->fast_case_generator()->GenerateFast(masm_); - deferred->BindExit(); - frame_->Push(&result); -} - - -void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) { - ASSERT(args->length() == 1); - Load(args->at(0)); - Result value = frame_->Pop(); - value.ToRegister(); - ASSERT(value.is_valid()); - __ test(value.reg(), Immediate(kSmiTagMask)); - destination()->false_target()->Branch(equal); - // It is a heap object - get map. - Result temp = allocator()->Allocate(); - ASSERT(temp.is_valid()); - // Check if the object is a JS array or not. - __ CmpObjectType(value.reg(), JS_ARRAY_TYPE, temp.reg()); - value.Unuse(); - temp.Unuse(); - destination()->Split(equal); -} - - -void CodeGenerator::GenerateFastAsciiArrayJoin(ZoneList<Expression*>* args) { - Label bailout, done, one_char_separator, long_separator, - non_trivial_array, not_size_one_array, loop, loop_condition, - loop_1, loop_1_condition, loop_2, loop_2_entry, loop_3, loop_3_entry; - - ASSERT(args->length() == 2); - // We will leave the separator on the stack until the end of the function. - Load(args->at(1)); - // Load this to eax (= array) - Load(args->at(0)); - Result array_result = frame_->Pop(); - array_result.ToRegister(eax); - frame_->SpillAll(); - - // All aliases of the same register have disjoint lifetimes. - Register array = eax; - Register elements = no_reg; // Will be eax. - - Register index = edx; - - Register string_length = ecx; - - Register string = esi; - - Register scratch = ebx; - - Register array_length = edi; - Register result_pos = no_reg; // Will be edi. - - // Separator operand is already pushed. - Operand separator_operand = Operand(esp, 2 * kPointerSize); - Operand result_operand = Operand(esp, 1 * kPointerSize); - Operand array_length_operand = Operand(esp, 0); - __ sub(Operand(esp), Immediate(2 * kPointerSize)); - __ cld(); - // Check that the array is a JSArray - __ test(array, Immediate(kSmiTagMask)); - __ j(zero, &bailout); - __ CmpObjectType(array, JS_ARRAY_TYPE, scratch); - __ j(not_equal, &bailout); - - // Check that the array has fast elements. - __ test_b(FieldOperand(scratch, Map::kBitField2Offset), - 1 << Map::kHasFastElements); - __ j(zero, &bailout); - - // If the array has length zero, return the empty string. - __ mov(array_length, FieldOperand(array, JSArray::kLengthOffset)); - __ sar(array_length, 1); - __ j(not_zero, &non_trivial_array); - __ mov(result_operand, Factory::empty_string()); - __ jmp(&done); - - // Save the array length. - __ bind(&non_trivial_array); - __ mov(array_length_operand, array_length); - - // Save the FixedArray containing array's elements. - // End of array's live range. - elements = array; - __ mov(elements, FieldOperand(array, JSArray::kElementsOffset)); - array = no_reg; - - - // Check that all array elements are sequential ASCII strings, and - // accumulate the sum of their lengths, as a smi-encoded value. - __ Set(index, Immediate(0)); - __ Set(string_length, Immediate(0)); - // Loop condition: while (index < length). - // Live loop registers: index, array_length, string, - // scratch, string_length, elements. - __ jmp(&loop_condition); - __ bind(&loop); - __ cmp(index, Operand(array_length)); - __ j(greater_equal, &done); - - __ mov(string, FieldOperand(elements, index, - times_pointer_size, - FixedArray::kHeaderSize)); - __ test(string, Immediate(kSmiTagMask)); - __ j(zero, &bailout); - __ mov(scratch, FieldOperand(string, HeapObject::kMapOffset)); - __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); - __ and_(scratch, Immediate( - kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask)); - __ cmp(scratch, kStringTag | kAsciiStringTag | kSeqStringTag); - __ j(not_equal, &bailout); - __ add(string_length, - FieldOperand(string, SeqAsciiString::kLengthOffset)); - __ j(overflow, &bailout); - __ add(Operand(index), Immediate(1)); - __ bind(&loop_condition); - __ cmp(index, Operand(array_length)); - __ j(less, &loop); - - // If array_length is 1, return elements[0], a string. - __ cmp(array_length, 1); - __ j(not_equal, ¬_size_one_array); - __ mov(scratch, FieldOperand(elements, FixedArray::kHeaderSize)); - __ mov(result_operand, scratch); - __ jmp(&done); - - __ bind(¬_size_one_array); - - // End of array_length live range. - result_pos = array_length; - array_length = no_reg; - - // Live registers: - // string_length: Sum of string lengths, as a smi. - // elements: FixedArray of strings. - - // Check that the separator is a flat ASCII string. - __ mov(string, separator_operand); - __ test(string, Immediate(kSmiTagMask)); - __ j(zero, &bailout); - __ mov(scratch, FieldOperand(string, HeapObject::kMapOffset)); - __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); - __ and_(scratch, Immediate( - kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask)); - __ cmp(scratch, kStringTag | kAsciiStringTag | kSeqStringTag); - __ j(not_equal, &bailout); - - // Add (separator length times array_length) - separator length - // to string_length. - __ mov(scratch, separator_operand); - __ mov(scratch, FieldOperand(scratch, SeqAsciiString::kLengthOffset)); - __ sub(string_length, Operand(scratch)); // May be negative, temporarily. - __ imul(scratch, array_length_operand); - __ j(overflow, &bailout); - __ add(string_length, Operand(scratch)); - __ j(overflow, &bailout); - - __ shr(string_length, 1); - // Live registers and stack values: - // string_length - // elements - __ AllocateAsciiString(result_pos, string_length, scratch, - index, string, &bailout); - __ mov(result_operand, result_pos); - __ lea(result_pos, FieldOperand(result_pos, SeqAsciiString::kHeaderSize)); - - - __ mov(string, separator_operand); - __ cmp(FieldOperand(string, SeqAsciiString::kLengthOffset), - Immediate(Smi::FromInt(1))); - __ j(equal, &one_char_separator); - __ j(greater, &long_separator); - - - // Empty separator case - __ mov(index, Immediate(0)); - __ jmp(&loop_1_condition); - // Loop condition: while (index < length). - __ bind(&loop_1); - // Each iteration of the loop concatenates one string to the result. - // Live values in registers: - // index: which element of the elements array we are adding to the result. - // result_pos: the position to which we are currently copying characters. - // elements: the FixedArray of strings we are joining. - - // Get string = array[index]. - __ mov(string, FieldOperand(elements, index, - times_pointer_size, - FixedArray::kHeaderSize)); - __ mov(string_length, - FieldOperand(string, String::kLengthOffset)); - __ shr(string_length, 1); - __ lea(string, - FieldOperand(string, SeqAsciiString::kHeaderSize)); - __ CopyBytes(string, result_pos, string_length, scratch); - __ add(Operand(index), Immediate(1)); - __ bind(&loop_1_condition); - __ cmp(index, array_length_operand); - __ j(less, &loop_1); // End while (index < length). - __ jmp(&done); - - - - // One-character separator case - __ bind(&one_char_separator); - // Replace separator with its ascii character value. - __ mov_b(scratch, FieldOperand(string, SeqAsciiString::kHeaderSize)); - __ mov_b(separator_operand, scratch); - - __ Set(index, Immediate(0)); - // Jump into the loop after the code that copies the separator, so the first - // element is not preceded by a separator - __ jmp(&loop_2_entry); - // Loop condition: while (index < length). - __ bind(&loop_2); - // Each iteration of the loop concatenates one string to the result. - // Live values in registers: - // index: which element of the elements array we are adding to the result. - // result_pos: the position to which we are currently copying characters. - - // Copy the separator character to the result. - __ mov_b(scratch, separator_operand); - __ mov_b(Operand(result_pos, 0), scratch); - __ inc(result_pos); - - __ bind(&loop_2_entry); - // Get string = array[index]. - __ mov(string, FieldOperand(elements, index, - times_pointer_size, - FixedArray::kHeaderSize)); - __ mov(string_length, - FieldOperand(string, String::kLengthOffset)); - __ shr(string_length, 1); - __ lea(string, - FieldOperand(string, SeqAsciiString::kHeaderSize)); - __ CopyBytes(string, result_pos, string_length, scratch); - __ add(Operand(index), Immediate(1)); - - __ cmp(index, array_length_operand); - __ j(less, &loop_2); // End while (index < length). - __ jmp(&done); - - - // Long separator case (separator is more than one character). - __ bind(&long_separator); - - __ Set(index, Immediate(0)); - // Jump into the loop after the code that copies the separator, so the first - // element is not preceded by a separator - __ jmp(&loop_3_entry); - // Loop condition: while (index < length). - __ bind(&loop_3); - // Each iteration of the loop concatenates one string to the result. - // Live values in registers: - // index: which element of the elements array we are adding to the result. - // result_pos: the position to which we are currently copying characters. - - // Copy the separator to the result. - __ mov(string, separator_operand); - __ mov(string_length, - FieldOperand(string, String::kLengthOffset)); - __ shr(string_length, 1); - __ lea(string, - FieldOperand(string, SeqAsciiString::kHeaderSize)); - __ CopyBytes(string, result_pos, string_length, scratch); - - __ bind(&loop_3_entry); - // Get string = array[index]. - __ mov(string, FieldOperand(elements, index, - times_pointer_size, - FixedArray::kHeaderSize)); - __ mov(string_length, - FieldOperand(string, String::kLengthOffset)); - __ shr(string_length, 1); - __ lea(string, - FieldOperand(string, SeqAsciiString::kHeaderSize)); - __ CopyBytes(string, result_pos, string_length, scratch); - __ add(Operand(index), Immediate(1)); - - __ cmp(index, array_length_operand); - __ j(less, &loop_3); // End while (index < length). - __ jmp(&done); - - - __ bind(&bailout); - __ mov(result_operand, Factory::undefined_value()); - __ bind(&done); - __ mov(eax, result_operand); - // Drop temp values from the stack, and restore context register. - __ add(Operand(esp), Immediate(2 * kPointerSize)); - - __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); - frame_->Drop(1); - frame_->Push(&array_result); -} - - -void CodeGenerator::GenerateIsRegExp(ZoneList<Expression*>* args) { - ASSERT(args->length() == 1); - Load(args->at(0)); - Result value = frame_->Pop(); - value.ToRegister(); - ASSERT(value.is_valid()); - __ test(value.reg(), Immediate(kSmiTagMask)); - destination()->false_target()->Branch(equal); - // It is a heap object - get map. - Result temp = allocator()->Allocate(); - ASSERT(temp.is_valid()); - // Check if the object is a regexp. - __ CmpObjectType(value.reg(), JS_REGEXP_TYPE, temp.reg()); - value.Unuse(); - temp.Unuse(); - destination()->Split(equal); -} - - -void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) { - // This generates a fast version of: - // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp') - ASSERT(args->length() == 1); - Load(args->at(0)); - Result obj = frame_->Pop(); - obj.ToRegister(); - - __ test(obj.reg(), Immediate(kSmiTagMask)); - destination()->false_target()->Branch(zero); - __ cmp(obj.reg(), Factory::null_value()); - destination()->true_target()->Branch(equal); - - Result map = allocator()->Allocate(); - ASSERT(map.is_valid()); - __ mov(map.reg(), FieldOperand(obj.reg(), HeapObject::kMapOffset)); - // Undetectable objects behave like undefined when tested with typeof. - __ test_b(FieldOperand(map.reg(), Map::kBitFieldOffset), - 1 << Map::kIsUndetectable); - destination()->false_target()->Branch(not_zero); - // Do a range test for JSObject type. We can't use - // MacroAssembler::IsInstanceJSObjectType, because we are using a - // ControlDestination, so we copy its implementation here. - __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kInstanceTypeOffset)); - __ sub(Operand(map.reg()), Immediate(FIRST_JS_OBJECT_TYPE)); - __ cmp(map.reg(), LAST_JS_OBJECT_TYPE - FIRST_JS_OBJECT_TYPE); - obj.Unuse(); - map.Unuse(); - destination()->Split(below_equal); -} - - -void CodeGenerator::GenerateIsSpecObject(ZoneList<Expression*>* args) { - // This generates a fast version of: - // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp' || - // typeof(arg) == function). - // It includes undetectable objects (as opposed to IsObject). - ASSERT(args->length() == 1); - Load(args->at(0)); - Result value = frame_->Pop(); - value.ToRegister(); - ASSERT(value.is_valid()); - __ test(value.reg(), Immediate(kSmiTagMask)); - destination()->false_target()->Branch(equal); - - // Check that this is an object. - frame_->Spill(value.reg()); - __ CmpObjectType(value.reg(), FIRST_JS_OBJECT_TYPE, value.reg()); - value.Unuse(); - destination()->Split(above_equal); -} - - -// Deferred code to check whether the String JavaScript object is safe for using -// default value of. This code is called after the bit caching this information -// in the map has been checked with the map for the object in the map_result_ -// register. On return the register map_result_ contains 1 for true and 0 for -// false. -class DeferredIsStringWrapperSafeForDefaultValueOf : public DeferredCode { - public: - DeferredIsStringWrapperSafeForDefaultValueOf(Register object, - Register map_result, - Register scratch1, - Register scratch2) - : object_(object), - map_result_(map_result), - scratch1_(scratch1), - scratch2_(scratch2) { } - - virtual void Generate() { - Label false_result; - - // Check that map is loaded as expected. - if (FLAG_debug_code) { - __ cmp(map_result_, FieldOperand(object_, HeapObject::kMapOffset)); - __ Assert(equal, "Map not in expected register"); - } - - // Check for fast case object. Generate false result for slow case object. - __ mov(scratch1_, FieldOperand(object_, JSObject::kPropertiesOffset)); - __ mov(scratch1_, FieldOperand(scratch1_, HeapObject::kMapOffset)); - __ cmp(scratch1_, Factory::hash_table_map()); - __ j(equal, &false_result); - - // Look for valueOf symbol in the descriptor array, and indicate false if - // found. The type is not checked, so if it is a transition it is a false - // negative. - __ mov(map_result_, - FieldOperand(map_result_, Map::kInstanceDescriptorsOffset)); - __ mov(scratch1_, FieldOperand(map_result_, FixedArray::kLengthOffset)); - // map_result_: descriptor array - // scratch1_: length of descriptor array - // Calculate the end of the descriptor array. - STATIC_ASSERT(kSmiTag == 0); - STATIC_ASSERT(kSmiTagSize == 1); - STATIC_ASSERT(kPointerSize == 4); - __ lea(scratch1_, - Operand(map_result_, scratch1_, times_2, FixedArray::kHeaderSize)); - // Calculate location of the first key name. - __ add(Operand(map_result_), - Immediate(FixedArray::kHeaderSize + - DescriptorArray::kFirstIndex * kPointerSize)); - // Loop through all the keys in the descriptor array. If one of these is the - // symbol valueOf the result is false. - Label entry, loop; - __ jmp(&entry); - __ bind(&loop); - __ mov(scratch2_, FieldOperand(map_result_, 0)); - __ cmp(scratch2_, Factory::value_of_symbol()); - __ j(equal, &false_result); - __ add(Operand(map_result_), Immediate(kPointerSize)); - __ bind(&entry); - __ cmp(map_result_, Operand(scratch1_)); - __ j(not_equal, &loop); - - // Reload map as register map_result_ was used as temporary above. - __ mov(map_result_, FieldOperand(object_, HeapObject::kMapOffset)); - - // If a valueOf property is not found on the object check that it's - // prototype is the un-modified String prototype. If not result is false. - __ mov(scratch1_, FieldOperand(map_result_, Map::kPrototypeOffset)); - __ test(scratch1_, Immediate(kSmiTagMask)); - __ j(zero, &false_result); - __ mov(scratch1_, FieldOperand(scratch1_, HeapObject::kMapOffset)); - __ mov(scratch2_, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); - __ mov(scratch2_, - FieldOperand(scratch2_, GlobalObject::kGlobalContextOffset)); - __ cmp(scratch1_, - ContextOperand(scratch2_, - Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX)); - __ j(not_equal, &false_result); - // Set the bit in the map to indicate that it has been checked safe for - // default valueOf and set true result. - __ or_(FieldOperand(map_result_, Map::kBitField2Offset), - Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf)); - __ Set(map_result_, Immediate(1)); - __ jmp(exit_label()); - __ bind(&false_result); - // Set false result. - __ Set(map_result_, Immediate(0)); - } - - private: - Register object_; - Register map_result_; - Register scratch1_; - Register scratch2_; -}; - - -void CodeGenerator::GenerateIsStringWrapperSafeForDefaultValueOf( - ZoneList<Expression*>* args) { - ASSERT(args->length() == 1); - Load(args->at(0)); - Result obj = frame_->Pop(); // Pop the string wrapper. - obj.ToRegister(); - ASSERT(obj.is_valid()); - if (FLAG_debug_code) { - __ AbortIfSmi(obj.reg()); - } - - // Check whether this map has already been checked to be safe for default - // valueOf. - Result map_result = allocator()->Allocate(); - ASSERT(map_result.is_valid()); - __ mov(map_result.reg(), FieldOperand(obj.reg(), HeapObject::kMapOffset)); - __ test_b(FieldOperand(map_result.reg(), Map::kBitField2Offset), - 1 << Map::kStringWrapperSafeForDefaultValueOf); - destination()->true_target()->Branch(not_zero); - - // We need an additional two scratch registers for the deferred code. - Result temp1 = allocator()->Allocate(); - ASSERT(temp1.is_valid()); - Result temp2 = allocator()->Allocate(); - ASSERT(temp2.is_valid()); - - DeferredIsStringWrapperSafeForDefaultValueOf* deferred = - new DeferredIsStringWrapperSafeForDefaultValueOf( - obj.reg(), map_result.reg(), temp1.reg(), temp2.reg()); - deferred->Branch(zero); - deferred->BindExit(); - __ test(map_result.reg(), Operand(map_result.reg())); - obj.Unuse(); - map_result.Unuse(); - temp1.Unuse(); - temp2.Unuse(); - destination()->Split(not_equal); -} - - -void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) { - // This generates a fast version of: - // (%_ClassOf(arg) === 'Function') - ASSERT(args->length() == 1); - Load(args->at(0)); - Result obj = frame_->Pop(); - obj.ToRegister(); - __ test(obj.reg(), Immediate(kSmiTagMask)); - destination()->false_target()->Branch(zero); - Result temp = allocator()->Allocate(); - ASSERT(temp.is_valid()); - __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, temp.reg()); - obj.Unuse(); - temp.Unuse(); - destination()->Split(equal); -} - - -void CodeGenerator::GenerateIsUndetectableObject(ZoneList<Expression*>* args) { - ASSERT(args->length() == 1); - Load(args->at(0)); - Result obj = frame_->Pop(); - obj.ToRegister(); - __ test(obj.reg(), Immediate(kSmiTagMask)); - destination()->false_target()->Branch(zero); - Result temp = allocator()->Allocate(); - ASSERT(temp.is_valid()); - __ mov(temp.reg(), - FieldOperand(obj.reg(), HeapObject::kMapOffset)); - __ test_b(FieldOperand(temp.reg(), Map::kBitFieldOffset), - 1 << Map::kIsUndetectable); - obj.Unuse(); - temp.Unuse(); - destination()->Split(not_zero); -} - - -void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) { - ASSERT(args->length() == 0); - - // Get the frame pointer for the calling frame. - Result fp = allocator()->Allocate(); - __ mov(fp.reg(), Operand(ebp, StandardFrameConstants::kCallerFPOffset)); - - // Skip the arguments adaptor frame if it exists. - Label check_frame_marker; - __ cmp(Operand(fp.reg(), StandardFrameConstants::kContextOffset), - Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); - __ j(not_equal, &check_frame_marker); - __ mov(fp.reg(), Operand(fp.reg(), StandardFrameConstants::kCallerFPOffset)); - - // Check the marker in the calling frame. - __ bind(&check_frame_marker); - __ cmp(Operand(fp.reg(), StandardFrameConstants::kMarkerOffset), - Immediate(Smi::FromInt(StackFrame::CONSTRUCT))); - fp.Unuse(); - destination()->Split(equal); -} - - -void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) { - ASSERT(args->length() == 0); - - Result fp = allocator_->Allocate(); - Result result = allocator_->Allocate(); - ASSERT(fp.is_valid() && result.is_valid()); - - Label exit; - - // Get the number of formal parameters. - __ Set(result.reg(), Immediate(Smi::FromInt(scope()->num_parameters()))); - - // Check if the calling frame is an arguments adaptor frame. - __ mov(fp.reg(), Operand(ebp, StandardFrameConstants::kCallerFPOffset)); - __ cmp(Operand(fp.reg(), StandardFrameConstants::kContextOffset), - Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); - __ j(not_equal, &exit); - - // Arguments adaptor case: Read the arguments length from the - // adaptor frame. - __ mov(result.reg(), - Operand(fp.reg(), ArgumentsAdaptorFrameConstants::kLengthOffset)); - - __ bind(&exit); - result.set_type_info(TypeInfo::Smi()); - if (FLAG_debug_code) __ AbortIfNotSmi(result.reg()); - frame_->Push(&result); -} - - -void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) { - ASSERT(args->length() == 1); - JumpTarget leave, null, function, non_function_constructor; - Load(args->at(0)); // Load the object. - Result obj = frame_->Pop(); - obj.ToRegister(); - frame_->Spill(obj.reg()); - - // If the object is a smi, we return null. - __ test(obj.reg(), Immediate(kSmiTagMask)); - null.Branch(zero); - - // Check that the object is a JS object but take special care of JS - // functions to make sure they have 'Function' as their class. - __ CmpObjectType(obj.reg(), FIRST_JS_OBJECT_TYPE, obj.reg()); - null.Branch(below); - - // As long as JS_FUNCTION_TYPE is the last instance type and it is - // right after LAST_JS_OBJECT_TYPE, we can avoid checking for - // LAST_JS_OBJECT_TYPE. - STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); - STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); - __ CmpInstanceType(obj.reg(), JS_FUNCTION_TYPE); - function.Branch(equal); - - // Check if the constructor in the map is a function. - { Result tmp = allocator()->Allocate(); - __ mov(obj.reg(), FieldOperand(obj.reg(), Map::kConstructorOffset)); - __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, tmp.reg()); - non_function_constructor.Branch(not_equal); - } - - // The map register now contains the constructor function. Grab the - // instance class name from there. - __ mov(obj.reg(), - FieldOperand(obj.reg(), JSFunction::kSharedFunctionInfoOffset)); - __ mov(obj.reg(), - FieldOperand(obj.reg(), SharedFunctionInfo::kInstanceClassNameOffset)); - frame_->Push(&obj); - leave.Jump(); - - // Functions have class 'Function'. - function.Bind(); - frame_->Push(Factory::function_class_symbol()); - leave.Jump(); - - // Objects with a non-function constructor have class 'Object'. - non_function_constructor.Bind(); - frame_->Push(Factory::Object_symbol()); - leave.Jump(); - - // Non-JS objects have class null. - null.Bind(); - frame_->Push(Factory::null_value()); - - // All done. - leave.Bind(); -} - - -void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) { - ASSERT(args->length() == 1); - JumpTarget leave; - Load(args->at(0)); // Load the object. - frame_->Dup(); - Result object = frame_->Pop(); - object.ToRegister(); - ASSERT(object.is_valid()); - // if (object->IsSmi()) return object. - __ test(object.reg(), Immediate(kSmiTagMask)); - leave.Branch(zero, taken); - // It is a heap object - get map. - Result temp = allocator()->Allocate(); - ASSERT(temp.is_valid()); - // if (!object->IsJSValue()) return object. - __ CmpObjectType(object.reg(), JS_VALUE_TYPE, temp.reg()); - leave.Branch(not_equal, not_taken); - __ mov(temp.reg(), FieldOperand(object.reg(), JSValue::kValueOffset)); - object.Unuse(); - frame_->SetElementAt(0, &temp); - leave.Bind(); -} - - -void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) { - ASSERT(args->length() == 2); - JumpTarget leave; - Load(args->at(0)); // Load the object. - Load(args->at(1)); // Load the value. - Result value = frame_->Pop(); - Result object = frame_->Pop(); - value.ToRegister(); - object.ToRegister(); - - // if (object->IsSmi()) return value. - __ test(object.reg(), Immediate(kSmiTagMask)); - leave.Branch(zero, &value, taken); - - // It is a heap object - get its map. - Result scratch = allocator_->Allocate(); - ASSERT(scratch.is_valid()); - // if (!object->IsJSValue()) return value. - __ CmpObjectType(object.reg(), JS_VALUE_TYPE, scratch.reg()); - leave.Branch(not_equal, &value, not_taken); - - // Store the value. - __ mov(FieldOperand(object.reg(), JSValue::kValueOffset), value.reg()); - // Update the write barrier. Save the value as it will be - // overwritten by the write barrier code and is needed afterward. - Result duplicate_value = allocator_->Allocate(); - ASSERT(duplicate_value.is_valid()); - __ mov(duplicate_value.reg(), value.reg()); - // The object register is also overwritten by the write barrier and - // possibly aliased in the frame. - frame_->Spill(object.reg()); - __ RecordWrite(object.reg(), JSValue::kValueOffset, duplicate_value.reg(), - scratch.reg()); - object.Unuse(); - scratch.Unuse(); - duplicate_value.Unuse(); - - // Leave. - leave.Bind(&value); - frame_->Push(&value); -} - - -void CodeGenerator::GenerateArguments(ZoneList<Expression*>* args) { - ASSERT(args->length() == 1); - - // ArgumentsAccessStub expects the key in edx and the formal - // parameter count in eax. - Load(args->at(0)); - Result key = frame_->Pop(); - // Explicitly create a constant result. - Result count(Handle<Smi>(Smi::FromInt(scope()->num_parameters()))); - // Call the shared stub to get to arguments[key]. - ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); - Result result = frame_->CallStub(&stub, &key, &count); - frame_->Push(&result); -} - - -void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) { - ASSERT(args->length() == 2); - - // Load the two objects into registers and perform the comparison. - Load(args->at(0)); - Load(args->at(1)); - Result right = frame_->Pop(); - Result left = frame_->Pop(); - right.ToRegister(); - left.ToRegister(); - __ cmp(right.reg(), Operand(left.reg())); - right.Unuse(); - left.Unuse(); - destination()->Split(equal); -} - - -void CodeGenerator::GenerateGetFramePointer(ZoneList<Expression*>* args) { - ASSERT(args->length() == 0); - STATIC_ASSERT(kSmiTag == 0); // EBP value is aligned, so it looks like a Smi. - Result ebp_as_smi = allocator_->Allocate(); - ASSERT(ebp_as_smi.is_valid()); - __ mov(ebp_as_smi.reg(), Operand(ebp)); - frame_->Push(&ebp_as_smi); -} - - -void CodeGenerator::GenerateRandomHeapNumber( - ZoneList<Expression*>* args) { - ASSERT(args->length() == 0); - frame_->SpillAll(); - - Label slow_allocate_heapnumber; - Label heapnumber_allocated; - - __ AllocateHeapNumber(edi, ebx, ecx, &slow_allocate_heapnumber); - __ jmp(&heapnumber_allocated); - - __ bind(&slow_allocate_heapnumber); - // Allocate a heap number. - __ CallRuntime(Runtime::kNumberAlloc, 0); - __ mov(edi, eax); - - __ bind(&heapnumber_allocated); - - __ PrepareCallCFunction(0, ebx); - __ CallCFunction(ExternalReference::random_uint32_function(), 0); - - // Convert 32 random bits in eax to 0.(32 random bits) in a double - // by computing: - // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)). - // This is implemented on both SSE2 and FPU. - if (CpuFeatures::IsSupported(SSE2)) { - CpuFeatures::Scope fscope(SSE2); - __ mov(ebx, Immediate(0x49800000)); // 1.0 x 2^20 as single. - __ movd(xmm1, Operand(ebx)); - __ movd(xmm0, Operand(eax)); - __ cvtss2sd(xmm1, xmm1); - __ pxor(xmm0, xmm1); - __ subsd(xmm0, xmm1); - __ movdbl(FieldOperand(edi, HeapNumber::kValueOffset), xmm0); - } else { - // 0x4130000000000000 is 1.0 x 2^20 as a double. - __ mov(FieldOperand(edi, HeapNumber::kExponentOffset), - Immediate(0x41300000)); - __ mov(FieldOperand(edi, HeapNumber::kMantissaOffset), eax); - __ fld_d(FieldOperand(edi, HeapNumber::kValueOffset)); - __ mov(FieldOperand(edi, HeapNumber::kMantissaOffset), Immediate(0)); - __ fld_d(FieldOperand(edi, HeapNumber::kValueOffset)); - __ fsubp(1); - __ fstp_d(FieldOperand(edi, HeapNumber::kValueOffset)); - } - __ mov(eax, edi); - - Result result = allocator_->Allocate(eax); - frame_->Push(&result); -} - - -void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) { - ASSERT_EQ(2, args->length()); - - Load(args->at(0)); - Load(args->at(1)); - - StringAddStub stub(NO_STRING_ADD_FLAGS); - Result answer = frame_->CallStub(&stub, 2); - frame_->Push(&answer); -} - - -void CodeGenerator::GenerateSubString(ZoneList<Expression*>* args) { - ASSERT_EQ(3, args->length()); - - Load(args->at(0)); - Load(args->at(1)); - Load(args->at(2)); - - SubStringStub stub; - Result answer = frame_->CallStub(&stub, 3); - frame_->Push(&answer); -} - - -void CodeGenerator::GenerateStringCompare(ZoneList<Expression*>* args) { - ASSERT_EQ(2, args->length()); - - Load(args->at(0)); - Load(args->at(1)); - - StringCompareStub stub; - Result answer = frame_->CallStub(&stub, 2); - frame_->Push(&answer); -} - - -void CodeGenerator::GenerateRegExpExec(ZoneList<Expression*>* args) { - ASSERT_EQ(4, args->length()); - - // Load the arguments on the stack and call the stub. - Load(args->at(0)); - Load(args->at(1)); - Load(args->at(2)); - Load(args->at(3)); - - RegExpExecStub stub; - Result result = frame_->CallStub(&stub, 4); - frame_->Push(&result); -} - - -void CodeGenerator::GenerateRegExpConstructResult(ZoneList<Expression*>* args) { - ASSERT_EQ(3, args->length()); - - Load(args->at(0)); // Size of array, smi. - Load(args->at(1)); // "index" property value. - Load(args->at(2)); // "input" property value. - - RegExpConstructResultStub stub; - Result result = frame_->CallStub(&stub, 3); - frame_->Push(&result); -} - - -class DeferredSearchCache: public DeferredCode { - public: - DeferredSearchCache(Register dst, Register cache, Register key) - : dst_(dst), cache_(cache), key_(key) { - set_comment("[ DeferredSearchCache"); - } - - virtual void Generate(); - - private: - Register dst_; // on invocation Smi index of finger, on exit - // holds value being looked up. - Register cache_; // instance of JSFunctionResultCache. - Register key_; // key being looked up. -}; - - -void DeferredSearchCache::Generate() { - Label first_loop, search_further, second_loop, cache_miss; - - // Smi-tagging is equivalent to multiplying by 2. - STATIC_ASSERT(kSmiTag == 0); - STATIC_ASSERT(kSmiTagSize == 1); - - Smi* kEntrySizeSmi = Smi::FromInt(JSFunctionResultCache::kEntrySize); - Smi* kEntriesIndexSmi = Smi::FromInt(JSFunctionResultCache::kEntriesIndex); - - // Check the cache from finger to start of the cache. - __ bind(&first_loop); - __ sub(Operand(dst_), Immediate(kEntrySizeSmi)); - __ cmp(Operand(dst_), Immediate(kEntriesIndexSmi)); - __ j(less, &search_further); - - __ cmp(key_, CodeGenerator::FixedArrayElementOperand(cache_, dst_)); - __ j(not_equal, &first_loop); - - __ mov(FieldOperand(cache_, JSFunctionResultCache::kFingerOffset), dst_); - __ mov(dst_, CodeGenerator::FixedArrayElementOperand(cache_, dst_, 1)); - __ jmp(exit_label()); - - __ bind(&search_further); - - // Check the cache from end of cache up to finger. - __ mov(dst_, FieldOperand(cache_, JSFunctionResultCache::kCacheSizeOffset)); - - __ bind(&second_loop); - __ sub(Operand(dst_), Immediate(kEntrySizeSmi)); - // Consider prefetching into some reg. - __ cmp(dst_, FieldOperand(cache_, JSFunctionResultCache::kFingerOffset)); - __ j(less_equal, &cache_miss); - - __ cmp(key_, CodeGenerator::FixedArrayElementOperand(cache_, dst_)); - __ j(not_equal, &second_loop); - - __ mov(FieldOperand(cache_, JSFunctionResultCache::kFingerOffset), dst_); - __ mov(dst_, CodeGenerator::FixedArrayElementOperand(cache_, dst_, 1)); - __ jmp(exit_label()); - - __ bind(&cache_miss); - __ push(cache_); // store a reference to cache - __ push(key_); // store a key - __ push(Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); - __ push(key_); - // On ia32 function must be in edi. - __ mov(edi, FieldOperand(cache_, JSFunctionResultCache::kFactoryOffset)); - ParameterCount expected(1); - __ InvokeFunction(edi, expected, CALL_FUNCTION); - - // Find a place to put new cached value into. - Label add_new_entry, update_cache; - __ mov(ecx, Operand(esp, kPointerSize)); // restore the cache - // Possible optimization: cache size is constant for the given cache - // so technically we could use a constant here. However, if we have - // cache miss this optimization would hardly matter much. - - // Check if we could add new entry to cache. - __ mov(ebx, FieldOperand(ecx, FixedArray::kLengthOffset)); - __ cmp(ebx, FieldOperand(ecx, JSFunctionResultCache::kCacheSizeOffset)); - __ j(greater, &add_new_entry); - - // Check if we could evict entry after finger. - __ mov(edx, FieldOperand(ecx, JSFunctionResultCache::kFingerOffset)); - __ add(Operand(edx), Immediate(kEntrySizeSmi)); - __ cmp(ebx, Operand(edx)); - __ j(greater, &update_cache); - - // Need to wrap over the cache. - __ mov(edx, Immediate(kEntriesIndexSmi)); - __ jmp(&update_cache); - - __ bind(&add_new_entry); - __ mov(edx, FieldOperand(ecx, JSFunctionResultCache::kCacheSizeOffset)); - __ lea(ebx, Operand(edx, JSFunctionResultCache::kEntrySize << 1)); - __ mov(FieldOperand(ecx, JSFunctionResultCache::kCacheSizeOffset), ebx); - - // Update the cache itself. - // edx holds the index. - __ bind(&update_cache); - __ pop(ebx); // restore the key - __ mov(FieldOperand(ecx, JSFunctionResultCache::kFingerOffset), edx); - // Store key. - __ mov(CodeGenerator::FixedArrayElementOperand(ecx, edx), ebx); - __ RecordWrite(ecx, 0, ebx, edx); - - // Store value. - __ pop(ecx); // restore the cache. - __ mov(edx, FieldOperand(ecx, JSFunctionResultCache::kFingerOffset)); - __ add(Operand(edx), Immediate(Smi::FromInt(1))); - __ mov(ebx, eax); - __ mov(CodeGenerator::FixedArrayElementOperand(ecx, edx), ebx); - __ RecordWrite(ecx, 0, ebx, edx); - - if (!dst_.is(eax)) { - __ mov(dst_, eax); - } -} - - -void CodeGenerator::GenerateGetFromCache(ZoneList<Expression*>* args) { - ASSERT_EQ(2, args->length()); - - ASSERT_NE(NULL, args->at(0)->AsLiteral()); - int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value(); - - Handle<FixedArray> jsfunction_result_caches( - Top::global_context()->jsfunction_result_caches()); - if (jsfunction_result_caches->length() <= cache_id) { - __ Abort("Attempt to use undefined cache."); - frame_->Push(Factory::undefined_value()); - return; - } - - Load(args->at(1)); - Result key = frame_->Pop(); - key.ToRegister(); - - Result cache = allocator()->Allocate(); - ASSERT(cache.is_valid()); - __ mov(cache.reg(), ContextOperand(esi, Context::GLOBAL_INDEX)); - __ mov(cache.reg(), - FieldOperand(cache.reg(), GlobalObject::kGlobalContextOffset)); - __ mov(cache.reg(), - ContextOperand(cache.reg(), Context::JSFUNCTION_RESULT_CACHES_INDEX)); - __ mov(cache.reg(), - FieldOperand(cache.reg(), FixedArray::OffsetOfElementAt(cache_id))); - - Result tmp = allocator()->Allocate(); - ASSERT(tmp.is_valid()); - - DeferredSearchCache* deferred = new DeferredSearchCache(tmp.reg(), - cache.reg(), - key.reg()); - - // tmp.reg() now holds finger offset as a smi. - STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); - __ mov(tmp.reg(), FieldOperand(cache.reg(), - JSFunctionResultCache::kFingerOffset)); - __ cmp(key.reg(), FixedArrayElementOperand(cache.reg(), tmp.reg())); - deferred->Branch(not_equal); - - __ mov(tmp.reg(), FixedArrayElementOperand(cache.reg(), tmp.reg(), 1)); - - deferred->BindExit(); - frame_->Push(&tmp); -} - - -void CodeGenerator::GenerateNumberToString(ZoneList<Expression*>* args) { - ASSERT_EQ(args->length(), 1); - - // Load the argument on the stack and call the stub. - Load(args->at(0)); - NumberToStringStub stub; - Result result = frame_->CallStub(&stub, 1); - frame_->Push(&result); -} - - -class DeferredSwapElements: public DeferredCode { - public: - DeferredSwapElements(Register object, Register index1, Register index2) - : object_(object), index1_(index1), index2_(index2) { - set_comment("[ DeferredSwapElements"); - } - - virtual void Generate(); - - private: - Register object_, index1_, index2_; -}; - - -void DeferredSwapElements::Generate() { - __ push(object_); - __ push(index1_); - __ push(index2_); - __ CallRuntime(Runtime::kSwapElements, 3); -} - - -void CodeGenerator::GenerateSwapElements(ZoneList<Expression*>* args) { - // Note: this code assumes that indices are passed are within - // elements' bounds and refer to valid (not holes) values. - Comment cmnt(masm_, "[ GenerateSwapElements"); - - ASSERT_EQ(3, args->length()); - - Load(args->at(0)); - Load(args->at(1)); - Load(args->at(2)); - - Result index2 = frame_->Pop(); - index2.ToRegister(); - - Result index1 = frame_->Pop(); - index1.ToRegister(); - - Result object = frame_->Pop(); - object.ToRegister(); - - Result tmp1 = allocator()->Allocate(); - tmp1.ToRegister(); - Result tmp2 = allocator()->Allocate(); - tmp2.ToRegister(); - - frame_->Spill(object.reg()); - frame_->Spill(index1.reg()); - frame_->Spill(index2.reg()); - - DeferredSwapElements* deferred = new DeferredSwapElements(object.reg(), - index1.reg(), - index2.reg()); - - // Fetch the map and check if array is in fast case. - // Check that object doesn't require security checks and - // has no indexed interceptor. - __ CmpObjectType(object.reg(), FIRST_JS_OBJECT_TYPE, tmp1.reg()); - deferred->Branch(below); - __ test_b(FieldOperand(tmp1.reg(), Map::kBitFieldOffset), - KeyedLoadIC::kSlowCaseBitFieldMask); - deferred->Branch(not_zero); - - // Check the object's elements are in fast case and writable. - __ mov(tmp1.reg(), FieldOperand(object.reg(), JSObject::kElementsOffset)); - __ cmp(FieldOperand(tmp1.reg(), HeapObject::kMapOffset), - Immediate(Factory::fixed_array_map())); - deferred->Branch(not_equal); - - // Smi-tagging is equivalent to multiplying by 2. - STATIC_ASSERT(kSmiTag == 0); - STATIC_ASSERT(kSmiTagSize == 1); - - // Check that both indices are smis. - __ mov(tmp2.reg(), index1.reg()); - __ or_(tmp2.reg(), Operand(index2.reg())); - __ test(tmp2.reg(), Immediate(kSmiTagMask)); - deferred->Branch(not_zero); - - // Check that both indices are valid. - __ mov(tmp2.reg(), FieldOperand(object.reg(), JSArray::kLengthOffset)); - __ cmp(tmp2.reg(), Operand(index1.reg())); - deferred->Branch(below_equal); - __ cmp(tmp2.reg(), Operand(index2.reg())); - deferred->Branch(below_equal); - - // Bring addresses into index1 and index2. - __ lea(index1.reg(), FixedArrayElementOperand(tmp1.reg(), index1.reg())); - __ lea(index2.reg(), FixedArrayElementOperand(tmp1.reg(), index2.reg())); - - // Swap elements. - __ mov(object.reg(), Operand(index1.reg(), 0)); - __ mov(tmp2.reg(), Operand(index2.reg(), 0)); - __ mov(Operand(index2.reg(), 0), object.reg()); - __ mov(Operand(index1.reg(), 0), tmp2.reg()); - - Label done; - __ InNewSpace(tmp1.reg(), tmp2.reg(), equal, &done); - // Possible optimization: do a check that both values are Smis - // (or them and test against Smi mask.) - - __ mov(tmp2.reg(), tmp1.reg()); - __ RecordWriteHelper(tmp2.reg(), index1.reg(), object.reg()); - __ RecordWriteHelper(tmp1.reg(), index2.reg(), object.reg()); - __ bind(&done); - - deferred->BindExit(); - frame_->Push(Factory::undefined_value()); -} - - -void CodeGenerator::GenerateCallFunction(ZoneList<Expression*>* args) { - Comment cmnt(masm_, "[ GenerateCallFunction"); - - ASSERT(args->length() >= 2); - - int n_args = args->length() - 2; // for receiver and function. - Load(args->at(0)); // receiver - for (int i = 0; i < n_args; i++) { - Load(args->at(i + 1)); - } - Load(args->at(n_args + 1)); // function - Result result = frame_->CallJSFunction(n_args); - frame_->Push(&result); -} - - -// Generates the Math.pow method. Only handles special cases and -// branches to the runtime system for everything else. Please note -// that this function assumes that the callsite has executed ToNumber -// on both arguments. -void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) { - ASSERT(args->length() == 2); - Load(args->at(0)); - Load(args->at(1)); - if (!CpuFeatures::IsSupported(SSE2)) { - Result res = frame_->CallRuntime(Runtime::kMath_pow, 2); - frame_->Push(&res); - } else { - CpuFeatures::Scope use_sse2(SSE2); - Label allocate_return; - // Load the two operands while leaving the values on the frame. - frame()->Dup(); - Result exponent = frame()->Pop(); - exponent.ToRegister(); - frame()->Spill(exponent.reg()); - frame()->PushElementAt(1); - Result base = frame()->Pop(); - base.ToRegister(); - frame()->Spill(base.reg()); - - Result answer = allocator()->Allocate(); - ASSERT(answer.is_valid()); - ASSERT(!exponent.reg().is(base.reg())); - JumpTarget call_runtime; - - // Save 1 in xmm3 - we need this several times later on. - __ mov(answer.reg(), Immediate(1)); - __ cvtsi2sd(xmm3, Operand(answer.reg())); - - Label exponent_nonsmi; - Label base_nonsmi; - // If the exponent is a heap number go to that specific case. - __ test(exponent.reg(), Immediate(kSmiTagMask)); - __ j(not_zero, &exponent_nonsmi); - __ test(base.reg(), Immediate(kSmiTagMask)); - __ j(not_zero, &base_nonsmi); - - // Optimized version when y is an integer. - Label powi; - __ SmiUntag(base.reg()); - __ cvtsi2sd(xmm0, Operand(base.reg())); - __ jmp(&powi); - // exponent is smi and base is a heapnumber. - __ bind(&base_nonsmi); - __ cmp(FieldOperand(base.reg(), HeapObject::kMapOffset), - Factory::heap_number_map()); - call_runtime.Branch(not_equal); - - __ movdbl(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset)); - - // Optimized version of pow if y is an integer. - __ bind(&powi); - __ SmiUntag(exponent.reg()); - - // Save exponent in base as we need to check if exponent is negative later. - // We know that base and exponent are in different registers. - __ mov(base.reg(), exponent.reg()); - - // Get absolute value of exponent. - Label no_neg; - __ cmp(exponent.reg(), 0); - __ j(greater_equal, &no_neg); - __ neg(exponent.reg()); - __ bind(&no_neg); - - // Load xmm1 with 1. - __ movsd(xmm1, xmm3); - Label while_true; - Label no_multiply; - - __ bind(&while_true); - __ shr(exponent.reg(), 1); - __ j(not_carry, &no_multiply); - __ mulsd(xmm1, xmm0); - __ bind(&no_multiply); - __ test(exponent.reg(), Operand(exponent.reg())); - __ mulsd(xmm0, xmm0); - __ j(not_zero, &while_true); - - // x has the original value of y - if y is negative return 1/result. - __ test(base.reg(), Operand(base.reg())); - __ j(positive, &allocate_return); - // Special case if xmm1 has reached infinity. - __ mov(answer.reg(), Immediate(0x7FB00000)); - __ movd(xmm0, Operand(answer.reg())); - __ cvtss2sd(xmm0, xmm0); - __ ucomisd(xmm0, xmm1); - call_runtime.Branch(equal); - __ divsd(xmm3, xmm1); - __ movsd(xmm1, xmm3); - __ jmp(&allocate_return); - - // exponent (or both) is a heapnumber - no matter what we should now work - // on doubles. - __ bind(&exponent_nonsmi); - __ cmp(FieldOperand(exponent.reg(), HeapObject::kMapOffset), - Factory::heap_number_map()); - call_runtime.Branch(not_equal); - __ movdbl(xmm1, FieldOperand(exponent.reg(), HeapNumber::kValueOffset)); - // Test if exponent is nan. - __ ucomisd(xmm1, xmm1); - call_runtime.Branch(parity_even); - - Label base_not_smi; - Label handle_special_cases; - __ test(base.reg(), Immediate(kSmiTagMask)); - __ j(not_zero, &base_not_smi); - __ SmiUntag(base.reg()); - __ cvtsi2sd(xmm0, Operand(base.reg())); - __ jmp(&handle_special_cases); - __ bind(&base_not_smi); - __ cmp(FieldOperand(base.reg(), HeapObject::kMapOffset), - Factory::heap_number_map()); - call_runtime.Branch(not_equal); - __ mov(answer.reg(), FieldOperand(base.reg(), HeapNumber::kExponentOffset)); - __ and_(answer.reg(), HeapNumber::kExponentMask); - __ cmp(Operand(answer.reg()), Immediate(HeapNumber::kExponentMask)); - // base is NaN or +/-Infinity - call_runtime.Branch(greater_equal); - __ movdbl(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset)); - - // base is in xmm0 and exponent is in xmm1. - __ bind(&handle_special_cases); - Label not_minus_half; - // Test for -0.5. - // Load xmm2 with -0.5. - __ mov(answer.reg(), Immediate(0xBF000000)); - __ movd(xmm2, Operand(answer.reg())); - __ cvtss2sd(xmm2, xmm2); - // xmm2 now has -0.5. - __ ucomisd(xmm2, xmm1); - __ j(not_equal, ¬_minus_half); - - // Calculates reciprocal of square root. - // sqrtsd returns -0 when input is -0. ECMA spec requires +0. - __ xorpd(xmm1, xmm1); - __ addsd(xmm1, xmm0); - __ sqrtsd(xmm1, xmm1); - __ divsd(xmm3, xmm1); - __ movsd(xmm1, xmm3); - __ jmp(&allocate_return); - - // Test for 0.5. - __ bind(¬_minus_half); - // Load xmm2 with 0.5. - // Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 + xmm3. - __ addsd(xmm2, xmm3); - // xmm2 now has 0.5. - __ ucomisd(xmm2, xmm1); - call_runtime.Branch(not_equal); - // Calculates square root. - // sqrtsd returns -0 when input is -0. ECMA spec requires +0. - __ xorpd(xmm1, xmm1); - __ addsd(xmm1, xmm0); - __ sqrtsd(xmm1, xmm1); - - JumpTarget done; - Label failure, success; - __ bind(&allocate_return); - // Make a copy of the frame to enable us to handle allocation - // failure after the JumpTarget jump. - VirtualFrame* clone = new VirtualFrame(frame()); - __ AllocateHeapNumber(answer.reg(), exponent.reg(), - base.reg(), &failure); - __ movdbl(FieldOperand(answer.reg(), HeapNumber::kValueOffset), xmm1); - // Remove the two original values from the frame - we only need those - // in the case where we branch to runtime. - frame()->Drop(2); - exponent.Unuse(); - base.Unuse(); - done.Jump(&answer); - // Use the copy of the original frame as our current frame. - RegisterFile empty_regs; - SetFrame(clone, &empty_regs); - // If we experience an allocation failure we branch to runtime. - __ bind(&failure); - call_runtime.Bind(); - answer = frame()->CallRuntime(Runtime::kMath_pow_cfunction, 2); - - done.Bind(&answer); - frame()->Push(&answer); - } -} - - -void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) { - ASSERT_EQ(args->length(), 1); - Load(args->at(0)); - TranscendentalCacheStub stub(TranscendentalCache::SIN, - TranscendentalCacheStub::TAGGED); - Result result = frame_->CallStub(&stub, 1); - frame_->Push(&result); -} - - -void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) { - ASSERT_EQ(args->length(), 1); - Load(args->at(0)); - TranscendentalCacheStub stub(TranscendentalCache::COS, - TranscendentalCacheStub::TAGGED); - Result result = frame_->CallStub(&stub, 1); - frame_->Push(&result); -} - - -void CodeGenerator::GenerateMathLog(ZoneList<Expression*>* args) { - ASSERT_EQ(args->length(), 1); - Load(args->at(0)); - TranscendentalCacheStub stub(TranscendentalCache::LOG, - TranscendentalCacheStub::TAGGED); - Result result = frame_->CallStub(&stub, 1); - frame_->Push(&result); -} - - -// Generates the Math.sqrt method. Please note - this function assumes that -// the callsite has executed ToNumber on the argument. -void CodeGenerator::GenerateMathSqrt(ZoneList<Expression*>* args) { - ASSERT_EQ(args->length(), 1); - Load(args->at(0)); - - if (!CpuFeatures::IsSupported(SSE2)) { - Result result = frame()->CallRuntime(Runtime::kMath_sqrt, 1); - frame()->Push(&result); - } else { - CpuFeatures::Scope use_sse2(SSE2); - // Leave original value on the frame if we need to call runtime. - frame()->Dup(); - Result result = frame()->Pop(); - result.ToRegister(); - frame()->Spill(result.reg()); - Label runtime; - Label non_smi; - Label load_done; - JumpTarget end; - - __ test(result.reg(), Immediate(kSmiTagMask)); - __ j(not_zero, &non_smi); - __ SmiUntag(result.reg()); - __ cvtsi2sd(xmm0, Operand(result.reg())); - __ jmp(&load_done); - __ bind(&non_smi); - __ cmp(FieldOperand(result.reg(), HeapObject::kMapOffset), - Factory::heap_number_map()); - __ j(not_equal, &runtime); - __ movdbl(xmm0, FieldOperand(result.reg(), HeapNumber::kValueOffset)); - - __ bind(&load_done); - __ sqrtsd(xmm0, xmm0); - // A copy of the virtual frame to allow us to go to runtime after the - // JumpTarget jump. - Result scratch = allocator()->Allocate(); - VirtualFrame* clone = new VirtualFrame(frame()); - __ AllocateHeapNumber(result.reg(), scratch.reg(), no_reg, &runtime); - - __ movdbl(FieldOperand(result.reg(), HeapNumber::kValueOffset), xmm0); - frame()->Drop(1); - scratch.Unuse(); - end.Jump(&result); - // We only branch to runtime if we have an allocation error. - // Use the copy of the original frame as our current frame. - RegisterFile empty_regs; - SetFrame(clone, &empty_regs); - __ bind(&runtime); - result = frame()->CallRuntime(Runtime::kMath_sqrt, 1); - - end.Bind(&result); - frame()->Push(&result); - } -} - - -void CodeGenerator::GenerateIsRegExpEquivalent(ZoneList<Expression*>* args) { - ASSERT_EQ(2, args->length()); - Load(args->at(0)); - Load(args->at(1)); - Result right_res = frame_->Pop(); - Result left_res = frame_->Pop(); - right_res.ToRegister(); - left_res.ToRegister(); - Result tmp_res = allocator()->Allocate(); - ASSERT(tmp_res.is_valid()); - Register right = right_res.reg(); - Register left = left_res.reg(); - Register tmp = tmp_res.reg(); - right_res.Unuse(); - left_res.Unuse(); - tmp_res.Unuse(); - __ cmp(left, Operand(right)); - destination()->true_target()->Branch(equal); - // Fail if either is a non-HeapObject. - __ mov(tmp, left); - __ and_(Operand(tmp), right); - __ test(Operand(tmp), Immediate(kSmiTagMask)); - destination()->false_target()->Branch(equal); - __ CmpObjectType(left, JS_REGEXP_TYPE, tmp); - destination()->false_target()->Branch(not_equal); - __ cmp(tmp, FieldOperand(right, HeapObject::kMapOffset)); - destination()->false_target()->Branch(not_equal); - __ mov(tmp, FieldOperand(left, JSRegExp::kDataOffset)); - __ cmp(tmp, FieldOperand(right, JSRegExp::kDataOffset)); - destination()->Split(equal); -} - - -void CodeGenerator::GenerateHasCachedArrayIndex(ZoneList<Expression*>* args) { - ASSERT(args->length() == 1); - Load(args->at(0)); - Result value = frame_->Pop(); - value.ToRegister(); - ASSERT(value.is_valid()); - if (FLAG_debug_code) { - __ AbortIfNotString(value.reg()); - } - - __ test(FieldOperand(value.reg(), String::kHashFieldOffset), - Immediate(String::kContainsCachedArrayIndexMask)); - - value.Unuse(); - destination()->Split(zero); -} - - -void CodeGenerator::GenerateGetCachedArrayIndex(ZoneList<Expression*>* args) { - ASSERT(args->length() == 1); - Load(args->at(0)); - Result string = frame_->Pop(); - string.ToRegister(); - if (FLAG_debug_code) { - __ AbortIfNotString(string.reg()); - } - - Result number = allocator()->Allocate(); - ASSERT(number.is_valid()); - __ mov(number.reg(), FieldOperand(string.reg(), String::kHashFieldOffset)); - __ IndexFromHash(number.reg(), number.reg()); - string.Unuse(); - frame_->Push(&number); -} - - -void CodeGenerator::VisitCallRuntime(CallRuntime* node) { - ASSERT(!in_safe_int32_mode()); - if (CheckForInlineRuntimeCall(node)) { - return; - } - - ZoneList<Expression*>* args = node->arguments(); - Comment cmnt(masm_, "[ CallRuntime"); - Runtime::Function* function = node->function(); - - if (function == NULL) { - // Push the builtins object found in the current global object. - Result temp = allocator()->Allocate(); - ASSERT(temp.is_valid()); - __ mov(temp.reg(), GlobalObjectOperand()); - __ mov(temp.reg(), FieldOperand(temp.reg(), GlobalObject::kBuiltinsOffset)); - frame_->Push(&temp); - } - - // Push the arguments ("left-to-right"). - int arg_count = args->length(); - for (int i = 0; i < arg_count; i++) { - Load(args->at(i)); - } - - if (function == NULL) { - // Call the JS runtime function. - frame_->Push(node->name()); - Result answer = frame_->CallCallIC(RelocInfo::CODE_TARGET, - arg_count, - loop_nesting_); - frame_->RestoreContextRegister(); - frame_->Push(&answer); - } else { - // Call the C runtime function. - Result answer = frame_->CallRuntime(function, arg_count); - frame_->Push(&answer); - } -} - - -void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) { - Comment cmnt(masm_, "[ UnaryOperation"); - - Token::Value op = node->op(); - - if (op == Token::NOT) { - // Swap the true and false targets but keep the same actual label - // as the fall through. - destination()->Invert(); - LoadCondition(node->expression(), destination(), true); - // Swap the labels back. - destination()->Invert(); - - } else if (op == Token::DELETE) { - Property* property = node->expression()->AsProperty(); - if (property != NULL) { - Load(property->obj()); - Load(property->key()); - frame_->Push(Smi::FromInt(strict_mode_flag())); - Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 3); - frame_->Push(&answer); - return; - } - - Variable* variable = node->expression()->AsVariableProxy()->AsVariable(); - if (variable != NULL) { - // Delete of an unqualified identifier is disallowed in strict mode - // but "delete this" is. - ASSERT(strict_mode_flag() == kNonStrictMode || variable->is_this()); - Slot* slot = variable->AsSlot(); - if (variable->is_global()) { - LoadGlobal(); - frame_->Push(variable->name()); - frame_->Push(Smi::FromInt(kNonStrictMode)); - Result answer = frame_->InvokeBuiltin(Builtins::DELETE, - CALL_FUNCTION, 3); - frame_->Push(&answer); - - } else if (slot != NULL && slot->type() == Slot::LOOKUP) { - // Call the runtime to delete from the context holding the named - // variable. Sync the virtual frame eagerly so we can push the - // arguments directly into place. - frame_->SyncRange(0, frame_->element_count() - 1); - frame_->EmitPush(esi); - frame_->EmitPush(Immediate(variable->name())); - Result answer = frame_->CallRuntime(Runtime::kDeleteContextSlot, 2); - frame_->Push(&answer); - } else { - // Default: Result of deleting non-global, not dynamically - // introduced variables is false. - frame_->Push(Factory::false_value()); - } - } else { - // Default: Result of deleting expressions is true. - Load(node->expression()); // may have side-effects - frame_->SetElementAt(0, Factory::true_value()); - } - - } else if (op == Token::TYPEOF) { - // Special case for loading the typeof expression; see comment on - // LoadTypeofExpression(). - LoadTypeofExpression(node->expression()); - Result answer = frame_->CallRuntime(Runtime::kTypeof, 1); - frame_->Push(&answer); - - } else if (op == Token::VOID) { - Expression* expression = node->expression(); - if (expression && expression->AsLiteral() && ( - expression->AsLiteral()->IsTrue() || - expression->AsLiteral()->IsFalse() || - expression->AsLiteral()->handle()->IsNumber() || - expression->AsLiteral()->handle()->IsString() || - expression->AsLiteral()->handle()->IsJSRegExp() || - expression->AsLiteral()->IsNull())) { - // Omit evaluating the value of the primitive literal. - // It will be discarded anyway, and can have no side effect. - frame_->Push(Factory::undefined_value()); - } else { - Load(node->expression()); - frame_->SetElementAt(0, Factory::undefined_value()); - } - - } else { - if (in_safe_int32_mode()) { - Visit(node->expression()); - Result value = frame_->Pop(); - ASSERT(value.is_untagged_int32()); - // Registers containing an int32 value are not multiply used. - ASSERT(!value.is_register() || !frame_->is_used(value.reg())); - value.ToRegister(); - switch (op) { - case Token::SUB: { - __ neg(value.reg()); - frame_->Push(&value); - if (node->no_negative_zero()) { - // -MIN_INT is MIN_INT with the overflow flag set. - unsafe_bailout_->Branch(overflow); - } else { - // MIN_INT and 0 both have bad negations. They both have 31 zeros. - __ test(value.reg(), Immediate(0x7FFFFFFF)); - unsafe_bailout_->Branch(zero); - } - break; - } - case Token::BIT_NOT: { - __ not_(value.reg()); - frame_->Push(&value); - break; - } - case Token::ADD: { - // Unary plus has no effect on int32 values. - frame_->Push(&value); - break; - } - default: - UNREACHABLE(); - break; - } - } else { - Load(node->expression()); - bool can_overwrite = node->expression()->ResultOverwriteAllowed(); - UnaryOverwriteMode overwrite = - can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE; - bool no_negative_zero = node->expression()->no_negative_zero(); - switch (op) { - case Token::NOT: - case Token::DELETE: - case Token::TYPEOF: - UNREACHABLE(); // handled above - break; - - case Token::SUB: { - GenericUnaryOpStub stub( - Token::SUB, - overwrite, - NO_UNARY_FLAGS, - no_negative_zero ? kIgnoreNegativeZero : kStrictNegativeZero); - Result operand = frame_->Pop(); - Result answer = frame_->CallStub(&stub, &operand); - answer.set_type_info(TypeInfo::Number()); - frame_->Push(&answer); - break; - } - case Token::BIT_NOT: { - // Smi check. - JumpTarget smi_label; - JumpTarget continue_label; - Result operand = frame_->Pop(); - TypeInfo operand_info = operand.type_info(); - operand.ToRegister(); - if (operand_info.IsSmi()) { - if (FLAG_debug_code) __ AbortIfNotSmi(operand.reg()); - frame_->Spill(operand.reg()); - // Set smi tag bit. It will be reset by the not operation. - __ lea(operand.reg(), Operand(operand.reg(), kSmiTagMask)); - __ not_(operand.reg()); - Result answer = operand; - answer.set_type_info(TypeInfo::Smi()); - frame_->Push(&answer); - } else { - __ test(operand.reg(), Immediate(kSmiTagMask)); - smi_label.Branch(zero, &operand, taken); - - GenericUnaryOpStub stub(Token::BIT_NOT, - overwrite, - NO_UNARY_SMI_CODE_IN_STUB); - Result answer = frame_->CallStub(&stub, &operand); - continue_label.Jump(&answer); - - smi_label.Bind(&answer); - answer.ToRegister(); - frame_->Spill(answer.reg()); - // Set smi tag bit. It will be reset by the not operation. - __ lea(answer.reg(), Operand(answer.reg(), kSmiTagMask)); - __ not_(answer.reg()); - - continue_label.Bind(&answer); - answer.set_type_info(TypeInfo::Integer32()); - frame_->Push(&answer); - } - break; - } - case Token::ADD: { - // Smi check. - JumpTarget continue_label; - Result operand = frame_->Pop(); - TypeInfo operand_info = operand.type_info(); - operand.ToRegister(); - __ test(operand.reg(), Immediate(kSmiTagMask)); - continue_label.Branch(zero, &operand, taken); - - frame_->Push(&operand); - Result answer = frame_->InvokeBuiltin(Builtins::TO_NUMBER, - CALL_FUNCTION, 1); - - continue_label.Bind(&answer); - if (operand_info.IsSmi()) { - answer.set_type_info(TypeInfo::Smi()); - } else if (operand_info.IsInteger32()) { - answer.set_type_info(TypeInfo::Integer32()); - } else { - answer.set_type_info(TypeInfo::Number()); - } - frame_->Push(&answer); - break; - } - default: - UNREACHABLE(); - } - } - } -} - - -// The value in dst was optimistically incremented or decremented. The -// result overflowed or was not smi tagged. Undo the operation, call -// into the runtime to convert the argument to a number, and call the -// specialized add or subtract stub. The result is left in dst. -class DeferredPrefixCountOperation: public DeferredCode { - public: - DeferredPrefixCountOperation(Register dst, - bool is_increment, - TypeInfo input_type) - : dst_(dst), is_increment_(is_increment), input_type_(input_type) { - set_comment("[ DeferredCountOperation"); - } - - virtual void Generate(); - - private: - Register dst_; - bool is_increment_; - TypeInfo input_type_; -}; - - -void DeferredPrefixCountOperation::Generate() { - // Undo the optimistic smi operation. - if (is_increment_) { - __ sub(Operand(dst_), Immediate(Smi::FromInt(1))); - } else { - __ add(Operand(dst_), Immediate(Smi::FromInt(1))); - } - Register left; - if (input_type_.IsNumber()) { - left = dst_; - } else { - __ push(dst_); - __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); - left = eax; - } - - GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB, - NO_OVERWRITE, - NO_GENERIC_BINARY_FLAGS, - TypeInfo::Number()); - stub.GenerateCall(masm_, left, Smi::FromInt(1)); - - if (!dst_.is(eax)) __ mov(dst_, eax); -} - - -// The value in dst was optimistically incremented or decremented. The -// result overflowed or was not smi tagged. Undo the operation and call -// into the runtime to convert the argument to a number. Update the -// original value in old. Call the specialized add or subtract stub. -// The result is left in dst. -class DeferredPostfixCountOperation: public DeferredCode { - public: - DeferredPostfixCountOperation(Register dst, - Register old, - bool is_increment, - TypeInfo input_type) - : dst_(dst), - old_(old), - is_increment_(is_increment), - input_type_(input_type) { - set_comment("[ DeferredCountOperation"); - } - - virtual void Generate(); - - private: - Register dst_; - Register old_; - bool is_increment_; - TypeInfo input_type_; -}; - - -void DeferredPostfixCountOperation::Generate() { - // Undo the optimistic smi operation. - if (is_increment_) { - __ sub(Operand(dst_), Immediate(Smi::FromInt(1))); - } else { - __ add(Operand(dst_), Immediate(Smi::FromInt(1))); - } - Register left; - if (input_type_.IsNumber()) { - __ push(dst_); // Save the input to use as the old value. - left = dst_; - } else { - __ push(dst_); - __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); - __ push(eax); // Save the result of ToNumber to use as the old value. - left = eax; - } - - GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB, - NO_OVERWRITE, - NO_GENERIC_BINARY_FLAGS, - TypeInfo::Number()); - stub.GenerateCall(masm_, left, Smi::FromInt(1)); - - if (!dst_.is(eax)) __ mov(dst_, eax); - __ pop(old_); -} - - -void CodeGenerator::VisitCountOperation(CountOperation* node) { - ASSERT(!in_safe_int32_mode()); - Comment cmnt(masm_, "[ CountOperation"); - - bool is_postfix = node->is_postfix(); - bool is_increment = node->op() == Token::INC; - - Variable* var = node->expression()->AsVariableProxy()->AsVariable(); - bool is_const = (var != NULL && var->mode() == Variable::CONST); - - // Postfix operations need a stack slot under the reference to hold - // the old value while the new value is being stored. This is so that - // in the case that storing the new value requires a call, the old - // value will be in the frame to be spilled. - if (is_postfix) frame_->Push(Smi::FromInt(0)); - - // A constant reference is not saved to, so a constant reference is not a - // compound assignment reference. - { Reference target(this, node->expression(), !is_const); - if (target.is_illegal()) { - // Spoof the virtual frame to have the expected height (one higher - // than on entry). - if (!is_postfix) frame_->Push(Smi::FromInt(0)); - return; - } - target.TakeValue(); - - Result new_value = frame_->Pop(); - new_value.ToRegister(); - - Result old_value; // Only allocated in the postfix case. - if (is_postfix) { - // Allocate a temporary to preserve the old value. - old_value = allocator_->Allocate(); - ASSERT(old_value.is_valid()); - __ mov(old_value.reg(), new_value.reg()); - - // The return value for postfix operations is ToNumber(input). - // Keep more precise type info if the input is some kind of - // number already. If the input is not a number we have to wait - // for the deferred code to convert it. - if (new_value.type_info().IsNumber()) { - old_value.set_type_info(new_value.type_info()); - } - } - - // Ensure the new value is writable. - frame_->Spill(new_value.reg()); - - Result tmp; - if (new_value.is_smi()) { - if (FLAG_debug_code) __ AbortIfNotSmi(new_value.reg()); - } else { - // We don't know statically if the input is a smi. - // In order to combine the overflow and the smi tag check, we need - // to be able to allocate a byte register. We attempt to do so - // without spilling. If we fail, we will generate separate overflow - // and smi tag checks. - // We allocate and clear a temporary byte register before performing - // the count operation since clearing the register using xor will clear - // the overflow flag. - tmp = allocator_->AllocateByteRegisterWithoutSpilling(); - if (tmp.is_valid()) { - __ Set(tmp.reg(), Immediate(0)); - } - } - - if (is_increment) { - __ add(Operand(new_value.reg()), Immediate(Smi::FromInt(1))); - } else { - __ sub(Operand(new_value.reg()), Immediate(Smi::FromInt(1))); - } - - DeferredCode* deferred = NULL; - if (is_postfix) { - deferred = new DeferredPostfixCountOperation(new_value.reg(), - old_value.reg(), - is_increment, - new_value.type_info()); - } else { - deferred = new DeferredPrefixCountOperation(new_value.reg(), - is_increment, - new_value.type_info()); - } - - if (new_value.is_smi()) { - // In case we have a smi as input just check for overflow. - deferred->Branch(overflow); - } else { - // If the count operation didn't overflow and the result is a valid - // smi, we're done. Otherwise, we jump to the deferred slow-case - // code. - // We combine the overflow and the smi tag check if we could - // successfully allocate a temporary byte register. - if (tmp.is_valid()) { - __ setcc(overflow, tmp.reg()); - __ or_(Operand(tmp.reg()), new_value.reg()); - __ test(tmp.reg(), Immediate(kSmiTagMask)); - tmp.Unuse(); - deferred->Branch(not_zero); - } else { - // Otherwise we test separately for overflow and smi tag. - deferred->Branch(overflow); - __ test(new_value.reg(), Immediate(kSmiTagMask)); - deferred->Branch(not_zero); - } - } - deferred->BindExit(); - - // Postfix count operations return their input converted to - // number. The case when the input is already a number is covered - // above in the allocation code for old_value. - if (is_postfix && !new_value.type_info().IsNumber()) { - old_value.set_type_info(TypeInfo::Number()); - } - - // The result of ++ or -- is an Integer32 if the - // input is a smi. Otherwise it is a number. - if (new_value.is_smi()) { - new_value.set_type_info(TypeInfo::Integer32()); - } else { - new_value.set_type_info(TypeInfo::Number()); - } - - // Postfix: store the old value in the allocated slot under the - // reference. - if (is_postfix) frame_->SetElementAt(target.size(), &old_value); - - frame_->Push(&new_value); - // Non-constant: update the reference. - if (!is_const) target.SetValue(NOT_CONST_INIT); - } - - // Postfix: drop the new value and use the old. - if (is_postfix) frame_->Drop(); -} - - -void CodeGenerator::Int32BinaryOperation(BinaryOperation* node) { - Token::Value op = node->op(); - Comment cmnt(masm_, "[ Int32BinaryOperation"); - ASSERT(in_safe_int32_mode()); - ASSERT(safe_int32_mode_enabled()); - ASSERT(FLAG_safe_int32_compiler); - - if (op == Token::COMMA) { - // Discard left value. - frame_->Nip(1); - return; - } - - Result right = frame_->Pop(); - Result left = frame_->Pop(); - - ASSERT(right.is_untagged_int32()); - ASSERT(left.is_untagged_int32()); - // Registers containing an int32 value are not multiply used. - ASSERT(!left.is_register() || !frame_->is_used(left.reg())); - ASSERT(!right.is_register() || !frame_->is_used(right.reg())); - - switch (op) { - case Token::COMMA: - case Token::OR: - case Token::AND: - UNREACHABLE(); - break; - case Token::BIT_OR: - case Token::BIT_XOR: - case Token::BIT_AND: - if (left.is_constant() || right.is_constant()) { - int32_t value; // Put constant in value, non-constant in left. - // Constants are known to be int32 values, from static analysis, - // or else will be converted to int32 by implicit ECMA [[ToInt32]]. - if (left.is_constant()) { - ASSERT(left.handle()->IsSmi() || left.handle()->IsHeapNumber()); - value = NumberToInt32(*left.handle()); - left = right; - } else { - ASSERT(right.handle()->IsSmi() || right.handle()->IsHeapNumber()); - value = NumberToInt32(*right.handle()); - } - - left.ToRegister(); - if (op == Token::BIT_OR) { - __ or_(Operand(left.reg()), Immediate(value)); - } else if (op == Token::BIT_XOR) { - __ xor_(Operand(left.reg()), Immediate(value)); - } else { - ASSERT(op == Token::BIT_AND); - __ and_(Operand(left.reg()), Immediate(value)); - } - } else { - ASSERT(left.is_register()); - ASSERT(right.is_register()); - if (op == Token::BIT_OR) { - __ or_(left.reg(), Operand(right.reg())); - } else if (op == Token::BIT_XOR) { - __ xor_(left.reg(), Operand(right.reg())); - } else { - ASSERT(op == Token::BIT_AND); - __ and_(left.reg(), Operand(right.reg())); - } - } - frame_->Push(&left); - right.Unuse(); - break; - case Token::SAR: - case Token::SHL: - case Token::SHR: { - bool test_shr_overflow = false; - left.ToRegister(); - if (right.is_constant()) { - ASSERT(right.handle()->IsSmi() || right.handle()->IsHeapNumber()); - int shift_amount = NumberToInt32(*right.handle()) & 0x1F; - if (op == Token::SAR) { - __ sar(left.reg(), shift_amount); - } else if (op == Token::SHL) { - __ shl(left.reg(), shift_amount); - } else { - ASSERT(op == Token::SHR); - __ shr(left.reg(), shift_amount); - if (shift_amount == 0) test_shr_overflow = true; - } - } else { - // Move right to ecx - if (left.is_register() && left.reg().is(ecx)) { - right.ToRegister(); - __ xchg(left.reg(), right.reg()); - left = right; // Left is unused here, copy of right unused by Push. - } else { - right.ToRegister(ecx); - left.ToRegister(); - } - if (op == Token::SAR) { - __ sar_cl(left.reg()); - } else if (op == Token::SHL) { - __ shl_cl(left.reg()); - } else { - ASSERT(op == Token::SHR); - __ shr_cl(left.reg()); - test_shr_overflow = true; - } - } - { - Register left_reg = left.reg(); - frame_->Push(&left); - right.Unuse(); - if (test_shr_overflow && !node->to_int32()) { - // Uint32 results with top bit set are not Int32 values. - // If they will be forced to Int32, skip the test. - // Test is needed because shr with shift amount 0 does not set flags. - __ test(left_reg, Operand(left_reg)); - unsafe_bailout_->Branch(sign); - } - } - break; - } - case Token::ADD: - case Token::SUB: - case Token::MUL: - if ((left.is_constant() && op != Token::SUB) || right.is_constant()) { - int32_t value; // Put constant in value, non-constant in left. - if (right.is_constant()) { - ASSERT(right.handle()->IsSmi() || right.handle()->IsHeapNumber()); - value = NumberToInt32(*right.handle()); - } else { - ASSERT(left.handle()->IsSmi() || left.handle()->IsHeapNumber()); - value = NumberToInt32(*left.handle()); - left = right; - } - - left.ToRegister(); - if (op == Token::ADD) { - __ add(Operand(left.reg()), Immediate(value)); - } else if (op == Token::SUB) { - __ sub(Operand(left.reg()), Immediate(value)); - } else { - ASSERT(op == Token::MUL); - __ imul(left.reg(), left.reg(), value); - } - } else { - left.ToRegister(); - ASSERT(left.is_register()); - ASSERT(right.is_register()); - if (op == Token::ADD) { - __ add(left.reg(), Operand(right.reg())); - } else if (op == Token::SUB) { - __ sub(left.reg(), Operand(right.reg())); - } else { - ASSERT(op == Token::MUL); - // We have statically verified that a negative zero can be ignored. - __ imul(left.reg(), Operand(right.reg())); - } - } - right.Unuse(); - frame_->Push(&left); - if (!node->to_int32() || op == Token::MUL) { - // If ToInt32 is called on the result of ADD, SUB, we don't - // care about overflows. - // Result of MUL can be non-representable precisely in double so - // we have to check for overflow. - unsafe_bailout_->Branch(overflow); - } - break; - case Token::DIV: - case Token::MOD: { - if (right.is_register() && (right.reg().is(eax) || right.reg().is(edx))) { - if (left.is_register() && left.reg().is(edi)) { - right.ToRegister(ebx); - } else { - right.ToRegister(edi); - } - } - left.ToRegister(eax); - Result edx_reg = allocator_->Allocate(edx); - right.ToRegister(); - // The results are unused here because BreakTarget::Branch cannot handle - // live results. - Register right_reg = right.reg(); - left.Unuse(); - right.Unuse(); - edx_reg.Unuse(); - __ cmp(right_reg, 0); - // Ensure divisor is positive: no chance of non-int32 or -0 result. - unsafe_bailout_->Branch(less_equal); - __ cdq(); // Sign-extend eax into edx:eax - __ idiv(right_reg); - if (op == Token::MOD) { - // Negative zero can arise as a negative divident with a zero result. - if (!node->no_negative_zero()) { - Label not_negative_zero; - __ test(edx, Operand(edx)); - __ j(not_zero, ¬_negative_zero); - __ test(eax, Operand(eax)); - unsafe_bailout_->Branch(negative); - __ bind(¬_negative_zero); - } - Result edx_result(edx, TypeInfo::Integer32()); - edx_result.set_untagged_int32(true); - frame_->Push(&edx_result); - } else { - ASSERT(op == Token::DIV); - __ test(edx, Operand(edx)); - unsafe_bailout_->Branch(not_equal); - Result eax_result(eax, TypeInfo::Integer32()); - eax_result.set_untagged_int32(true); - frame_->Push(&eax_result); - } - break; - } - default: - UNREACHABLE(); - break; - } -} - - -void CodeGenerator::GenerateLogicalBooleanOperation(BinaryOperation* node) { - // According to ECMA-262 section 11.11, page 58, the binary logical - // operators must yield the result of one of the two expressions - // before any ToBoolean() conversions. This means that the value - // produced by a && or || operator is not necessarily a boolean. - - // NOTE: If the left hand side produces a materialized value (not - // control flow), we force the right hand side to do the same. This - // is necessary because we assume that if we get control flow on the - // last path out of an expression we got it on all paths. - if (node->op() == Token::AND) { - ASSERT(!in_safe_int32_mode()); - JumpTarget is_true; - ControlDestination dest(&is_true, destination()->false_target(), true); - LoadCondition(node->left(), &dest, false); - - if (dest.false_was_fall_through()) { - // The current false target was used as the fall-through. If - // there are no dangling jumps to is_true then the left - // subexpression was unconditionally false. Otherwise we have - // paths where we do have to evaluate the right subexpression. - if (is_true.is_linked()) { - // We need to compile the right subexpression. If the jump to - // the current false target was a forward jump then we have a - // valid frame, we have just bound the false target, and we - // have to jump around the code for the right subexpression. - if (has_valid_frame()) { - destination()->false_target()->Unuse(); - destination()->false_target()->Jump(); - } - is_true.Bind(); - // The left subexpression compiled to control flow, so the - // right one is free to do so as well. - LoadCondition(node->right(), destination(), false); - } else { - // We have actually just jumped to or bound the current false - // target but the current control destination is not marked as - // used. - destination()->Use(false); - } - - } else if (dest.is_used()) { - // The left subexpression compiled to control flow (and is_true - // was just bound), so the right is free to do so as well. - LoadCondition(node->right(), destination(), false); - - } else { - // We have a materialized value on the frame, so we exit with - // one on all paths. There are possibly also jumps to is_true - // from nested subexpressions. - JumpTarget pop_and_continue; - JumpTarget exit; - - // Avoid popping the result if it converts to 'false' using the - // standard ToBoolean() conversion as described in ECMA-262, - // section 9.2, page 30. - // - // Duplicate the TOS value. The duplicate will be popped by - // ToBoolean. - frame_->Dup(); - ControlDestination dest(&pop_and_continue, &exit, true); - ToBoolean(&dest); - - // Pop the result of evaluating the first part. - frame_->Drop(); - - // Compile right side expression. - is_true.Bind(); - Load(node->right()); - - // Exit (always with a materialized value). - exit.Bind(); - } - - } else { - ASSERT(node->op() == Token::OR); - ASSERT(!in_safe_int32_mode()); - JumpTarget is_false; - ControlDestination dest(destination()->true_target(), &is_false, false); - LoadCondition(node->left(), &dest, false); - - if (dest.true_was_fall_through()) { - // The current true target was used as the fall-through. If - // there are no dangling jumps to is_false then the left - // subexpression was unconditionally true. Otherwise we have - // paths where we do have to evaluate the right subexpression. - if (is_false.is_linked()) { - // We need to compile the right subexpression. If the jump to - // the current true target was a forward jump then we have a - // valid frame, we have just bound the true target, and we - // have to jump around the code for the right subexpression. - if (has_valid_frame()) { - destination()->true_target()->Unuse(); - destination()->true_target()->Jump(); - } - is_false.Bind(); - // The left subexpression compiled to control flow, so the - // right one is free to do so as well. - LoadCondition(node->right(), destination(), false); - } else { - // We have just jumped to or bound the current true target but - // the current control destination is not marked as used. - destination()->Use(true); - } - - } else if (dest.is_used()) { - // The left subexpression compiled to control flow (and is_false - // was just bound), so the right is free to do so as well. - LoadCondition(node->right(), destination(), false); - - } else { - // We have a materialized value on the frame, so we exit with - // one on all paths. There are possibly also jumps to is_false - // from nested subexpressions. - JumpTarget pop_and_continue; - JumpTarget exit; - - // Avoid popping the result if it converts to 'true' using the - // standard ToBoolean() conversion as described in ECMA-262, - // section 9.2, page 30. - // - // Duplicate the TOS value. The duplicate will be popped by - // ToBoolean. - frame_->Dup(); - ControlDestination dest(&exit, &pop_and_continue, false); - ToBoolean(&dest); - - // Pop the result of evaluating the first part. - frame_->Drop(); - - // Compile right side expression. - is_false.Bind(); - Load(node->right()); - - // Exit (always with a materialized value). - exit.Bind(); - } - } -} - - -void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) { - Comment cmnt(masm_, "[ BinaryOperation"); - - if (node->op() == Token::AND || node->op() == Token::OR) { - GenerateLogicalBooleanOperation(node); - } else if (in_safe_int32_mode()) { - Visit(node->left()); - Visit(node->right()); - Int32BinaryOperation(node); - } else { - // NOTE: The code below assumes that the slow cases (calls to runtime) - // never return a constant/immutable object. - OverwriteMode overwrite_mode = NO_OVERWRITE; - if (node->left()->ResultOverwriteAllowed()) { - overwrite_mode = OVERWRITE_LEFT; - } else if (node->right()->ResultOverwriteAllowed()) { - overwrite_mode = OVERWRITE_RIGHT; - } - - if (node->left()->IsTrivial()) { - Load(node->right()); - Result right = frame_->Pop(); - frame_->Push(node->left()); - frame_->Push(&right); - } else { - Load(node->left()); - Load(node->right()); - } - GenericBinaryOperation(node, overwrite_mode); - } -} - - -void CodeGenerator::VisitThisFunction(ThisFunction* node) { - ASSERT(!in_safe_int32_mode()); - frame_->PushFunction(); -} - - -void CodeGenerator::VisitCompareOperation(CompareOperation* node) { - ASSERT(!in_safe_int32_mode()); - Comment cmnt(masm_, "[ CompareOperation"); - - bool left_already_loaded = false; - - // Get the expressions from the node. - Expression* left = node->left(); - Expression* right = node->right(); - Token::Value op = node->op(); - // To make typeof testing for natives implemented in JavaScript really - // efficient, we generate special code for expressions of the form: - // 'typeof <expression> == <string>'. - UnaryOperation* operation = left->AsUnaryOperation(); - if ((op == Token::EQ || op == Token::EQ_STRICT) && - (operation != NULL && operation->op() == Token::TYPEOF) && - (right->AsLiteral() != NULL && - right->AsLiteral()->handle()->IsString())) { - Handle<String> check(String::cast(*right->AsLiteral()->handle())); - - // Load the operand and move it to a register. - LoadTypeofExpression(operation->expression()); - Result answer = frame_->Pop(); - answer.ToRegister(); - - if (check->Equals(Heap::number_symbol())) { - __ test(answer.reg(), Immediate(kSmiTagMask)); - destination()->true_target()->Branch(zero); - frame_->Spill(answer.reg()); - __ mov(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); - __ cmp(answer.reg(), Factory::heap_number_map()); - answer.Unuse(); - destination()->Split(equal); - - } else if (check->Equals(Heap::string_symbol())) { - __ test(answer.reg(), Immediate(kSmiTagMask)); - destination()->false_target()->Branch(zero); - - // It can be an undetectable string object. - Result temp = allocator()->Allocate(); - ASSERT(temp.is_valid()); - __ mov(temp.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); - __ test_b(FieldOperand(temp.reg(), Map::kBitFieldOffset), - 1 << Map::kIsUndetectable); - destination()->false_target()->Branch(not_zero); - __ CmpInstanceType(temp.reg(), FIRST_NONSTRING_TYPE); - temp.Unuse(); - answer.Unuse(); - destination()->Split(below); - - } else if (check->Equals(Heap::boolean_symbol())) { - __ cmp(answer.reg(), Factory::true_value()); - destination()->true_target()->Branch(equal); - __ cmp(answer.reg(), Factory::false_value()); - answer.Unuse(); - destination()->Split(equal); - - } else if (check->Equals(Heap::undefined_symbol())) { - __ cmp(answer.reg(), Factory::undefined_value()); - destination()->true_target()->Branch(equal); - - __ test(answer.reg(), Immediate(kSmiTagMask)); - destination()->false_target()->Branch(zero); - - // It can be an undetectable object. - frame_->Spill(answer.reg()); - __ mov(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); - __ test_b(FieldOperand(answer.reg(), Map::kBitFieldOffset), - 1 << Map::kIsUndetectable); - answer.Unuse(); - destination()->Split(not_zero); - - } else if (check->Equals(Heap::function_symbol())) { - __ test(answer.reg(), Immediate(kSmiTagMask)); - destination()->false_target()->Branch(zero); - frame_->Spill(answer.reg()); - __ CmpObjectType(answer.reg(), JS_FUNCTION_TYPE, answer.reg()); - destination()->true_target()->Branch(equal); - // Regular expressions are callable so typeof == 'function'. - __ CmpInstanceType(answer.reg(), JS_REGEXP_TYPE); - answer.Unuse(); - destination()->Split(equal); - } else if (check->Equals(Heap::object_symbol())) { - __ test(answer.reg(), Immediate(kSmiTagMask)); - destination()->false_target()->Branch(zero); - __ cmp(answer.reg(), Factory::null_value()); - destination()->true_target()->Branch(equal); - - Result map = allocator()->Allocate(); - ASSERT(map.is_valid()); - // Regular expressions are typeof == 'function', not 'object'. - __ CmpObjectType(answer.reg(), JS_REGEXP_TYPE, map.reg()); - destination()->false_target()->Branch(equal); - - // It can be an undetectable object. - __ test_b(FieldOperand(map.reg(), Map::kBitFieldOffset), - 1 << Map::kIsUndetectable); - destination()->false_target()->Branch(not_zero); - // Do a range test for JSObject type. We can't use - // MacroAssembler::IsInstanceJSObjectType, because we are using a - // ControlDestination, so we copy its implementation here. - __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kInstanceTypeOffset)); - __ sub(Operand(map.reg()), Immediate(FIRST_JS_OBJECT_TYPE)); - __ cmp(map.reg(), LAST_JS_OBJECT_TYPE - FIRST_JS_OBJECT_TYPE); - answer.Unuse(); - map.Unuse(); - destination()->Split(below_equal); - } else { - // Uncommon case: typeof testing against a string literal that is - // never returned from the typeof operator. - answer.Unuse(); - destination()->Goto(false); - } - return; - } else if (op == Token::LT && - right->AsLiteral() != NULL && - right->AsLiteral()->handle()->IsHeapNumber()) { - Handle<HeapNumber> check(HeapNumber::cast(*right->AsLiteral()->handle())); - if (check->value() == 2147483648.0) { // 0x80000000. - Load(left); - left_already_loaded = true; - Result lhs = frame_->Pop(); - lhs.ToRegister(); - __ test(lhs.reg(), Immediate(kSmiTagMask)); - destination()->true_target()->Branch(zero); // All Smis are less. - Result scratch = allocator()->Allocate(); - ASSERT(scratch.is_valid()); - __ mov(scratch.reg(), FieldOperand(lhs.reg(), HeapObject::kMapOffset)); - __ cmp(scratch.reg(), Factory::heap_number_map()); - JumpTarget not_a_number; - not_a_number.Branch(not_equal, &lhs); - __ mov(scratch.reg(), - FieldOperand(lhs.reg(), HeapNumber::kExponentOffset)); - __ cmp(Operand(scratch.reg()), Immediate(0xfff00000)); - not_a_number.Branch(above_equal, &lhs); // It's a negative NaN or -Inf. - const uint32_t borderline_exponent = - (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift; - __ cmp(Operand(scratch.reg()), Immediate(borderline_exponent)); - scratch.Unuse(); - lhs.Unuse(); - destination()->true_target()->Branch(less); - destination()->false_target()->Jump(); - - not_a_number.Bind(&lhs); - frame_->Push(&lhs); - } - } - - Condition cc = no_condition; - bool strict = false; - switch (op) { - case Token::EQ_STRICT: - strict = true; - // Fall through - case Token::EQ: - cc = equal; - break; - case Token::LT: - cc = less; - break; - case Token::GT: - cc = greater; - break; - case Token::LTE: - cc = less_equal; - break; - case Token::GTE: - cc = greater_equal; - break; - case Token::IN: { - if (!left_already_loaded) Load(left); - Load(right); - Result answer = frame_->InvokeBuiltin(Builtins::IN, CALL_FUNCTION, 2); - frame_->Push(&answer); // push the result - return; - } - case Token::INSTANCEOF: { - if (!left_already_loaded) Load(left); - Load(right); - InstanceofStub stub(InstanceofStub::kNoFlags); - Result answer = frame_->CallStub(&stub, 2); - answer.ToRegister(); - __ test(answer.reg(), Operand(answer.reg())); - answer.Unuse(); - destination()->Split(zero); - return; - } - default: - UNREACHABLE(); - } - - if (left->IsTrivial()) { - if (!left_already_loaded) { - Load(right); - Result right_result = frame_->Pop(); - frame_->Push(left); - frame_->Push(&right_result); - } else { - Load(right); - } - } else { - if (!left_already_loaded) Load(left); - Load(right); - } - Comparison(node, cc, strict, destination()); -} - - -void CodeGenerator::VisitCompareToNull(CompareToNull* node) { - ASSERT(!in_safe_int32_mode()); - Comment cmnt(masm_, "[ CompareToNull"); - - Load(node->expression()); - Result operand = frame_->Pop(); - operand.ToRegister(); - __ cmp(operand.reg(), Factory::null_value()); - if (node->is_strict()) { - operand.Unuse(); - destination()->Split(equal); - } else { - // The 'null' value is only equal to 'undefined' if using non-strict - // comparisons. - destination()->true_target()->Branch(equal); - __ cmp(operand.reg(), Factory::undefined_value()); - destination()->true_target()->Branch(equal); - __ test(operand.reg(), Immediate(kSmiTagMask)); - destination()->false_target()->Branch(equal); - - // It can be an undetectable object. - // Use a scratch register in preference to spilling operand.reg(). - Result temp = allocator()->Allocate(); - ASSERT(temp.is_valid()); - __ mov(temp.reg(), - FieldOperand(operand.reg(), HeapObject::kMapOffset)); - __ test_b(FieldOperand(temp.reg(), Map::kBitFieldOffset), - 1 << Map::kIsUndetectable); - temp.Unuse(); - operand.Unuse(); - destination()->Split(not_zero); - } -} - - -#ifdef DEBUG -bool CodeGenerator::HasValidEntryRegisters() { - return (allocator()->count(eax) == (frame()->is_used(eax) ? 1 : 0)) - && (allocator()->count(ebx) == (frame()->is_used(ebx) ? 1 : 0)) - && (allocator()->count(ecx) == (frame()->is_used(ecx) ? 1 : 0)) - && (allocator()->count(edx) == (frame()->is_used(edx) ? 1 : 0)) - && (allocator()->count(edi) == (frame()->is_used(edi) ? 1 : 0)); -} -#endif - - -// Emit a LoadIC call to get the value from receiver and leave it in -// dst. -class DeferredReferenceGetNamedValue: public DeferredCode { - public: - DeferredReferenceGetNamedValue(Register dst, - Register receiver, - Handle<String> name, - bool is_contextual) - : dst_(dst), - receiver_(receiver), - name_(name), - is_contextual_(is_contextual), - is_dont_delete_(false) { - set_comment(is_contextual - ? "[ DeferredReferenceGetNamedValue (contextual)" - : "[ DeferredReferenceGetNamedValue"); - } - - virtual void Generate(); - - Label* patch_site() { return &patch_site_; } - - void set_is_dont_delete(bool value) { - ASSERT(is_contextual_); - is_dont_delete_ = value; - } - - private: - Label patch_site_; - Register dst_; - Register receiver_; - Handle<String> name_; - bool is_contextual_; - bool is_dont_delete_; -}; - - -void DeferredReferenceGetNamedValue::Generate() { - if (!receiver_.is(eax)) { - __ mov(eax, receiver_); - } - __ Set(ecx, Immediate(name_)); - Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize)); - RelocInfo::Mode mode = is_contextual_ - ? RelocInfo::CODE_TARGET_CONTEXT - : RelocInfo::CODE_TARGET; - __ call(ic, mode); - // The call must be followed by: - // - a test eax instruction to indicate that the inobject property - // case was inlined. - // - a mov ecx or mov edx instruction to indicate that the - // contextual property load was inlined. - // - // Store the delta to the map check instruction here in the test - // instruction. Use masm_-> instead of the __ macro since the - // latter can't return a value. - int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); - // Here we use masm_-> instead of the __ macro because this is the - // instruction that gets patched and coverage code gets in the way. - if (is_contextual_) { - masm_->mov(is_dont_delete_ ? edx : ecx, -delta_to_patch_site); - __ IncrementCounter(&Counters::named_load_global_inline_miss, 1); - if (is_dont_delete_) { - __ IncrementCounter(&Counters::dont_delete_hint_miss, 1); - } - } else { - masm_->test(eax, Immediate(-delta_to_patch_site)); - __ IncrementCounter(&Counters::named_load_inline_miss, 1); - } - - if (!dst_.is(eax)) __ mov(dst_, eax); -} - - -class DeferredReferenceGetKeyedValue: public DeferredCode { - public: - explicit DeferredReferenceGetKeyedValue(Register dst, - Register receiver, - Register key) - : dst_(dst), receiver_(receiver), key_(key) { - set_comment("[ DeferredReferenceGetKeyedValue"); - } - - virtual void Generate(); - - Label* patch_site() { return &patch_site_; } - - private: - Label patch_site_; - Register dst_; - Register receiver_; - Register key_; -}; - - -void DeferredReferenceGetKeyedValue::Generate() { - if (!receiver_.is(eax)) { - // Register eax is available for key. - if (!key_.is(eax)) { - __ mov(eax, key_); - } - if (!receiver_.is(edx)) { - __ mov(edx, receiver_); - } - } else if (!key_.is(edx)) { - // Register edx is available for receiver. - if (!receiver_.is(edx)) { - __ mov(edx, receiver_); - } - if (!key_.is(eax)) { - __ mov(eax, key_); - } - } else { - __ xchg(edx, eax); - } - // Calculate the delta from the IC call instruction to the map check - // cmp instruction in the inlined version. This delta is stored in - // a test(eax, delta) instruction after the call so that we can find - // it in the IC initialization code and patch the cmp instruction. - // This means that we cannot allow test instructions after calls to - // KeyedLoadIC stubs in other places. - Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); - __ call(ic, RelocInfo::CODE_TARGET); - // The delta from the start of the map-compare instruction to the - // test instruction. We use masm_-> directly here instead of the __ - // macro because the macro sometimes uses macro expansion to turn - // into something that can't return a value. This is encountered - // when doing generated code coverage tests. - int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); - // Here we use masm_-> instead of the __ macro because this is the - // instruction that gets patched and coverage code gets in the way. - masm_->test(eax, Immediate(-delta_to_patch_site)); - __ IncrementCounter(&Counters::keyed_load_inline_miss, 1); - - if (!dst_.is(eax)) __ mov(dst_, eax); -} - - -class DeferredReferenceSetKeyedValue: public DeferredCode { - public: - DeferredReferenceSetKeyedValue(Register value, - Register key, - Register receiver, - Register scratch, - StrictModeFlag strict_mode) - : value_(value), - key_(key), - receiver_(receiver), - scratch_(scratch), - strict_mode_(strict_mode) { - set_comment("[ DeferredReferenceSetKeyedValue"); - } - - virtual void Generate(); - - Label* patch_site() { return &patch_site_; } - - private: - Register value_; - Register key_; - Register receiver_; - Register scratch_; - Label patch_site_; - StrictModeFlag strict_mode_; -}; - - -void DeferredReferenceSetKeyedValue::Generate() { - __ IncrementCounter(&Counters::keyed_store_inline_miss, 1); - // Move value_ to eax, key_ to ecx, and receiver_ to edx. - Register old_value = value_; - - // First, move value to eax. - if (!value_.is(eax)) { - if (key_.is(eax)) { - // Move key_ out of eax, preferably to ecx. - if (!value_.is(ecx) && !receiver_.is(ecx)) { - __ mov(ecx, key_); - key_ = ecx; - } else { - __ mov(scratch_, key_); - key_ = scratch_; - } - } - if (receiver_.is(eax)) { - // Move receiver_ out of eax, preferably to edx. - if (!value_.is(edx) && !key_.is(edx)) { - __ mov(edx, receiver_); - receiver_ = edx; - } else { - // Both moves to scratch are from eax, also, no valid path hits both. - __ mov(scratch_, receiver_); - receiver_ = scratch_; - } - } - __ mov(eax, value_); - value_ = eax; - } - - // Now value_ is in eax. Move the other two to the right positions. - // We do not update the variables key_ and receiver_ to ecx and edx. - if (key_.is(ecx)) { - if (!receiver_.is(edx)) { - __ mov(edx, receiver_); - } - } else if (key_.is(edx)) { - if (receiver_.is(ecx)) { - __ xchg(edx, ecx); - } else { - __ mov(ecx, key_); - if (!receiver_.is(edx)) { - __ mov(edx, receiver_); - } - } - } else { // Key is not in edx or ecx. - if (!receiver_.is(edx)) { - __ mov(edx, receiver_); - } - __ mov(ecx, key_); - } - - // Call the IC stub. - Handle<Code> ic(Builtins::builtin( - (strict_mode_ == kStrictMode) ? Builtins::KeyedStoreIC_Initialize_Strict - : Builtins::KeyedStoreIC_Initialize)); - __ call(ic, RelocInfo::CODE_TARGET); - // The delta from the start of the map-compare instruction to the - // test instruction. We use masm_-> directly here instead of the - // __ macro because the macro sometimes uses macro expansion to turn - // into something that can't return a value. This is encountered - // when doing generated code coverage tests. - int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); - // Here we use masm_-> instead of the __ macro because this is the - // instruction that gets patched and coverage code gets in the way. - masm_->test(eax, Immediate(-delta_to_patch_site)); - // Restore value (returned from store IC) register. - if (!old_value.is(eax)) __ mov(old_value, eax); -} - - -Result CodeGenerator::EmitNamedLoad(Handle<String> name, bool is_contextual) { -#ifdef DEBUG - int original_height = frame()->height(); -#endif - - bool contextual_load_in_builtin = - is_contextual && - (Bootstrapper::IsActive() || - (!info_->closure().is_null() && info_->closure()->IsBuiltin())); - - Result result; - // Do not inline in the global code or when not in loop. - if (scope()->is_global_scope() || - loop_nesting() == 0 || - contextual_load_in_builtin) { - Comment cmnt(masm(), "[ Load from named Property"); - frame()->Push(name); - - RelocInfo::Mode mode = is_contextual - ? RelocInfo::CODE_TARGET_CONTEXT - : RelocInfo::CODE_TARGET; - result = frame()->CallLoadIC(mode); - // A test eax instruction following the call signals that the inobject - // property case was inlined. Ensure that there is not a test eax - // instruction here. - __ nop(); - } else { - // Inline the property load. - Comment cmnt(masm(), is_contextual - ? "[ Inlined contextual property load" - : "[ Inlined named property load"); - Result receiver = frame()->Pop(); - receiver.ToRegister(); - - result = allocator()->Allocate(); - ASSERT(result.is_valid()); - DeferredReferenceGetNamedValue* deferred = - new DeferredReferenceGetNamedValue(result.reg(), - receiver.reg(), - name, - is_contextual); - - if (!is_contextual) { - // Check that the receiver is a heap object. - __ test(receiver.reg(), Immediate(kSmiTagMask)); - deferred->Branch(zero); - } - - __ bind(deferred->patch_site()); - // This is the map check instruction that will be patched (so we can't - // use the double underscore macro that may insert instructions). - // Initially use an invalid map to force a failure. - masm()->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset), - Immediate(Factory::null_value())); - // This branch is always a forwards branch so it's always a fixed size - // which allows the assert below to succeed and patching to work. - deferred->Branch(not_equal); - - // The delta from the patch label to the actual load must be - // statically known. - ASSERT(masm()->SizeOfCodeGeneratedSince(deferred->patch_site()) == - LoadIC::kOffsetToLoadInstruction); - - if (is_contextual) { - // Load the (initialy invalid) cell and get its value. - masm()->mov(result.reg(), Factory::null_value()); - if (FLAG_debug_code) { - __ cmp(FieldOperand(result.reg(), HeapObject::kMapOffset), - Factory::global_property_cell_map()); - __ Assert(equal, "Uninitialized inlined contextual load"); - } - __ mov(result.reg(), - FieldOperand(result.reg(), JSGlobalPropertyCell::kValueOffset)); - bool is_dont_delete = false; - if (!info_->closure().is_null()) { - // When doing lazy compilation we can check if the global cell - // already exists and use its "don't delete" status as a hint. - AssertNoAllocation no_gc; - v8::internal::GlobalObject* global_object = - info_->closure()->context()->global(); - LookupResult lookup; - global_object->LocalLookupRealNamedProperty(*name, &lookup); - if (lookup.IsProperty() && lookup.type() == NORMAL) { - ASSERT(lookup.holder() == global_object); - ASSERT(global_object->property_dictionary()->ValueAt( - lookup.GetDictionaryEntry())->IsJSGlobalPropertyCell()); - is_dont_delete = lookup.IsDontDelete(); - } - } - deferred->set_is_dont_delete(is_dont_delete); - if (!is_dont_delete) { - __ cmp(result.reg(), Factory::the_hole_value()); - deferred->Branch(equal); - } else if (FLAG_debug_code) { - __ cmp(result.reg(), Factory::the_hole_value()); - __ Check(not_equal, "DontDelete cells can't contain the hole"); - } - __ IncrementCounter(&Counters::named_load_global_inline, 1); - if (is_dont_delete) { - __ IncrementCounter(&Counters::dont_delete_hint_hit, 1); - } - } else { - // The initial (invalid) offset has to be large enough to force a 32-bit - // instruction encoding to allow patching with an arbitrary offset. Use - // kMaxInt (minus kHeapObjectTag). - int offset = kMaxInt; - masm()->mov(result.reg(), FieldOperand(receiver.reg(), offset)); - __ IncrementCounter(&Counters::named_load_inline, 1); - } - - deferred->BindExit(); - } - ASSERT(frame()->height() == original_height - 1); - return result; -} - - -Result CodeGenerator::EmitNamedStore(Handle<String> name, bool is_contextual) { -#ifdef DEBUG - int expected_height = frame()->height() - (is_contextual ? 1 : 2); -#endif - - Result result; - if (is_contextual || scope()->is_global_scope() || loop_nesting() == 0) { - result = frame()->CallStoreIC(name, is_contextual, strict_mode_flag()); - // A test eax instruction following the call signals that the inobject - // property case was inlined. Ensure that there is not a test eax - // instruction here. - __ nop(); - } else { - // Inline the in-object property case. - JumpTarget slow, done; - Label patch_site; - - // Get the value and receiver from the stack. - Result value = frame()->Pop(); - value.ToRegister(); - Result receiver = frame()->Pop(); - receiver.ToRegister(); - - // Allocate result register. - result = allocator()->Allocate(); - ASSERT(result.is_valid() && receiver.is_valid() && value.is_valid()); - - // Check that the receiver is a heap object. - __ test(receiver.reg(), Immediate(kSmiTagMask)); - slow.Branch(zero, &value, &receiver); - - // This is the map check instruction that will be patched (so we can't - // use the double underscore macro that may insert instructions). - // Initially use an invalid map to force a failure. - __ bind(&patch_site); - masm()->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset), - Immediate(Factory::null_value())); - // This branch is always a forwards branch so it's always a fixed size - // which allows the assert below to succeed and patching to work. - slow.Branch(not_equal, &value, &receiver); - - // The delta from the patch label to the store offset must be - // statically known. - ASSERT(masm()->SizeOfCodeGeneratedSince(&patch_site) == - StoreIC::kOffsetToStoreInstruction); - - // The initial (invalid) offset has to be large enough to force a 32-bit - // instruction encoding to allow patching with an arbitrary offset. Use - // kMaxInt (minus kHeapObjectTag). - int offset = kMaxInt; - __ mov(FieldOperand(receiver.reg(), offset), value.reg()); - __ mov(result.reg(), Operand(value.reg())); - - // Allocate scratch register for write barrier. - Result scratch = allocator()->Allocate(); - ASSERT(scratch.is_valid()); - - // The write barrier clobbers all input registers, so spill the - // receiver and the value. - frame_->Spill(receiver.reg()); - frame_->Spill(value.reg()); - - // If the receiver and the value share a register allocate a new - // register for the receiver. - if (receiver.reg().is(value.reg())) { - receiver = allocator()->Allocate(); - ASSERT(receiver.is_valid()); - __ mov(receiver.reg(), Operand(value.reg())); - } - - // Update the write barrier. To save instructions in the inlined - // version we do not filter smis. - Label skip_write_barrier; - __ InNewSpace(receiver.reg(), value.reg(), equal, &skip_write_barrier); - int delta_to_record_write = masm_->SizeOfCodeGeneratedSince(&patch_site); - __ lea(scratch.reg(), Operand(receiver.reg(), offset)); - __ RecordWriteHelper(receiver.reg(), scratch.reg(), value.reg()); - if (FLAG_debug_code) { - __ mov(receiver.reg(), Immediate(BitCast<int32_t>(kZapValue))); - __ mov(value.reg(), Immediate(BitCast<int32_t>(kZapValue))); - __ mov(scratch.reg(), Immediate(BitCast<int32_t>(kZapValue))); - } - __ bind(&skip_write_barrier); - value.Unuse(); - scratch.Unuse(); - receiver.Unuse(); - done.Jump(&result); - - slow.Bind(&value, &receiver); - frame()->Push(&receiver); - frame()->Push(&value); - result = frame()->CallStoreIC(name, is_contextual, strict_mode_flag()); - // Encode the offset to the map check instruction and the offset - // to the write barrier store address computation in a test eax - // instruction. - int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site); - __ test(eax, - Immediate((delta_to_record_write << 16) | delta_to_patch_site)); - done.Bind(&result); - } - - ASSERT_EQ(expected_height, frame()->height()); - return result; -} - - -Result CodeGenerator::EmitKeyedLoad() { -#ifdef DEBUG - int original_height = frame()->height(); -#endif - Result result; - // Inline array load code if inside of a loop. We do not know the - // receiver map yet, so we initially generate the code with a check - // against an invalid map. In the inline cache code, we patch the map - // check if appropriate. - if (loop_nesting() > 0) { - Comment cmnt(masm_, "[ Inlined load from keyed Property"); - - // Use a fresh temporary to load the elements without destroying - // the receiver which is needed for the deferred slow case. - Result elements = allocator()->Allocate(); - ASSERT(elements.is_valid()); - - Result key = frame_->Pop(); - Result receiver = frame_->Pop(); - key.ToRegister(); - receiver.ToRegister(); - - // If key and receiver are shared registers on the frame, their values will - // be automatically saved and restored when going to deferred code. - // The result is in elements, which is guaranteed non-shared. - DeferredReferenceGetKeyedValue* deferred = - new DeferredReferenceGetKeyedValue(elements.reg(), - receiver.reg(), - key.reg()); - - __ test(receiver.reg(), Immediate(kSmiTagMask)); - deferred->Branch(zero); - - // Check that the receiver has the expected map. - // Initially, use an invalid map. The map is patched in the IC - // initialization code. - __ bind(deferred->patch_site()); - // Use masm-> here instead of the double underscore macro since extra - // coverage code can interfere with the patching. - masm_->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset), - Immediate(Factory::null_value())); - deferred->Branch(not_equal); - - // Check that the key is a smi. - if (!key.is_smi()) { - __ test(key.reg(), Immediate(kSmiTagMask)); - deferred->Branch(not_zero); - } else { - if (FLAG_debug_code) __ AbortIfNotSmi(key.reg()); - } - - // Get the elements array from the receiver. - __ mov(elements.reg(), - FieldOperand(receiver.reg(), JSObject::kElementsOffset)); - __ AssertFastElements(elements.reg()); - - // Check that the key is within bounds. - __ cmp(key.reg(), - FieldOperand(elements.reg(), FixedArray::kLengthOffset)); - deferred->Branch(above_equal); - - // Load and check that the result is not the hole. - // Key holds a smi. - STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); - __ mov(elements.reg(), - FieldOperand(elements.reg(), - key.reg(), - times_2, - FixedArray::kHeaderSize)); - result = elements; - __ cmp(Operand(result.reg()), Immediate(Factory::the_hole_value())); - deferred->Branch(equal); - __ IncrementCounter(&Counters::keyed_load_inline, 1); - - deferred->BindExit(); - } else { - Comment cmnt(masm_, "[ Load from keyed Property"); - result = frame_->CallKeyedLoadIC(RelocInfo::CODE_TARGET); - // Make sure that we do not have a test instruction after the - // call. A test instruction after the call is used to - // indicate that we have generated an inline version of the - // keyed load. The explicit nop instruction is here because - // the push that follows might be peep-hole optimized away. - __ nop(); - } - ASSERT(frame()->height() == original_height - 2); - return result; -} - - -Result CodeGenerator::EmitKeyedStore(StaticType* key_type) { -#ifdef DEBUG - int original_height = frame()->height(); -#endif - Result result; - // Generate inlined version of the keyed store if the code is in a loop - // and the key is likely to be a smi. - if (loop_nesting() > 0 && key_type->IsLikelySmi()) { - Comment cmnt(masm(), "[ Inlined store to keyed Property"); - - // Get the receiver, key and value into registers. - result = frame()->Pop(); - Result key = frame()->Pop(); - Result receiver = frame()->Pop(); - - Result tmp = allocator_->Allocate(); - ASSERT(tmp.is_valid()); - Result tmp2 = allocator_->Allocate(); - ASSERT(tmp2.is_valid()); - - // Determine whether the value is a constant before putting it in a - // register. - bool value_is_constant = result.is_constant(); - - // Make sure that value, key and receiver are in registers. - result.ToRegister(); - key.ToRegister(); - receiver.ToRegister(); - - DeferredReferenceSetKeyedValue* deferred = - new DeferredReferenceSetKeyedValue(result.reg(), - key.reg(), - receiver.reg(), - tmp.reg(), - strict_mode_flag()); - - // Check that the receiver is not a smi. - __ test(receiver.reg(), Immediate(kSmiTagMask)); - deferred->Branch(zero); - - // Check that the key is a smi. - if (!key.is_smi()) { - __ test(key.reg(), Immediate(kSmiTagMask)); - deferred->Branch(not_zero); - } else { - if (FLAG_debug_code) __ AbortIfNotSmi(key.reg()); - } - - // Check that the receiver is a JSArray. - __ CmpObjectType(receiver.reg(), JS_ARRAY_TYPE, tmp.reg()); - deferred->Branch(not_equal); - - // Check that the key is within bounds. Both the key and the length of - // the JSArray are smis. Use unsigned comparison to handle negative keys. - __ cmp(key.reg(), - FieldOperand(receiver.reg(), JSArray::kLengthOffset)); - deferred->Branch(above_equal); - - // Get the elements array from the receiver and check that it is not a - // dictionary. - __ mov(tmp.reg(), - FieldOperand(receiver.reg(), JSArray::kElementsOffset)); - - // Check whether it is possible to omit the write barrier. If the elements - // array is in new space or the value written is a smi we can safely update - // the elements array without write barrier. - Label in_new_space; - __ InNewSpace(tmp.reg(), tmp2.reg(), equal, &in_new_space); - if (!value_is_constant) { - __ test(result.reg(), Immediate(kSmiTagMask)); - deferred->Branch(not_zero); - } - - __ bind(&in_new_space); - // Bind the deferred code patch site to be able to locate the fixed - // array map comparison. When debugging, we patch this comparison to - // always fail so that we will hit the IC call in the deferred code - // which will allow the debugger to break for fast case stores. - __ bind(deferred->patch_site()); - __ cmp(FieldOperand(tmp.reg(), HeapObject::kMapOffset), - Immediate(Factory::fixed_array_map())); - deferred->Branch(not_equal); - - // Store the value. - __ mov(FixedArrayElementOperand(tmp.reg(), key.reg()), result.reg()); - __ IncrementCounter(&Counters::keyed_store_inline, 1); - - deferred->BindExit(); - } else { - result = frame()->CallKeyedStoreIC(strict_mode_flag()); - // Make sure that we do not have a test instruction after the - // call. A test instruction after the call is used to - // indicate that we have generated an inline version of the - // keyed store. - __ nop(); - } - ASSERT(frame()->height() == original_height - 3); - return result; -} - - -#undef __ -#define __ ACCESS_MASM(masm) - - -Handle<String> Reference::GetName() { - ASSERT(type_ == NAMED); - Property* property = expression_->AsProperty(); - if (property == NULL) { - // Global variable reference treated as a named property reference. - VariableProxy* proxy = expression_->AsVariableProxy(); - ASSERT(proxy->AsVariable() != NULL); - ASSERT(proxy->AsVariable()->is_global()); - return proxy->name(); - } else { - Literal* raw_name = property->key()->AsLiteral(); - ASSERT(raw_name != NULL); - return Handle<String>::cast(raw_name->handle()); - } -} - - -void Reference::GetValue() { - ASSERT(!cgen_->in_spilled_code()); - ASSERT(cgen_->HasValidEntryRegisters()); - ASSERT(!is_illegal()); - MacroAssembler* masm = cgen_->masm(); - - // Record the source position for the property load. - Property* property = expression_->AsProperty(); - if (property != NULL) { - cgen_->CodeForSourcePosition(property->position()); - } - - switch (type_) { - case SLOT: { - Comment cmnt(masm, "[ Load from Slot"); - Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot(); - ASSERT(slot != NULL); - cgen_->LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); - if (!persist_after_get_) set_unloaded(); - break; - } - - case NAMED: { - Variable* var = expression_->AsVariableProxy()->AsVariable(); - bool is_global = var != NULL; - ASSERT(!is_global || var->is_global()); - if (persist_after_get_) cgen_->frame()->Dup(); - Result result = cgen_->EmitNamedLoad(GetName(), is_global); - if (!persist_after_get_) set_unloaded(); - cgen_->frame()->Push(&result); - break; - } - - case KEYED: { - if (persist_after_get_) { - cgen_->frame()->PushElementAt(1); - cgen_->frame()->PushElementAt(1); - } - Result value = cgen_->EmitKeyedLoad(); - cgen_->frame()->Push(&value); - if (!persist_after_get_) set_unloaded(); - break; - } - - default: - UNREACHABLE(); - } -} - - -void Reference::TakeValue() { - // For non-constant frame-allocated slots, we invalidate the value in the - // slot. For all others, we fall back on GetValue. - ASSERT(!cgen_->in_spilled_code()); - ASSERT(!is_illegal()); - if (type_ != SLOT) { - GetValue(); - return; - } - - Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot(); - ASSERT(slot != NULL); - if (slot->type() == Slot::LOOKUP || - slot->type() == Slot::CONTEXT || - slot->var()->mode() == Variable::CONST || - slot->is_arguments()) { - GetValue(); - return; - } - - // Only non-constant, frame-allocated parameters and locals can - // reach here. Be careful not to use the optimizations for arguments - // object access since it may not have been initialized yet. - ASSERT(!slot->is_arguments()); - if (slot->type() == Slot::PARAMETER) { - cgen_->frame()->TakeParameterAt(slot->index()); - } else { - ASSERT(slot->type() == Slot::LOCAL); - cgen_->frame()->TakeLocalAt(slot->index()); - } - - ASSERT(persist_after_get_); - // Do not unload the reference, because it is used in SetValue. -} - - -void Reference::SetValue(InitState init_state) { - ASSERT(cgen_->HasValidEntryRegisters()); - ASSERT(!is_illegal()); - MacroAssembler* masm = cgen_->masm(); - switch (type_) { - case SLOT: { - Comment cmnt(masm, "[ Store to Slot"); - Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot(); - ASSERT(slot != NULL); - cgen_->StoreToSlot(slot, init_state); - set_unloaded(); - break; - } - - case NAMED: { - Comment cmnt(masm, "[ Store to named Property"); - Result answer = cgen_->EmitNamedStore(GetName(), false); - cgen_->frame()->Push(&answer); - set_unloaded(); - break; - } - - case KEYED: { - Comment cmnt(masm, "[ Store to keyed Property"); - Property* property = expression()->AsProperty(); - ASSERT(property != NULL); - - Result answer = cgen_->EmitKeyedStore(property->key()->type()); - cgen_->frame()->Push(&answer); - set_unloaded(); - break; - } - - case UNLOADED: - case ILLEGAL: - UNREACHABLE(); - } -} - - -#undef __ - #define __ masm. - static void MemCopyWrapper(void* dest, const void* src, size_t size) { memcpy(dest, src, size); } -MemCopyFunction CreateMemCopyFunction() { - HandleScope scope; - MacroAssembler masm(NULL, 1 * KB); +OS::MemCopyFunction CreateMemCopyFunction() { + size_t actual_size; + // Allocate buffer in executable space. + byte* buffer = static_cast<byte*>(OS::Allocate(1 * KB, + &actual_size, + true)); + if (buffer == NULL) return &MemCopyWrapper; + MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size)); // Generated code is put into a fixed, unmovable, buffer, and not into // the V8 heap. We can't, and don't, refer to any relocatable addresses @@ -10165,7 +84,7 @@ MemCopyFunction CreateMemCopyFunction() { if (FLAG_debug_code) { __ cmp(Operand(esp, kSizeOffset + stack_offset), - Immediate(kMinComplexMemCopy)); + Immediate(OS::kMinComplexMemCopy)); Label ok; __ j(greater_equal, &ok); __ int3(); @@ -10199,7 +118,6 @@ MemCopyFunction CreateMemCopyFunction() { __ test(Operand(src), Immediate(0x0F)); __ j(not_zero, &unaligned_source); { - __ IncrementCounter(&Counters::memcopy_aligned, 1); // Copy loop for aligned source and destination. __ mov(edx, count); Register loop_count = ecx; @@ -10247,7 +165,6 @@ MemCopyFunction CreateMemCopyFunction() { // Copy loop for unaligned source and aligned destination. // If source is not aligned, we can't read it as efficiently. __ bind(&unaligned_source); - __ IncrementCounter(&Counters::memcopy_unaligned, 1); __ mov(edx, ecx); Register loop_count = ecx; Register count = edx; @@ -10291,7 +208,6 @@ MemCopyFunction CreateMemCopyFunction() { } } else { - __ IncrementCounter(&Counters::memcopy_noxmm, 1); // SSE2 not supported. Unlikely to happen in practice. __ push(edi); __ push(esi); @@ -10338,13 +254,8 @@ MemCopyFunction CreateMemCopyFunction() { masm.GetCode(&desc); ASSERT(desc.reloc_size == 0); - // Copy the generated code into an executable chunk and return a pointer - // to the first instruction in it as a C++ function pointer. - LargeObjectChunk* chunk = LargeObjectChunk::New(desc.instr_size, EXECUTABLE); - if (chunk == NULL) return &MemCopyWrapper; - memcpy(chunk->GetStartAddress(), desc.buffer, desc.instr_size); - CPU::FlushICache(chunk->GetStartAddress(), desc.instr_size); - return FUNCTION_CAST<MemCopyFunction>(chunk->GetStartAddress()); + CPU::FlushICache(buffer, actual_size); + return FUNCTION_CAST<OS::MemCopyFunction>(buffer); } #undef __ |