summaryrefslogtreecommitdiff
path: root/deps/v8/src/ia32/codegen-ia32.cc
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/ia32/codegen-ia32.cc')
-rw-r--r--deps/v8/src/ia32/codegen-ia32.cc10115
1 files changed, 13 insertions, 10102 deletions
diff --git a/deps/v8/src/ia32/codegen-ia32.cc b/deps/v8/src/ia32/codegen-ia32.cc
index 3a2753d27..572c36c88 100644
--- a/deps/v8/src/ia32/codegen-ia32.cc
+++ b/deps/v8/src/ia32/codegen-ia32.cc
@@ -1,4 +1,4 @@
-// Copyright 2010 the V8 project authors. All rights reserved.
+// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
@@ -29,81 +29,15 @@
#if defined(V8_TARGET_ARCH_IA32)
-#include "codegen-inl.h"
-#include "bootstrapper.h"
-#include "code-stubs.h"
-#include "compiler.h"
-#include "debug.h"
-#include "ic-inl.h"
-#include "parser.h"
-#include "regexp-macro-assembler.h"
-#include "register-allocator-inl.h"
-#include "scopes.h"
-#include "virtual-frame-inl.h"
+#include "codegen.h"
namespace v8 {
namespace internal {
-#define __ ACCESS_MASM(masm)
-
-// -------------------------------------------------------------------------
-// Platform-specific FrameRegisterState functions.
-
-void FrameRegisterState::Save(MacroAssembler* masm) const {
- for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
- int action = registers_[i];
- if (action == kPush) {
- __ push(RegisterAllocator::ToRegister(i));
- } else if (action != kIgnore && (action & kSyncedFlag) == 0) {
- __ mov(Operand(ebp, action), RegisterAllocator::ToRegister(i));
- }
- }
-}
-
-
-void FrameRegisterState::Restore(MacroAssembler* masm) const {
- // Restore registers in reverse order due to the stack.
- for (int i = RegisterAllocator::kNumRegisters - 1; i >= 0; i--) {
- int action = registers_[i];
- if (action == kPush) {
- __ pop(RegisterAllocator::ToRegister(i));
- } else if (action != kIgnore) {
- action &= ~kSyncedFlag;
- __ mov(RegisterAllocator::ToRegister(i), Operand(ebp, action));
- }
- }
-}
-
-
-#undef __
-#define __ ACCESS_MASM(masm_)
-
-// -------------------------------------------------------------------------
-// Platform-specific DeferredCode functions.
-
-void DeferredCode::SaveRegisters() {
- frame_state_.Save(masm_);
-}
-
-
-void DeferredCode::RestoreRegisters() {
- frame_state_.Restore(masm_);
-}
-
// -------------------------------------------------------------------------
// Platform-specific RuntimeCallHelper functions.
-void VirtualFrameRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
- frame_state_->Save(masm);
-}
-
-
-void VirtualFrameRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
- frame_state_->Restore(masm);
-}
-
-
void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
masm->EnterInternalFrame();
}
@@ -114,10036 +48,21 @@ void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
}
-// -------------------------------------------------------------------------
-// CodeGenState implementation.
-
-CodeGenState::CodeGenState(CodeGenerator* owner)
- : owner_(owner),
- destination_(NULL),
- previous_(NULL) {
- owner_->set_state(this);
-}
-
-
-CodeGenState::CodeGenState(CodeGenerator* owner,
- ControlDestination* destination)
- : owner_(owner),
- destination_(destination),
- previous_(owner->state()) {
- owner_->set_state(this);
-}
-
-
-CodeGenState::~CodeGenState() {
- ASSERT(owner_->state() == this);
- owner_->set_state(previous_);
-}
-
-// -------------------------------------------------------------------------
-// CodeGenerator implementation.
-
-CodeGenerator::CodeGenerator(MacroAssembler* masm)
- : deferred_(8),
- masm_(masm),
- info_(NULL),
- frame_(NULL),
- allocator_(NULL),
- state_(NULL),
- loop_nesting_(0),
- in_safe_int32_mode_(false),
- safe_int32_mode_enabled_(true),
- function_return_is_shadowed_(false),
- in_spilled_code_(false),
- jit_cookie_((FLAG_mask_constants_with_cookie) ? V8::RandomPrivate() : 0) {
-}
-
-
-// Calling conventions:
-// ebp: caller's frame pointer
-// esp: stack pointer
-// edi: called JS function
-// esi: callee's context
-
-void CodeGenerator::Generate(CompilationInfo* info) {
- // Record the position for debugging purposes.
- CodeForFunctionPosition(info->function());
- Comment cmnt(masm_, "[ function compiled by virtual frame code generator");
-
- // Initialize state.
- info_ = info;
- ASSERT(allocator_ == NULL);
- RegisterAllocator register_allocator(this);
- allocator_ = &register_allocator;
- ASSERT(frame_ == NULL);
- frame_ = new VirtualFrame();
- set_in_spilled_code(false);
-
- // Adjust for function-level loop nesting.
- ASSERT_EQ(0, loop_nesting_);
- loop_nesting_ = info->is_in_loop() ? 1 : 0;
-
- JumpTarget::set_compiling_deferred_code(false);
-
- {
- CodeGenState state(this);
-
- // Entry:
- // Stack: receiver, arguments, return address.
- // ebp: caller's frame pointer
- // esp: stack pointer
- // edi: called JS function
- // esi: callee's context
- allocator_->Initialize();
-
-#ifdef DEBUG
- if (strlen(FLAG_stop_at) > 0 &&
- info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
- frame_->SpillAll();
- __ int3();
- }
-#endif
-
- frame_->Enter();
-
- // Allocate space for locals and initialize them.
- frame_->AllocateStackSlots();
-
- // Allocate the local context if needed.
- int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
- if (heap_slots > 0) {
- Comment cmnt(masm_, "[ allocate local context");
- // Allocate local context.
- // Get outer context and create a new context based on it.
- frame_->PushFunction();
- Result context;
- if (heap_slots <= FastNewContextStub::kMaximumSlots) {
- FastNewContextStub stub(heap_slots);
- context = frame_->CallStub(&stub, 1);
- } else {
- context = frame_->CallRuntime(Runtime::kNewContext, 1);
- }
-
- // Update context local.
- frame_->SaveContextRegister();
-
- // Verify that the runtime call result and esi agree.
- if (FLAG_debug_code) {
- __ cmp(context.reg(), Operand(esi));
- __ Assert(equal, "Runtime::NewContext should end up in esi");
- }
- }
-
- // TODO(1241774): Improve this code:
- // 1) only needed if we have a context
- // 2) no need to recompute context ptr every single time
- // 3) don't copy parameter operand code from SlotOperand!
- {
- Comment cmnt2(masm_, "[ copy context parameters into .context");
- // Note that iteration order is relevant here! If we have the same
- // parameter twice (e.g., function (x, y, x)), and that parameter
- // needs to be copied into the context, it must be the last argument
- // passed to the parameter that needs to be copied. This is a rare
- // case so we don't check for it, instead we rely on the copying
- // order: such a parameter is copied repeatedly into the same
- // context location and thus the last value is what is seen inside
- // the function.
- for (int i = 0; i < scope()->num_parameters(); i++) {
- Variable* par = scope()->parameter(i);
- Slot* slot = par->AsSlot();
- if (slot != NULL && slot->type() == Slot::CONTEXT) {
- // The use of SlotOperand below is safe in unspilled code
- // because the slot is guaranteed to be a context slot.
- //
- // There are no parameters in the global scope.
- ASSERT(!scope()->is_global_scope());
- frame_->PushParameterAt(i);
- Result value = frame_->Pop();
- value.ToRegister();
-
- // SlotOperand loads context.reg() with the context object
- // stored to, used below in RecordWrite.
- Result context = allocator_->Allocate();
- ASSERT(context.is_valid());
- __ mov(SlotOperand(slot, context.reg()), value.reg());
- int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
- Result scratch = allocator_->Allocate();
- ASSERT(scratch.is_valid());
- frame_->Spill(context.reg());
- frame_->Spill(value.reg());
- __ RecordWrite(context.reg(), offset, value.reg(), scratch.reg());
- }
- }
- }
-
- // Store the arguments object. This must happen after context
- // initialization because the arguments object may be stored in
- // the context.
- if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) {
- StoreArgumentsObject(true);
- }
-
- // Initialize ThisFunction reference if present.
- if (scope()->is_function_scope() && scope()->function() != NULL) {
- frame_->Push(Factory::the_hole_value());
- StoreToSlot(scope()->function()->AsSlot(), NOT_CONST_INIT);
- }
-
-
- // Initialize the function return target after the locals are set
- // up, because it needs the expected frame height from the frame.
- function_return_.set_direction(JumpTarget::BIDIRECTIONAL);
- function_return_is_shadowed_ = false;
-
- // Generate code to 'execute' declarations and initialize functions
- // (source elements). In case of an illegal redeclaration we need to
- // handle that instead of processing the declarations.
- if (scope()->HasIllegalRedeclaration()) {
- Comment cmnt(masm_, "[ illegal redeclarations");
- scope()->VisitIllegalRedeclaration(this);
- } else {
- Comment cmnt(masm_, "[ declarations");
- ProcessDeclarations(scope()->declarations());
- // Bail out if a stack-overflow exception occurred when processing
- // declarations.
- if (HasStackOverflow()) return;
- }
-
- if (FLAG_trace) {
- frame_->CallRuntime(Runtime::kTraceEnter, 0);
- // Ignore the return value.
- }
- CheckStack();
-
- // Compile the body of the function in a vanilla state. Don't
- // bother compiling all the code if the scope has an illegal
- // redeclaration.
- if (!scope()->HasIllegalRedeclaration()) {
- Comment cmnt(masm_, "[ function body");
-#ifdef DEBUG
- bool is_builtin = Bootstrapper::IsActive();
- bool should_trace =
- is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls;
- if (should_trace) {
- frame_->CallRuntime(Runtime::kDebugTrace, 0);
- // Ignore the return value.
- }
-#endif
- VisitStatements(info->function()->body());
-
- // Handle the return from the function.
- if (has_valid_frame()) {
- // If there is a valid frame, control flow can fall off the end of
- // the body. In that case there is an implicit return statement.
- ASSERT(!function_return_is_shadowed_);
- CodeForReturnPosition(info->function());
- frame_->PrepareForReturn();
- Result undefined(Factory::undefined_value());
- if (function_return_.is_bound()) {
- function_return_.Jump(&undefined);
- } else {
- function_return_.Bind(&undefined);
- GenerateReturnSequence(&undefined);
- }
- } else if (function_return_.is_linked()) {
- // If the return target has dangling jumps to it, then we have not
- // yet generated the return sequence. This can happen when (a)
- // control does not flow off the end of the body so we did not
- // compile an artificial return statement just above, and (b) there
- // are return statements in the body but (c) they are all shadowed.
- Result return_value;
- function_return_.Bind(&return_value);
- GenerateReturnSequence(&return_value);
- }
- }
- }
-
- // Adjust for function-level loop nesting.
- ASSERT_EQ(loop_nesting_, info->is_in_loop() ? 1 : 0);
- loop_nesting_ = 0;
-
- // Code generation state must be reset.
- ASSERT(state_ == NULL);
- ASSERT(!function_return_is_shadowed_);
- function_return_.Unuse();
- DeleteFrame();
-
- // Process any deferred code using the register allocator.
- if (!HasStackOverflow()) {
- JumpTarget::set_compiling_deferred_code(true);
- ProcessDeferred();
- JumpTarget::set_compiling_deferred_code(false);
- }
-
- // There is no need to delete the register allocator, it is a
- // stack-allocated local.
- allocator_ = NULL;
-}
-
-
-Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) {
- // Currently, this assertion will fail if we try to assign to
- // a constant variable that is constant because it is read-only
- // (such as the variable referring to a named function expression).
- // We need to implement assignments to read-only variables.
- // Ideally, we should do this during AST generation (by converting
- // such assignments into expression statements); however, in general
- // we may not be able to make the decision until past AST generation,
- // that is when the entire program is known.
- ASSERT(slot != NULL);
- int index = slot->index();
- switch (slot->type()) {
- case Slot::PARAMETER:
- return frame_->ParameterAt(index);
-
- case Slot::LOCAL:
- return frame_->LocalAt(index);
-
- case Slot::CONTEXT: {
- // Follow the context chain if necessary.
- ASSERT(!tmp.is(esi)); // do not overwrite context register
- Register context = esi;
- int chain_length = scope()->ContextChainLength(slot->var()->scope());
- for (int i = 0; i < chain_length; i++) {
- // Load the closure.
- // (All contexts, even 'with' contexts, have a closure,
- // and it is the same for all contexts inside a function.
- // There is no need to go to the function context first.)
- __ mov(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
- // Load the function context (which is the incoming, outer context).
- __ mov(tmp, FieldOperand(tmp, JSFunction::kContextOffset));
- context = tmp;
- }
- // We may have a 'with' context now. Get the function context.
- // (In fact this mov may never be the needed, since the scope analysis
- // may not permit a direct context access in this case and thus we are
- // always at a function context. However it is safe to dereference be-
- // cause the function context of a function context is itself. Before
- // deleting this mov we should try to create a counter-example first,
- // though...)
- __ mov(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
- return ContextOperand(tmp, index);
- }
-
- default:
- UNREACHABLE();
- return Operand(eax);
- }
-}
-
-
-Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot,
- Result tmp,
- JumpTarget* slow) {
- ASSERT(slot->type() == Slot::CONTEXT);
- ASSERT(tmp.is_register());
- Register context = esi;
-
- for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) {
- if (s->num_heap_slots() > 0) {
- if (s->calls_eval()) {
- // Check that extension is NULL.
- __ cmp(ContextOperand(context, Context::EXTENSION_INDEX),
- Immediate(0));
- slow->Branch(not_equal, not_taken);
- }
- __ mov(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX));
- __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
- context = tmp.reg();
- }
- }
- // Check that last extension is NULL.
- __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0));
- slow->Branch(not_equal, not_taken);
- __ mov(tmp.reg(), ContextOperand(context, Context::FCONTEXT_INDEX));
- return ContextOperand(tmp.reg(), slot->index());
-}
-
-
-// Emit code to load the value of an expression to the top of the
-// frame. If the expression is boolean-valued it may be compiled (or
-// partially compiled) into control flow to the control destination.
-// If force_control is true, control flow is forced.
-void CodeGenerator::LoadCondition(Expression* expr,
- ControlDestination* dest,
- bool force_control) {
- ASSERT(!in_spilled_code());
- int original_height = frame_->height();
-
- { CodeGenState new_state(this, dest);
- Visit(expr);
-
- // If we hit a stack overflow, we may not have actually visited
- // the expression. In that case, we ensure that we have a
- // valid-looking frame state because we will continue to generate
- // code as we unwind the C++ stack.
- //
- // It's possible to have both a stack overflow and a valid frame
- // state (eg, a subexpression overflowed, visiting it returned
- // with a dummied frame state, and visiting this expression
- // returned with a normal-looking state).
- if (HasStackOverflow() &&
- !dest->is_used() &&
- frame_->height() == original_height) {
- dest->Goto(true);
- }
- }
-
- if (force_control && !dest->is_used()) {
- // Convert the TOS value into flow to the control destination.
- ToBoolean(dest);
- }
-
- ASSERT(!(force_control && !dest->is_used()));
- ASSERT(dest->is_used() || frame_->height() == original_height + 1);
-}
-
-
-void CodeGenerator::LoadAndSpill(Expression* expression) {
- ASSERT(in_spilled_code());
- set_in_spilled_code(false);
- Load(expression);
- frame_->SpillAll();
- set_in_spilled_code(true);
-}
-
-
-void CodeGenerator::LoadInSafeInt32Mode(Expression* expr,
- BreakTarget* unsafe_bailout) {
- set_unsafe_bailout(unsafe_bailout);
- set_in_safe_int32_mode(true);
- Load(expr);
- Result value = frame_->Pop();
- ASSERT(frame_->HasNoUntaggedInt32Elements());
- if (expr->GuaranteedSmiResult()) {
- ConvertInt32ResultToSmi(&value);
- } else {
- ConvertInt32ResultToNumber(&value);
- }
- set_in_safe_int32_mode(false);
- set_unsafe_bailout(NULL);
- frame_->Push(&value);
-}
-
-
-void CodeGenerator::LoadWithSafeInt32ModeDisabled(Expression* expr) {
- set_safe_int32_mode_enabled(false);
- Load(expr);
- set_safe_int32_mode_enabled(true);
-}
-
-
-void CodeGenerator::ConvertInt32ResultToSmi(Result* value) {
- ASSERT(value->is_untagged_int32());
- if (value->is_register()) {
- __ add(value->reg(), Operand(value->reg()));
- } else {
- ASSERT(value->is_constant());
- ASSERT(value->handle()->IsSmi());
- }
- value->set_untagged_int32(false);
- value->set_type_info(TypeInfo::Smi());
-}
-
-
-void CodeGenerator::ConvertInt32ResultToNumber(Result* value) {
- ASSERT(value->is_untagged_int32());
- if (value->is_register()) {
- Register val = value->reg();
- JumpTarget done;
- __ add(val, Operand(val));
- done.Branch(no_overflow, value);
- __ sar(val, 1);
- // If there was an overflow, bits 30 and 31 of the original number disagree.
- __ xor_(val, 0x80000000u);
- if (CpuFeatures::IsSupported(SSE2)) {
- CpuFeatures::Scope fscope(SSE2);
- __ cvtsi2sd(xmm0, Operand(val));
- } else {
- // Move val to ST[0] in the FPU
- // Push and pop are safe with respect to the virtual frame because
- // all synced elements are below the actual stack pointer.
- __ push(val);
- __ fild_s(Operand(esp, 0));
- __ pop(val);
- }
- Result scratch = allocator_->Allocate();
- ASSERT(scratch.is_register());
- Label allocation_failed;
- __ AllocateHeapNumber(val, scratch.reg(),
- no_reg, &allocation_failed);
- VirtualFrame* clone = new VirtualFrame(frame_);
- scratch.Unuse();
- if (CpuFeatures::IsSupported(SSE2)) {
- CpuFeatures::Scope fscope(SSE2);
- __ movdbl(FieldOperand(val, HeapNumber::kValueOffset), xmm0);
- } else {
- __ fstp_d(FieldOperand(val, HeapNumber::kValueOffset));
- }
- done.Jump(value);
-
- // Establish the virtual frame, cloned from where AllocateHeapNumber
- // jumped to allocation_failed.
- RegisterFile empty_regs;
- SetFrame(clone, &empty_regs);
- __ bind(&allocation_failed);
- if (!CpuFeatures::IsSupported(SSE2)) {
- // Pop the value from the floating point stack.
- __ fstp(0);
- }
- unsafe_bailout_->Jump();
-
- done.Bind(value);
- } else {
- ASSERT(value->is_constant());
- }
- value->set_untagged_int32(false);
- value->set_type_info(TypeInfo::Integer32());
-}
-
-
-void CodeGenerator::Load(Expression* expr) {
-#ifdef DEBUG
- int original_height = frame_->height();
-#endif
- ASSERT(!in_spilled_code());
-
- // If the expression should be a side-effect-free 32-bit int computation,
- // compile that SafeInt32 path, and a bailout path.
- if (!in_safe_int32_mode() &&
- safe_int32_mode_enabled() &&
- expr->side_effect_free() &&
- expr->num_bit_ops() > 2 &&
- CpuFeatures::IsSupported(SSE2)) {
- BreakTarget unsafe_bailout;
- JumpTarget done;
- unsafe_bailout.set_expected_height(frame_->height());
- LoadInSafeInt32Mode(expr, &unsafe_bailout);
- done.Jump();
-
- if (unsafe_bailout.is_linked()) {
- unsafe_bailout.Bind();
- LoadWithSafeInt32ModeDisabled(expr);
- }
- done.Bind();
- } else {
- JumpTarget true_target;
- JumpTarget false_target;
- ControlDestination dest(&true_target, &false_target, true);
- LoadCondition(expr, &dest, false);
-
- if (dest.false_was_fall_through()) {
- // The false target was just bound.
- JumpTarget loaded;
- frame_->Push(Factory::false_value());
- // There may be dangling jumps to the true target.
- if (true_target.is_linked()) {
- loaded.Jump();
- true_target.Bind();
- frame_->Push(Factory::true_value());
- loaded.Bind();
- }
-
- } else if (dest.is_used()) {
- // There is true, and possibly false, control flow (with true as
- // the fall through).
- JumpTarget loaded;
- frame_->Push(Factory::true_value());
- if (false_target.is_linked()) {
- loaded.Jump();
- false_target.Bind();
- frame_->Push(Factory::false_value());
- loaded.Bind();
- }
-
- } else {
- // We have a valid value on top of the frame, but we still may
- // have dangling jumps to the true and false targets from nested
- // subexpressions (eg, the left subexpressions of the
- // short-circuited boolean operators).
- ASSERT(has_valid_frame());
- if (true_target.is_linked() || false_target.is_linked()) {
- JumpTarget loaded;
- loaded.Jump(); // Don't lose the current TOS.
- if (true_target.is_linked()) {
- true_target.Bind();
- frame_->Push(Factory::true_value());
- if (false_target.is_linked()) {
- loaded.Jump();
- }
- }
- if (false_target.is_linked()) {
- false_target.Bind();
- frame_->Push(Factory::false_value());
- }
- loaded.Bind();
- }
- }
- }
- ASSERT(has_valid_frame());
- ASSERT(frame_->height() == original_height + 1);
-}
-
-
-void CodeGenerator::LoadGlobal() {
- if (in_spilled_code()) {
- frame_->EmitPush(GlobalObjectOperand());
- } else {
- Result temp = allocator_->Allocate();
- __ mov(temp.reg(), GlobalObjectOperand());
- frame_->Push(&temp);
- }
-}
-
-
-void CodeGenerator::LoadGlobalReceiver() {
- Result temp = allocator_->Allocate();
- Register reg = temp.reg();
- __ mov(reg, GlobalObjectOperand());
- __ mov(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset));
- frame_->Push(&temp);
-}
-
-
-void CodeGenerator::LoadTypeofExpression(Expression* expr) {
- // Special handling of identifiers as subexpressions of typeof.
- Variable* variable = expr->AsVariableProxy()->AsVariable();
- if (variable != NULL && !variable->is_this() && variable->is_global()) {
- // For a global variable we build the property reference
- // <global>.<variable> and perform a (regular non-contextual) property
- // load to make sure we do not get reference errors.
- Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX);
- Literal key(variable->name());
- Property property(&global, &key, RelocInfo::kNoPosition);
- Reference ref(this, &property);
- ref.GetValue();
- } else if (variable != NULL && variable->AsSlot() != NULL) {
- // For a variable that rewrites to a slot, we signal it is the immediate
- // subexpression of a typeof.
- LoadFromSlotCheckForArguments(variable->AsSlot(), INSIDE_TYPEOF);
- } else {
- // Anything else can be handled normally.
- Load(expr);
- }
-}
-
-
-ArgumentsAllocationMode CodeGenerator::ArgumentsMode() {
- if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION;
- ASSERT(scope()->arguments_shadow() != NULL);
- // We don't want to do lazy arguments allocation for functions that
- // have heap-allocated contexts, because it interfers with the
- // uninitialized const tracking in the context objects.
- return (scope()->num_heap_slots() > 0)
- ? EAGER_ARGUMENTS_ALLOCATION
- : LAZY_ARGUMENTS_ALLOCATION;
-}
-
-
-Result CodeGenerator::StoreArgumentsObject(bool initial) {
- ArgumentsAllocationMode mode = ArgumentsMode();
- ASSERT(mode != NO_ARGUMENTS_ALLOCATION);
-
- Comment cmnt(masm_, "[ store arguments object");
- if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) {
- // When using lazy arguments allocation, we store the arguments marker value
- // as a sentinel indicating that the arguments object hasn't been
- // allocated yet.
- frame_->Push(Factory::arguments_marker());
- } else {
- ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
- frame_->PushFunction();
- frame_->PushReceiverSlotAddress();
- frame_->Push(Smi::FromInt(scope()->num_parameters()));
- Result result = frame_->CallStub(&stub, 3);
- frame_->Push(&result);
- }
-
- Variable* arguments = scope()->arguments();
- Variable* shadow = scope()->arguments_shadow();
- ASSERT(arguments != NULL && arguments->AsSlot() != NULL);
- ASSERT(shadow != NULL && shadow->AsSlot() != NULL);
- JumpTarget done;
- bool skip_arguments = false;
- if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) {
- // We have to skip storing into the arguments slot if it has
- // already been written to. This can happen if the a function
- // has a local variable named 'arguments'.
- LoadFromSlot(arguments->AsSlot(), NOT_INSIDE_TYPEOF);
- Result probe = frame_->Pop();
- if (probe.is_constant()) {
- // We have to skip updating the arguments object if it has
- // been assigned a proper value.
- skip_arguments = !probe.handle()->IsArgumentsMarker();
- } else {
- __ cmp(Operand(probe.reg()), Immediate(Factory::arguments_marker()));
- probe.Unuse();
- done.Branch(not_equal);
- }
- }
- if (!skip_arguments) {
- StoreToSlot(arguments->AsSlot(), NOT_CONST_INIT);
- if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind();
- }
- StoreToSlot(shadow->AsSlot(), NOT_CONST_INIT);
- return frame_->Pop();
-}
-
-//------------------------------------------------------------------------------
-// CodeGenerator implementation of variables, lookups, and stores.
-
-Reference::Reference(CodeGenerator* cgen,
- Expression* expression,
- bool persist_after_get)
- : cgen_(cgen),
- expression_(expression),
- type_(ILLEGAL),
- persist_after_get_(persist_after_get) {
- cgen->LoadReference(this);
-}
-
-
-Reference::~Reference() {
- ASSERT(is_unloaded() || is_illegal());
-}
-
-
-void CodeGenerator::LoadReference(Reference* ref) {
- // References are loaded from both spilled and unspilled code. Set the
- // state to unspilled to allow that (and explicitly spill after
- // construction at the construction sites).
- bool was_in_spilled_code = in_spilled_code_;
- in_spilled_code_ = false;
-
- Comment cmnt(masm_, "[ LoadReference");
- Expression* e = ref->expression();
- Property* property = e->AsProperty();
- Variable* var = e->AsVariableProxy()->AsVariable();
-
- if (property != NULL) {
- // The expression is either a property or a variable proxy that rewrites
- // to a property.
- Load(property->obj());
- if (property->key()->IsPropertyName()) {
- ref->set_type(Reference::NAMED);
- } else {
- Load(property->key());
- ref->set_type(Reference::KEYED);
- }
- } else if (var != NULL) {
- // The expression is a variable proxy that does not rewrite to a
- // property. Global variables are treated as named property references.
- if (var->is_global()) {
- // If eax is free, the register allocator prefers it. Thus the code
- // generator will load the global object into eax, which is where
- // LoadIC wants it. Most uses of Reference call LoadIC directly
- // after the reference is created.
- frame_->Spill(eax);
- LoadGlobal();
- ref->set_type(Reference::NAMED);
- } else {
- ASSERT(var->AsSlot() != NULL);
- ref->set_type(Reference::SLOT);
- }
- } else {
- // Anything else is a runtime error.
- Load(e);
- frame_->CallRuntime(Runtime::kThrowReferenceError, 1);
- }
-
- in_spilled_code_ = was_in_spilled_code;
-}
-
-
-// ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and
-// convert it to a boolean in the condition code register or jump to
-// 'false_target'/'true_target' as appropriate.
-void CodeGenerator::ToBoolean(ControlDestination* dest) {
- Comment cmnt(masm_, "[ ToBoolean");
-
- // The value to convert should be popped from the frame.
- Result value = frame_->Pop();
- value.ToRegister();
-
- if (value.is_integer32()) { // Also takes Smi case.
- Comment cmnt(masm_, "ONLY_INTEGER_32");
- if (FLAG_debug_code) {
- Label ok;
- __ AbortIfNotNumber(value.reg());
- __ test(value.reg(), Immediate(kSmiTagMask));
- __ j(zero, &ok);
- __ fldz();
- __ fld_d(FieldOperand(value.reg(), HeapNumber::kValueOffset));
- __ FCmp();
- __ j(not_zero, &ok);
- __ Abort("Smi was wrapped in HeapNumber in output from bitop");
- __ bind(&ok);
- }
- // In the integer32 case there are no Smis hidden in heap numbers, so we
- // need only test for Smi zero.
- __ test(value.reg(), Operand(value.reg()));
- dest->false_target()->Branch(zero);
- value.Unuse();
- dest->Split(not_zero);
- } else if (value.is_number()) {
- Comment cmnt(masm_, "ONLY_NUMBER");
- // Fast case if TypeInfo indicates only numbers.
- if (FLAG_debug_code) {
- __ AbortIfNotNumber(value.reg());
- }
- // Smi => false iff zero.
- STATIC_ASSERT(kSmiTag == 0);
- __ test(value.reg(), Operand(value.reg()));
- dest->false_target()->Branch(zero);
- __ test(value.reg(), Immediate(kSmiTagMask));
- dest->true_target()->Branch(zero);
- __ fldz();
- __ fld_d(FieldOperand(value.reg(), HeapNumber::kValueOffset));
- __ FCmp();
- value.Unuse();
- dest->Split(not_zero);
- } else {
- // Fast case checks.
- // 'false' => false.
- __ cmp(value.reg(), Factory::false_value());
- dest->false_target()->Branch(equal);
-
- // 'true' => true.
- __ cmp(value.reg(), Factory::true_value());
- dest->true_target()->Branch(equal);
-
- // 'undefined' => false.
- __ cmp(value.reg(), Factory::undefined_value());
- dest->false_target()->Branch(equal);
-
- // Smi => false iff zero.
- STATIC_ASSERT(kSmiTag == 0);
- __ test(value.reg(), Operand(value.reg()));
- dest->false_target()->Branch(zero);
- __ test(value.reg(), Immediate(kSmiTagMask));
- dest->true_target()->Branch(zero);
-
- // Call the stub for all other cases.
- frame_->Push(&value); // Undo the Pop() from above.
- ToBooleanStub stub;
- Result temp = frame_->CallStub(&stub, 1);
- // Convert the result to a condition code.
- __ test(temp.reg(), Operand(temp.reg()));
- temp.Unuse();
- dest->Split(not_equal);
- }
-}
-
-
-// Perform or call the specialized stub for a binary operation. Requires the
-// three registers left, right and dst to be distinct and spilled. This
-// deferred operation has up to three entry points: The main one calls the
-// runtime system. The second is for when the result is a non-Smi. The
-// third is for when at least one of the inputs is non-Smi and we have SSE2.
-class DeferredInlineBinaryOperation: public DeferredCode {
- public:
- DeferredInlineBinaryOperation(Token::Value op,
- Register dst,
- Register left,
- Register right,
- TypeInfo left_info,
- TypeInfo right_info,
- OverwriteMode mode)
- : op_(op), dst_(dst), left_(left), right_(right),
- left_info_(left_info), right_info_(right_info), mode_(mode) {
- set_comment("[ DeferredInlineBinaryOperation");
- ASSERT(!left.is(right));
- }
-
- virtual void Generate();
-
- // This stub makes explicit calls to SaveRegisters(), RestoreRegisters() and
- // Exit().
- virtual bool AutoSaveAndRestore() { return false; }
-
- void JumpToAnswerOutOfRange(Condition cond);
- void JumpToConstantRhs(Condition cond, Smi* smi_value);
- Label* NonSmiInputLabel();
-
- private:
- void GenerateAnswerOutOfRange();
- void GenerateNonSmiInput();
-
- Token::Value op_;
- Register dst_;
- Register left_;
- Register right_;
- TypeInfo left_info_;
- TypeInfo right_info_;
- OverwriteMode mode_;
- Label answer_out_of_range_;
- Label non_smi_input_;
- Label constant_rhs_;
- Smi* smi_value_;
-};
-
-
-Label* DeferredInlineBinaryOperation::NonSmiInputLabel() {
- if (Token::IsBitOp(op_) && CpuFeatures::IsSupported(SSE2)) {
- return &non_smi_input_;
- } else {
- return entry_label();
- }
-}
-
-
-void DeferredInlineBinaryOperation::JumpToAnswerOutOfRange(Condition cond) {
- __ j(cond, &answer_out_of_range_);
-}
-
-
-void DeferredInlineBinaryOperation::JumpToConstantRhs(Condition cond,
- Smi* smi_value) {
- smi_value_ = smi_value;
- __ j(cond, &constant_rhs_);
-}
-
-
-void DeferredInlineBinaryOperation::Generate() {
- // Registers are not saved implicitly for this stub, so we should not
- // tread on the registers that were not passed to us.
- if (CpuFeatures::IsSupported(SSE2) &&
- ((op_ == Token::ADD) ||
- (op_ == Token::SUB) ||
- (op_ == Token::MUL) ||
- (op_ == Token::DIV))) {
- CpuFeatures::Scope use_sse2(SSE2);
- Label call_runtime, after_alloc_failure;
- Label left_smi, right_smi, load_right, do_op;
- if (!left_info_.IsSmi()) {
- __ test(left_, Immediate(kSmiTagMask));
- __ j(zero, &left_smi);
- if (!left_info_.IsNumber()) {
- __ cmp(FieldOperand(left_, HeapObject::kMapOffset),
- Factory::heap_number_map());
- __ j(not_equal, &call_runtime);
- }
- __ movdbl(xmm0, FieldOperand(left_, HeapNumber::kValueOffset));
- if (mode_ == OVERWRITE_LEFT) {
- __ mov(dst_, left_);
- }
- __ jmp(&load_right);
-
- __ bind(&left_smi);
- } else {
- if (FLAG_debug_code) __ AbortIfNotSmi(left_);
- }
- __ SmiUntag(left_);
- __ cvtsi2sd(xmm0, Operand(left_));
- __ SmiTag(left_);
- if (mode_ == OVERWRITE_LEFT) {
- Label alloc_failure;
- __ push(left_);
- __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure);
- __ pop(left_);
- }
-
- __ bind(&load_right);
- if (!right_info_.IsSmi()) {
- __ test(right_, Immediate(kSmiTagMask));
- __ j(zero, &right_smi);
- if (!right_info_.IsNumber()) {
- __ cmp(FieldOperand(right_, HeapObject::kMapOffset),
- Factory::heap_number_map());
- __ j(not_equal, &call_runtime);
- }
- __ movdbl(xmm1, FieldOperand(right_, HeapNumber::kValueOffset));
- if (mode_ == OVERWRITE_RIGHT) {
- __ mov(dst_, right_);
- } else if (mode_ == NO_OVERWRITE) {
- Label alloc_failure;
- __ push(left_);
- __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure);
- __ pop(left_);
- }
- __ jmp(&do_op);
-
- __ bind(&right_smi);
- } else {
- if (FLAG_debug_code) __ AbortIfNotSmi(right_);
- }
- __ SmiUntag(right_);
- __ cvtsi2sd(xmm1, Operand(right_));
- __ SmiTag(right_);
- if (mode_ == OVERWRITE_RIGHT || mode_ == NO_OVERWRITE) {
- __ push(left_);
- __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure);
- __ pop(left_);
- }
-
- __ bind(&do_op);
- switch (op_) {
- case Token::ADD: __ addsd(xmm0, xmm1); break;
- case Token::SUB: __ subsd(xmm0, xmm1); break;
- case Token::MUL: __ mulsd(xmm0, xmm1); break;
- case Token::DIV: __ divsd(xmm0, xmm1); break;
- default: UNREACHABLE();
- }
- __ movdbl(FieldOperand(dst_, HeapNumber::kValueOffset), xmm0);
- Exit();
-
-
- __ bind(&after_alloc_failure);
- __ pop(left_);
- __ bind(&call_runtime);
- }
- // Register spilling is not done implicitly for this stub.
- // We can't postpone it any more now though.
- SaveRegisters();
-
- GenericBinaryOpStub stub(op_,
- mode_,
- NO_SMI_CODE_IN_STUB,
- TypeInfo::Combine(left_info_, right_info_));
- stub.GenerateCall(masm_, left_, right_);
- if (!dst_.is(eax)) __ mov(dst_, eax);
- RestoreRegisters();
- Exit();
-
- if (non_smi_input_.is_linked() || constant_rhs_.is_linked()) {
- GenerateNonSmiInput();
- }
- if (answer_out_of_range_.is_linked()) {
- GenerateAnswerOutOfRange();
- }
-}
-
-
-void DeferredInlineBinaryOperation::GenerateNonSmiInput() {
- // We know at least one of the inputs was not a Smi.
- // This is a third entry point into the deferred code.
- // We may not overwrite left_ because we want to be able
- // to call the handling code for non-smi answer and it
- // might want to overwrite the heap number in left_.
- ASSERT(!right_.is(dst_));
- ASSERT(!left_.is(dst_));
- ASSERT(!left_.is(right_));
- // This entry point is used for bit ops where the right hand side
- // is a constant Smi and the left hand side is a heap object. It
- // is also used for bit ops where both sides are unknown, but where
- // at least one of them is a heap object.
- bool rhs_is_constant = constant_rhs_.is_linked();
- // We can't generate code for both cases.
- ASSERT(!non_smi_input_.is_linked() || !constant_rhs_.is_linked());
-
- if (FLAG_debug_code) {
- __ int3(); // We don't fall through into this code.
- }
-
- __ bind(&non_smi_input_);
-
- if (rhs_is_constant) {
- __ bind(&constant_rhs_);
- // In this case the input is a heap object and it is in the dst_ register.
- // The left_ and right_ registers have not been initialized yet.
- __ mov(right_, Immediate(smi_value_));
- __ mov(left_, Operand(dst_));
- if (!CpuFeatures::IsSupported(SSE2)) {
- __ jmp(entry_label());
- return;
- } else {
- CpuFeatures::Scope use_sse2(SSE2);
- __ JumpIfNotNumber(dst_, left_info_, entry_label());
- __ ConvertToInt32(dst_, left_, dst_, left_info_, entry_label());
- __ SmiUntag(right_);
- }
- } else {
- // We know we have SSE2 here because otherwise the label is not linked (see
- // NonSmiInputLabel).
- CpuFeatures::Scope use_sse2(SSE2);
- // Handle the non-constant right hand side situation:
- if (left_info_.IsSmi()) {
- // Right is a heap object.
- __ JumpIfNotNumber(right_, right_info_, entry_label());
- __ ConvertToInt32(right_, right_, dst_, right_info_, entry_label());
- __ mov(dst_, Operand(left_));
- __ SmiUntag(dst_);
- } else if (right_info_.IsSmi()) {
- // Left is a heap object.
- __ JumpIfNotNumber(left_, left_info_, entry_label());
- __ ConvertToInt32(dst_, left_, dst_, left_info_, entry_label());
- __ SmiUntag(right_);
- } else {
- // Here we don't know if it's one or both that is a heap object.
- Label only_right_is_heap_object, got_both;
- __ mov(dst_, Operand(left_));
- __ SmiUntag(dst_, &only_right_is_heap_object);
- // Left was a heap object.
- __ JumpIfNotNumber(left_, left_info_, entry_label());
- __ ConvertToInt32(dst_, left_, dst_, left_info_, entry_label());
- __ SmiUntag(right_, &got_both);
- // Both were heap objects.
- __ rcl(right_, 1); // Put tag back.
- __ JumpIfNotNumber(right_, right_info_, entry_label());
- __ ConvertToInt32(right_, right_, no_reg, right_info_, entry_label());
- __ jmp(&got_both);
- __ bind(&only_right_is_heap_object);
- __ JumpIfNotNumber(right_, right_info_, entry_label());
- __ ConvertToInt32(right_, right_, no_reg, right_info_, entry_label());
- __ bind(&got_both);
- }
- }
- ASSERT(op_ == Token::BIT_AND ||
- op_ == Token::BIT_OR ||
- op_ == Token::BIT_XOR ||
- right_.is(ecx));
- switch (op_) {
- case Token::BIT_AND: __ and_(dst_, Operand(right_)); break;
- case Token::BIT_OR: __ or_(dst_, Operand(right_)); break;
- case Token::BIT_XOR: __ xor_(dst_, Operand(right_)); break;
- case Token::SHR: __ shr_cl(dst_); break;
- case Token::SAR: __ sar_cl(dst_); break;
- case Token::SHL: __ shl_cl(dst_); break;
- default: UNREACHABLE();
- }
- if (op_ == Token::SHR) {
- // Check that the *unsigned* result fits in a smi. Neither of
- // the two high-order bits can be set:
- // * 0x80000000: high bit would be lost when smi tagging.
- // * 0x40000000: this number would convert to negative when smi
- // tagging.
- __ test(dst_, Immediate(0xc0000000));
- __ j(not_zero, &answer_out_of_range_);
- } else {
- // Check that the *signed* result fits in a smi.
- __ cmp(dst_, 0xc0000000);
- __ j(negative, &answer_out_of_range_);
- }
- __ SmiTag(dst_);
- Exit();
-}
-
-
-void DeferredInlineBinaryOperation::GenerateAnswerOutOfRange() {
- Label after_alloc_failure2;
- Label allocation_ok;
- __ bind(&after_alloc_failure2);
- // We have to allocate a number, causing a GC, while keeping hold of
- // the answer in dst_. The answer is not a Smi. We can't just call the
- // runtime shift function here because we already threw away the inputs.
- __ xor_(left_, Operand(left_));
- __ shl(dst_, 1); // Put top bit in carry flag and Smi tag the low bits.
- __ rcr(left_, 1); // Rotate with carry.
- __ push(dst_); // Smi tagged low 31 bits.
- __ push(left_); // 0 or 0x80000000, which is Smi tagged in both cases.
- __ CallRuntime(Runtime::kNumberAlloc, 0);
- if (!left_.is(eax)) {
- __ mov(left_, eax);
- }
- __ pop(right_); // High bit.
- __ pop(dst_); // Low 31 bits.
- __ shr(dst_, 1); // Put 0 in top bit.
- __ or_(dst_, Operand(right_));
- __ jmp(&allocation_ok);
-
- // This is the second entry point to the deferred code. It is used only by
- // the bit operations.
- // The dst_ register has the answer. It is not Smi tagged. If mode_ is
- // OVERWRITE_LEFT then left_ must contain either an overwritable heap number
- // or a Smi.
- // Put a heap number pointer in left_.
- __ bind(&answer_out_of_range_);
- SaveRegisters();
- if (mode_ == OVERWRITE_LEFT) {
- __ test(left_, Immediate(kSmiTagMask));
- __ j(not_zero, &allocation_ok);
- }
- // This trashes right_.
- __ AllocateHeapNumber(left_, right_, no_reg, &after_alloc_failure2);
- __ bind(&allocation_ok);
- if (CpuFeatures::IsSupported(SSE2) && op_ != Token::SHR) {
- CpuFeatures::Scope use_sse2(SSE2);
- ASSERT(Token::IsBitOp(op_));
- // Signed conversion.
- __ cvtsi2sd(xmm0, Operand(dst_));
- __ movdbl(FieldOperand(left_, HeapNumber::kValueOffset), xmm0);
- } else {
- if (op_ == Token::SHR) {
- __ push(Immediate(0)); // High word of unsigned value.
- __ push(dst_);
- __ fild_d(Operand(esp, 0));
- __ Drop(2);
- } else {
- ASSERT(Token::IsBitOp(op_));
- __ push(dst_);
- __ fild_s(Operand(esp, 0)); // Signed conversion.
- __ pop(dst_);
- }
- __ fstp_d(FieldOperand(left_, HeapNumber::kValueOffset));
- }
- __ mov(dst_, left_);
- RestoreRegisters();
- Exit();
-}
-
-
-static TypeInfo CalculateTypeInfo(TypeInfo operands_type,
- Token::Value op,
- const Result& right,
- const Result& left) {
- // Set TypeInfo of result according to the operation performed.
- // Rely on the fact that smis have a 31 bit payload on ia32.
- STATIC_ASSERT(kSmiValueSize == 31);
- switch (op) {
- case Token::COMMA:
- return right.type_info();
- case Token::OR:
- case Token::AND:
- // Result type can be either of the two input types.
- return operands_type;
- case Token::BIT_AND: {
- // Anding with positive Smis will give you a Smi.
- if (right.is_constant() && right.handle()->IsSmi() &&
- Smi::cast(*right.handle())->value() >= 0) {
- return TypeInfo::Smi();
- } else if (left.is_constant() && left.handle()->IsSmi() &&
- Smi::cast(*left.handle())->value() >= 0) {
- return TypeInfo::Smi();
- }
- return (operands_type.IsSmi())
- ? TypeInfo::Smi()
- : TypeInfo::Integer32();
- }
- case Token::BIT_OR: {
- // Oring with negative Smis will give you a Smi.
- if (right.is_constant() && right.handle()->IsSmi() &&
- Smi::cast(*right.handle())->value() < 0) {
- return TypeInfo::Smi();
- } else if (left.is_constant() && left.handle()->IsSmi() &&
- Smi::cast(*left.handle())->value() < 0) {
- return TypeInfo::Smi();
- }
- return (operands_type.IsSmi())
- ? TypeInfo::Smi()
- : TypeInfo::Integer32();
- }
- case Token::BIT_XOR:
- // Result is always a 32 bit integer. Smi property of inputs is preserved.
- return (operands_type.IsSmi())
- ? TypeInfo::Smi()
- : TypeInfo::Integer32();
- case Token::SAR:
- if (left.is_smi()) return TypeInfo::Smi();
- // Result is a smi if we shift by a constant >= 1, otherwise an integer32.
- // Shift amount is masked with 0x1F (ECMA standard 11.7.2).
- return (right.is_constant() && right.handle()->IsSmi()
- && (Smi::cast(*right.handle())->value() & 0x1F) >= 1)
- ? TypeInfo::Smi()
- : TypeInfo::Integer32();
- case Token::SHR:
- // Result is a smi if we shift by a constant >= 2, an integer32 if
- // we shift by 1, and an unsigned 32-bit integer if we shift by 0.
- if (right.is_constant() && right.handle()->IsSmi()) {
- int shift_amount = Smi::cast(*right.handle())->value() & 0x1F;
- if (shift_amount > 1) {
- return TypeInfo::Smi();
- } else if (shift_amount > 0) {
- return TypeInfo::Integer32();
- }
- }
- return TypeInfo::Number();
- case Token::ADD:
- if (operands_type.IsSmi()) {
- // The Integer32 range is big enough to take the sum of any two Smis.
- return TypeInfo::Integer32();
- } else if (operands_type.IsNumber()) {
- return TypeInfo::Number();
- } else if (left.type_info().IsString() || right.type_info().IsString()) {
- return TypeInfo::String();
- } else {
- return TypeInfo::Unknown();
- }
- case Token::SHL:
- return TypeInfo::Integer32();
- case Token::SUB:
- // The Integer32 range is big enough to take the difference of any two
- // Smis.
- return (operands_type.IsSmi()) ?
- TypeInfo::Integer32() :
- TypeInfo::Number();
- case Token::MUL:
- case Token::DIV:
- case Token::MOD:
- // Result is always a number.
- return TypeInfo::Number();
- default:
- UNREACHABLE();
- }
- UNREACHABLE();
- return TypeInfo::Unknown();
-}
-
-
-void CodeGenerator::GenericBinaryOperation(BinaryOperation* expr,
- OverwriteMode overwrite_mode) {
- Comment cmnt(masm_, "[ BinaryOperation");
- Token::Value op = expr->op();
- Comment cmnt_token(masm_, Token::String(op));
-
- if (op == Token::COMMA) {
- // Simply discard left value.
- frame_->Nip(1);
- return;
- }
-
- Result right = frame_->Pop();
- Result left = frame_->Pop();
-
- if (op == Token::ADD) {
- const bool left_is_string = left.type_info().IsString();
- const bool right_is_string = right.type_info().IsString();
- // Make sure constant strings have string type info.
- ASSERT(!(left.is_constant() && left.handle()->IsString()) ||
- left_is_string);
- ASSERT(!(right.is_constant() && right.handle()->IsString()) ||
- right_is_string);
- if (left_is_string || right_is_string) {
- frame_->Push(&left);
- frame_->Push(&right);
- Result answer;
- if (left_is_string) {
- if (right_is_string) {
- StringAddStub stub(NO_STRING_CHECK_IN_STUB);
- answer = frame_->CallStub(&stub, 2);
- } else {
- StringAddStub stub(NO_STRING_CHECK_LEFT_IN_STUB);
- answer = frame_->CallStub(&stub, 2);
- }
- } else if (right_is_string) {
- StringAddStub stub(NO_STRING_CHECK_RIGHT_IN_STUB);
- answer = frame_->CallStub(&stub, 2);
- }
- answer.set_type_info(TypeInfo::String());
- frame_->Push(&answer);
- return;
- }
- // Neither operand is known to be a string.
- }
-
- bool left_is_smi_constant = left.is_constant() && left.handle()->IsSmi();
- bool left_is_non_smi_constant = left.is_constant() && !left.handle()->IsSmi();
- bool right_is_smi_constant = right.is_constant() && right.handle()->IsSmi();
- bool right_is_non_smi_constant =
- right.is_constant() && !right.handle()->IsSmi();
-
- if (left_is_smi_constant && right_is_smi_constant) {
- // Compute the constant result at compile time, and leave it on the frame.
- int left_int = Smi::cast(*left.handle())->value();
- int right_int = Smi::cast(*right.handle())->value();
- if (FoldConstantSmis(op, left_int, right_int)) return;
- }
-
- // Get number type of left and right sub-expressions.
- TypeInfo operands_type =
- TypeInfo::Combine(left.type_info(), right.type_info());
-
- TypeInfo result_type = CalculateTypeInfo(operands_type, op, right, left);
-
- Result answer;
- if (left_is_non_smi_constant || right_is_non_smi_constant) {
- // Go straight to the slow case, with no smi code.
- GenericBinaryOpStub stub(op,
- overwrite_mode,
- NO_SMI_CODE_IN_STUB,
- operands_type);
- answer = GenerateGenericBinaryOpStubCall(&stub, &left, &right);
- } else if (right_is_smi_constant) {
- answer = ConstantSmiBinaryOperation(expr, &left, right.handle(),
- false, overwrite_mode);
- } else if (left_is_smi_constant) {
- answer = ConstantSmiBinaryOperation(expr, &right, left.handle(),
- true, overwrite_mode);
- } else {
- // Set the flags based on the operation, type and loop nesting level.
- // Bit operations always assume they likely operate on Smis. Still only
- // generate the inline Smi check code if this operation is part of a loop.
- // For all other operations only inline the Smi check code for likely smis
- // if the operation is part of a loop.
- if (loop_nesting() > 0 &&
- (Token::IsBitOp(op) ||
- operands_type.IsInteger32() ||
- expr->type()->IsLikelySmi())) {
- answer = LikelySmiBinaryOperation(expr, &left, &right, overwrite_mode);
- } else {
- GenericBinaryOpStub stub(op,
- overwrite_mode,
- NO_GENERIC_BINARY_FLAGS,
- operands_type);
- answer = GenerateGenericBinaryOpStubCall(&stub, &left, &right);
- }
- }
-
- answer.set_type_info(result_type);
- frame_->Push(&answer);
-}
-
-
-Result CodeGenerator::GenerateGenericBinaryOpStubCall(GenericBinaryOpStub* stub,
- Result* left,
- Result* right) {
- if (stub->ArgsInRegistersSupported()) {
- stub->SetArgsInRegisters();
- return frame_->CallStub(stub, left, right);
- } else {
- frame_->Push(left);
- frame_->Push(right);
- return frame_->CallStub(stub, 2);
- }
-}
-
-
-bool CodeGenerator::FoldConstantSmis(Token::Value op, int left, int right) {
- Object* answer_object = Heap::undefined_value();
- switch (op) {
- case Token::ADD:
- if (Smi::IsValid(left + right)) {
- answer_object = Smi::FromInt(left + right);
- }
- break;
- case Token::SUB:
- if (Smi::IsValid(left - right)) {
- answer_object = Smi::FromInt(left - right);
- }
- break;
- case Token::MUL: {
- double answer = static_cast<double>(left) * right;
- if (answer >= Smi::kMinValue && answer <= Smi::kMaxValue) {
- // If the product is zero and the non-zero factor is negative,
- // the spec requires us to return floating point negative zero.
- if (answer != 0 || (left >= 0 && right >= 0)) {
- answer_object = Smi::FromInt(static_cast<int>(answer));
- }
- }
- }
- break;
- case Token::DIV:
- case Token::MOD:
- break;
- case Token::BIT_OR:
- answer_object = Smi::FromInt(left | right);
- break;
- case Token::BIT_AND:
- answer_object = Smi::FromInt(left & right);
- break;
- case Token::BIT_XOR:
- answer_object = Smi::FromInt(left ^ right);
- break;
-
- case Token::SHL: {
- int shift_amount = right & 0x1F;
- if (Smi::IsValid(left << shift_amount)) {
- answer_object = Smi::FromInt(left << shift_amount);
- }
- break;
- }
- case Token::SHR: {
- int shift_amount = right & 0x1F;
- unsigned int unsigned_left = left;
- unsigned_left >>= shift_amount;
- if (unsigned_left <= static_cast<unsigned int>(Smi::kMaxValue)) {
- answer_object = Smi::FromInt(unsigned_left);
- }
- break;
- }
- case Token::SAR: {
- int shift_amount = right & 0x1F;
- unsigned int unsigned_left = left;
- if (left < 0) {
- // Perform arithmetic shift of a negative number by
- // complementing number, logical shifting, complementing again.
- unsigned_left = ~unsigned_left;
- unsigned_left >>= shift_amount;
- unsigned_left = ~unsigned_left;
- } else {
- unsigned_left >>= shift_amount;
- }
- ASSERT(Smi::IsValid(static_cast<int32_t>(unsigned_left)));
- answer_object = Smi::FromInt(static_cast<int32_t>(unsigned_left));
- break;
- }
- default:
- UNREACHABLE();
- break;
- }
- if (answer_object == Heap::undefined_value()) {
- return false;
- }
- frame_->Push(Handle<Object>(answer_object));
- return true;
-}
-
-
-void CodeGenerator::JumpIfBothSmiUsingTypeInfo(Result* left,
- Result* right,
- JumpTarget* both_smi) {
- TypeInfo left_info = left->type_info();
- TypeInfo right_info = right->type_info();
- if (left_info.IsDouble() || left_info.IsString() ||
- right_info.IsDouble() || right_info.IsString()) {
- // We know that left and right are not both smi. Don't do any tests.
- return;
- }
-
- if (left->reg().is(right->reg())) {
- if (!left_info.IsSmi()) {
- __ test(left->reg(), Immediate(kSmiTagMask));
- both_smi->Branch(zero);
- } else {
- if (FLAG_debug_code) __ AbortIfNotSmi(left->reg());
- left->Unuse();
- right->Unuse();
- both_smi->Jump();
- }
- } else if (!left_info.IsSmi()) {
- if (!right_info.IsSmi()) {
- Result temp = allocator_->Allocate();
- ASSERT(temp.is_valid());
- __ mov(temp.reg(), left->reg());
- __ or_(temp.reg(), Operand(right->reg()));
- __ test(temp.reg(), Immediate(kSmiTagMask));
- temp.Unuse();
- both_smi->Branch(zero);
- } else {
- __ test(left->reg(), Immediate(kSmiTagMask));
- both_smi->Branch(zero);
- }
- } else {
- if (FLAG_debug_code) __ AbortIfNotSmi(left->reg());
- if (!right_info.IsSmi()) {
- __ test(right->reg(), Immediate(kSmiTagMask));
- both_smi->Branch(zero);
- } else {
- if (FLAG_debug_code) __ AbortIfNotSmi(right->reg());
- left->Unuse();
- right->Unuse();
- both_smi->Jump();
- }
- }
-}
-
-
-void CodeGenerator::JumpIfNotBothSmiUsingTypeInfo(Register left,
- Register right,
- Register scratch,
- TypeInfo left_info,
- TypeInfo right_info,
- DeferredCode* deferred) {
- JumpIfNotBothSmiUsingTypeInfo(left,
- right,
- scratch,
- left_info,
- right_info,
- deferred->entry_label());
-}
-
-
-void CodeGenerator::JumpIfNotBothSmiUsingTypeInfo(Register left,
- Register right,
- Register scratch,
- TypeInfo left_info,
- TypeInfo right_info,
- Label* on_not_smi) {
- if (left.is(right)) {
- if (!left_info.IsSmi()) {
- __ test(left, Immediate(kSmiTagMask));
- __ j(not_zero, on_not_smi);
- } else {
- if (FLAG_debug_code) __ AbortIfNotSmi(left);
- }
- } else if (!left_info.IsSmi()) {
- if (!right_info.IsSmi()) {
- __ mov(scratch, left);
- __ or_(scratch, Operand(right));
- __ test(scratch, Immediate(kSmiTagMask));
- __ j(not_zero, on_not_smi);
- } else {
- __ test(left, Immediate(kSmiTagMask));
- __ j(not_zero, on_not_smi);
- if (FLAG_debug_code) __ AbortIfNotSmi(right);
- }
- } else {
- if (FLAG_debug_code) __ AbortIfNotSmi(left);
- if (!right_info.IsSmi()) {
- __ test(right, Immediate(kSmiTagMask));
- __ j(not_zero, on_not_smi);
- } else {
- if (FLAG_debug_code) __ AbortIfNotSmi(right);
- }
- }
-}
-
-
-// Implements a binary operation using a deferred code object and some
-// inline code to operate on smis quickly.
-Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr,
- Result* left,
- Result* right,
- OverwriteMode overwrite_mode) {
- // Copy the type info because left and right may be overwritten.
- TypeInfo left_type_info = left->type_info();
- TypeInfo right_type_info = right->type_info();
- Token::Value op = expr->op();
- Result answer;
- // Special handling of div and mod because they use fixed registers.
- if (op == Token::DIV || op == Token::MOD) {
- // We need eax as the quotient register, edx as the remainder
- // register, neither left nor right in eax or edx, and left copied
- // to eax.
- Result quotient;
- Result remainder;
- bool left_is_in_eax = false;
- // Step 1: get eax for quotient.
- if ((left->is_register() && left->reg().is(eax)) ||
- (right->is_register() && right->reg().is(eax))) {
- // One or both is in eax. Use a fresh non-edx register for
- // them.
- Result fresh = allocator_->Allocate();
- ASSERT(fresh.is_valid());
- if (fresh.reg().is(edx)) {
- remainder = fresh;
- fresh = allocator_->Allocate();
- ASSERT(fresh.is_valid());
- }
- if (left->is_register() && left->reg().is(eax)) {
- quotient = *left;
- *left = fresh;
- left_is_in_eax = true;
- }
- if (right->is_register() && right->reg().is(eax)) {
- quotient = *right;
- *right = fresh;
- }
- __ mov(fresh.reg(), eax);
- } else {
- // Neither left nor right is in eax.
- quotient = allocator_->Allocate(eax);
- }
- ASSERT(quotient.is_register() && quotient.reg().is(eax));
- ASSERT(!(left->is_register() && left->reg().is(eax)));
- ASSERT(!(right->is_register() && right->reg().is(eax)));
-
- // Step 2: get edx for remainder if necessary.
- if (!remainder.is_valid()) {
- if ((left->is_register() && left->reg().is(edx)) ||
- (right->is_register() && right->reg().is(edx))) {
- Result fresh = allocator_->Allocate();
- ASSERT(fresh.is_valid());
- if (left->is_register() && left->reg().is(edx)) {
- remainder = *left;
- *left = fresh;
- }
- if (right->is_register() && right->reg().is(edx)) {
- remainder = *right;
- *right = fresh;
- }
- __ mov(fresh.reg(), edx);
- } else {
- // Neither left nor right is in edx.
- remainder = allocator_->Allocate(edx);
- }
- }
- ASSERT(remainder.is_register() && remainder.reg().is(edx));
- ASSERT(!(left->is_register() && left->reg().is(edx)));
- ASSERT(!(right->is_register() && right->reg().is(edx)));
-
- left->ToRegister();
- right->ToRegister();
- frame_->Spill(eax);
- frame_->Spill(edx);
- // DeferredInlineBinaryOperation requires all the registers that it is
- // told about to be spilled and distinct.
- Result distinct_right = frame_->MakeDistinctAndSpilled(left, right);
-
- // Check that left and right are smi tagged.
- DeferredInlineBinaryOperation* deferred =
- new DeferredInlineBinaryOperation(op,
- (op == Token::DIV) ? eax : edx,
- left->reg(),
- distinct_right.reg(),
- left_type_info,
- right_type_info,
- overwrite_mode);
- JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), edx,
- left_type_info, right_type_info, deferred);
- if (!left_is_in_eax) {
- __ mov(eax, left->reg());
- }
- // Sign extend eax into edx:eax.
- __ cdq();
- // Check for 0 divisor.
- __ test(right->reg(), Operand(right->reg()));
- deferred->Branch(zero);
- // Divide edx:eax by the right operand.
- __ idiv(right->reg());
-
- // Complete the operation.
- if (op == Token::DIV) {
- // Check for negative zero result. If result is zero, and divisor
- // is negative, return a floating point negative zero. The
- // virtual frame is unchanged in this block, so local control flow
- // can use a Label rather than a JumpTarget. If the context of this
- // expression will treat -0 like 0, do not do this test.
- if (!expr->no_negative_zero()) {
- Label non_zero_result;
- __ test(left->reg(), Operand(left->reg()));
- __ j(not_zero, &non_zero_result);
- __ test(right->reg(), Operand(right->reg()));
- deferred->Branch(negative);
- __ bind(&non_zero_result);
- }
- // Check for the corner case of dividing the most negative smi by
- // -1. We cannot use the overflow flag, since it is not set by
- // idiv instruction.
- STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
- __ cmp(eax, 0x40000000);
- deferred->Branch(equal);
- // Check that the remainder is zero.
- __ test(edx, Operand(edx));
- deferred->Branch(not_zero);
- // Tag the result and store it in the quotient register.
- __ SmiTag(eax);
- deferred->BindExit();
- left->Unuse();
- right->Unuse();
- answer = quotient;
- } else {
- ASSERT(op == Token::MOD);
- // Check for a negative zero result. If the result is zero, and
- // the dividend is negative, return a floating point negative
- // zero. The frame is unchanged in this block, so local control
- // flow can use a Label rather than a JumpTarget.
- if (!expr->no_negative_zero()) {
- Label non_zero_result;
- __ test(edx, Operand(edx));
- __ j(not_zero, &non_zero_result, taken);
- __ test(left->reg(), Operand(left->reg()));
- deferred->Branch(negative);
- __ bind(&non_zero_result);
- }
- deferred->BindExit();
- left->Unuse();
- right->Unuse();
- answer = remainder;
- }
- ASSERT(answer.is_valid());
- return answer;
- }
-
- // Special handling of shift operations because they use fixed
- // registers.
- if (op == Token::SHL || op == Token::SHR || op == Token::SAR) {
- // Move left out of ecx if necessary.
- if (left->is_register() && left->reg().is(ecx)) {
- *left = allocator_->Allocate();
- ASSERT(left->is_valid());
- __ mov(left->reg(), ecx);
- }
- right->ToRegister(ecx);
- left->ToRegister();
- ASSERT(left->is_register() && !left->reg().is(ecx));
- ASSERT(right->is_register() && right->reg().is(ecx));
- if (left_type_info.IsSmi()) {
- if (FLAG_debug_code) __ AbortIfNotSmi(left->reg());
- }
- if (right_type_info.IsSmi()) {
- if (FLAG_debug_code) __ AbortIfNotSmi(right->reg());
- }
-
- // We will modify right, it must be spilled.
- frame_->Spill(ecx);
- // DeferredInlineBinaryOperation requires all the registers that it is told
- // about to be spilled and distinct. We know that right is ecx and left is
- // not ecx.
- frame_->Spill(left->reg());
-
- // Use a fresh answer register to avoid spilling the left operand.
- answer = allocator_->Allocate();
- ASSERT(answer.is_valid());
-
- DeferredInlineBinaryOperation* deferred =
- new DeferredInlineBinaryOperation(op,
- answer.reg(),
- left->reg(),
- ecx,
- left_type_info,
- right_type_info,
- overwrite_mode);
- JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), answer.reg(),
- left_type_info, right_type_info,
- deferred->NonSmiInputLabel());
-
- // Untag both operands.
- __ mov(answer.reg(), left->reg());
- __ SmiUntag(answer.reg());
- __ SmiUntag(right->reg()); // Right is ecx.
-
- // Perform the operation.
- ASSERT(right->reg().is(ecx));
- switch (op) {
- case Token::SAR: {
- __ sar_cl(answer.reg());
- if (!left_type_info.IsSmi()) {
- // Check that the *signed* result fits in a smi.
- __ cmp(answer.reg(), 0xc0000000);
- deferred->JumpToAnswerOutOfRange(negative);
- }
- break;
- }
- case Token::SHR: {
- __ shr_cl(answer.reg());
- // Check that the *unsigned* result fits in a smi. Neither of
- // the two high-order bits can be set:
- // * 0x80000000: high bit would be lost when smi tagging.
- // * 0x40000000: this number would convert to negative when smi
- // tagging.
- // These two cases can only happen with shifts by 0 or 1 when
- // handed a valid smi. If the answer cannot be represented by a
- // smi, restore the left and right arguments, and jump to slow
- // case. The low bit of the left argument may be lost, but only
- // in a case where it is dropped anyway.
- __ test(answer.reg(), Immediate(0xc0000000));
- deferred->JumpToAnswerOutOfRange(not_zero);
- break;
- }
- case Token::SHL: {
- __ shl_cl(answer.reg());
- // Check that the *signed* result fits in a smi.
- __ cmp(answer.reg(), 0xc0000000);
- deferred->JumpToAnswerOutOfRange(negative);
- break;
- }
- default:
- UNREACHABLE();
- }
- // Smi-tag the result in answer.
- __ SmiTag(answer.reg());
- deferred->BindExit();
- left->Unuse();
- right->Unuse();
- ASSERT(answer.is_valid());
- return answer;
- }
-
- // Handle the other binary operations.
- left->ToRegister();
- right->ToRegister();
- // DeferredInlineBinaryOperation requires all the registers that it is told
- // about to be spilled.
- Result distinct_right = frame_->MakeDistinctAndSpilled(left, right);
- // A newly allocated register answer is used to hold the answer. The
- // registers containing left and right are not modified so they don't
- // need to be spilled in the fast case.
- answer = allocator_->Allocate();
- ASSERT(answer.is_valid());
-
- // Perform the smi tag check.
- DeferredInlineBinaryOperation* deferred =
- new DeferredInlineBinaryOperation(op,
- answer.reg(),
- left->reg(),
- distinct_right.reg(),
- left_type_info,
- right_type_info,
- overwrite_mode);
- Label non_smi_bit_op;
- if (op != Token::BIT_OR) {
- JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), answer.reg(),
- left_type_info, right_type_info,
- deferred->NonSmiInputLabel());
- }
-
- __ mov(answer.reg(), left->reg());
- switch (op) {
- case Token::ADD:
- __ add(answer.reg(), Operand(right->reg()));
- deferred->Branch(overflow);
- break;
-
- case Token::SUB:
- __ sub(answer.reg(), Operand(right->reg()));
- deferred->Branch(overflow);
- break;
-
- case Token::MUL: {
- // If the smi tag is 0 we can just leave the tag on one operand.
- STATIC_ASSERT(kSmiTag == 0); // Adjust code below if not the case.
- // Remove smi tag from the left operand (but keep sign).
- // Left-hand operand has been copied into answer.
- __ SmiUntag(answer.reg());
- // Do multiplication of smis, leaving result in answer.
- __ imul(answer.reg(), Operand(right->reg()));
- // Go slow on overflows.
- deferred->Branch(overflow);
- // Check for negative zero result. If product is zero, and one
- // argument is negative, go to slow case. The frame is unchanged
- // in this block, so local control flow can use a Label rather
- // than a JumpTarget.
- if (!expr->no_negative_zero()) {
- Label non_zero_result;
- __ test(answer.reg(), Operand(answer.reg()));
- __ j(not_zero, &non_zero_result, taken);
- __ mov(answer.reg(), left->reg());
- __ or_(answer.reg(), Operand(right->reg()));
- deferred->Branch(negative);
- __ xor_(answer.reg(), Operand(answer.reg())); // Positive 0 is correct.
- __ bind(&non_zero_result);
- }
- break;
- }
-
- case Token::BIT_OR:
- __ or_(answer.reg(), Operand(right->reg()));
- __ test(answer.reg(), Immediate(kSmiTagMask));
- __ j(not_zero, deferred->NonSmiInputLabel());
- break;
-
- case Token::BIT_AND:
- __ and_(answer.reg(), Operand(right->reg()));
- break;
-
- case Token::BIT_XOR:
- __ xor_(answer.reg(), Operand(right->reg()));
- break;
-
- default:
- UNREACHABLE();
- break;
- }
-
- deferred->BindExit();
- left->Unuse();
- right->Unuse();
- ASSERT(answer.is_valid());
- return answer;
-}
-
-
-// Call the appropriate binary operation stub to compute src op value
-// and leave the result in dst.
-class DeferredInlineSmiOperation: public DeferredCode {
- public:
- DeferredInlineSmiOperation(Token::Value op,
- Register dst,
- Register src,
- TypeInfo type_info,
- Smi* value,
- OverwriteMode overwrite_mode)
- : op_(op),
- dst_(dst),
- src_(src),
- type_info_(type_info),
- value_(value),
- overwrite_mode_(overwrite_mode) {
- if (type_info.IsSmi()) overwrite_mode_ = NO_OVERWRITE;
- set_comment("[ DeferredInlineSmiOperation");
- }
-
- virtual void Generate();
-
- private:
- Token::Value op_;
- Register dst_;
- Register src_;
- TypeInfo type_info_;
- Smi* value_;
- OverwriteMode overwrite_mode_;
-};
-
-
-void DeferredInlineSmiOperation::Generate() {
- // For mod we don't generate all the Smi code inline.
- GenericBinaryOpStub stub(
- op_,
- overwrite_mode_,
- (op_ == Token::MOD) ? NO_GENERIC_BINARY_FLAGS : NO_SMI_CODE_IN_STUB,
- TypeInfo::Combine(TypeInfo::Smi(), type_info_));
- stub.GenerateCall(masm_, src_, value_);
- if (!dst_.is(eax)) __ mov(dst_, eax);
-}
-
-
-// Call the appropriate binary operation stub to compute value op src
-// and leave the result in dst.
-class DeferredInlineSmiOperationReversed: public DeferredCode {
- public:
- DeferredInlineSmiOperationReversed(Token::Value op,
- Register dst,
- Smi* value,
- Register src,
- TypeInfo type_info,
- OverwriteMode overwrite_mode)
- : op_(op),
- dst_(dst),
- type_info_(type_info),
- value_(value),
- src_(src),
- overwrite_mode_(overwrite_mode) {
- set_comment("[ DeferredInlineSmiOperationReversed");
- }
-
- virtual void Generate();
-
- private:
- Token::Value op_;
- Register dst_;
- TypeInfo type_info_;
- Smi* value_;
- Register src_;
- OverwriteMode overwrite_mode_;
-};
-
-
-void DeferredInlineSmiOperationReversed::Generate() {
- GenericBinaryOpStub stub(
- op_,
- overwrite_mode_,
- NO_SMI_CODE_IN_STUB,
- TypeInfo::Combine(TypeInfo::Smi(), type_info_));
- stub.GenerateCall(masm_, value_, src_);
- if (!dst_.is(eax)) __ mov(dst_, eax);
-}
-
-
-// The result of src + value is in dst. It either overflowed or was not
-// smi tagged. Undo the speculative addition and call the appropriate
-// specialized stub for add. The result is left in dst.
-class DeferredInlineSmiAdd: public DeferredCode {
- public:
- DeferredInlineSmiAdd(Register dst,
- TypeInfo type_info,
- Smi* value,
- OverwriteMode overwrite_mode)
- : dst_(dst),
- type_info_(type_info),
- value_(value),
- overwrite_mode_(overwrite_mode) {
- if (type_info_.IsSmi()) overwrite_mode_ = NO_OVERWRITE;
- set_comment("[ DeferredInlineSmiAdd");
- }
-
- virtual void Generate();
-
- private:
- Register dst_;
- TypeInfo type_info_;
- Smi* value_;
- OverwriteMode overwrite_mode_;
-};
-
-
-void DeferredInlineSmiAdd::Generate() {
- // Undo the optimistic add operation and call the shared stub.
- __ sub(Operand(dst_), Immediate(value_));
- GenericBinaryOpStub igostub(
- Token::ADD,
- overwrite_mode_,
- NO_SMI_CODE_IN_STUB,
- TypeInfo::Combine(TypeInfo::Smi(), type_info_));
- igostub.GenerateCall(masm_, dst_, value_);
- if (!dst_.is(eax)) __ mov(dst_, eax);
-}
-
-
-// The result of value + src is in dst. It either overflowed or was not
-// smi tagged. Undo the speculative addition and call the appropriate
-// specialized stub for add. The result is left in dst.
-class DeferredInlineSmiAddReversed: public DeferredCode {
- public:
- DeferredInlineSmiAddReversed(Register dst,
- TypeInfo type_info,
- Smi* value,
- OverwriteMode overwrite_mode)
- : dst_(dst),
- type_info_(type_info),
- value_(value),
- overwrite_mode_(overwrite_mode) {
- set_comment("[ DeferredInlineSmiAddReversed");
- }
-
- virtual void Generate();
-
- private:
- Register dst_;
- TypeInfo type_info_;
- Smi* value_;
- OverwriteMode overwrite_mode_;
-};
-
-
-void DeferredInlineSmiAddReversed::Generate() {
- // Undo the optimistic add operation and call the shared stub.
- __ sub(Operand(dst_), Immediate(value_));
- GenericBinaryOpStub igostub(
- Token::ADD,
- overwrite_mode_,
- NO_SMI_CODE_IN_STUB,
- TypeInfo::Combine(TypeInfo::Smi(), type_info_));
- igostub.GenerateCall(masm_, value_, dst_);
- if (!dst_.is(eax)) __ mov(dst_, eax);
-}
-
-
-// The result of src - value is in dst. It either overflowed or was not
-// smi tagged. Undo the speculative subtraction and call the
-// appropriate specialized stub for subtract. The result is left in
-// dst.
-class DeferredInlineSmiSub: public DeferredCode {
- public:
- DeferredInlineSmiSub(Register dst,
- TypeInfo type_info,
- Smi* value,
- OverwriteMode overwrite_mode)
- : dst_(dst),
- type_info_(type_info),
- value_(value),
- overwrite_mode_(overwrite_mode) {
- if (type_info.IsSmi()) overwrite_mode_ = NO_OVERWRITE;
- set_comment("[ DeferredInlineSmiSub");
- }
-
- virtual void Generate();
-
- private:
- Register dst_;
- TypeInfo type_info_;
- Smi* value_;
- OverwriteMode overwrite_mode_;
-};
-
-
-void DeferredInlineSmiSub::Generate() {
- // Undo the optimistic sub operation and call the shared stub.
- __ add(Operand(dst_), Immediate(value_));
- GenericBinaryOpStub igostub(
- Token::SUB,
- overwrite_mode_,
- NO_SMI_CODE_IN_STUB,
- TypeInfo::Combine(TypeInfo::Smi(), type_info_));
- igostub.GenerateCall(masm_, dst_, value_);
- if (!dst_.is(eax)) __ mov(dst_, eax);
-}
-
-
-Result CodeGenerator::ConstantSmiBinaryOperation(BinaryOperation* expr,
- Result* operand,
- Handle<Object> value,
- bool reversed,
- OverwriteMode overwrite_mode) {
- // Generate inline code for a binary operation when one of the
- // operands is a constant smi. Consumes the argument "operand".
- if (IsUnsafeSmi(value)) {
- Result unsafe_operand(value);
- if (reversed) {
- return LikelySmiBinaryOperation(expr, &unsafe_operand, operand,
- overwrite_mode);
- } else {
- return LikelySmiBinaryOperation(expr, operand, &unsafe_operand,
- overwrite_mode);
- }
- }
-
- // Get the literal value.
- Smi* smi_value = Smi::cast(*value);
- int int_value = smi_value->value();
-
- Token::Value op = expr->op();
- Result answer;
- switch (op) {
- case Token::ADD: {
- operand->ToRegister();
- frame_->Spill(operand->reg());
-
- // Optimistically add. Call the specialized add stub if the
- // result is not a smi or overflows.
- DeferredCode* deferred = NULL;
- if (reversed) {
- deferred = new DeferredInlineSmiAddReversed(operand->reg(),
- operand->type_info(),
- smi_value,
- overwrite_mode);
- } else {
- deferred = new DeferredInlineSmiAdd(operand->reg(),
- operand->type_info(),
- smi_value,
- overwrite_mode);
- }
- __ add(Operand(operand->reg()), Immediate(value));
- deferred->Branch(overflow);
- if (!operand->type_info().IsSmi()) {
- __ test(operand->reg(), Immediate(kSmiTagMask));
- deferred->Branch(not_zero);
- } else if (FLAG_debug_code) {
- __ AbortIfNotSmi(operand->reg());
- }
- deferred->BindExit();
- answer = *operand;
- break;
- }
-
- case Token::SUB: {
- DeferredCode* deferred = NULL;
- if (reversed) {
- // The reversed case is only hit when the right operand is not a
- // constant.
- ASSERT(operand->is_register());
- answer = allocator()->Allocate();
- ASSERT(answer.is_valid());
- __ Set(answer.reg(), Immediate(value));
- deferred =
- new DeferredInlineSmiOperationReversed(op,
- answer.reg(),
- smi_value,
- operand->reg(),
- operand->type_info(),
- overwrite_mode);
- __ sub(answer.reg(), Operand(operand->reg()));
- } else {
- operand->ToRegister();
- frame_->Spill(operand->reg());
- answer = *operand;
- deferred = new DeferredInlineSmiSub(operand->reg(),
- operand->type_info(),
- smi_value,
- overwrite_mode);
- __ sub(Operand(operand->reg()), Immediate(value));
- }
- deferred->Branch(overflow);
- if (!operand->type_info().IsSmi()) {
- __ test(answer.reg(), Immediate(kSmiTagMask));
- deferred->Branch(not_zero);
- } else if (FLAG_debug_code) {
- __ AbortIfNotSmi(operand->reg());
- }
- deferred->BindExit();
- operand->Unuse();
- break;
- }
-
- case Token::SAR:
- if (reversed) {
- Result constant_operand(value);
- answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
- overwrite_mode);
- } else {
- // Only the least significant 5 bits of the shift value are used.
- // In the slow case, this masking is done inside the runtime call.
- int shift_value = int_value & 0x1f;
- operand->ToRegister();
- frame_->Spill(operand->reg());
- if (!operand->type_info().IsSmi()) {
- DeferredInlineSmiOperation* deferred =
- new DeferredInlineSmiOperation(op,
- operand->reg(),
- operand->reg(),
- operand->type_info(),
- smi_value,
- overwrite_mode);
- __ test(operand->reg(), Immediate(kSmiTagMask));
- deferred->Branch(not_zero);
- if (shift_value > 0) {
- __ sar(operand->reg(), shift_value);
- __ and_(operand->reg(), ~kSmiTagMask);
- }
- deferred->BindExit();
- } else {
- if (FLAG_debug_code) {
- __ AbortIfNotSmi(operand->reg());
- }
- if (shift_value > 0) {
- __ sar(operand->reg(), shift_value);
- __ and_(operand->reg(), ~kSmiTagMask);
- }
- }
- answer = *operand;
- }
- break;
-
- case Token::SHR:
- if (reversed) {
- Result constant_operand(value);
- answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
- overwrite_mode);
- } else {
- // Only the least significant 5 bits of the shift value are used.
- // In the slow case, this masking is done inside the runtime call.
- int shift_value = int_value & 0x1f;
- operand->ToRegister();
- answer = allocator()->Allocate();
- ASSERT(answer.is_valid());
- DeferredInlineSmiOperation* deferred =
- new DeferredInlineSmiOperation(op,
- answer.reg(),
- operand->reg(),
- operand->type_info(),
- smi_value,
- overwrite_mode);
- if (!operand->type_info().IsSmi()) {
- __ test(operand->reg(), Immediate(kSmiTagMask));
- deferred->Branch(not_zero);
- } else if (FLAG_debug_code) {
- __ AbortIfNotSmi(operand->reg());
- }
- __ mov(answer.reg(), operand->reg());
- __ SmiUntag(answer.reg());
- __ shr(answer.reg(), shift_value);
- // A negative Smi shifted right two is in the positive Smi range.
- if (shift_value < 2) {
- __ test(answer.reg(), Immediate(0xc0000000));
- deferred->Branch(not_zero);
- }
- operand->Unuse();
- __ SmiTag(answer.reg());
- deferred->BindExit();
- }
- break;
-
- case Token::SHL:
- if (reversed) {
- // Move operand into ecx and also into a second register.
- // If operand is already in a register, take advantage of that.
- // This lets us modify ecx, but still bail out to deferred code.
- Result right;
- Result right_copy_in_ecx;
- TypeInfo right_type_info = operand->type_info();
- operand->ToRegister();
- if (operand->reg().is(ecx)) {
- right = allocator()->Allocate();
- __ mov(right.reg(), ecx);
- frame_->Spill(ecx);
- right_copy_in_ecx = *operand;
- } else {
- right_copy_in_ecx = allocator()->Allocate(ecx);
- __ mov(ecx, operand->reg());
- right = *operand;
- }
- operand->Unuse();
-
- answer = allocator()->Allocate();
- DeferredInlineSmiOperationReversed* deferred =
- new DeferredInlineSmiOperationReversed(op,
- answer.reg(),
- smi_value,
- right.reg(),
- right_type_info,
- overwrite_mode);
- __ mov(answer.reg(), Immediate(int_value));
- __ sar(ecx, kSmiTagSize);
- if (!right_type_info.IsSmi()) {
- deferred->Branch(carry);
- } else if (FLAG_debug_code) {
- __ AbortIfNotSmi(right.reg());
- }
- __ shl_cl(answer.reg());
- __ cmp(answer.reg(), 0xc0000000);
- deferred->Branch(sign);
- __ SmiTag(answer.reg());
-
- deferred->BindExit();
- } else {
- // Only the least significant 5 bits of the shift value are used.
- // In the slow case, this masking is done inside the runtime call.
- int shift_value = int_value & 0x1f;
- operand->ToRegister();
- if (shift_value == 0) {
- // Spill operand so it can be overwritten in the slow case.
- frame_->Spill(operand->reg());
- DeferredInlineSmiOperation* deferred =
- new DeferredInlineSmiOperation(op,
- operand->reg(),
- operand->reg(),
- operand->type_info(),
- smi_value,
- overwrite_mode);
- __ test(operand->reg(), Immediate(kSmiTagMask));
- deferred->Branch(not_zero);
- deferred->BindExit();
- answer = *operand;
- } else {
- // Use a fresh temporary for nonzero shift values.
- answer = allocator()->Allocate();
- ASSERT(answer.is_valid());
- DeferredInlineSmiOperation* deferred =
- new DeferredInlineSmiOperation(op,
- answer.reg(),
- operand->reg(),
- operand->type_info(),
- smi_value,
- overwrite_mode);
- if (!operand->type_info().IsSmi()) {
- __ test(operand->reg(), Immediate(kSmiTagMask));
- deferred->Branch(not_zero);
- } else if (FLAG_debug_code) {
- __ AbortIfNotSmi(operand->reg());
- }
- __ mov(answer.reg(), operand->reg());
- STATIC_ASSERT(kSmiTag == 0); // adjust code if not the case
- // We do no shifts, only the Smi conversion, if shift_value is 1.
- if (shift_value > 1) {
- __ shl(answer.reg(), shift_value - 1);
- }
- // Convert int result to Smi, checking that it is in int range.
- STATIC_ASSERT(kSmiTagSize == 1); // adjust code if not the case
- __ add(answer.reg(), Operand(answer.reg()));
- deferred->Branch(overflow);
- deferred->BindExit();
- operand->Unuse();
- }
- }
- break;
-
- case Token::BIT_OR:
- case Token::BIT_XOR:
- case Token::BIT_AND: {
- operand->ToRegister();
- // DeferredInlineBinaryOperation requires all the registers that it is
- // told about to be spilled.
- frame_->Spill(operand->reg());
- DeferredInlineBinaryOperation* deferred = NULL;
- if (!operand->type_info().IsSmi()) {
- Result left = allocator()->Allocate();
- ASSERT(left.is_valid());
- Result right = allocator()->Allocate();
- ASSERT(right.is_valid());
- deferred = new DeferredInlineBinaryOperation(
- op,
- operand->reg(),
- left.reg(),
- right.reg(),
- operand->type_info(),
- TypeInfo::Smi(),
- overwrite_mode == NO_OVERWRITE ? NO_OVERWRITE : OVERWRITE_LEFT);
- __ test(operand->reg(), Immediate(kSmiTagMask));
- deferred->JumpToConstantRhs(not_zero, smi_value);
- } else if (FLAG_debug_code) {
- __ AbortIfNotSmi(operand->reg());
- }
- if (op == Token::BIT_AND) {
- __ and_(Operand(operand->reg()), Immediate(value));
- } else if (op == Token::BIT_XOR) {
- if (int_value != 0) {
- __ xor_(Operand(operand->reg()), Immediate(value));
- }
- } else {
- ASSERT(op == Token::BIT_OR);
- if (int_value != 0) {
- __ or_(Operand(operand->reg()), Immediate(value));
- }
- }
- if (deferred != NULL) deferred->BindExit();
- answer = *operand;
- break;
- }
-
- case Token::DIV:
- if (!reversed && int_value == 2) {
- operand->ToRegister();
- frame_->Spill(operand->reg());
-
- DeferredInlineSmiOperation* deferred =
- new DeferredInlineSmiOperation(op,
- operand->reg(),
- operand->reg(),
- operand->type_info(),
- smi_value,
- overwrite_mode);
- // Check that lowest log2(value) bits of operand are zero, and test
- // smi tag at the same time.
- STATIC_ASSERT(kSmiTag == 0);
- STATIC_ASSERT(kSmiTagSize == 1);
- __ test(operand->reg(), Immediate(3));
- deferred->Branch(not_zero); // Branch if non-smi or odd smi.
- __ sar(operand->reg(), 1);
- deferred->BindExit();
- answer = *operand;
- } else {
- // Cannot fall through MOD to default case, so we duplicate the
- // default case here.
- Result constant_operand(value);
- if (reversed) {
- answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
- overwrite_mode);
- } else {
- answer = LikelySmiBinaryOperation(expr, operand, &constant_operand,
- overwrite_mode);
- }
- }
- break;
-
- // Generate inline code for mod of powers of 2 and negative powers of 2.
- case Token::MOD:
- if (!reversed &&
- int_value != 0 &&
- (IsPowerOf2(int_value) || IsPowerOf2(-int_value))) {
- operand->ToRegister();
- frame_->Spill(operand->reg());
- DeferredCode* deferred =
- new DeferredInlineSmiOperation(op,
- operand->reg(),
- operand->reg(),
- operand->type_info(),
- smi_value,
- overwrite_mode);
- // Check for negative or non-Smi left hand side.
- __ test(operand->reg(), Immediate(kSmiTagMask | kSmiSignMask));
- deferred->Branch(not_zero);
- if (int_value < 0) int_value = -int_value;
- if (int_value == 1) {
- __ mov(operand->reg(), Immediate(Smi::FromInt(0)));
- } else {
- __ and_(operand->reg(), (int_value << kSmiTagSize) - 1);
- }
- deferred->BindExit();
- answer = *operand;
- break;
- }
- // Fall through if we did not find a power of 2 on the right hand side!
- // The next case must be the default.
-
- default: {
- Result constant_operand(value);
- if (reversed) {
- answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
- overwrite_mode);
- } else {
- answer = LikelySmiBinaryOperation(expr, operand, &constant_operand,
- overwrite_mode);
- }
- break;
- }
- }
- ASSERT(answer.is_valid());
- return answer;
-}
-
-
-static bool CouldBeNaN(const Result& result) {
- if (result.type_info().IsSmi()) return false;
- if (result.type_info().IsInteger32()) return false;
- if (!result.is_constant()) return true;
- if (!result.handle()->IsHeapNumber()) return false;
- return isnan(HeapNumber::cast(*result.handle())->value());
-}
-
-
-// Convert from signed to unsigned comparison to match the way EFLAGS are set
-// by FPU and XMM compare instructions.
-static Condition DoubleCondition(Condition cc) {
- switch (cc) {
- case less: return below;
- case equal: return equal;
- case less_equal: return below_equal;
- case greater: return above;
- case greater_equal: return above_equal;
- default: UNREACHABLE();
- }
- UNREACHABLE();
- return equal;
-}
-
-
-static CompareFlags ComputeCompareFlags(NaNInformation nan_info,
- bool inline_number_compare) {
- CompareFlags flags = NO_SMI_COMPARE_IN_STUB;
- if (nan_info == kCantBothBeNaN) {
- flags = static_cast<CompareFlags>(flags | CANT_BOTH_BE_NAN);
- }
- if (inline_number_compare) {
- flags = static_cast<CompareFlags>(flags | NO_NUMBER_COMPARE_IN_STUB);
- }
- return flags;
-}
-
-
-void CodeGenerator::Comparison(AstNode* node,
- Condition cc,
- bool strict,
- ControlDestination* dest) {
- // Strict only makes sense for equality comparisons.
- ASSERT(!strict || cc == equal);
-
- Result left_side;
- Result right_side;
- // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order.
- if (cc == greater || cc == less_equal) {
- cc = ReverseCondition(cc);
- left_side = frame_->Pop();
- right_side = frame_->Pop();
- } else {
- right_side = frame_->Pop();
- left_side = frame_->Pop();
- }
- ASSERT(cc == less || cc == equal || cc == greater_equal);
-
- // If either side is a constant smi, optimize the comparison.
- bool left_side_constant_smi = false;
- bool left_side_constant_null = false;
- bool left_side_constant_1_char_string = false;
- if (left_side.is_constant()) {
- left_side_constant_smi = left_side.handle()->IsSmi();
- left_side_constant_null = left_side.handle()->IsNull();
- left_side_constant_1_char_string =
- (left_side.handle()->IsString() &&
- String::cast(*left_side.handle())->length() == 1 &&
- String::cast(*left_side.handle())->IsAsciiRepresentation());
- }
- bool right_side_constant_smi = false;
- bool right_side_constant_null = false;
- bool right_side_constant_1_char_string = false;
- if (right_side.is_constant()) {
- right_side_constant_smi = right_side.handle()->IsSmi();
- right_side_constant_null = right_side.handle()->IsNull();
- right_side_constant_1_char_string =
- (right_side.handle()->IsString() &&
- String::cast(*right_side.handle())->length() == 1 &&
- String::cast(*right_side.handle())->IsAsciiRepresentation());
- }
-
- if (left_side_constant_smi || right_side_constant_smi) {
- bool is_loop_condition = (node->AsExpression() != NULL) &&
- node->AsExpression()->is_loop_condition();
- ConstantSmiComparison(cc, strict, dest, &left_side, &right_side,
- left_side_constant_smi, right_side_constant_smi,
- is_loop_condition);
- } else if (left_side_constant_1_char_string ||
- right_side_constant_1_char_string) {
- if (left_side_constant_1_char_string && right_side_constant_1_char_string) {
- // Trivial case, comparing two constants.
- int left_value = String::cast(*left_side.handle())->Get(0);
- int right_value = String::cast(*right_side.handle())->Get(0);
- switch (cc) {
- case less:
- dest->Goto(left_value < right_value);
- break;
- case equal:
- dest->Goto(left_value == right_value);
- break;
- case greater_equal:
- dest->Goto(left_value >= right_value);
- break;
- default:
- UNREACHABLE();
- }
- } else {
- // Only one side is a constant 1 character string.
- // If left side is a constant 1-character string, reverse the operands.
- // Since one side is a constant string, conversion order does not matter.
- if (left_side_constant_1_char_string) {
- Result temp = left_side;
- left_side = right_side;
- right_side = temp;
- cc = ReverseCondition(cc);
- // This may reintroduce greater or less_equal as the value of cc.
- // CompareStub and the inline code both support all values of cc.
- }
- // Implement comparison against a constant string, inlining the case
- // where both sides are strings.
- left_side.ToRegister();
-
- // Here we split control flow to the stub call and inlined cases
- // before finally splitting it to the control destination. We use
- // a jump target and branching to duplicate the virtual frame at
- // the first split. We manually handle the off-frame references
- // by reconstituting them on the non-fall-through path.
- JumpTarget is_not_string, is_string;
- Register left_reg = left_side.reg();
- Handle<Object> right_val = right_side.handle();
- ASSERT(StringShape(String::cast(*right_val)).IsSymbol());
- __ test(left_side.reg(), Immediate(kSmiTagMask));
- is_not_string.Branch(zero, &left_side);
- Result temp = allocator_->Allocate();
- ASSERT(temp.is_valid());
- __ mov(temp.reg(),
- FieldOperand(left_side.reg(), HeapObject::kMapOffset));
- __ movzx_b(temp.reg(),
- FieldOperand(temp.reg(), Map::kInstanceTypeOffset));
- // If we are testing for equality then make use of the symbol shortcut.
- // Check if the right left hand side has the same type as the left hand
- // side (which is always a symbol).
- if (cc == equal) {
- Label not_a_symbol;
- STATIC_ASSERT(kSymbolTag != 0);
- // Ensure that no non-strings have the symbol bit set.
- STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
- __ test(temp.reg(), Immediate(kIsSymbolMask)); // Test the symbol bit.
- __ j(zero, &not_a_symbol);
- // They are symbols, so do identity compare.
- __ cmp(left_side.reg(), right_side.handle());
- dest->true_target()->Branch(equal);
- dest->false_target()->Branch(not_equal);
- __ bind(&not_a_symbol);
- }
- // Call the compare stub if the left side is not a flat ascii string.
- __ and_(temp.reg(),
- kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask);
- __ cmp(temp.reg(), kStringTag | kSeqStringTag | kAsciiStringTag);
- temp.Unuse();
- is_string.Branch(equal, &left_side);
-
- // Setup and call the compare stub.
- is_not_string.Bind(&left_side);
- CompareFlags flags =
- static_cast<CompareFlags>(CANT_BOTH_BE_NAN | NO_SMI_COMPARE_IN_STUB);
- CompareStub stub(cc, strict, flags);
- Result result = frame_->CallStub(&stub, &left_side, &right_side);
- result.ToRegister();
- __ cmp(result.reg(), 0);
- result.Unuse();
- dest->true_target()->Branch(cc);
- dest->false_target()->Jump();
-
- is_string.Bind(&left_side);
- // left_side is a sequential ASCII string.
- left_side = Result(left_reg);
- right_side = Result(right_val);
- // Test string equality and comparison.
- Label comparison_done;
- if (cc == equal) {
- __ cmp(FieldOperand(left_side.reg(), String::kLengthOffset),
- Immediate(Smi::FromInt(1)));
- __ j(not_equal, &comparison_done);
- uint8_t char_value =
- static_cast<uint8_t>(String::cast(*right_val)->Get(0));
- __ cmpb(FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize),
- char_value);
- } else {
- __ cmp(FieldOperand(left_side.reg(), String::kLengthOffset),
- Immediate(Smi::FromInt(1)));
- // If the length is 0 then the jump is taken and the flags
- // correctly represent being less than the one-character string.
- __ j(below, &comparison_done);
- // Compare the first character of the string with the
- // constant 1-character string.
- uint8_t char_value =
- static_cast<uint8_t>(String::cast(*right_val)->Get(0));
- __ cmpb(FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize),
- char_value);
- __ j(not_equal, &comparison_done);
- // If the first character is the same then the long string sorts after
- // the short one.
- __ cmp(FieldOperand(left_side.reg(), String::kLengthOffset),
- Immediate(Smi::FromInt(1)));
- }
- __ bind(&comparison_done);
- left_side.Unuse();
- right_side.Unuse();
- dest->Split(cc);
- }
- } else {
- // Neither side is a constant Smi, constant 1-char string or constant null.
- // If either side is a non-smi constant, or known to be a heap number,
- // skip the smi check.
- bool known_non_smi =
- (left_side.is_constant() && !left_side.handle()->IsSmi()) ||
- (right_side.is_constant() && !right_side.handle()->IsSmi()) ||
- left_side.type_info().IsDouble() ||
- right_side.type_info().IsDouble();
-
- NaNInformation nan_info =
- (CouldBeNaN(left_side) && CouldBeNaN(right_side)) ?
- kBothCouldBeNaN :
- kCantBothBeNaN;
-
- // Inline number comparison handling any combination of smi's and heap
- // numbers if:
- // code is in a loop
- // the compare operation is different from equal
- // compare is not a for-loop comparison
- // The reason for excluding equal is that it will most likely be done
- // with smi's (not heap numbers) and the code to comparing smi's is inlined
- // separately. The same reason applies for for-loop comparison which will
- // also most likely be smi comparisons.
- bool is_loop_condition = (node->AsExpression() != NULL)
- && node->AsExpression()->is_loop_condition();
- bool inline_number_compare =
- loop_nesting() > 0 && cc != equal && !is_loop_condition;
-
- // Left and right needed in registers for the following code.
- left_side.ToRegister();
- right_side.ToRegister();
-
- if (known_non_smi) {
- // Inlined equality check:
- // If at least one of the objects is not NaN, then if the objects
- // are identical, they are equal.
- if (nan_info == kCantBothBeNaN && cc == equal) {
- __ cmp(left_side.reg(), Operand(right_side.reg()));
- dest->true_target()->Branch(equal);
- }
-
- // Inlined number comparison:
- if (inline_number_compare) {
- GenerateInlineNumberComparison(&left_side, &right_side, cc, dest);
- }
-
- // End of in-line compare, call out to the compare stub. Don't include
- // number comparison in the stub if it was inlined.
- CompareFlags flags = ComputeCompareFlags(nan_info, inline_number_compare);
- CompareStub stub(cc, strict, flags);
- Result answer = frame_->CallStub(&stub, &left_side, &right_side);
- __ test(answer.reg(), Operand(answer.reg()));
- answer.Unuse();
- dest->Split(cc);
- } else {
- // Here we split control flow to the stub call and inlined cases
- // before finally splitting it to the control destination. We use
- // a jump target and branching to duplicate the virtual frame at
- // the first split. We manually handle the off-frame references
- // by reconstituting them on the non-fall-through path.
- JumpTarget is_smi;
- Register left_reg = left_side.reg();
- Register right_reg = right_side.reg();
-
- // In-line check for comparing two smis.
- JumpIfBothSmiUsingTypeInfo(&left_side, &right_side, &is_smi);
-
- if (has_valid_frame()) {
- // Inline the equality check if both operands can't be a NaN. If both
- // objects are the same they are equal.
- if (nan_info == kCantBothBeNaN && cc == equal) {
- __ cmp(left_side.reg(), Operand(right_side.reg()));
- dest->true_target()->Branch(equal);
- }
-
- // Inlined number comparison:
- if (inline_number_compare) {
- GenerateInlineNumberComparison(&left_side, &right_side, cc, dest);
- }
-
- // End of in-line compare, call out to the compare stub. Don't include
- // number comparison in the stub if it was inlined.
- CompareFlags flags =
- ComputeCompareFlags(nan_info, inline_number_compare);
- CompareStub stub(cc, strict, flags);
- Result answer = frame_->CallStub(&stub, &left_side, &right_side);
- __ test(answer.reg(), Operand(answer.reg()));
- answer.Unuse();
- if (is_smi.is_linked()) {
- dest->true_target()->Branch(cc);
- dest->false_target()->Jump();
- } else {
- dest->Split(cc);
- }
- }
-
- if (is_smi.is_linked()) {
- is_smi.Bind();
- left_side = Result(left_reg);
- right_side = Result(right_reg);
- __ cmp(left_side.reg(), Operand(right_side.reg()));
- right_side.Unuse();
- left_side.Unuse();
- dest->Split(cc);
- }
- }
- }
-}
-
-
-void CodeGenerator::ConstantSmiComparison(Condition cc,
- bool strict,
- ControlDestination* dest,
- Result* left_side,
- Result* right_side,
- bool left_side_constant_smi,
- bool right_side_constant_smi,
- bool is_loop_condition) {
- if (left_side_constant_smi && right_side_constant_smi) {
- // Trivial case, comparing two constants.
- int left_value = Smi::cast(*left_side->handle())->value();
- int right_value = Smi::cast(*right_side->handle())->value();
- switch (cc) {
- case less:
- dest->Goto(left_value < right_value);
- break;
- case equal:
- dest->Goto(left_value == right_value);
- break;
- case greater_equal:
- dest->Goto(left_value >= right_value);
- break;
- default:
- UNREACHABLE();
- }
- } else {
- // Only one side is a constant Smi.
- // If left side is a constant Smi, reverse the operands.
- // Since one side is a constant Smi, conversion order does not matter.
- if (left_side_constant_smi) {
- Result* temp = left_side;
- left_side = right_side;
- right_side = temp;
- cc = ReverseCondition(cc);
- // This may re-introduce greater or less_equal as the value of cc.
- // CompareStub and the inline code both support all values of cc.
- }
- // Implement comparison against a constant Smi, inlining the case
- // where both sides are Smis.
- left_side->ToRegister();
- Register left_reg = left_side->reg();
- Handle<Object> right_val = right_side->handle();
-
- if (left_side->is_smi()) {
- if (FLAG_debug_code) {
- __ AbortIfNotSmi(left_reg);
- }
- // Test smi equality and comparison by signed int comparison.
- if (IsUnsafeSmi(right_side->handle())) {
- right_side->ToRegister();
- __ cmp(left_reg, Operand(right_side->reg()));
- } else {
- __ cmp(Operand(left_reg), Immediate(right_side->handle()));
- }
- left_side->Unuse();
- right_side->Unuse();
- dest->Split(cc);
- } else {
- // Only the case where the left side could possibly be a non-smi is left.
- JumpTarget is_smi;
- if (cc == equal) {
- // We can do the equality comparison before the smi check.
- __ cmp(Operand(left_reg), Immediate(right_side->handle()));
- dest->true_target()->Branch(equal);
- __ test(left_reg, Immediate(kSmiTagMask));
- dest->false_target()->Branch(zero);
- } else {
- // Do the smi check, then the comparison.
- __ test(left_reg, Immediate(kSmiTagMask));
- is_smi.Branch(zero, left_side, right_side);
- }
-
- // Jump or fall through to here if we are comparing a non-smi to a
- // constant smi. If the non-smi is a heap number and this is not
- // a loop condition, inline the floating point code.
- if (!is_loop_condition && CpuFeatures::IsSupported(SSE2)) {
- // Right side is a constant smi and left side has been checked
- // not to be a smi.
- CpuFeatures::Scope use_sse2(SSE2);
- JumpTarget not_number;
- __ cmp(FieldOperand(left_reg, HeapObject::kMapOffset),
- Immediate(Factory::heap_number_map()));
- not_number.Branch(not_equal, left_side);
- __ movdbl(xmm1,
- FieldOperand(left_reg, HeapNumber::kValueOffset));
- int value = Smi::cast(*right_val)->value();
- if (value == 0) {
- __ xorpd(xmm0, xmm0);
- } else {
- Result temp = allocator()->Allocate();
- __ mov(temp.reg(), Immediate(value));
- __ cvtsi2sd(xmm0, Operand(temp.reg()));
- temp.Unuse();
- }
- __ ucomisd(xmm1, xmm0);
- // Jump to builtin for NaN.
- not_number.Branch(parity_even, left_side);
- left_side->Unuse();
- dest->true_target()->Branch(DoubleCondition(cc));
- dest->false_target()->Jump();
- not_number.Bind(left_side);
- }
-
- // Setup and call the compare stub.
- CompareFlags flags =
- static_cast<CompareFlags>(CANT_BOTH_BE_NAN | NO_SMI_CODE_IN_STUB);
- CompareStub stub(cc, strict, flags);
- Result result = frame_->CallStub(&stub, left_side, right_side);
- result.ToRegister();
- __ test(result.reg(), Operand(result.reg()));
- result.Unuse();
- if (cc == equal) {
- dest->Split(cc);
- } else {
- dest->true_target()->Branch(cc);
- dest->false_target()->Jump();
-
- // It is important for performance for this case to be at the end.
- is_smi.Bind(left_side, right_side);
- if (IsUnsafeSmi(right_side->handle())) {
- right_side->ToRegister();
- __ cmp(left_reg, Operand(right_side->reg()));
- } else {
- __ cmp(Operand(left_reg), Immediate(right_side->handle()));
- }
- left_side->Unuse();
- right_side->Unuse();
- dest->Split(cc);
- }
- }
- }
-}
-
-
-// Check that the comparison operand is a number. Jump to not_numbers jump
-// target passing the left and right result if the operand is not a number.
-static void CheckComparisonOperand(MacroAssembler* masm_,
- Result* operand,
- Result* left_side,
- Result* right_side,
- JumpTarget* not_numbers) {
- // Perform check if operand is not known to be a number.
- if (!operand->type_info().IsNumber()) {
- Label done;
- __ test(operand->reg(), Immediate(kSmiTagMask));
- __ j(zero, &done);
- __ cmp(FieldOperand(operand->reg(), HeapObject::kMapOffset),
- Immediate(Factory::heap_number_map()));
- not_numbers->Branch(not_equal, left_side, right_side, not_taken);
- __ bind(&done);
- }
-}
-
-
-// Load a comparison operand to the FPU stack. This assumes that the operand has
-// already been checked and is a number.
-static void LoadComparisonOperand(MacroAssembler* masm_,
- Result* operand) {
- Label done;
- if (operand->type_info().IsDouble()) {
- // Operand is known to be a heap number, just load it.
- __ fld_d(FieldOperand(operand->reg(), HeapNumber::kValueOffset));
- } else if (operand->type_info().IsSmi()) {
- // Operand is known to be a smi. Convert it to double and keep the original
- // smi.
- __ SmiUntag(operand->reg());
- __ push(operand->reg());
- __ fild_s(Operand(esp, 0));
- __ pop(operand->reg());
- __ SmiTag(operand->reg());
- } else {
- // Operand type not known, check for smi otherwise assume heap number.
- Label smi;
- __ test(operand->reg(), Immediate(kSmiTagMask));
- __ j(zero, &smi);
- __ fld_d(FieldOperand(operand->reg(), HeapNumber::kValueOffset));
- __ jmp(&done);
- __ bind(&smi);
- __ SmiUntag(operand->reg());
- __ push(operand->reg());
- __ fild_s(Operand(esp, 0));
- __ pop(operand->reg());
- __ SmiTag(operand->reg());
- __ jmp(&done);
- }
- __ bind(&done);
-}
-
-
-// Load a comparison operand into into a XMM register. Jump to not_numbers jump
-// target passing the left and right result if the operand is not a number.
-static void LoadComparisonOperandSSE2(MacroAssembler* masm_,
- Result* operand,
- XMMRegister xmm_reg,
- Result* left_side,
- Result* right_side,
- JumpTarget* not_numbers) {
- Label done;
- if (operand->type_info().IsDouble()) {
- // Operand is known to be a heap number, just load it.
- __ movdbl(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset));
- } else if (operand->type_info().IsSmi()) {
- // Operand is known to be a smi. Convert it to double and keep the original
- // smi.
- __ SmiUntag(operand->reg());
- __ cvtsi2sd(xmm_reg, Operand(operand->reg()));
- __ SmiTag(operand->reg());
- } else {
- // Operand type not known, check for smi or heap number.
- Label smi;
- __ test(operand->reg(), Immediate(kSmiTagMask));
- __ j(zero, &smi);
- if (!operand->type_info().IsNumber()) {
- __ cmp(FieldOperand(operand->reg(), HeapObject::kMapOffset),
- Immediate(Factory::heap_number_map()));
- not_numbers->Branch(not_equal, left_side, right_side, taken);
- }
- __ movdbl(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset));
- __ jmp(&done);
-
- __ bind(&smi);
- // Comvert smi to float and keep the original smi.
- __ SmiUntag(operand->reg());
- __ cvtsi2sd(xmm_reg, Operand(operand->reg()));
- __ SmiTag(operand->reg());
- __ jmp(&done);
- }
- __ bind(&done);
-}
-
-
-void CodeGenerator::GenerateInlineNumberComparison(Result* left_side,
- Result* right_side,
- Condition cc,
- ControlDestination* dest) {
- ASSERT(left_side->is_register());
- ASSERT(right_side->is_register());
-
- JumpTarget not_numbers;
- if (CpuFeatures::IsSupported(SSE2)) {
- CpuFeatures::Scope use_sse2(SSE2);
-
- // Load left and right operand into registers xmm0 and xmm1 and compare.
- LoadComparisonOperandSSE2(masm_, left_side, xmm0, left_side, right_side,
- &not_numbers);
- LoadComparisonOperandSSE2(masm_, right_side, xmm1, left_side, right_side,
- &not_numbers);
- __ ucomisd(xmm0, xmm1);
- } else {
- Label check_right, compare;
-
- // Make sure that both comparison operands are numbers.
- CheckComparisonOperand(masm_, left_side, left_side, right_side,
- &not_numbers);
- CheckComparisonOperand(masm_, right_side, left_side, right_side,
- &not_numbers);
-
- // Load right and left operand to FPU stack and compare.
- LoadComparisonOperand(masm_, right_side);
- LoadComparisonOperand(masm_, left_side);
- __ FCmp();
- }
-
- // Bail out if a NaN is involved.
- not_numbers.Branch(parity_even, left_side, right_side, not_taken);
-
- // Split to destination targets based on comparison.
- left_side->Unuse();
- right_side->Unuse();
- dest->true_target()->Branch(DoubleCondition(cc));
- dest->false_target()->Jump();
-
- not_numbers.Bind(left_side, right_side);
-}
-
-
-// Call the function just below TOS on the stack with the given
-// arguments. The receiver is the TOS.
-void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args,
- CallFunctionFlags flags,
- int position) {
- // Push the arguments ("left-to-right") on the stack.
- int arg_count = args->length();
- for (int i = 0; i < arg_count; i++) {
- Load(args->at(i));
- frame_->SpillTop();
- }
-
- // Record the position for debugging purposes.
- CodeForSourcePosition(position);
-
- // Use the shared code stub to call the function.
- InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
- CallFunctionStub call_function(arg_count, in_loop, flags);
- Result answer = frame_->CallStub(&call_function, arg_count + 1);
- // Restore context and replace function on the stack with the
- // result of the stub invocation.
- frame_->RestoreContextRegister();
- frame_->SetElementAt(0, &answer);
-}
-
-
-void CodeGenerator::CallApplyLazy(Expression* applicand,
- Expression* receiver,
- VariableProxy* arguments,
- int position) {
- // An optimized implementation of expressions of the form
- // x.apply(y, arguments).
- // If the arguments object of the scope has not been allocated,
- // and x.apply is Function.prototype.apply, this optimization
- // just copies y and the arguments of the current function on the
- // stack, as receiver and arguments, and calls x.
- // In the implementation comments, we call x the applicand
- // and y the receiver.
- ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION);
- ASSERT(arguments->IsArguments());
-
- // Load applicand.apply onto the stack. This will usually
- // give us a megamorphic load site. Not super, but it works.
- Load(applicand);
- frame()->Dup();
- Handle<String> name = Factory::LookupAsciiSymbol("apply");
- frame()->Push(name);
- Result answer = frame()->CallLoadIC(RelocInfo::CODE_TARGET);
- __ nop();
- frame()->Push(&answer);
-
- // Load the receiver and the existing arguments object onto the
- // expression stack. Avoid allocating the arguments object here.
- Load(receiver);
- LoadFromSlot(scope()->arguments()->AsSlot(), NOT_INSIDE_TYPEOF);
-
- // Emit the source position information after having loaded the
- // receiver and the arguments.
- CodeForSourcePosition(position);
- // Contents of frame at this point:
- // Frame[0]: arguments object of the current function or the hole.
- // Frame[1]: receiver
- // Frame[2]: applicand.apply
- // Frame[3]: applicand.
-
- // Check if the arguments object has been lazily allocated
- // already. If so, just use that instead of copying the arguments
- // from the stack. This also deals with cases where a local variable
- // named 'arguments' has been introduced.
- frame_->Dup();
- Result probe = frame_->Pop();
- { VirtualFrame::SpilledScope spilled_scope;
- Label slow, done;
- bool try_lazy = true;
- if (probe.is_constant()) {
- try_lazy = probe.handle()->IsArgumentsMarker();
- } else {
- __ cmp(Operand(probe.reg()), Immediate(Factory::arguments_marker()));
- probe.Unuse();
- __ j(not_equal, &slow);
- }
-
- if (try_lazy) {
- Label build_args;
- // Get rid of the arguments object probe.
- frame_->Drop(); // Can be called on a spilled frame.
- // Stack now has 3 elements on it.
- // Contents of stack at this point:
- // esp[0]: receiver
- // esp[1]: applicand.apply
- // esp[2]: applicand.
-
- // Check that the receiver really is a JavaScript object.
- __ mov(eax, Operand(esp, 0));
- __ test(eax, Immediate(kSmiTagMask));
- __ j(zero, &build_args);
- // We allow all JSObjects including JSFunctions. As long as
- // JS_FUNCTION_TYPE is the last instance type and it is right
- // after LAST_JS_OBJECT_TYPE, we do not have to check the upper
- // bound.
- STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
- STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
- __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx);
- __ j(below, &build_args);
-
- // Check that applicand.apply is Function.prototype.apply.
- __ mov(eax, Operand(esp, kPointerSize));
- __ test(eax, Immediate(kSmiTagMask));
- __ j(zero, &build_args);
- __ CmpObjectType(eax, JS_FUNCTION_TYPE, ecx);
- __ j(not_equal, &build_args);
- __ mov(ecx, FieldOperand(eax, JSFunction::kCodeEntryOffset));
- __ sub(Operand(ecx), Immediate(Code::kHeaderSize - kHeapObjectTag));
- Handle<Code> apply_code(Builtins::builtin(Builtins::FunctionApply));
- __ cmp(Operand(ecx), Immediate(apply_code));
- __ j(not_equal, &build_args);
-
- // Check that applicand is a function.
- __ mov(edi, Operand(esp, 2 * kPointerSize));
- __ test(edi, Immediate(kSmiTagMask));
- __ j(zero, &build_args);
- __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
- __ j(not_equal, &build_args);
-
- // Copy the arguments to this function possibly from the
- // adaptor frame below it.
- Label invoke, adapted;
- __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
- __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
- __ cmp(Operand(ecx),
- Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
- __ j(equal, &adapted);
-
- // No arguments adaptor frame. Copy fixed number of arguments.
- __ mov(eax, Immediate(scope()->num_parameters()));
- for (int i = 0; i < scope()->num_parameters(); i++) {
- __ push(frame_->ParameterAt(i));
- }
- __ jmp(&invoke);
-
- // Arguments adaptor frame present. Copy arguments from there, but
- // avoid copying too many arguments to avoid stack overflows.
- __ bind(&adapted);
- static const uint32_t kArgumentsLimit = 1 * KB;
- __ mov(eax, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
- __ SmiUntag(eax);
- __ mov(ecx, Operand(eax));
- __ cmp(eax, kArgumentsLimit);
- __ j(above, &build_args);
-
- // Loop through the arguments pushing them onto the execution
- // stack. We don't inform the virtual frame of the push, so we don't
- // have to worry about getting rid of the elements from the virtual
- // frame.
- Label loop;
- // ecx is a small non-negative integer, due to the test above.
- __ test(ecx, Operand(ecx));
- __ j(zero, &invoke);
- __ bind(&loop);
- __ push(Operand(edx, ecx, times_pointer_size, 1 * kPointerSize));
- __ dec(ecx);
- __ j(not_zero, &loop);
-
- // Invoke the function.
- __ bind(&invoke);
- ParameterCount actual(eax);
- __ InvokeFunction(edi, actual, CALL_FUNCTION);
- // Drop applicand.apply and applicand from the stack, and push
- // the result of the function call, but leave the spilled frame
- // unchanged, with 3 elements, so it is correct when we compile the
- // slow-case code.
- __ add(Operand(esp), Immediate(2 * kPointerSize));
- __ push(eax);
- // Stack now has 1 element:
- // esp[0]: result
- __ jmp(&done);
-
- // Slow-case: Allocate the arguments object since we know it isn't
- // there, and fall-through to the slow-case where we call
- // applicand.apply.
- __ bind(&build_args);
- // Stack now has 3 elements, because we have jumped from where:
- // esp[0]: receiver
- // esp[1]: applicand.apply
- // esp[2]: applicand.
-
- // StoreArgumentsObject requires a correct frame, and may modify it.
- Result arguments_object = StoreArgumentsObject(false);
- frame_->SpillAll();
- arguments_object.ToRegister();
- frame_->EmitPush(arguments_object.reg());
- arguments_object.Unuse();
- // Stack and frame now have 4 elements.
- __ bind(&slow);
- }
-
- // Generic computation of x.apply(y, args) with no special optimization.
- // Flip applicand.apply and applicand on the stack, so
- // applicand looks like the receiver of the applicand.apply call.
- // Then process it as a normal function call.
- __ mov(eax, Operand(esp, 3 * kPointerSize));
- __ mov(ebx, Operand(esp, 2 * kPointerSize));
- __ mov(Operand(esp, 2 * kPointerSize), eax);
- __ mov(Operand(esp, 3 * kPointerSize), ebx);
-
- CallFunctionStub call_function(2, NOT_IN_LOOP, NO_CALL_FUNCTION_FLAGS);
- Result res = frame_->CallStub(&call_function, 3);
- // The function and its two arguments have been dropped.
- frame_->Drop(1); // Drop the receiver as well.
- res.ToRegister();
- frame_->EmitPush(res.reg());
- // Stack now has 1 element:
- // esp[0]: result
- if (try_lazy) __ bind(&done);
- } // End of spilled scope.
- // Restore the context register after a call.
- frame_->RestoreContextRegister();
-}
-
-
-class DeferredStackCheck: public DeferredCode {
- public:
- DeferredStackCheck() {
- set_comment("[ DeferredStackCheck");
- }
-
- virtual void Generate();
-};
-
-
-void DeferredStackCheck::Generate() {
- StackCheckStub stub;
- __ CallStub(&stub);
-}
-
-
-void CodeGenerator::CheckStack() {
- DeferredStackCheck* deferred = new DeferredStackCheck;
- ExternalReference stack_limit =
- ExternalReference::address_of_stack_limit();
- __ cmp(esp, Operand::StaticVariable(stack_limit));
- deferred->Branch(below);
- deferred->BindExit();
-}
-
-
-void CodeGenerator::VisitAndSpill(Statement* statement) {
- ASSERT(in_spilled_code());
- set_in_spilled_code(false);
- Visit(statement);
- if (frame_ != NULL) {
- frame_->SpillAll();
- }
- set_in_spilled_code(true);
-}
-
-
-void CodeGenerator::VisitStatementsAndSpill(ZoneList<Statement*>* statements) {
-#ifdef DEBUG
- int original_height = frame_->height();
-#endif
- ASSERT(in_spilled_code());
- set_in_spilled_code(false);
- VisitStatements(statements);
- if (frame_ != NULL) {
- frame_->SpillAll();
- }
- set_in_spilled_code(true);
-
- ASSERT(!has_valid_frame() || frame_->height() == original_height);
-}
-
-
-void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) {
-#ifdef DEBUG
- int original_height = frame_->height();
-#endif
- ASSERT(!in_spilled_code());
- for (int i = 0; has_valid_frame() && i < statements->length(); i++) {
- Visit(statements->at(i));
- }
- ASSERT(!has_valid_frame() || frame_->height() == original_height);
-}
-
-
-void CodeGenerator::VisitBlock(Block* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ Block");
- CodeForStatementPosition(node);
- node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
- VisitStatements(node->statements());
- if (node->break_target()->is_linked()) {
- node->break_target()->Bind();
- }
- node->break_target()->Unuse();
-}
-
-
-void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
- // Call the runtime to declare the globals. The inevitable call
- // will sync frame elements to memory anyway, so we do it eagerly to
- // allow us to push the arguments directly into place.
- frame_->SyncRange(0, frame_->element_count() - 1);
-
- frame_->EmitPush(esi); // The context is the first argument.
- frame_->EmitPush(Immediate(pairs));
- frame_->EmitPush(Immediate(Smi::FromInt(is_eval() ? 1 : 0)));
- frame_->EmitPush(Immediate(Smi::FromInt(strict_mode_flag())));
- Result ignored = frame_->CallRuntime(Runtime::kDeclareGlobals, 4);
- // Return value is ignored.
-}
-
-
-void CodeGenerator::VisitDeclaration(Declaration* node) {
- Comment cmnt(masm_, "[ Declaration");
- Variable* var = node->proxy()->var();
- ASSERT(var != NULL); // must have been resolved
- Slot* slot = var->AsSlot();
-
- // If it was not possible to allocate the variable at compile time,
- // we need to "declare" it at runtime to make sure it actually
- // exists in the local context.
- if (slot != NULL && slot->type() == Slot::LOOKUP) {
- // Variables with a "LOOKUP" slot were introduced as non-locals
- // during variable resolution and must have mode DYNAMIC.
- ASSERT(var->is_dynamic());
- // For now, just do a runtime call. Sync the virtual frame eagerly
- // so we can simply push the arguments into place.
- frame_->SyncRange(0, frame_->element_count() - 1);
- frame_->EmitPush(esi);
- frame_->EmitPush(Immediate(var->name()));
- // Declaration nodes are always introduced in one of two modes.
- ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST);
- PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY;
- frame_->EmitPush(Immediate(Smi::FromInt(attr)));
- // Push initial value, if any.
- // Note: For variables we must not push an initial value (such as
- // 'undefined') because we may have a (legal) redeclaration and we
- // must not destroy the current value.
- if (node->mode() == Variable::CONST) {
- frame_->EmitPush(Immediate(Factory::the_hole_value()));
- } else if (node->fun() != NULL) {
- Load(node->fun());
- } else {
- frame_->EmitPush(Immediate(Smi::FromInt(0))); // no initial value!
- }
- Result ignored = frame_->CallRuntime(Runtime::kDeclareContextSlot, 4);
- // Ignore the return value (declarations are statements).
- return;
- }
-
- ASSERT(!var->is_global());
-
- // If we have a function or a constant, we need to initialize the variable.
- Expression* val = NULL;
- if (node->mode() == Variable::CONST) {
- val = new Literal(Factory::the_hole_value());
- } else {
- val = node->fun(); // NULL if we don't have a function
- }
-
- if (val != NULL) {
- {
- // Set the initial value.
- Reference target(this, node->proxy());
- Load(val);
- target.SetValue(NOT_CONST_INIT);
- // The reference is removed from the stack (preserving TOS) when
- // it goes out of scope.
- }
- // Get rid of the assigned value (declarations are statements).
- frame_->Drop();
- }
-}
-
-
-void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ ExpressionStatement");
- CodeForStatementPosition(node);
- Expression* expression = node->expression();
- expression->MarkAsStatement();
- Load(expression);
- // Remove the lingering expression result from the top of stack.
- frame_->Drop();
-}
-
-
-void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "// EmptyStatement");
- CodeForStatementPosition(node);
- // nothing to do
-}
-
-
-void CodeGenerator::VisitIfStatement(IfStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ IfStatement");
- // Generate different code depending on which parts of the if statement
- // are present or not.
- bool has_then_stm = node->HasThenStatement();
- bool has_else_stm = node->HasElseStatement();
-
- CodeForStatementPosition(node);
- JumpTarget exit;
- if (has_then_stm && has_else_stm) {
- JumpTarget then;
- JumpTarget else_;
- ControlDestination dest(&then, &else_, true);
- LoadCondition(node->condition(), &dest, true);
-
- if (dest.false_was_fall_through()) {
- // The else target was bound, so we compile the else part first.
- Visit(node->else_statement());
-
- // We may have dangling jumps to the then part.
- if (then.is_linked()) {
- if (has_valid_frame()) exit.Jump();
- then.Bind();
- Visit(node->then_statement());
- }
- } else {
- // The then target was bound, so we compile the then part first.
- Visit(node->then_statement());
-
- if (else_.is_linked()) {
- if (has_valid_frame()) exit.Jump();
- else_.Bind();
- Visit(node->else_statement());
- }
- }
-
- } else if (has_then_stm) {
- ASSERT(!has_else_stm);
- JumpTarget then;
- ControlDestination dest(&then, &exit, true);
- LoadCondition(node->condition(), &dest, true);
-
- if (dest.false_was_fall_through()) {
- // The exit label was bound. We may have dangling jumps to the
- // then part.
- if (then.is_linked()) {
- exit.Unuse();
- exit.Jump();
- then.Bind();
- Visit(node->then_statement());
- }
- } else {
- // The then label was bound.
- Visit(node->then_statement());
- }
-
- } else if (has_else_stm) {
- ASSERT(!has_then_stm);
- JumpTarget else_;
- ControlDestination dest(&exit, &else_, false);
- LoadCondition(node->condition(), &dest, true);
-
- if (dest.true_was_fall_through()) {
- // The exit label was bound. We may have dangling jumps to the
- // else part.
- if (else_.is_linked()) {
- exit.Unuse();
- exit.Jump();
- else_.Bind();
- Visit(node->else_statement());
- }
- } else {
- // The else label was bound.
- Visit(node->else_statement());
- }
-
- } else {
- ASSERT(!has_then_stm && !has_else_stm);
- // We only care about the condition's side effects (not its value
- // or control flow effect). LoadCondition is called without
- // forcing control flow.
- ControlDestination dest(&exit, &exit, true);
- LoadCondition(node->condition(), &dest, false);
- if (!dest.is_used()) {
- // We got a value on the frame rather than (or in addition to)
- // control flow.
- frame_->Drop();
- }
- }
-
- if (exit.is_linked()) {
- exit.Bind();
- }
-}
-
-
-void CodeGenerator::VisitContinueStatement(ContinueStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ ContinueStatement");
- CodeForStatementPosition(node);
- node->target()->continue_target()->Jump();
-}
-
-
-void CodeGenerator::VisitBreakStatement(BreakStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ BreakStatement");
- CodeForStatementPosition(node);
- node->target()->break_target()->Jump();
-}
-
-
-void CodeGenerator::VisitReturnStatement(ReturnStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ ReturnStatement");
-
- CodeForStatementPosition(node);
- Load(node->expression());
- Result return_value = frame_->Pop();
- masm()->positions_recorder()->WriteRecordedPositions();
- if (function_return_is_shadowed_) {
- function_return_.Jump(&return_value);
- } else {
- frame_->PrepareForReturn();
- if (function_return_.is_bound()) {
- // If the function return label is already bound we reuse the
- // code by jumping to the return site.
- function_return_.Jump(&return_value);
- } else {
- function_return_.Bind(&return_value);
- GenerateReturnSequence(&return_value);
- }
- }
-}
-
-
-void CodeGenerator::GenerateReturnSequence(Result* return_value) {
- // The return value is a live (but not currently reference counted)
- // reference to eax. This is safe because the current frame does not
- // contain a reference to eax (it is prepared for the return by spilling
- // all registers).
- if (FLAG_trace) {
- frame_->Push(return_value);
- *return_value = frame_->CallRuntime(Runtime::kTraceExit, 1);
- }
- return_value->ToRegister(eax);
-
- // Add a label for checking the size of the code used for returning.
-#ifdef DEBUG
- Label check_exit_codesize;
- masm_->bind(&check_exit_codesize);
-#endif
-
- // Leave the frame and return popping the arguments and the
- // receiver.
- frame_->Exit();
- int arguments_bytes = (scope()->num_parameters() + 1) * kPointerSize;
- __ Ret(arguments_bytes, ecx);
- DeleteFrame();
-
-#ifdef ENABLE_DEBUGGER_SUPPORT
- // Check that the size of the code used for returning is large enough
- // for the debugger's requirements.
- ASSERT(Assembler::kJSReturnSequenceLength <=
- masm_->SizeOfCodeGeneratedSince(&check_exit_codesize));
-#endif
-}
-
-
-void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ WithEnterStatement");
- CodeForStatementPosition(node);
- Load(node->expression());
- Result context;
- if (node->is_catch_block()) {
- context = frame_->CallRuntime(Runtime::kPushCatchContext, 1);
- } else {
- context = frame_->CallRuntime(Runtime::kPushContext, 1);
- }
-
- // Update context local.
- frame_->SaveContextRegister();
-
- // Verify that the runtime call result and esi agree.
- if (FLAG_debug_code) {
- __ cmp(context.reg(), Operand(esi));
- __ Assert(equal, "Runtime::NewContext should end up in esi");
- }
-}
-
-
-void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ WithExitStatement");
- CodeForStatementPosition(node);
- // Pop context.
- __ mov(esi, ContextOperand(esi, Context::PREVIOUS_INDEX));
- // Update context local.
- frame_->SaveContextRegister();
-}
-
-
-void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ SwitchStatement");
- CodeForStatementPosition(node);
- node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
-
- // Compile the switch value.
- Load(node->tag());
-
- ZoneList<CaseClause*>* cases = node->cases();
- int length = cases->length();
- CaseClause* default_clause = NULL;
-
- JumpTarget next_test;
- // Compile the case label expressions and comparisons. Exit early
- // if a comparison is unconditionally true. The target next_test is
- // bound before the loop in order to indicate control flow to the
- // first comparison.
- next_test.Bind();
- for (int i = 0; i < length && !next_test.is_unused(); i++) {
- CaseClause* clause = cases->at(i);
- // The default is not a test, but remember it for later.
- if (clause->is_default()) {
- default_clause = clause;
- continue;
- }
-
- Comment cmnt(masm_, "[ Case comparison");
- // We recycle the same target next_test for each test. Bind it if
- // the previous test has not done so and then unuse it for the
- // loop.
- if (next_test.is_linked()) {
- next_test.Bind();
- }
- next_test.Unuse();
-
- // Duplicate the switch value.
- frame_->Dup();
-
- // Compile the label expression.
- Load(clause->label());
-
- // Compare and branch to the body if true or the next test if
- // false. Prefer the next test as a fall through.
- ControlDestination dest(clause->body_target(), &next_test, false);
- Comparison(node, equal, true, &dest);
-
- // If the comparison fell through to the true target, jump to the
- // actual body.
- if (dest.true_was_fall_through()) {
- clause->body_target()->Unuse();
- clause->body_target()->Jump();
- }
- }
-
- // If there was control flow to a next test from the last one
- // compiled, compile a jump to the default or break target.
- if (!next_test.is_unused()) {
- if (next_test.is_linked()) {
- next_test.Bind();
- }
- // Drop the switch value.
- frame_->Drop();
- if (default_clause != NULL) {
- default_clause->body_target()->Jump();
- } else {
- node->break_target()->Jump();
- }
- }
-
- // The last instruction emitted was a jump, either to the default
- // clause or the break target, or else to a case body from the loop
- // that compiles the tests.
- ASSERT(!has_valid_frame());
- // Compile case bodies as needed.
- for (int i = 0; i < length; i++) {
- CaseClause* clause = cases->at(i);
-
- // There are two ways to reach the body: from the corresponding
- // test or as the fall through of the previous body.
- if (clause->body_target()->is_linked() || has_valid_frame()) {
- if (clause->body_target()->is_linked()) {
- if (has_valid_frame()) {
- // If we have both a jump to the test and a fall through, put
- // a jump on the fall through path to avoid the dropping of
- // the switch value on the test path. The exception is the
- // default which has already had the switch value dropped.
- if (clause->is_default()) {
- clause->body_target()->Bind();
- } else {
- JumpTarget body;
- body.Jump();
- clause->body_target()->Bind();
- frame_->Drop();
- body.Bind();
- }
- } else {
- // No fall through to worry about.
- clause->body_target()->Bind();
- if (!clause->is_default()) {
- frame_->Drop();
- }
- }
- } else {
- // Otherwise, we have only fall through.
- ASSERT(has_valid_frame());
- }
-
- // We are now prepared to compile the body.
- Comment cmnt(masm_, "[ Case body");
- VisitStatements(clause->statements());
- }
- clause->body_target()->Unuse();
- }
-
- // We may not have a valid frame here so bind the break target only
- // if needed.
- if (node->break_target()->is_linked()) {
- node->break_target()->Bind();
- }
- node->break_target()->Unuse();
-}
-
-
-void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ DoWhileStatement");
- CodeForStatementPosition(node);
- node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
- JumpTarget body(JumpTarget::BIDIRECTIONAL);
- IncrementLoopNesting();
-
- ConditionAnalysis info = AnalyzeCondition(node->cond());
- // Label the top of the loop for the backward jump if necessary.
- switch (info) {
- case ALWAYS_TRUE:
- // Use the continue target.
- node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
- node->continue_target()->Bind();
- break;
- case ALWAYS_FALSE:
- // No need to label it.
- node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
- break;
- case DONT_KNOW:
- // Continue is the test, so use the backward body target.
- node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
- body.Bind();
- break;
- }
-
- CheckStack(); // TODO(1222600): ignore if body contains calls.
- Visit(node->body());
-
- // Compile the test.
- switch (info) {
- case ALWAYS_TRUE:
- // If control flow can fall off the end of the body, jump back
- // to the top and bind the break target at the exit.
- if (has_valid_frame()) {
- node->continue_target()->Jump();
- }
- if (node->break_target()->is_linked()) {
- node->break_target()->Bind();
- }
- break;
- case ALWAYS_FALSE:
- // We may have had continues or breaks in the body.
- if (node->continue_target()->is_linked()) {
- node->continue_target()->Bind();
- }
- if (node->break_target()->is_linked()) {
- node->break_target()->Bind();
- }
- break;
- case DONT_KNOW:
- // We have to compile the test expression if it can be reached by
- // control flow falling out of the body or via continue.
- if (node->continue_target()->is_linked()) {
- node->continue_target()->Bind();
- }
- if (has_valid_frame()) {
- Comment cmnt(masm_, "[ DoWhileCondition");
- CodeForDoWhileConditionPosition(node);
- ControlDestination dest(&body, node->break_target(), false);
- LoadCondition(node->cond(), &dest, true);
- }
- if (node->break_target()->is_linked()) {
- node->break_target()->Bind();
- }
- break;
- }
-
- DecrementLoopNesting();
- node->continue_target()->Unuse();
- node->break_target()->Unuse();
-}
-
-
-void CodeGenerator::VisitWhileStatement(WhileStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ WhileStatement");
- CodeForStatementPosition(node);
-
- // If the condition is always false and has no side effects, we do not
- // need to compile anything.
- ConditionAnalysis info = AnalyzeCondition(node->cond());
- if (info == ALWAYS_FALSE) return;
-
- // Do not duplicate conditions that may have function literal
- // subexpressions. This can cause us to compile the function literal
- // twice.
- bool test_at_bottom = !node->may_have_function_literal();
- node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
- IncrementLoopNesting();
- JumpTarget body;
- if (test_at_bottom) {
- body.set_direction(JumpTarget::BIDIRECTIONAL);
- }
-
- // Based on the condition analysis, compile the test as necessary.
- switch (info) {
- case ALWAYS_TRUE:
- // We will not compile the test expression. Label the top of the
- // loop with the continue target.
- node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
- node->continue_target()->Bind();
- break;
- case DONT_KNOW: {
- if (test_at_bottom) {
- // Continue is the test at the bottom, no need to label the test
- // at the top. The body is a backward target.
- node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
- } else {
- // Label the test at the top as the continue target. The body
- // is a forward-only target.
- node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
- node->continue_target()->Bind();
- }
- // Compile the test with the body as the true target and preferred
- // fall-through and with the break target as the false target.
- ControlDestination dest(&body, node->break_target(), true);
- LoadCondition(node->cond(), &dest, true);
-
- if (dest.false_was_fall_through()) {
- // If we got the break target as fall-through, the test may have
- // been unconditionally false (if there are no jumps to the
- // body).
- if (!body.is_linked()) {
- DecrementLoopNesting();
- return;
- }
-
- // Otherwise, jump around the body on the fall through and then
- // bind the body target.
- node->break_target()->Unuse();
- node->break_target()->Jump();
- body.Bind();
- }
- break;
- }
- case ALWAYS_FALSE:
- UNREACHABLE();
- break;
- }
-
- CheckStack(); // TODO(1222600): ignore if body contains calls.
- Visit(node->body());
-
- // Based on the condition analysis, compile the backward jump as
- // necessary.
- switch (info) {
- case ALWAYS_TRUE:
- // The loop body has been labeled with the continue target.
- if (has_valid_frame()) {
- node->continue_target()->Jump();
- }
- break;
- case DONT_KNOW:
- if (test_at_bottom) {
- // If we have chosen to recompile the test at the bottom,
- // then it is the continue target.
- if (node->continue_target()->is_linked()) {
- node->continue_target()->Bind();
- }
- if (has_valid_frame()) {
- // The break target is the fall-through (body is a backward
- // jump from here and thus an invalid fall-through).
- ControlDestination dest(&body, node->break_target(), false);
- LoadCondition(node->cond(), &dest, true);
- }
- } else {
- // If we have chosen not to recompile the test at the bottom,
- // jump back to the one at the top.
- if (has_valid_frame()) {
- node->continue_target()->Jump();
- }
- }
- break;
- case ALWAYS_FALSE:
- UNREACHABLE();
- break;
- }
-
- // The break target may be already bound (by the condition), or there
- // may not be a valid frame. Bind it only if needed.
- if (node->break_target()->is_linked()) {
- node->break_target()->Bind();
- }
- DecrementLoopNesting();
-}
-
-
-void CodeGenerator::SetTypeForStackSlot(Slot* slot, TypeInfo info) {
- ASSERT(slot->type() == Slot::LOCAL || slot->type() == Slot::PARAMETER);
- if (slot->type() == Slot::LOCAL) {
- frame_->SetTypeForLocalAt(slot->index(), info);
- } else {
- frame_->SetTypeForParamAt(slot->index(), info);
- }
- if (FLAG_debug_code && info.IsSmi()) {
- if (slot->type() == Slot::LOCAL) {
- frame_->PushLocalAt(slot->index());
- } else {
- frame_->PushParameterAt(slot->index());
- }
- Result var = frame_->Pop();
- var.ToRegister();
- __ AbortIfNotSmi(var.reg());
- }
-}
-
-
-void CodeGenerator::VisitForStatement(ForStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ ForStatement");
- CodeForStatementPosition(node);
-
- // Compile the init expression if present.
- if (node->init() != NULL) {
- Visit(node->init());
- }
-
- // If the condition is always false and has no side effects, we do not
- // need to compile anything else.
- ConditionAnalysis info = AnalyzeCondition(node->cond());
- if (info == ALWAYS_FALSE) return;
-
- // Do not duplicate conditions that may have function literal
- // subexpressions. This can cause us to compile the function literal
- // twice.
- bool test_at_bottom = !node->may_have_function_literal();
- node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
- IncrementLoopNesting();
-
- // Target for backward edge if no test at the bottom, otherwise
- // unused.
- JumpTarget loop(JumpTarget::BIDIRECTIONAL);
-
- // Target for backward edge if there is a test at the bottom,
- // otherwise used as target for test at the top.
- JumpTarget body;
- if (test_at_bottom) {
- body.set_direction(JumpTarget::BIDIRECTIONAL);
- }
-
- // Based on the condition analysis, compile the test as necessary.
- switch (info) {
- case ALWAYS_TRUE:
- // We will not compile the test expression. Label the top of the
- // loop.
- if (node->next() == NULL) {
- // Use the continue target if there is no update expression.
- node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
- node->continue_target()->Bind();
- } else {
- // Otherwise use the backward loop target.
- node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
- loop.Bind();
- }
- break;
- case DONT_KNOW: {
- if (test_at_bottom) {
- // Continue is either the update expression or the test at the
- // bottom, no need to label the test at the top.
- node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
- } else if (node->next() == NULL) {
- // We are not recompiling the test at the bottom and there is no
- // update expression.
- node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
- node->continue_target()->Bind();
- } else {
- // We are not recompiling the test at the bottom and there is an
- // update expression.
- node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
- loop.Bind();
- }
-
- // Compile the test with the body as the true target and preferred
- // fall-through and with the break target as the false target.
- ControlDestination dest(&body, node->break_target(), true);
- LoadCondition(node->cond(), &dest, true);
-
- if (dest.false_was_fall_through()) {
- // If we got the break target as fall-through, the test may have
- // been unconditionally false (if there are no jumps to the
- // body).
- if (!body.is_linked()) {
- DecrementLoopNesting();
- return;
- }
-
- // Otherwise, jump around the body on the fall through and then
- // bind the body target.
- node->break_target()->Unuse();
- node->break_target()->Jump();
- body.Bind();
- }
- break;
- }
- case ALWAYS_FALSE:
- UNREACHABLE();
- break;
- }
-
- CheckStack(); // TODO(1222600): ignore if body contains calls.
-
- // We know that the loop index is a smi if it is not modified in the
- // loop body and it is checked against a constant limit in the loop
- // condition. In this case, we reset the static type information of the
- // loop index to smi before compiling the body, the update expression, and
- // the bottom check of the loop condition.
- if (node->is_fast_smi_loop()) {
- // Set number type of the loop variable to smi.
- SetTypeForStackSlot(node->loop_variable()->AsSlot(), TypeInfo::Smi());
- }
-
- Visit(node->body());
-
- // If there is an update expression, compile it if necessary.
- if (node->next() != NULL) {
- if (node->continue_target()->is_linked()) {
- node->continue_target()->Bind();
- }
-
- // Control can reach the update by falling out of the body or by a
- // continue.
- if (has_valid_frame()) {
- // Record the source position of the statement as this code which
- // is after the code for the body actually belongs to the loop
- // statement and not the body.
- CodeForStatementPosition(node);
- Visit(node->next());
- }
- }
-
- // Set the type of the loop variable to smi before compiling the test
- // expression if we are in a fast smi loop condition.
- if (node->is_fast_smi_loop() && has_valid_frame()) {
- // Set number type of the loop variable to smi.
- SetTypeForStackSlot(node->loop_variable()->AsSlot(), TypeInfo::Smi());
- }
-
- // Based on the condition analysis, compile the backward jump as
- // necessary.
- switch (info) {
- case ALWAYS_TRUE:
- if (has_valid_frame()) {
- if (node->next() == NULL) {
- node->continue_target()->Jump();
- } else {
- loop.Jump();
- }
- }
- break;
- case DONT_KNOW:
- if (test_at_bottom) {
- if (node->continue_target()->is_linked()) {
- // We can have dangling jumps to the continue target if there
- // was no update expression.
- node->continue_target()->Bind();
- }
- // Control can reach the test at the bottom by falling out of
- // the body, by a continue in the body, or from the update
- // expression.
- if (has_valid_frame()) {
- // The break target is the fall-through (body is a backward
- // jump from here).
- ControlDestination dest(&body, node->break_target(), false);
- LoadCondition(node->cond(), &dest, true);
- }
- } else {
- // Otherwise, jump back to the test at the top.
- if (has_valid_frame()) {
- if (node->next() == NULL) {
- node->continue_target()->Jump();
- } else {
- loop.Jump();
- }
- }
- }
- break;
- case ALWAYS_FALSE:
- UNREACHABLE();
- break;
- }
-
- // The break target may be already bound (by the condition), or there
- // may not be a valid frame. Bind it only if needed.
- if (node->break_target()->is_linked()) {
- node->break_target()->Bind();
- }
- DecrementLoopNesting();
-}
-
-
-void CodeGenerator::VisitForInStatement(ForInStatement* node) {
- ASSERT(!in_spilled_code());
- VirtualFrame::SpilledScope spilled_scope;
- Comment cmnt(masm_, "[ ForInStatement");
- CodeForStatementPosition(node);
-
- JumpTarget primitive;
- JumpTarget jsobject;
- JumpTarget fixed_array;
- JumpTarget entry(JumpTarget::BIDIRECTIONAL);
- JumpTarget end_del_check;
- JumpTarget exit;
-
- // Get the object to enumerate over (converted to JSObject).
- LoadAndSpill(node->enumerable());
-
- // Both SpiderMonkey and kjs ignore null and undefined in contrast
- // to the specification. 12.6.4 mandates a call to ToObject.
- frame_->EmitPop(eax);
-
- // eax: value to be iterated over
- __ cmp(eax, Factory::undefined_value());
- exit.Branch(equal);
- __ cmp(eax, Factory::null_value());
- exit.Branch(equal);
-
- // Stack layout in body:
- // [iteration counter (smi)] <- slot 0
- // [length of array] <- slot 1
- // [FixedArray] <- slot 2
- // [Map or 0] <- slot 3
- // [Object] <- slot 4
-
- // Check if enumerable is already a JSObject
- // eax: value to be iterated over
- __ test(eax, Immediate(kSmiTagMask));
- primitive.Branch(zero);
- __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx);
- jsobject.Branch(above_equal);
-
- primitive.Bind();
- frame_->EmitPush(eax);
- frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION, 1);
- // function call returns the value in eax, which is where we want it below
-
- jsobject.Bind();
- // Get the set of properties (as a FixedArray or Map).
- // eax: value to be iterated over
- frame_->EmitPush(eax); // Push the object being iterated over.
-
- // Check cache validity in generated code. This is a fast case for
- // the JSObject::IsSimpleEnum cache validity checks. If we cannot
- // guarantee cache validity, call the runtime system to check cache
- // validity or get the property names in a fixed array.
- JumpTarget call_runtime;
- JumpTarget loop(JumpTarget::BIDIRECTIONAL);
- JumpTarget check_prototype;
- JumpTarget use_cache;
- __ mov(ecx, eax);
- loop.Bind();
- // Check that there are no elements.
- __ mov(edx, FieldOperand(ecx, JSObject::kElementsOffset));
- __ cmp(Operand(edx), Immediate(Factory::empty_fixed_array()));
- call_runtime.Branch(not_equal);
- // Check that instance descriptors are not empty so that we can
- // check for an enum cache. Leave the map in ebx for the subsequent
- // prototype load.
- __ mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
- __ mov(edx, FieldOperand(ebx, Map::kInstanceDescriptorsOffset));
- __ cmp(Operand(edx), Immediate(Factory::empty_descriptor_array()));
- call_runtime.Branch(equal);
- // Check that there in an enum cache in the non-empty instance
- // descriptors. This is the case if the next enumeration index
- // field does not contain a smi.
- __ mov(edx, FieldOperand(edx, DescriptorArray::kEnumerationIndexOffset));
- __ test(edx, Immediate(kSmiTagMask));
- call_runtime.Branch(zero);
- // For all objects but the receiver, check that the cache is empty.
- __ cmp(ecx, Operand(eax));
- check_prototype.Branch(equal);
- __ mov(edx, FieldOperand(edx, DescriptorArray::kEnumCacheBridgeCacheOffset));
- __ cmp(Operand(edx), Immediate(Factory::empty_fixed_array()));
- call_runtime.Branch(not_equal);
- check_prototype.Bind();
- // Load the prototype from the map and loop if non-null.
- __ mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset));
- __ cmp(Operand(ecx), Immediate(Factory::null_value()));
- loop.Branch(not_equal);
- // The enum cache is valid. Load the map of the object being
- // iterated over and use the cache for the iteration.
- __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset));
- use_cache.Jump();
-
- call_runtime.Bind();
- // Call the runtime to get the property names for the object.
- frame_->EmitPush(eax); // push the Object (slot 4) for the runtime call
- frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1);
-
- // If we got a map from the runtime call, we can do a fast
- // modification check. Otherwise, we got a fixed array, and we have
- // to do a slow check.
- // eax: map or fixed array (result from call to
- // Runtime::kGetPropertyNamesFast)
- __ mov(edx, Operand(eax));
- __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
- __ cmp(ecx, Factory::meta_map());
- fixed_array.Branch(not_equal);
-
- use_cache.Bind();
- // Get enum cache
- // eax: map (either the result from a call to
- // Runtime::kGetPropertyNamesFast or has been fetched directly from
- // the object)
- __ mov(ecx, Operand(eax));
-
- __ mov(ecx, FieldOperand(ecx, Map::kInstanceDescriptorsOffset));
- // Get the bridge array held in the enumeration index field.
- __ mov(ecx, FieldOperand(ecx, DescriptorArray::kEnumerationIndexOffset));
- // Get the cache from the bridge array.
- __ mov(edx, FieldOperand(ecx, DescriptorArray::kEnumCacheBridgeCacheOffset));
-
- frame_->EmitPush(eax); // <- slot 3
- frame_->EmitPush(edx); // <- slot 2
- __ mov(eax, FieldOperand(edx, FixedArray::kLengthOffset));
- frame_->EmitPush(eax); // <- slot 1
- frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 0
- entry.Jump();
-
- fixed_array.Bind();
- // eax: fixed array (result from call to Runtime::kGetPropertyNamesFast)
- frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 3
- frame_->EmitPush(eax); // <- slot 2
-
- // Push the length of the array and the initial index onto the stack.
- __ mov(eax, FieldOperand(eax, FixedArray::kLengthOffset));
- frame_->EmitPush(eax); // <- slot 1
- frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 0
-
- // Condition.
- entry.Bind();
- // Grab the current frame's height for the break and continue
- // targets only after all the state is pushed on the frame.
- node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
- node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
-
- __ mov(eax, frame_->ElementAt(0)); // load the current count
- __ cmp(eax, frame_->ElementAt(1)); // compare to the array length
- node->break_target()->Branch(above_equal);
-
- // Get the i'th entry of the array.
- __ mov(edx, frame_->ElementAt(2));
- __ mov(ebx, FixedArrayElementOperand(edx, eax));
-
- // Get the expected map from the stack or a zero map in the
- // permanent slow case eax: current iteration count ebx: i'th entry
- // of the enum cache
- __ mov(edx, frame_->ElementAt(3));
- // Check if the expected map still matches that of the enumerable.
- // If not, we have to filter the key.
- // eax: current iteration count
- // ebx: i'th entry of the enum cache
- // edx: expected map value
- __ mov(ecx, frame_->ElementAt(4));
- __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset));
- __ cmp(ecx, Operand(edx));
- end_del_check.Branch(equal);
-
- // Convert the entry to a string (or null if it isn't a property anymore).
- frame_->EmitPush(frame_->ElementAt(4)); // push enumerable
- frame_->EmitPush(ebx); // push entry
- frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION, 2);
- __ mov(ebx, Operand(eax));
-
- // If the property has been removed while iterating, we just skip it.
- __ test(ebx, Operand(ebx));
- node->continue_target()->Branch(equal);
-
- end_del_check.Bind();
- // Store the entry in the 'each' expression and take another spin in the
- // loop. edx: i'th entry of the enum cache (or string there of)
- frame_->EmitPush(ebx);
- { Reference each(this, node->each());
- if (!each.is_illegal()) {
- if (each.size() > 0) {
- // Loading a reference may leave the frame in an unspilled state.
- frame_->SpillAll();
- // Get the value (under the reference on the stack) from memory.
- frame_->EmitPush(frame_->ElementAt(each.size()));
- each.SetValue(NOT_CONST_INIT);
- frame_->Drop(2);
- } else {
- // If the reference was to a slot we rely on the convenient property
- // that it doesn't matter whether a value (eg, ebx pushed above) is
- // right on top of or right underneath a zero-sized reference.
- each.SetValue(NOT_CONST_INIT);
- frame_->Drop();
- }
- }
- }
- // Unloading a reference may leave the frame in an unspilled state.
- frame_->SpillAll();
-
- // Body.
- CheckStack(); // TODO(1222600): ignore if body contains calls.
- VisitAndSpill(node->body());
-
- // Next. Reestablish a spilled frame in case we are coming here via
- // a continue in the body.
- node->continue_target()->Bind();
- frame_->SpillAll();
- frame_->EmitPop(eax);
- __ add(Operand(eax), Immediate(Smi::FromInt(1)));
- frame_->EmitPush(eax);
- entry.Jump();
-
- // Cleanup. No need to spill because VirtualFrame::Drop is safe for
- // any frame.
- node->break_target()->Bind();
- frame_->Drop(5);
-
- // Exit.
- exit.Bind();
-
- node->continue_target()->Unuse();
- node->break_target()->Unuse();
-}
-
-
-void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) {
- ASSERT(!in_spilled_code());
- VirtualFrame::SpilledScope spilled_scope;
- Comment cmnt(masm_, "[ TryCatchStatement");
- CodeForStatementPosition(node);
-
- JumpTarget try_block;
- JumpTarget exit;
-
- try_block.Call();
- // --- Catch block ---
- frame_->EmitPush(eax);
-
- // Store the caught exception in the catch variable.
- Variable* catch_var = node->catch_var()->var();
- ASSERT(catch_var != NULL && catch_var->AsSlot() != NULL);
- StoreToSlot(catch_var->AsSlot(), NOT_CONST_INIT);
-
- // Remove the exception from the stack.
- frame_->Drop();
-
- VisitStatementsAndSpill(node->catch_block()->statements());
- if (has_valid_frame()) {
- exit.Jump();
- }
-
-
- // --- Try block ---
- try_block.Bind();
-
- frame_->PushTryHandler(TRY_CATCH_HANDLER);
- int handler_height = frame_->height();
-
- // Shadow the jump targets for all escapes from the try block, including
- // returns. During shadowing, the original target is hidden as the
- // ShadowTarget and operations on the original actually affect the
- // shadowing target.
- //
- // We should probably try to unify the escaping targets and the return
- // target.
- int nof_escapes = node->escaping_targets()->length();
- List<ShadowTarget*> shadows(1 + nof_escapes);
-
- // Add the shadow target for the function return.
- static const int kReturnShadowIndex = 0;
- shadows.Add(new ShadowTarget(&function_return_));
- bool function_return_was_shadowed = function_return_is_shadowed_;
- function_return_is_shadowed_ = true;
- ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
-
- // Add the remaining shadow targets.
- for (int i = 0; i < nof_escapes; i++) {
- shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
- }
-
- // Generate code for the statements in the try block.
- VisitStatementsAndSpill(node->try_block()->statements());
-
- // Stop the introduced shadowing and count the number of required unlinks.
- // After shadowing stops, the original targets are unshadowed and the
- // ShadowTargets represent the formerly shadowing targets.
- bool has_unlinks = false;
- for (int i = 0; i < shadows.length(); i++) {
- shadows[i]->StopShadowing();
- has_unlinks = has_unlinks || shadows[i]->is_linked();
- }
- function_return_is_shadowed_ = function_return_was_shadowed;
-
- // Get an external reference to the handler address.
- ExternalReference handler_address(Top::k_handler_address);
-
- // Make sure that there's nothing left on the stack above the
- // handler structure.
- if (FLAG_debug_code) {
- __ mov(eax, Operand::StaticVariable(handler_address));
- __ cmp(esp, Operand(eax));
- __ Assert(equal, "stack pointer should point to top handler");
- }
-
- // If we can fall off the end of the try block, unlink from try chain.
- if (has_valid_frame()) {
- // The next handler address is on top of the frame. Unlink from
- // the handler list and drop the rest of this handler from the
- // frame.
- STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
- frame_->EmitPop(Operand::StaticVariable(handler_address));
- frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
- if (has_unlinks) {
- exit.Jump();
- }
- }
-
- // Generate unlink code for the (formerly) shadowing targets that
- // have been jumped to. Deallocate each shadow target.
- Result return_value;
- for (int i = 0; i < shadows.length(); i++) {
- if (shadows[i]->is_linked()) {
- // Unlink from try chain; be careful not to destroy the TOS if
- // there is one.
- if (i == kReturnShadowIndex) {
- shadows[i]->Bind(&return_value);
- return_value.ToRegister(eax);
- } else {
- shadows[i]->Bind();
- }
- // Because we can be jumping here (to spilled code) from
- // unspilled code, we need to reestablish a spilled frame at
- // this block.
- frame_->SpillAll();
-
- // Reload sp from the top handler, because some statements that we
- // break from (eg, for...in) may have left stuff on the stack.
- __ mov(esp, Operand::StaticVariable(handler_address));
- frame_->Forget(frame_->height() - handler_height);
-
- STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
- frame_->EmitPop(Operand::StaticVariable(handler_address));
- frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
-
- if (i == kReturnShadowIndex) {
- if (!function_return_is_shadowed_) frame_->PrepareForReturn();
- shadows[i]->other_target()->Jump(&return_value);
- } else {
- shadows[i]->other_target()->Jump();
- }
- }
- }
-
- exit.Bind();
-}
-
-
-void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) {
- ASSERT(!in_spilled_code());
- VirtualFrame::SpilledScope spilled_scope;
- Comment cmnt(masm_, "[ TryFinallyStatement");
- CodeForStatementPosition(node);
-
- // State: Used to keep track of reason for entering the finally
- // block. Should probably be extended to hold information for
- // break/continue from within the try block.
- enum { FALLING, THROWING, JUMPING };
-
- JumpTarget try_block;
- JumpTarget finally_block;
-
- try_block.Call();
-
- frame_->EmitPush(eax);
- // In case of thrown exceptions, this is where we continue.
- __ Set(ecx, Immediate(Smi::FromInt(THROWING)));
- finally_block.Jump();
-
- // --- Try block ---
- try_block.Bind();
-
- frame_->PushTryHandler(TRY_FINALLY_HANDLER);
- int handler_height = frame_->height();
-
- // Shadow the jump targets for all escapes from the try block, including
- // returns. During shadowing, the original target is hidden as the
- // ShadowTarget and operations on the original actually affect the
- // shadowing target.
- //
- // We should probably try to unify the escaping targets and the return
- // target.
- int nof_escapes = node->escaping_targets()->length();
- List<ShadowTarget*> shadows(1 + nof_escapes);
-
- // Add the shadow target for the function return.
- static const int kReturnShadowIndex = 0;
- shadows.Add(new ShadowTarget(&function_return_));
- bool function_return_was_shadowed = function_return_is_shadowed_;
- function_return_is_shadowed_ = true;
- ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
-
- // Add the remaining shadow targets.
- for (int i = 0; i < nof_escapes; i++) {
- shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
- }
-
- // Generate code for the statements in the try block.
- VisitStatementsAndSpill(node->try_block()->statements());
-
- // Stop the introduced shadowing and count the number of required unlinks.
- // After shadowing stops, the original targets are unshadowed and the
- // ShadowTargets represent the formerly shadowing targets.
- int nof_unlinks = 0;
- for (int i = 0; i < shadows.length(); i++) {
- shadows[i]->StopShadowing();
- if (shadows[i]->is_linked()) nof_unlinks++;
- }
- function_return_is_shadowed_ = function_return_was_shadowed;
-
- // Get an external reference to the handler address.
- ExternalReference handler_address(Top::k_handler_address);
-
- // If we can fall off the end of the try block, unlink from the try
- // chain and set the state on the frame to FALLING.
- if (has_valid_frame()) {
- // The next handler address is on top of the frame.
- STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
- frame_->EmitPop(Operand::StaticVariable(handler_address));
- frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
-
- // Fake a top of stack value (unneeded when FALLING) and set the
- // state in ecx, then jump around the unlink blocks if any.
- frame_->EmitPush(Immediate(Factory::undefined_value()));
- __ Set(ecx, Immediate(Smi::FromInt(FALLING)));
- if (nof_unlinks > 0) {
- finally_block.Jump();
- }
- }
-
- // Generate code to unlink and set the state for the (formerly)
- // shadowing targets that have been jumped to.
- for (int i = 0; i < shadows.length(); i++) {
- if (shadows[i]->is_linked()) {
- // If we have come from the shadowed return, the return value is
- // on the virtual frame. We must preserve it until it is
- // pushed.
- if (i == kReturnShadowIndex) {
- Result return_value;
- shadows[i]->Bind(&return_value);
- return_value.ToRegister(eax);
- } else {
- shadows[i]->Bind();
- }
- // Because we can be jumping here (to spilled code) from
- // unspilled code, we need to reestablish a spilled frame at
- // this block.
- frame_->SpillAll();
-
- // Reload sp from the top handler, because some statements that
- // we break from (eg, for...in) may have left stuff on the
- // stack.
- __ mov(esp, Operand::StaticVariable(handler_address));
- frame_->Forget(frame_->height() - handler_height);
-
- // Unlink this handler and drop it from the frame.
- STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
- frame_->EmitPop(Operand::StaticVariable(handler_address));
- frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
-
- if (i == kReturnShadowIndex) {
- // If this target shadowed the function return, materialize
- // the return value on the stack.
- frame_->EmitPush(eax);
- } else {
- // Fake TOS for targets that shadowed breaks and continues.
- frame_->EmitPush(Immediate(Factory::undefined_value()));
- }
- __ Set(ecx, Immediate(Smi::FromInt(JUMPING + i)));
- if (--nof_unlinks > 0) {
- // If this is not the last unlink block, jump around the next.
- finally_block.Jump();
- }
- }
- }
-
- // --- Finally block ---
- finally_block.Bind();
-
- // Push the state on the stack.
- frame_->EmitPush(ecx);
-
- // We keep two elements on the stack - the (possibly faked) result
- // and the state - while evaluating the finally block.
- //
- // Generate code for the statements in the finally block.
- VisitStatementsAndSpill(node->finally_block()->statements());
-
- if (has_valid_frame()) {
- // Restore state and return value or faked TOS.
- frame_->EmitPop(ecx);
- frame_->EmitPop(eax);
- }
-
- // Generate code to jump to the right destination for all used
- // formerly shadowing targets. Deallocate each shadow target.
- for (int i = 0; i < shadows.length(); i++) {
- if (has_valid_frame() && shadows[i]->is_bound()) {
- BreakTarget* original = shadows[i]->other_target();
- __ cmp(Operand(ecx), Immediate(Smi::FromInt(JUMPING + i)));
- if (i == kReturnShadowIndex) {
- // The return value is (already) in eax.
- Result return_value = allocator_->Allocate(eax);
- ASSERT(return_value.is_valid());
- if (function_return_is_shadowed_) {
- original->Branch(equal, &return_value);
- } else {
- // Branch around the preparation for return which may emit
- // code.
- JumpTarget skip;
- skip.Branch(not_equal);
- frame_->PrepareForReturn();
- original->Jump(&return_value);
- skip.Bind();
- }
- } else {
- original->Branch(equal);
- }
- }
- }
-
- if (has_valid_frame()) {
- // Check if we need to rethrow the exception.
- JumpTarget exit;
- __ cmp(Operand(ecx), Immediate(Smi::FromInt(THROWING)));
- exit.Branch(not_equal);
-
- // Rethrow exception.
- frame_->EmitPush(eax); // undo pop from above
- frame_->CallRuntime(Runtime::kReThrow, 1);
-
- // Done.
- exit.Bind();
- }
-}
-
-
-void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) {
- ASSERT(!in_spilled_code());
- Comment cmnt(masm_, "[ DebuggerStatement");
- CodeForStatementPosition(node);
-#ifdef ENABLE_DEBUGGER_SUPPORT
- // Spill everything, even constants, to the frame.
- frame_->SpillAll();
-
- frame_->DebugBreak();
- // Ignore the return value.
-#endif
-}
-
-
-Result CodeGenerator::InstantiateFunction(
- Handle<SharedFunctionInfo> function_info,
- bool pretenure) {
- // The inevitable call will sync frame elements to memory anyway, so
- // we do it eagerly to allow us to push the arguments directly into
- // place.
- frame()->SyncRange(0, frame()->element_count() - 1);
-
- // Use the fast case closure allocation code that allocates in new
- // space for nested functions that don't need literals cloning.
- if (scope()->is_function_scope() &&
- function_info->num_literals() == 0 &&
- !pretenure) {
- FastNewClosureStub stub;
- frame()->EmitPush(Immediate(function_info));
- return frame()->CallStub(&stub, 1);
- } else {
- // Call the runtime to instantiate the function based on the
- // shared function info.
- frame()->EmitPush(esi);
- frame()->EmitPush(Immediate(function_info));
- frame()->EmitPush(Immediate(pretenure
- ? Factory::true_value()
- : Factory::false_value()));
- return frame()->CallRuntime(Runtime::kNewClosure, 3);
- }
-}
-
-
-void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) {
- Comment cmnt(masm_, "[ FunctionLiteral");
- ASSERT(!in_safe_int32_mode());
- // Build the function info and instantiate it.
- Handle<SharedFunctionInfo> function_info =
- Compiler::BuildFunctionInfo(node, script());
- // Check for stack-overflow exception.
- if (function_info.is_null()) {
- SetStackOverflow();
- return;
- }
- Result result = InstantiateFunction(function_info, node->pretenure());
- frame()->Push(&result);
-}
-
-
-void CodeGenerator::VisitSharedFunctionInfoLiteral(
- SharedFunctionInfoLiteral* node) {
- ASSERT(!in_safe_int32_mode());
- Comment cmnt(masm_, "[ SharedFunctionInfoLiteral");
- Result result = InstantiateFunction(node->shared_function_info(), false);
- frame()->Push(&result);
-}
-
-
-void CodeGenerator::VisitConditional(Conditional* node) {
- Comment cmnt(masm_, "[ Conditional");
- ASSERT(!in_safe_int32_mode());
- JumpTarget then;
- JumpTarget else_;
- JumpTarget exit;
- ControlDestination dest(&then, &else_, true);
- LoadCondition(node->condition(), &dest, true);
-
- if (dest.false_was_fall_through()) {
- // The else target was bound, so we compile the else part first.
- Load(node->else_expression());
-
- if (then.is_linked()) {
- exit.Jump();
- then.Bind();
- Load(node->then_expression());
- }
- } else {
- // The then target was bound, so we compile the then part first.
- Load(node->then_expression());
-
- if (else_.is_linked()) {
- exit.Jump();
- else_.Bind();
- Load(node->else_expression());
- }
- }
-
- exit.Bind();
-}
-
-
-void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) {
- if (slot->type() == Slot::LOOKUP) {
- ASSERT(slot->var()->is_dynamic());
- JumpTarget slow;
- JumpTarget done;
- Result value;
-
- // Generate fast case for loading from slots that correspond to
- // local/global variables or arguments unless they are shadowed by
- // eval-introduced bindings.
- EmitDynamicLoadFromSlotFastCase(slot,
- typeof_state,
- &value,
- &slow,
- &done);
-
- slow.Bind();
- // A runtime call is inevitable. We eagerly sync frame elements
- // to memory so that we can push the arguments directly into place
- // on top of the frame.
- frame()->SyncRange(0, frame()->element_count() - 1);
- frame()->EmitPush(esi);
- frame()->EmitPush(Immediate(slot->var()->name()));
- if (typeof_state == INSIDE_TYPEOF) {
- value =
- frame()->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
- } else {
- value = frame()->CallRuntime(Runtime::kLoadContextSlot, 2);
- }
-
- done.Bind(&value);
- frame_->Push(&value);
-
- } else if (slot->var()->mode() == Variable::CONST) {
- // Const slots may contain 'the hole' value (the constant hasn't been
- // initialized yet) which needs to be converted into the 'undefined'
- // value.
- //
- // We currently spill the virtual frame because constants use the
- // potentially unsafe direct-frame access of SlotOperand.
- VirtualFrame::SpilledScope spilled_scope;
- Comment cmnt(masm_, "[ Load const");
- Label exit;
- __ mov(ecx, SlotOperand(slot, ecx));
- __ cmp(ecx, Factory::the_hole_value());
- __ j(not_equal, &exit);
- __ mov(ecx, Factory::undefined_value());
- __ bind(&exit);
- frame()->EmitPush(ecx);
-
- } else if (slot->type() == Slot::PARAMETER) {
- frame()->PushParameterAt(slot->index());
-
- } else if (slot->type() == Slot::LOCAL) {
- frame()->PushLocalAt(slot->index());
-
- } else {
- // The other remaining slot types (LOOKUP and GLOBAL) cannot reach
- // here.
- //
- // The use of SlotOperand below is safe for an unspilled frame
- // because it will always be a context slot.
- ASSERT(slot->type() == Slot::CONTEXT);
- Result temp = allocator()->Allocate();
- ASSERT(temp.is_valid());
- __ mov(temp.reg(), SlotOperand(slot, temp.reg()));
- frame()->Push(&temp);
- }
-}
-
-
-void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot,
- TypeofState state) {
- LoadFromSlot(slot, state);
-
- // Bail out quickly if we're not using lazy arguments allocation.
- if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return;
-
- // ... or if the slot isn't a non-parameter arguments slot.
- if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return;
-
- // If the loaded value is a constant, we know if the arguments
- // object has been lazily loaded yet.
- Result result = frame()->Pop();
- if (result.is_constant()) {
- if (result.handle()->IsArgumentsMarker()) {
- result = StoreArgumentsObject(false);
- }
- frame()->Push(&result);
- return;
- }
- ASSERT(result.is_register());
- // The loaded value is in a register. If it is the sentinel that
- // indicates that we haven't loaded the arguments object yet, we
- // need to do it now.
- JumpTarget exit;
- __ cmp(Operand(result.reg()), Immediate(Factory::arguments_marker()));
- frame()->Push(&result);
- exit.Branch(not_equal);
-
- result = StoreArgumentsObject(false);
- frame()->SetElementAt(0, &result);
- result.Unuse();
- exit.Bind();
- return;
-}
-
-
-Result CodeGenerator::LoadFromGlobalSlotCheckExtensions(
- Slot* slot,
- TypeofState typeof_state,
- JumpTarget* slow) {
- ASSERT(!in_safe_int32_mode());
- // Check that no extension objects have been created by calls to
- // eval from the current scope to the global scope.
- Register context = esi;
- Result tmp = allocator_->Allocate();
- ASSERT(tmp.is_valid()); // All non-reserved registers were available.
-
- Scope* s = scope();
- while (s != NULL) {
- if (s->num_heap_slots() > 0) {
- if (s->calls_eval()) {
- // Check that extension is NULL.
- __ cmp(ContextOperand(context, Context::EXTENSION_INDEX),
- Immediate(0));
- slow->Branch(not_equal, not_taken);
- }
- // Load next context in chain.
- __ mov(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX));
- __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
- context = tmp.reg();
- }
- // If no outer scope calls eval, we do not need to check more
- // context extensions. If we have reached an eval scope, we check
- // all extensions from this point.
- if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break;
- s = s->outer_scope();
- }
-
- if (s != NULL && s->is_eval_scope()) {
- // Loop up the context chain. There is no frame effect so it is
- // safe to use raw labels here.
- Label next, fast;
- if (!context.is(tmp.reg())) {
- __ mov(tmp.reg(), context);
- }
- __ bind(&next);
- // Terminate at global context.
- __ cmp(FieldOperand(tmp.reg(), HeapObject::kMapOffset),
- Immediate(Factory::global_context_map()));
- __ j(equal, &fast);
- // Check that extension is NULL.
- __ cmp(ContextOperand(tmp.reg(), Context::EXTENSION_INDEX), Immediate(0));
- slow->Branch(not_equal, not_taken);
- // Load next context in chain.
- __ mov(tmp.reg(), ContextOperand(tmp.reg(), Context::CLOSURE_INDEX));
- __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
- __ jmp(&next);
- __ bind(&fast);
- }
- tmp.Unuse();
-
- // All extension objects were empty and it is safe to use a global
- // load IC call.
- // The register allocator prefers eax if it is free, so the code generator
- // will load the global object directly into eax, which is where the LoadIC
- // expects it.
- frame_->Spill(eax);
- LoadGlobal();
- frame_->Push(slot->var()->name());
- RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF)
- ? RelocInfo::CODE_TARGET
- : RelocInfo::CODE_TARGET_CONTEXT;
- Result answer = frame_->CallLoadIC(mode);
- // A test eax instruction following the call signals that the inobject
- // property case was inlined. Ensure that there is not a test eax
- // instruction here.
- __ nop();
- return answer;
-}
-
-
-void CodeGenerator::EmitDynamicLoadFromSlotFastCase(Slot* slot,
- TypeofState typeof_state,
- Result* result,
- JumpTarget* slow,
- JumpTarget* done) {
- // Generate fast-case code for variables that might be shadowed by
- // eval-introduced variables. Eval is used a lot without
- // introducing variables. In those cases, we do not want to
- // perform a runtime call for all variables in the scope
- // containing the eval.
- if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) {
- *result = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, slow);
- done->Jump(result);
-
- } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) {
- Slot* potential_slot = slot->var()->local_if_not_shadowed()->AsSlot();
- Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite();
- if (potential_slot != NULL) {
- // Generate fast case for locals that rewrite to slots.
- // Allocate a fresh register to use as a temp in
- // ContextSlotOperandCheckExtensions and to hold the result
- // value.
- *result = allocator()->Allocate();
- ASSERT(result->is_valid());
- __ mov(result->reg(),
- ContextSlotOperandCheckExtensions(potential_slot, *result, slow));
- if (potential_slot->var()->mode() == Variable::CONST) {
- __ cmp(result->reg(), Factory::the_hole_value());
- done->Branch(not_equal, result);
- __ mov(result->reg(), Factory::undefined_value());
- }
- done->Jump(result);
- } else if (rewrite != NULL) {
- // Generate fast case for calls of an argument function.
- Property* property = rewrite->AsProperty();
- if (property != NULL) {
- VariableProxy* obj_proxy = property->obj()->AsVariableProxy();
- Literal* key_literal = property->key()->AsLiteral();
- if (obj_proxy != NULL &&
- key_literal != NULL &&
- obj_proxy->IsArguments() &&
- key_literal->handle()->IsSmi()) {
- // Load arguments object if there are no eval-introduced
- // variables. Then load the argument from the arguments
- // object using keyed load.
- Result arguments = allocator()->Allocate();
- ASSERT(arguments.is_valid());
- __ mov(arguments.reg(),
- ContextSlotOperandCheckExtensions(obj_proxy->var()->AsSlot(),
- arguments,
- slow));
- frame_->Push(&arguments);
- frame_->Push(key_literal->handle());
- *result = EmitKeyedLoad();
- done->Jump(result);
- }
- }
- }
- }
-}
-
-
-void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) {
- if (slot->type() == Slot::LOOKUP) {
- ASSERT(slot->var()->is_dynamic());
-
- // For now, just do a runtime call. Since the call is inevitable,
- // we eagerly sync the virtual frame so we can directly push the
- // arguments into place.
- frame_->SyncRange(0, frame_->element_count() - 1);
-
- frame_->EmitPush(esi);
- frame_->EmitPush(Immediate(slot->var()->name()));
-
- Result value;
- if (init_state == CONST_INIT) {
- // Same as the case for a normal store, but ignores attribute
- // (e.g. READ_ONLY) of context slot so that we can initialize const
- // properties (introduced via eval("const foo = (some expr);")). Also,
- // uses the current function context instead of the top context.
- //
- // Note that we must declare the foo upon entry of eval(), via a
- // context slot declaration, but we cannot initialize it at the same
- // time, because the const declaration may be at the end of the eval
- // code (sigh...) and the const variable may have been used before
- // (where its value is 'undefined'). Thus, we can only do the
- // initialization when we actually encounter the expression and when
- // the expression operands are defined and valid, and thus we need the
- // split into 2 operations: declaration of the context slot followed
- // by initialization.
- value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3);
- } else {
- frame_->Push(Smi::FromInt(strict_mode_flag()));
- value = frame_->CallRuntime(Runtime::kStoreContextSlot, 4);
- }
- // Storing a variable must keep the (new) value on the expression
- // stack. This is necessary for compiling chained assignment
- // expressions.
- frame_->Push(&value);
-
- } else {
- ASSERT(!slot->var()->is_dynamic());
-
- JumpTarget exit;
- if (init_state == CONST_INIT) {
- ASSERT(slot->var()->mode() == Variable::CONST);
- // Only the first const initialization must be executed (the slot
- // still contains 'the hole' value). When the assignment is executed,
- // the code is identical to a normal store (see below).
- //
- // We spill the frame in the code below because the direct-frame
- // access of SlotOperand is potentially unsafe with an unspilled
- // frame.
- VirtualFrame::SpilledScope spilled_scope;
- Comment cmnt(masm_, "[ Init const");
- __ mov(ecx, SlotOperand(slot, ecx));
- __ cmp(ecx, Factory::the_hole_value());
- exit.Branch(not_equal);
- }
-
- // We must execute the store. Storing a variable must keep the (new)
- // value on the stack. This is necessary for compiling assignment
- // expressions.
- //
- // Note: We will reach here even with slot->var()->mode() ==
- // Variable::CONST because of const declarations which will initialize
- // consts to 'the hole' value and by doing so, end up calling this code.
- if (slot->type() == Slot::PARAMETER) {
- frame_->StoreToParameterAt(slot->index());
- } else if (slot->type() == Slot::LOCAL) {
- frame_->StoreToLocalAt(slot->index());
- } else {
- // The other slot types (LOOKUP and GLOBAL) cannot reach here.
- //
- // The use of SlotOperand below is safe for an unspilled frame
- // because the slot is a context slot.
- ASSERT(slot->type() == Slot::CONTEXT);
- frame_->Dup();
- Result value = frame_->Pop();
- value.ToRegister();
- Result start = allocator_->Allocate();
- ASSERT(start.is_valid());
- __ mov(SlotOperand(slot, start.reg()), value.reg());
- // RecordWrite may destroy the value registers.
- //
- // TODO(204): Avoid actually spilling when the value is not
- // needed (probably the common case).
- frame_->Spill(value.reg());
- int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
- Result temp = allocator_->Allocate();
- ASSERT(temp.is_valid());
- __ RecordWrite(start.reg(), offset, value.reg(), temp.reg());
- // The results start, value, and temp are unused by going out of
- // scope.
- }
-
- exit.Bind();
- }
-}
-
-
-void CodeGenerator::VisitSlot(Slot* slot) {
- Comment cmnt(masm_, "[ Slot");
- if (in_safe_int32_mode()) {
- if ((slot->type() == Slot::LOCAL && !slot->is_arguments())) {
- frame()->UntaggedPushLocalAt(slot->index());
- } else if (slot->type() == Slot::PARAMETER) {
- frame()->UntaggedPushParameterAt(slot->index());
- } else {
- UNREACHABLE();
- }
- } else {
- LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF);
- }
-}
-
-
-void CodeGenerator::VisitVariableProxy(VariableProxy* node) {
- Comment cmnt(masm_, "[ VariableProxy");
- Variable* var = node->var();
- Expression* expr = var->rewrite();
- if (expr != NULL) {
- Visit(expr);
- } else {
- ASSERT(var->is_global());
- ASSERT(!in_safe_int32_mode());
- Reference ref(this, node);
- ref.GetValue();
- }
-}
-
-
-void CodeGenerator::VisitLiteral(Literal* node) {
- Comment cmnt(masm_, "[ Literal");
- if (frame_->ConstantPoolOverflowed()) {
- Result temp = allocator_->Allocate();
- ASSERT(temp.is_valid());
- if (in_safe_int32_mode()) {
- temp.set_untagged_int32(true);
- }
- __ Set(temp.reg(), Immediate(node->handle()));
- frame_->Push(&temp);
- } else {
- if (in_safe_int32_mode()) {
- frame_->PushUntaggedElement(node->handle());
- } else {
- frame_->Push(node->handle());
- }
- }
-}
-
-
-void CodeGenerator::PushUnsafeSmi(Handle<Object> value) {
- ASSERT(value->IsSmi());
- int bits = reinterpret_cast<int>(*value);
- __ push(Immediate(bits ^ jit_cookie_));
- __ xor_(Operand(esp, 0), Immediate(jit_cookie_));
-}
-
-
-void CodeGenerator::StoreUnsafeSmiToLocal(int offset, Handle<Object> value) {
- ASSERT(value->IsSmi());
- int bits = reinterpret_cast<int>(*value);
- __ mov(Operand(ebp, offset), Immediate(bits ^ jit_cookie_));
- __ xor_(Operand(ebp, offset), Immediate(jit_cookie_));
-}
-
-
-void CodeGenerator::MoveUnsafeSmi(Register target, Handle<Object> value) {
- ASSERT(target.is_valid());
- ASSERT(value->IsSmi());
- int bits = reinterpret_cast<int>(*value);
- __ Set(target, Immediate(bits ^ jit_cookie_));
- __ xor_(target, jit_cookie_);
-}
-
-
-bool CodeGenerator::IsUnsafeSmi(Handle<Object> value) {
- if (!value->IsSmi()) return false;
- int int_value = Smi::cast(*value)->value();
- return !is_intn(int_value, kMaxSmiInlinedBits);
-}
-
-
-// Materialize the regexp literal 'node' in the literals array
-// 'literals' of the function. Leave the regexp boilerplate in
-// 'boilerplate'.
-class DeferredRegExpLiteral: public DeferredCode {
- public:
- DeferredRegExpLiteral(Register boilerplate,
- Register literals,
- RegExpLiteral* node)
- : boilerplate_(boilerplate), literals_(literals), node_(node) {
- set_comment("[ DeferredRegExpLiteral");
- }
-
- void Generate();
-
- private:
- Register boilerplate_;
- Register literals_;
- RegExpLiteral* node_;
-};
-
-
-void DeferredRegExpLiteral::Generate() {
- // Since the entry is undefined we call the runtime system to
- // compute the literal.
- // Literal array (0).
- __ push(literals_);
- // Literal index (1).
- __ push(Immediate(Smi::FromInt(node_->literal_index())));
- // RegExp pattern (2).
- __ push(Immediate(node_->pattern()));
- // RegExp flags (3).
- __ push(Immediate(node_->flags()));
- __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
- if (!boilerplate_.is(eax)) __ mov(boilerplate_, eax);
-}
-
-
-class DeferredAllocateInNewSpace: public DeferredCode {
- public:
- DeferredAllocateInNewSpace(int size,
- Register target,
- int registers_to_save = 0)
- : size_(size), target_(target), registers_to_save_(registers_to_save) {
- ASSERT(size >= kPointerSize && size <= Heap::MaxObjectSizeInNewSpace());
- ASSERT_EQ(0, registers_to_save & target.bit());
- set_comment("[ DeferredAllocateInNewSpace");
- }
- void Generate();
-
- private:
- int size_;
- Register target_;
- int registers_to_save_;
-};
-
-
-void DeferredAllocateInNewSpace::Generate() {
- for (int i = 0; i < kNumRegs; i++) {
- if (registers_to_save_ & (1 << i)) {
- Register save_register = { i };
- __ push(save_register);
- }
- }
- __ push(Immediate(Smi::FromInt(size_)));
- __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
- if (!target_.is(eax)) {
- __ mov(target_, eax);
- }
- for (int i = kNumRegs - 1; i >= 0; i--) {
- if (registers_to_save_ & (1 << i)) {
- Register save_register = { i };
- __ pop(save_register);
- }
- }
-}
-
-
-void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) {
- ASSERT(!in_safe_int32_mode());
- Comment cmnt(masm_, "[ RegExp Literal");
-
- // Retrieve the literals array and check the allocated entry. Begin
- // with a writable copy of the function of this activation in a
- // register.
- frame_->PushFunction();
- Result literals = frame_->Pop();
- literals.ToRegister();
- frame_->Spill(literals.reg());
-
- // Load the literals array of the function.
- __ mov(literals.reg(),
- FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
-
- // Load the literal at the ast saved index.
- Result boilerplate = allocator_->Allocate();
- ASSERT(boilerplate.is_valid());
- int literal_offset =
- FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
- __ mov(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset));
-
- // Check whether we need to materialize the RegExp object. If so,
- // jump to the deferred code passing the literals array.
- DeferredRegExpLiteral* deferred =
- new DeferredRegExpLiteral(boilerplate.reg(), literals.reg(), node);
- __ cmp(boilerplate.reg(), Factory::undefined_value());
- deferred->Branch(equal);
- deferred->BindExit();
-
- // Register of boilerplate contains RegExp object.
-
- Result tmp = allocator()->Allocate();
- ASSERT(tmp.is_valid());
-
- int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
-
- DeferredAllocateInNewSpace* allocate_fallback =
- new DeferredAllocateInNewSpace(size, literals.reg());
- frame_->Push(&boilerplate);
- frame_->SpillTop();
- __ AllocateInNewSpace(size,
- literals.reg(),
- tmp.reg(),
- no_reg,
- allocate_fallback->entry_label(),
- TAG_OBJECT);
- allocate_fallback->BindExit();
- boilerplate = frame_->Pop();
- // Copy from boilerplate to clone and return clone.
-
- for (int i = 0; i < size; i += kPointerSize) {
- __ mov(tmp.reg(), FieldOperand(boilerplate.reg(), i));
- __ mov(FieldOperand(literals.reg(), i), tmp.reg());
- }
- frame_->Push(&literals);
-}
-
-
-void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) {
- ASSERT(!in_safe_int32_mode());
- Comment cmnt(masm_, "[ ObjectLiteral");
-
- // Load a writable copy of the function of this activation in a
- // register.
- frame_->PushFunction();
- Result literals = frame_->Pop();
- literals.ToRegister();
- frame_->Spill(literals.reg());
-
- // Load the literals array of the function.
- __ mov(literals.reg(),
- FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
- // Literal array.
- frame_->Push(&literals);
- // Literal index.
- frame_->Push(Smi::FromInt(node->literal_index()));
- // Constant properties.
- frame_->Push(node->constant_properties());
- // Should the object literal have fast elements?
- frame_->Push(Smi::FromInt(node->fast_elements() ? 1 : 0));
- Result clone;
- if (node->depth() > 1) {
- clone = frame_->CallRuntime(Runtime::kCreateObjectLiteral, 4);
- } else {
- clone = frame_->CallRuntime(Runtime::kCreateObjectLiteralShallow, 4);
- }
- frame_->Push(&clone);
-
- // Mark all computed expressions that are bound to a key that
- // is shadowed by a later occurrence of the same key. For the
- // marked expressions, no store code is emitted.
- node->CalculateEmitStore();
-
- for (int i = 0; i < node->properties()->length(); i++) {
- ObjectLiteral::Property* property = node->properties()->at(i);
- switch (property->kind()) {
- case ObjectLiteral::Property::CONSTANT:
- break;
- case ObjectLiteral::Property::MATERIALIZED_LITERAL:
- if (CompileTimeValue::IsCompileTimeValue(property->value())) break;
- // else fall through.
- case ObjectLiteral::Property::COMPUTED: {
- Handle<Object> key(property->key()->handle());
- if (key->IsSymbol()) {
- // Duplicate the object as the IC receiver.
- frame_->Dup();
- Load(property->value());
- if (property->emit_store()) {
- Result ignored =
- frame_->CallStoreIC(Handle<String>::cast(key), false,
- strict_mode_flag());
- // A test eax instruction following the store IC call would
- // indicate the presence of an inlined version of the
- // store. Add a nop to indicate that there is no such
- // inlined version.
- __ nop();
- } else {
- frame_->Drop(2);
- }
- break;
- }
- // Fall through
- }
- case ObjectLiteral::Property::PROTOTYPE: {
- // Duplicate the object as an argument to the runtime call.
- frame_->Dup();
- Load(property->key());
- Load(property->value());
- if (property->emit_store()) {
- frame_->Push(Smi::FromInt(NONE)); // PropertyAttributes
- // Ignore the result.
- Result ignored = frame_->CallRuntime(Runtime::kSetProperty, 4);
- } else {
- frame_->Drop(3);
- }
- break;
- }
- case ObjectLiteral::Property::SETTER: {
- // Duplicate the object as an argument to the runtime call.
- frame_->Dup();
- Load(property->key());
- frame_->Push(Smi::FromInt(1));
- Load(property->value());
- Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
- // Ignore the result.
- break;
- }
- case ObjectLiteral::Property::GETTER: {
- // Duplicate the object as an argument to the runtime call.
- frame_->Dup();
- Load(property->key());
- frame_->Push(Smi::FromInt(0));
- Load(property->value());
- Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
- // Ignore the result.
- break;
- }
- default: UNREACHABLE();
- }
- }
-}
-
-
-void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) {
- ASSERT(!in_safe_int32_mode());
- Comment cmnt(masm_, "[ ArrayLiteral");
-
- // Load a writable copy of the function of this activation in a
- // register.
- frame_->PushFunction();
- Result literals = frame_->Pop();
- literals.ToRegister();
- frame_->Spill(literals.reg());
-
- // Load the literals array of the function.
- __ mov(literals.reg(),
- FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
-
- frame_->Push(&literals);
- frame_->Push(Smi::FromInt(node->literal_index()));
- frame_->Push(node->constant_elements());
- int length = node->values()->length();
- Result clone;
- if (node->constant_elements()->map() == Heap::fixed_cow_array_map()) {
- FastCloneShallowArrayStub stub(
- FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length);
- clone = frame_->CallStub(&stub, 3);
- __ IncrementCounter(&Counters::cow_arrays_created_stub, 1);
- } else if (node->depth() > 1) {
- clone = frame_->CallRuntime(Runtime::kCreateArrayLiteral, 3);
- } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
- clone = frame_->CallRuntime(Runtime::kCreateArrayLiteralShallow, 3);
- } else {
- FastCloneShallowArrayStub stub(
- FastCloneShallowArrayStub::CLONE_ELEMENTS, length);
- clone = frame_->CallStub(&stub, 3);
- }
- frame_->Push(&clone);
-
- // Generate code to set the elements in the array that are not
- // literals.
- for (int i = 0; i < length; i++) {
- Expression* value = node->values()->at(i);
-
- if (!CompileTimeValue::ArrayLiteralElementNeedsInitialization(value)) {
- continue;
- }
-
- // The property must be set by generated code.
- Load(value);
-
- // Get the property value off the stack.
- Result prop_value = frame_->Pop();
- prop_value.ToRegister();
-
- // Fetch the array literal while leaving a copy on the stack and
- // use it to get the elements array.
- frame_->Dup();
- Result elements = frame_->Pop();
- elements.ToRegister();
- frame_->Spill(elements.reg());
- // Get the elements array.
- __ mov(elements.reg(),
- FieldOperand(elements.reg(), JSObject::kElementsOffset));
-
- // Write to the indexed properties array.
- int offset = i * kPointerSize + FixedArray::kHeaderSize;
- __ mov(FieldOperand(elements.reg(), offset), prop_value.reg());
-
- // Update the write barrier for the array address.
- frame_->Spill(prop_value.reg()); // Overwritten by the write barrier.
- Result scratch = allocator_->Allocate();
- ASSERT(scratch.is_valid());
- __ RecordWrite(elements.reg(), offset, prop_value.reg(), scratch.reg());
- }
-}
-
-
-void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) {
- ASSERT(!in_safe_int32_mode());
- ASSERT(!in_spilled_code());
- // Call runtime routine to allocate the catch extension object and
- // assign the exception value to the catch variable.
- Comment cmnt(masm_, "[ CatchExtensionObject");
- Load(node->key());
- Load(node->value());
- Result result =
- frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2);
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::EmitSlotAssignment(Assignment* node) {
-#ifdef DEBUG
- int original_height = frame()->height();
-#endif
- Comment cmnt(masm(), "[ Variable Assignment");
- Variable* var = node->target()->AsVariableProxy()->AsVariable();
- ASSERT(var != NULL);
- Slot* slot = var->AsSlot();
- ASSERT(slot != NULL);
-
- // Evaluate the right-hand side.
- if (node->is_compound()) {
- // For a compound assignment the right-hand side is a binary operation
- // between the current property value and the actual right-hand side.
- LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF);
- Load(node->value());
-
- // Perform the binary operation.
- bool overwrite_value = node->value()->ResultOverwriteAllowed();
- // Construct the implicit binary operation.
- BinaryOperation expr(node);
- GenericBinaryOperation(&expr,
- overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
- } else {
- // For non-compound assignment just load the right-hand side.
- Load(node->value());
- }
-
- // Perform the assignment.
- if (var->mode() != Variable::CONST || node->op() == Token::INIT_CONST) {
- CodeForSourcePosition(node->position());
- StoreToSlot(slot,
- node->op() == Token::INIT_CONST ? CONST_INIT : NOT_CONST_INIT);
- }
- ASSERT(frame()->height() == original_height + 1);
-}
-
-
-void CodeGenerator::EmitNamedPropertyAssignment(Assignment* node) {
-#ifdef DEBUG
- int original_height = frame()->height();
-#endif
- Comment cmnt(masm(), "[ Named Property Assignment");
- Variable* var = node->target()->AsVariableProxy()->AsVariable();
- Property* prop = node->target()->AsProperty();
- ASSERT(var == NULL || (prop == NULL && var->is_global()));
-
- // Initialize name and evaluate the receiver sub-expression if necessary. If
- // the receiver is trivial it is not placed on the stack at this point, but
- // loaded whenever actually needed.
- Handle<String> name;
- bool is_trivial_receiver = false;
- if (var != NULL) {
- name = var->name();
- } else {
- Literal* lit = prop->key()->AsLiteral();
- ASSERT_NOT_NULL(lit);
- name = Handle<String>::cast(lit->handle());
- // Do not materialize the receiver on the frame if it is trivial.
- is_trivial_receiver = prop->obj()->IsTrivial();
- if (!is_trivial_receiver) Load(prop->obj());
- }
-
- // Change to slow case in the beginning of an initialization block to
- // avoid the quadratic behavior of repeatedly adding fast properties.
- if (node->starts_initialization_block()) {
- // Initialization block consists of assignments of the form expr.x = ..., so
- // this will never be an assignment to a variable, so there must be a
- // receiver object.
- ASSERT_EQ(NULL, var);
- if (is_trivial_receiver) {
- frame()->Push(prop->obj());
- } else {
- frame()->Dup();
- }
- Result ignored = frame()->CallRuntime(Runtime::kToSlowProperties, 1);
- }
-
- // Change to fast case at the end of an initialization block. To prepare for
- // that add an extra copy of the receiver to the frame, so that it can be
- // converted back to fast case after the assignment.
- if (node->ends_initialization_block() && !is_trivial_receiver) {
- frame()->Dup();
- }
-
- // Stack layout:
- // [tos] : receiver (only materialized if non-trivial)
- // [tos+1] : receiver if at the end of an initialization block
-
- // Evaluate the right-hand side.
- if (node->is_compound()) {
- // For a compound assignment the right-hand side is a binary operation
- // between the current property value and the actual right-hand side.
- if (is_trivial_receiver) {
- frame()->Push(prop->obj());
- } else if (var != NULL) {
- // The LoadIC stub expects the object in eax.
- // Freeing eax causes the code generator to load the global into it.
- frame_->Spill(eax);
- LoadGlobal();
- } else {
- frame()->Dup();
- }
- Result value = EmitNamedLoad(name, var != NULL);
- frame()->Push(&value);
- Load(node->value());
-
- bool overwrite_value = node->value()->ResultOverwriteAllowed();
- // Construct the implicit binary operation.
- BinaryOperation expr(node);
- GenericBinaryOperation(&expr,
- overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
- } else {
- // For non-compound assignment just load the right-hand side.
- Load(node->value());
- }
-
- // Stack layout:
- // [tos] : value
- // [tos+1] : receiver (only materialized if non-trivial)
- // [tos+2] : receiver if at the end of an initialization block
-
- // Perform the assignment. It is safe to ignore constants here.
- ASSERT(var == NULL || var->mode() != Variable::CONST);
- ASSERT_NE(Token::INIT_CONST, node->op());
- if (is_trivial_receiver) {
- Result value = frame()->Pop();
- frame()->Push(prop->obj());
- frame()->Push(&value);
- }
- CodeForSourcePosition(node->position());
- bool is_contextual = (var != NULL);
- Result answer = EmitNamedStore(name, is_contextual);
- frame()->Push(&answer);
-
- // Stack layout:
- // [tos] : result
- // [tos+1] : receiver if at the end of an initialization block
-
- if (node->ends_initialization_block()) {
- ASSERT_EQ(NULL, var);
- // The argument to the runtime call is the receiver.
- if (is_trivial_receiver) {
- frame()->Push(prop->obj());
- } else {
- // A copy of the receiver is below the value of the assignment. Swap
- // the receiver and the value of the assignment expression.
- Result result = frame()->Pop();
- Result receiver = frame()->Pop();
- frame()->Push(&result);
- frame()->Push(&receiver);
- }
- Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1);
- }
-
- // Stack layout:
- // [tos] : result
-
- ASSERT_EQ(frame()->height(), original_height + 1);
-}
-
-
-void CodeGenerator::EmitKeyedPropertyAssignment(Assignment* node) {
-#ifdef DEBUG
- int original_height = frame()->height();
-#endif
- Comment cmnt(masm_, "[ Keyed Property Assignment");
- Property* prop = node->target()->AsProperty();
- ASSERT_NOT_NULL(prop);
-
- // Evaluate the receiver subexpression.
- Load(prop->obj());
-
- // Change to slow case in the beginning of an initialization block to
- // avoid the quadratic behavior of repeatedly adding fast properties.
- if (node->starts_initialization_block()) {
- frame_->Dup();
- Result ignored = frame_->CallRuntime(Runtime::kToSlowProperties, 1);
- }
-
- // Change to fast case at the end of an initialization block. To prepare for
- // that add an extra copy of the receiver to the frame, so that it can be
- // converted back to fast case after the assignment.
- if (node->ends_initialization_block()) {
- frame_->Dup();
- }
-
- // Evaluate the key subexpression.
- Load(prop->key());
-
- // Stack layout:
- // [tos] : key
- // [tos+1] : receiver
- // [tos+2] : receiver if at the end of an initialization block
-
- // Evaluate the right-hand side.
- if (node->is_compound()) {
- // For a compound assignment the right-hand side is a binary operation
- // between the current property value and the actual right-hand side.
- // Duplicate receiver and key for loading the current property value.
- frame()->PushElementAt(1);
- frame()->PushElementAt(1);
- Result value = EmitKeyedLoad();
- frame()->Push(&value);
- Load(node->value());
-
- // Perform the binary operation.
- bool overwrite_value = node->value()->ResultOverwriteAllowed();
- BinaryOperation expr(node);
- GenericBinaryOperation(&expr,
- overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
- } else {
- // For non-compound assignment just load the right-hand side.
- Load(node->value());
- }
-
- // Stack layout:
- // [tos] : value
- // [tos+1] : key
- // [tos+2] : receiver
- // [tos+3] : receiver if at the end of an initialization block
-
- // Perform the assignment. It is safe to ignore constants here.
- ASSERT(node->op() != Token::INIT_CONST);
- CodeForSourcePosition(node->position());
- Result answer = EmitKeyedStore(prop->key()->type());
- frame()->Push(&answer);
-
- // Stack layout:
- // [tos] : result
- // [tos+1] : receiver if at the end of an initialization block
-
- // Change to fast case at the end of an initialization block.
- if (node->ends_initialization_block()) {
- // The argument to the runtime call is the extra copy of the receiver,
- // which is below the value of the assignment. Swap the receiver and
- // the value of the assignment expression.
- Result result = frame()->Pop();
- Result receiver = frame()->Pop();
- frame()->Push(&result);
- frame()->Push(&receiver);
- Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1);
- }
-
- // Stack layout:
- // [tos] : result
-
- ASSERT(frame()->height() == original_height + 1);
-}
-
-
-void CodeGenerator::VisitAssignment(Assignment* node) {
- ASSERT(!in_safe_int32_mode());
-#ifdef DEBUG
- int original_height = frame()->height();
-#endif
- Variable* var = node->target()->AsVariableProxy()->AsVariable();
- Property* prop = node->target()->AsProperty();
-
- if (var != NULL && !var->is_global()) {
- EmitSlotAssignment(node);
-
- } else if ((prop != NULL && prop->key()->IsPropertyName()) ||
- (var != NULL && var->is_global())) {
- // Properties whose keys are property names and global variables are
- // treated as named property references. We do not need to consider
- // global 'this' because it is not a valid left-hand side.
- EmitNamedPropertyAssignment(node);
-
- } else if (prop != NULL) {
- // Other properties (including rewritten parameters for a function that
- // uses arguments) are keyed property assignments.
- EmitKeyedPropertyAssignment(node);
-
- } else {
- // Invalid left-hand side.
- Load(node->target());
- Result result = frame()->CallRuntime(Runtime::kThrowReferenceError, 1);
- // The runtime call doesn't actually return but the code generator will
- // still generate code and expects a certain frame height.
- frame()->Push(&result);
- }
-
- ASSERT(frame()->height() == original_height + 1);
-}
-
-
-void CodeGenerator::VisitThrow(Throw* node) {
- ASSERT(!in_safe_int32_mode());
- Comment cmnt(masm_, "[ Throw");
- Load(node->exception());
- Result result = frame_->CallRuntime(Runtime::kThrow, 1);
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::VisitProperty(Property* node) {
- ASSERT(!in_safe_int32_mode());
- Comment cmnt(masm_, "[ Property");
- Reference property(this, node);
- property.GetValue();
-}
-
-
-void CodeGenerator::VisitCall(Call* node) {
- ASSERT(!in_safe_int32_mode());
- Comment cmnt(masm_, "[ Call");
-
- Expression* function = node->expression();
- ZoneList<Expression*>* args = node->arguments();
-
- // Check if the function is a variable or a property.
- Variable* var = function->AsVariableProxy()->AsVariable();
- Property* property = function->AsProperty();
-
- // ------------------------------------------------------------------------
- // Fast-case: Use inline caching.
- // ---
- // According to ECMA-262, section 11.2.3, page 44, the function to call
- // must be resolved after the arguments have been evaluated. The IC code
- // automatically handles this by loading the arguments before the function
- // is resolved in cache misses (this also holds for megamorphic calls).
- // ------------------------------------------------------------------------
-
- if (var != NULL && var->is_possibly_eval()) {
- // ----------------------------------
- // JavaScript example: 'eval(arg)' // eval is not known to be shadowed
- // ----------------------------------
-
- // In a call to eval, we first call %ResolvePossiblyDirectEval to
- // resolve the function we need to call and the receiver of the
- // call. Then we call the resolved function using the given
- // arguments.
-
- // Prepare the stack for the call to the resolved function.
- Load(function);
-
- // Allocate a frame slot for the receiver.
- frame_->Push(Factory::undefined_value());
-
- // Load the arguments.
- int arg_count = args->length();
- for (int i = 0; i < arg_count; i++) {
- Load(args->at(i));
- frame_->SpillTop();
- }
-
- // Result to hold the result of the function resolution and the
- // final result of the eval call.
- Result result;
-
- // If we know that eval can only be shadowed by eval-introduced
- // variables we attempt to load the global eval function directly
- // in generated code. If we succeed, there is no need to perform a
- // context lookup in the runtime system.
- JumpTarget done;
- if (var->AsSlot() != NULL && var->mode() == Variable::DYNAMIC_GLOBAL) {
- ASSERT(var->AsSlot()->type() == Slot::LOOKUP);
- JumpTarget slow;
- // Prepare the stack for the call to
- // ResolvePossiblyDirectEvalNoLookup by pushing the loaded
- // function, the first argument to the eval call and the
- // receiver.
- Result fun = LoadFromGlobalSlotCheckExtensions(var->AsSlot(),
- NOT_INSIDE_TYPEOF,
- &slow);
- frame_->Push(&fun);
- if (arg_count > 0) {
- frame_->PushElementAt(arg_count);
- } else {
- frame_->Push(Factory::undefined_value());
- }
- frame_->PushParameterAt(-1);
-
- // Push the strict mode flag.
- frame_->Push(Smi::FromInt(strict_mode_flag()));
-
- // Resolve the call.
- result =
- frame_->CallRuntime(Runtime::kResolvePossiblyDirectEvalNoLookup, 4);
-
- done.Jump(&result);
- slow.Bind();
- }
-
- // Prepare the stack for the call to ResolvePossiblyDirectEval by
- // pushing the loaded function, the first argument to the eval
- // call and the receiver.
- frame_->PushElementAt(arg_count + 1);
- if (arg_count > 0) {
- frame_->PushElementAt(arg_count);
- } else {
- frame_->Push(Factory::undefined_value());
- }
- frame_->PushParameterAt(-1);
-
- // Push the strict mode flag.
- frame_->Push(Smi::FromInt(strict_mode_flag()));
-
- // Resolve the call.
- result = frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 4);
-
- // If we generated fast-case code bind the jump-target where fast
- // and slow case merge.
- if (done.is_linked()) done.Bind(&result);
-
- // The runtime call returns a pair of values in eax (function) and
- // edx (receiver). Touch up the stack with the right values.
- Result receiver = allocator_->Allocate(edx);
- frame_->SetElementAt(arg_count + 1, &result);
- frame_->SetElementAt(arg_count, &receiver);
- receiver.Unuse();
-
- // Call the function.
- CodeForSourcePosition(node->position());
- InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
- CallFunctionStub call_function(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE);
- result = frame_->CallStub(&call_function, arg_count + 1);
-
- // Restore the context and overwrite the function on the stack with
- // the result.
- frame_->RestoreContextRegister();
- frame_->SetElementAt(0, &result);
-
- } else if (var != NULL && !var->is_this() && var->is_global()) {
- // ----------------------------------
- // JavaScript example: 'foo(1, 2, 3)' // foo is global
- // ----------------------------------
-
- // Pass the global object as the receiver and let the IC stub
- // patch the stack to use the global proxy as 'this' in the
- // invoked function.
- LoadGlobal();
-
- // Load the arguments.
- int arg_count = args->length();
- for (int i = 0; i < arg_count; i++) {
- Load(args->at(i));
- frame_->SpillTop();
- }
-
- // Push the name of the function onto the frame.
- frame_->Push(var->name());
-
- // Call the IC initialization code.
- CodeForSourcePosition(node->position());
- Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET_CONTEXT,
- arg_count,
- loop_nesting());
- frame_->RestoreContextRegister();
- frame_->Push(&result);
-
- } else if (var != NULL && var->AsSlot() != NULL &&
- var->AsSlot()->type() == Slot::LOOKUP) {
- // ----------------------------------
- // JavaScript examples:
- //
- // with (obj) foo(1, 2, 3) // foo may be in obj.
- //
- // function f() {};
- // function g() {
- // eval(...);
- // f(); // f could be in extension object.
- // }
- // ----------------------------------
-
- JumpTarget slow, done;
- Result function;
-
- // Generate fast case for loading functions from slots that
- // correspond to local/global variables or arguments unless they
- // are shadowed by eval-introduced bindings.
- EmitDynamicLoadFromSlotFastCase(var->AsSlot(),
- NOT_INSIDE_TYPEOF,
- &function,
- &slow,
- &done);
-
- slow.Bind();
- // Enter the runtime system to load the function from the context.
- // Sync the frame so we can push the arguments directly into
- // place.
- frame_->SyncRange(0, frame_->element_count() - 1);
- frame_->EmitPush(esi);
- frame_->EmitPush(Immediate(var->name()));
- frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
- // The runtime call returns a pair of values in eax and edx. The
- // looked-up function is in eax and the receiver is in edx. These
- // register references are not ref counted here. We spill them
- // eagerly since they are arguments to an inevitable call (and are
- // not sharable by the arguments).
- ASSERT(!allocator()->is_used(eax));
- frame_->EmitPush(eax);
-
- // Load the receiver.
- ASSERT(!allocator()->is_used(edx));
- frame_->EmitPush(edx);
-
- // If fast case code has been generated, emit code to push the
- // function and receiver and have the slow path jump around this
- // code.
- if (done.is_linked()) {
- JumpTarget call;
- call.Jump();
- done.Bind(&function);
- frame_->Push(&function);
- LoadGlobalReceiver();
- call.Bind();
- }
-
- // Call the function.
- CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position());
-
- } else if (property != NULL) {
- // Check if the key is a literal string.
- Literal* literal = property->key()->AsLiteral();
-
- if (literal != NULL && literal->handle()->IsSymbol()) {
- // ------------------------------------------------------------------
- // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)'
- // ------------------------------------------------------------------
-
- Handle<String> name = Handle<String>::cast(literal->handle());
-
- if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION &&
- name->IsEqualTo(CStrVector("apply")) &&
- args->length() == 2 &&
- args->at(1)->AsVariableProxy() != NULL &&
- args->at(1)->AsVariableProxy()->IsArguments()) {
- // Use the optimized Function.prototype.apply that avoids
- // allocating lazily allocated arguments objects.
- CallApplyLazy(property->obj(),
- args->at(0),
- args->at(1)->AsVariableProxy(),
- node->position());
-
- } else {
- // Push the receiver onto the frame.
- Load(property->obj());
-
- // Load the arguments.
- int arg_count = args->length();
- for (int i = 0; i < arg_count; i++) {
- Load(args->at(i));
- frame_->SpillTop();
- }
-
- // Push the name of the function onto the frame.
- frame_->Push(name);
-
- // Call the IC initialization code.
- CodeForSourcePosition(node->position());
- Result result =
- frame_->CallCallIC(RelocInfo::CODE_TARGET, arg_count,
- loop_nesting());
- frame_->RestoreContextRegister();
- frame_->Push(&result);
- }
-
- } else {
- // -------------------------------------------
- // JavaScript example: 'array[index](1, 2, 3)'
- // -------------------------------------------
-
- // Load the function to call from the property through a reference.
-
- // Pass receiver to called function.
- if (property->is_synthetic()) {
- Reference ref(this, property);
- ref.GetValue();
- // Use global object as receiver.
- LoadGlobalReceiver();
- // Call the function.
- CallWithArguments(args, RECEIVER_MIGHT_BE_VALUE, node->position());
- } else {
- // Push the receiver onto the frame.
- Load(property->obj());
-
- // Load the name of the function.
- Load(property->key());
-
- // Swap the name of the function and the receiver on the stack to follow
- // the calling convention for call ICs.
- Result key = frame_->Pop();
- Result receiver = frame_->Pop();
- frame_->Push(&key);
- frame_->Push(&receiver);
- key.Unuse();
- receiver.Unuse();
-
- // Load the arguments.
- int arg_count = args->length();
- for (int i = 0; i < arg_count; i++) {
- Load(args->at(i));
- frame_->SpillTop();
- }
-
- // Place the key on top of stack and call the IC initialization code.
- frame_->PushElementAt(arg_count + 1);
- CodeForSourcePosition(node->position());
- Result result =
- frame_->CallKeyedCallIC(RelocInfo::CODE_TARGET,
- arg_count,
- loop_nesting());
- frame_->Drop(); // Drop the key still on the stack.
- frame_->RestoreContextRegister();
- frame_->Push(&result);
- }
- }
-
- } else {
- // ----------------------------------
- // JavaScript example: 'foo(1, 2, 3)' // foo is not global
- // ----------------------------------
-
- // Load the function.
- Load(function);
-
- // Pass the global proxy as the receiver.
- LoadGlobalReceiver();
-
- // Call the function.
- CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position());
- }
-}
-
-
-void CodeGenerator::VisitCallNew(CallNew* node) {
- ASSERT(!in_safe_int32_mode());
- Comment cmnt(masm_, "[ CallNew");
-
- // According to ECMA-262, section 11.2.2, page 44, the function
- // expression in new calls must be evaluated before the
- // arguments. This is different from ordinary calls, where the
- // actual function to call is resolved after the arguments have been
- // evaluated.
-
- // Push constructor on the stack. If it's not a function it's used as
- // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
- // ignored.
- Load(node->expression());
-
- // Push the arguments ("left-to-right") on the stack.
- ZoneList<Expression*>* args = node->arguments();
- int arg_count = args->length();
- for (int i = 0; i < arg_count; i++) {
- Load(args->at(i));
- }
-
- // Call the construct call builtin that handles allocation and
- // constructor invocation.
- CodeForSourcePosition(node->position());
- Result result = frame_->CallConstructor(arg_count);
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
- Load(args->at(0));
- Result value = frame_->Pop();
- value.ToRegister();
- ASSERT(value.is_valid());
- __ test(value.reg(), Immediate(kSmiTagMask));
- value.Unuse();
- destination()->Split(zero);
-}
-
-
-void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) {
- // Conditionally generate a log call.
- // Args:
- // 0 (literal string): The type of logging (corresponds to the flags).
- // This is used to determine whether or not to generate the log call.
- // 1 (string): Format string. Access the string at argument index 2
- // with '%2s' (see Logger::LogRuntime for all the formats).
- // 2 (array): Arguments to the format string.
- ASSERT_EQ(args->length(), 3);
-#ifdef ENABLE_LOGGING_AND_PROFILING
- if (ShouldGenerateLog(args->at(0))) {
- Load(args->at(1));
- Load(args->at(2));
- frame_->CallRuntime(Runtime::kLog, 2);
- }
-#endif
- // Finally, we're expected to leave a value on the top of the stack.
- frame_->Push(Factory::undefined_value());
-}
-
-
-void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
- Load(args->at(0));
- Result value = frame_->Pop();
- value.ToRegister();
- ASSERT(value.is_valid());
- __ test(value.reg(), Immediate(kSmiTagMask | kSmiSignMask));
- value.Unuse();
- destination()->Split(zero);
-}
-
-
-class DeferredStringCharCodeAt : public DeferredCode {
- public:
- DeferredStringCharCodeAt(Register object,
- Register index,
- Register scratch,
- Register result)
- : result_(result),
- char_code_at_generator_(object,
- index,
- scratch,
- result,
- &need_conversion_,
- &need_conversion_,
- &index_out_of_range_,
- STRING_INDEX_IS_NUMBER) {}
-
- StringCharCodeAtGenerator* fast_case_generator() {
- return &char_code_at_generator_;
- }
-
- virtual void Generate() {
- VirtualFrameRuntimeCallHelper call_helper(frame_state());
- char_code_at_generator_.GenerateSlow(masm(), call_helper);
-
- __ bind(&need_conversion_);
- // Move the undefined value into the result register, which will
- // trigger conversion.
- __ Set(result_, Immediate(Factory::undefined_value()));
- __ jmp(exit_label());
-
- __ bind(&index_out_of_range_);
- // When the index is out of range, the spec requires us to return
- // NaN.
- __ Set(result_, Immediate(Factory::nan_value()));
- __ jmp(exit_label());
- }
-
- private:
- Register result_;
-
- Label need_conversion_;
- Label index_out_of_range_;
-
- StringCharCodeAtGenerator char_code_at_generator_;
-};
-
-
-// This generates code that performs a String.prototype.charCodeAt() call
-// or returns a smi in order to trigger conversion.
-void CodeGenerator::GenerateStringCharCodeAt(ZoneList<Expression*>* args) {
- Comment(masm_, "[ GenerateStringCharCodeAt");
- ASSERT(args->length() == 2);
-
- Load(args->at(0));
- Load(args->at(1));
- Result index = frame_->Pop();
- Result object = frame_->Pop();
- object.ToRegister();
- index.ToRegister();
- // We might mutate the object register.
- frame_->Spill(object.reg());
-
- // We need two extra registers.
- Result result = allocator()->Allocate();
- ASSERT(result.is_valid());
- Result scratch = allocator()->Allocate();
- ASSERT(scratch.is_valid());
-
- DeferredStringCharCodeAt* deferred =
- new DeferredStringCharCodeAt(object.reg(),
- index.reg(),
- scratch.reg(),
- result.reg());
- deferred->fast_case_generator()->GenerateFast(masm_);
- deferred->BindExit();
- frame_->Push(&result);
-}
-
-
-class DeferredStringCharFromCode : public DeferredCode {
- public:
- DeferredStringCharFromCode(Register code,
- Register result)
- : char_from_code_generator_(code, result) {}
-
- StringCharFromCodeGenerator* fast_case_generator() {
- return &char_from_code_generator_;
- }
-
- virtual void Generate() {
- VirtualFrameRuntimeCallHelper call_helper(frame_state());
- char_from_code_generator_.GenerateSlow(masm(), call_helper);
- }
-
- private:
- StringCharFromCodeGenerator char_from_code_generator_;
-};
-
-
-// Generates code for creating a one-char string from a char code.
-void CodeGenerator::GenerateStringCharFromCode(ZoneList<Expression*>* args) {
- Comment(masm_, "[ GenerateStringCharFromCode");
- ASSERT(args->length() == 1);
-
- Load(args->at(0));
-
- Result code = frame_->Pop();
- code.ToRegister();
- ASSERT(code.is_valid());
-
- Result result = allocator()->Allocate();
- ASSERT(result.is_valid());
-
- DeferredStringCharFromCode* deferred = new DeferredStringCharFromCode(
- code.reg(), result.reg());
- deferred->fast_case_generator()->GenerateFast(masm_);
- deferred->BindExit();
- frame_->Push(&result);
-}
-
-
-class DeferredStringCharAt : public DeferredCode {
- public:
- DeferredStringCharAt(Register object,
- Register index,
- Register scratch1,
- Register scratch2,
- Register result)
- : result_(result),
- char_at_generator_(object,
- index,
- scratch1,
- scratch2,
- result,
- &need_conversion_,
- &need_conversion_,
- &index_out_of_range_,
- STRING_INDEX_IS_NUMBER) {}
-
- StringCharAtGenerator* fast_case_generator() {
- return &char_at_generator_;
- }
-
- virtual void Generate() {
- VirtualFrameRuntimeCallHelper call_helper(frame_state());
- char_at_generator_.GenerateSlow(masm(), call_helper);
-
- __ bind(&need_conversion_);
- // Move smi zero into the result register, which will trigger
- // conversion.
- __ Set(result_, Immediate(Smi::FromInt(0)));
- __ jmp(exit_label());
-
- __ bind(&index_out_of_range_);
- // When the index is out of range, the spec requires us to return
- // the empty string.
- __ Set(result_, Immediate(Factory::empty_string()));
- __ jmp(exit_label());
- }
-
- private:
- Register result_;
-
- Label need_conversion_;
- Label index_out_of_range_;
-
- StringCharAtGenerator char_at_generator_;
-};
-
-
-// This generates code that performs a String.prototype.charAt() call
-// or returns a smi in order to trigger conversion.
-void CodeGenerator::GenerateStringCharAt(ZoneList<Expression*>* args) {
- Comment(masm_, "[ GenerateStringCharAt");
- ASSERT(args->length() == 2);
-
- Load(args->at(0));
- Load(args->at(1));
- Result index = frame_->Pop();
- Result object = frame_->Pop();
- object.ToRegister();
- index.ToRegister();
- // We might mutate the object register.
- frame_->Spill(object.reg());
-
- // We need three extra registers.
- Result result = allocator()->Allocate();
- ASSERT(result.is_valid());
- Result scratch1 = allocator()->Allocate();
- ASSERT(scratch1.is_valid());
- Result scratch2 = allocator()->Allocate();
- ASSERT(scratch2.is_valid());
-
- DeferredStringCharAt* deferred =
- new DeferredStringCharAt(object.reg(),
- index.reg(),
- scratch1.reg(),
- scratch2.reg(),
- result.reg());
- deferred->fast_case_generator()->GenerateFast(masm_);
- deferred->BindExit();
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
- Load(args->at(0));
- Result value = frame_->Pop();
- value.ToRegister();
- ASSERT(value.is_valid());
- __ test(value.reg(), Immediate(kSmiTagMask));
- destination()->false_target()->Branch(equal);
- // It is a heap object - get map.
- Result temp = allocator()->Allocate();
- ASSERT(temp.is_valid());
- // Check if the object is a JS array or not.
- __ CmpObjectType(value.reg(), JS_ARRAY_TYPE, temp.reg());
- value.Unuse();
- temp.Unuse();
- destination()->Split(equal);
-}
-
-
-void CodeGenerator::GenerateFastAsciiArrayJoin(ZoneList<Expression*>* args) {
- Label bailout, done, one_char_separator, long_separator,
- non_trivial_array, not_size_one_array, loop, loop_condition,
- loop_1, loop_1_condition, loop_2, loop_2_entry, loop_3, loop_3_entry;
-
- ASSERT(args->length() == 2);
- // We will leave the separator on the stack until the end of the function.
- Load(args->at(1));
- // Load this to eax (= array)
- Load(args->at(0));
- Result array_result = frame_->Pop();
- array_result.ToRegister(eax);
- frame_->SpillAll();
-
- // All aliases of the same register have disjoint lifetimes.
- Register array = eax;
- Register elements = no_reg; // Will be eax.
-
- Register index = edx;
-
- Register string_length = ecx;
-
- Register string = esi;
-
- Register scratch = ebx;
-
- Register array_length = edi;
- Register result_pos = no_reg; // Will be edi.
-
- // Separator operand is already pushed.
- Operand separator_operand = Operand(esp, 2 * kPointerSize);
- Operand result_operand = Operand(esp, 1 * kPointerSize);
- Operand array_length_operand = Operand(esp, 0);
- __ sub(Operand(esp), Immediate(2 * kPointerSize));
- __ cld();
- // Check that the array is a JSArray
- __ test(array, Immediate(kSmiTagMask));
- __ j(zero, &bailout);
- __ CmpObjectType(array, JS_ARRAY_TYPE, scratch);
- __ j(not_equal, &bailout);
-
- // Check that the array has fast elements.
- __ test_b(FieldOperand(scratch, Map::kBitField2Offset),
- 1 << Map::kHasFastElements);
- __ j(zero, &bailout);
-
- // If the array has length zero, return the empty string.
- __ mov(array_length, FieldOperand(array, JSArray::kLengthOffset));
- __ sar(array_length, 1);
- __ j(not_zero, &non_trivial_array);
- __ mov(result_operand, Factory::empty_string());
- __ jmp(&done);
-
- // Save the array length.
- __ bind(&non_trivial_array);
- __ mov(array_length_operand, array_length);
-
- // Save the FixedArray containing array's elements.
- // End of array's live range.
- elements = array;
- __ mov(elements, FieldOperand(array, JSArray::kElementsOffset));
- array = no_reg;
-
-
- // Check that all array elements are sequential ASCII strings, and
- // accumulate the sum of their lengths, as a smi-encoded value.
- __ Set(index, Immediate(0));
- __ Set(string_length, Immediate(0));
- // Loop condition: while (index < length).
- // Live loop registers: index, array_length, string,
- // scratch, string_length, elements.
- __ jmp(&loop_condition);
- __ bind(&loop);
- __ cmp(index, Operand(array_length));
- __ j(greater_equal, &done);
-
- __ mov(string, FieldOperand(elements, index,
- times_pointer_size,
- FixedArray::kHeaderSize));
- __ test(string, Immediate(kSmiTagMask));
- __ j(zero, &bailout);
- __ mov(scratch, FieldOperand(string, HeapObject::kMapOffset));
- __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
- __ and_(scratch, Immediate(
- kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask));
- __ cmp(scratch, kStringTag | kAsciiStringTag | kSeqStringTag);
- __ j(not_equal, &bailout);
- __ add(string_length,
- FieldOperand(string, SeqAsciiString::kLengthOffset));
- __ j(overflow, &bailout);
- __ add(Operand(index), Immediate(1));
- __ bind(&loop_condition);
- __ cmp(index, Operand(array_length));
- __ j(less, &loop);
-
- // If array_length is 1, return elements[0], a string.
- __ cmp(array_length, 1);
- __ j(not_equal, &not_size_one_array);
- __ mov(scratch, FieldOperand(elements, FixedArray::kHeaderSize));
- __ mov(result_operand, scratch);
- __ jmp(&done);
-
- __ bind(&not_size_one_array);
-
- // End of array_length live range.
- result_pos = array_length;
- array_length = no_reg;
-
- // Live registers:
- // string_length: Sum of string lengths, as a smi.
- // elements: FixedArray of strings.
-
- // Check that the separator is a flat ASCII string.
- __ mov(string, separator_operand);
- __ test(string, Immediate(kSmiTagMask));
- __ j(zero, &bailout);
- __ mov(scratch, FieldOperand(string, HeapObject::kMapOffset));
- __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
- __ and_(scratch, Immediate(
- kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask));
- __ cmp(scratch, kStringTag | kAsciiStringTag | kSeqStringTag);
- __ j(not_equal, &bailout);
-
- // Add (separator length times array_length) - separator length
- // to string_length.
- __ mov(scratch, separator_operand);
- __ mov(scratch, FieldOperand(scratch, SeqAsciiString::kLengthOffset));
- __ sub(string_length, Operand(scratch)); // May be negative, temporarily.
- __ imul(scratch, array_length_operand);
- __ j(overflow, &bailout);
- __ add(string_length, Operand(scratch));
- __ j(overflow, &bailout);
-
- __ shr(string_length, 1);
- // Live registers and stack values:
- // string_length
- // elements
- __ AllocateAsciiString(result_pos, string_length, scratch,
- index, string, &bailout);
- __ mov(result_operand, result_pos);
- __ lea(result_pos, FieldOperand(result_pos, SeqAsciiString::kHeaderSize));
-
-
- __ mov(string, separator_operand);
- __ cmp(FieldOperand(string, SeqAsciiString::kLengthOffset),
- Immediate(Smi::FromInt(1)));
- __ j(equal, &one_char_separator);
- __ j(greater, &long_separator);
-
-
- // Empty separator case
- __ mov(index, Immediate(0));
- __ jmp(&loop_1_condition);
- // Loop condition: while (index < length).
- __ bind(&loop_1);
- // Each iteration of the loop concatenates one string to the result.
- // Live values in registers:
- // index: which element of the elements array we are adding to the result.
- // result_pos: the position to which we are currently copying characters.
- // elements: the FixedArray of strings we are joining.
-
- // Get string = array[index].
- __ mov(string, FieldOperand(elements, index,
- times_pointer_size,
- FixedArray::kHeaderSize));
- __ mov(string_length,
- FieldOperand(string, String::kLengthOffset));
- __ shr(string_length, 1);
- __ lea(string,
- FieldOperand(string, SeqAsciiString::kHeaderSize));
- __ CopyBytes(string, result_pos, string_length, scratch);
- __ add(Operand(index), Immediate(1));
- __ bind(&loop_1_condition);
- __ cmp(index, array_length_operand);
- __ j(less, &loop_1); // End while (index < length).
- __ jmp(&done);
-
-
-
- // One-character separator case
- __ bind(&one_char_separator);
- // Replace separator with its ascii character value.
- __ mov_b(scratch, FieldOperand(string, SeqAsciiString::kHeaderSize));
- __ mov_b(separator_operand, scratch);
-
- __ Set(index, Immediate(0));
- // Jump into the loop after the code that copies the separator, so the first
- // element is not preceded by a separator
- __ jmp(&loop_2_entry);
- // Loop condition: while (index < length).
- __ bind(&loop_2);
- // Each iteration of the loop concatenates one string to the result.
- // Live values in registers:
- // index: which element of the elements array we are adding to the result.
- // result_pos: the position to which we are currently copying characters.
-
- // Copy the separator character to the result.
- __ mov_b(scratch, separator_operand);
- __ mov_b(Operand(result_pos, 0), scratch);
- __ inc(result_pos);
-
- __ bind(&loop_2_entry);
- // Get string = array[index].
- __ mov(string, FieldOperand(elements, index,
- times_pointer_size,
- FixedArray::kHeaderSize));
- __ mov(string_length,
- FieldOperand(string, String::kLengthOffset));
- __ shr(string_length, 1);
- __ lea(string,
- FieldOperand(string, SeqAsciiString::kHeaderSize));
- __ CopyBytes(string, result_pos, string_length, scratch);
- __ add(Operand(index), Immediate(1));
-
- __ cmp(index, array_length_operand);
- __ j(less, &loop_2); // End while (index < length).
- __ jmp(&done);
-
-
- // Long separator case (separator is more than one character).
- __ bind(&long_separator);
-
- __ Set(index, Immediate(0));
- // Jump into the loop after the code that copies the separator, so the first
- // element is not preceded by a separator
- __ jmp(&loop_3_entry);
- // Loop condition: while (index < length).
- __ bind(&loop_3);
- // Each iteration of the loop concatenates one string to the result.
- // Live values in registers:
- // index: which element of the elements array we are adding to the result.
- // result_pos: the position to which we are currently copying characters.
-
- // Copy the separator to the result.
- __ mov(string, separator_operand);
- __ mov(string_length,
- FieldOperand(string, String::kLengthOffset));
- __ shr(string_length, 1);
- __ lea(string,
- FieldOperand(string, SeqAsciiString::kHeaderSize));
- __ CopyBytes(string, result_pos, string_length, scratch);
-
- __ bind(&loop_3_entry);
- // Get string = array[index].
- __ mov(string, FieldOperand(elements, index,
- times_pointer_size,
- FixedArray::kHeaderSize));
- __ mov(string_length,
- FieldOperand(string, String::kLengthOffset));
- __ shr(string_length, 1);
- __ lea(string,
- FieldOperand(string, SeqAsciiString::kHeaderSize));
- __ CopyBytes(string, result_pos, string_length, scratch);
- __ add(Operand(index), Immediate(1));
-
- __ cmp(index, array_length_operand);
- __ j(less, &loop_3); // End while (index < length).
- __ jmp(&done);
-
-
- __ bind(&bailout);
- __ mov(result_operand, Factory::undefined_value());
- __ bind(&done);
- __ mov(eax, result_operand);
- // Drop temp values from the stack, and restore context register.
- __ add(Operand(esp), Immediate(2 * kPointerSize));
-
- __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
- frame_->Drop(1);
- frame_->Push(&array_result);
-}
-
-
-void CodeGenerator::GenerateIsRegExp(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
- Load(args->at(0));
- Result value = frame_->Pop();
- value.ToRegister();
- ASSERT(value.is_valid());
- __ test(value.reg(), Immediate(kSmiTagMask));
- destination()->false_target()->Branch(equal);
- // It is a heap object - get map.
- Result temp = allocator()->Allocate();
- ASSERT(temp.is_valid());
- // Check if the object is a regexp.
- __ CmpObjectType(value.reg(), JS_REGEXP_TYPE, temp.reg());
- value.Unuse();
- temp.Unuse();
- destination()->Split(equal);
-}
-
-
-void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) {
- // This generates a fast version of:
- // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp')
- ASSERT(args->length() == 1);
- Load(args->at(0));
- Result obj = frame_->Pop();
- obj.ToRegister();
-
- __ test(obj.reg(), Immediate(kSmiTagMask));
- destination()->false_target()->Branch(zero);
- __ cmp(obj.reg(), Factory::null_value());
- destination()->true_target()->Branch(equal);
-
- Result map = allocator()->Allocate();
- ASSERT(map.is_valid());
- __ mov(map.reg(), FieldOperand(obj.reg(), HeapObject::kMapOffset));
- // Undetectable objects behave like undefined when tested with typeof.
- __ test_b(FieldOperand(map.reg(), Map::kBitFieldOffset),
- 1 << Map::kIsUndetectable);
- destination()->false_target()->Branch(not_zero);
- // Do a range test for JSObject type. We can't use
- // MacroAssembler::IsInstanceJSObjectType, because we are using a
- // ControlDestination, so we copy its implementation here.
- __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kInstanceTypeOffset));
- __ sub(Operand(map.reg()), Immediate(FIRST_JS_OBJECT_TYPE));
- __ cmp(map.reg(), LAST_JS_OBJECT_TYPE - FIRST_JS_OBJECT_TYPE);
- obj.Unuse();
- map.Unuse();
- destination()->Split(below_equal);
-}
-
-
-void CodeGenerator::GenerateIsSpecObject(ZoneList<Expression*>* args) {
- // This generates a fast version of:
- // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp' ||
- // typeof(arg) == function).
- // It includes undetectable objects (as opposed to IsObject).
- ASSERT(args->length() == 1);
- Load(args->at(0));
- Result value = frame_->Pop();
- value.ToRegister();
- ASSERT(value.is_valid());
- __ test(value.reg(), Immediate(kSmiTagMask));
- destination()->false_target()->Branch(equal);
-
- // Check that this is an object.
- frame_->Spill(value.reg());
- __ CmpObjectType(value.reg(), FIRST_JS_OBJECT_TYPE, value.reg());
- value.Unuse();
- destination()->Split(above_equal);
-}
-
-
-// Deferred code to check whether the String JavaScript object is safe for using
-// default value of. This code is called after the bit caching this information
-// in the map has been checked with the map for the object in the map_result_
-// register. On return the register map_result_ contains 1 for true and 0 for
-// false.
-class DeferredIsStringWrapperSafeForDefaultValueOf : public DeferredCode {
- public:
- DeferredIsStringWrapperSafeForDefaultValueOf(Register object,
- Register map_result,
- Register scratch1,
- Register scratch2)
- : object_(object),
- map_result_(map_result),
- scratch1_(scratch1),
- scratch2_(scratch2) { }
-
- virtual void Generate() {
- Label false_result;
-
- // Check that map is loaded as expected.
- if (FLAG_debug_code) {
- __ cmp(map_result_, FieldOperand(object_, HeapObject::kMapOffset));
- __ Assert(equal, "Map not in expected register");
- }
-
- // Check for fast case object. Generate false result for slow case object.
- __ mov(scratch1_, FieldOperand(object_, JSObject::kPropertiesOffset));
- __ mov(scratch1_, FieldOperand(scratch1_, HeapObject::kMapOffset));
- __ cmp(scratch1_, Factory::hash_table_map());
- __ j(equal, &false_result);
-
- // Look for valueOf symbol in the descriptor array, and indicate false if
- // found. The type is not checked, so if it is a transition it is a false
- // negative.
- __ mov(map_result_,
- FieldOperand(map_result_, Map::kInstanceDescriptorsOffset));
- __ mov(scratch1_, FieldOperand(map_result_, FixedArray::kLengthOffset));
- // map_result_: descriptor array
- // scratch1_: length of descriptor array
- // Calculate the end of the descriptor array.
- STATIC_ASSERT(kSmiTag == 0);
- STATIC_ASSERT(kSmiTagSize == 1);
- STATIC_ASSERT(kPointerSize == 4);
- __ lea(scratch1_,
- Operand(map_result_, scratch1_, times_2, FixedArray::kHeaderSize));
- // Calculate location of the first key name.
- __ add(Operand(map_result_),
- Immediate(FixedArray::kHeaderSize +
- DescriptorArray::kFirstIndex * kPointerSize));
- // Loop through all the keys in the descriptor array. If one of these is the
- // symbol valueOf the result is false.
- Label entry, loop;
- __ jmp(&entry);
- __ bind(&loop);
- __ mov(scratch2_, FieldOperand(map_result_, 0));
- __ cmp(scratch2_, Factory::value_of_symbol());
- __ j(equal, &false_result);
- __ add(Operand(map_result_), Immediate(kPointerSize));
- __ bind(&entry);
- __ cmp(map_result_, Operand(scratch1_));
- __ j(not_equal, &loop);
-
- // Reload map as register map_result_ was used as temporary above.
- __ mov(map_result_, FieldOperand(object_, HeapObject::kMapOffset));
-
- // If a valueOf property is not found on the object check that it's
- // prototype is the un-modified String prototype. If not result is false.
- __ mov(scratch1_, FieldOperand(map_result_, Map::kPrototypeOffset));
- __ test(scratch1_, Immediate(kSmiTagMask));
- __ j(zero, &false_result);
- __ mov(scratch1_, FieldOperand(scratch1_, HeapObject::kMapOffset));
- __ mov(scratch2_, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
- __ mov(scratch2_,
- FieldOperand(scratch2_, GlobalObject::kGlobalContextOffset));
- __ cmp(scratch1_,
- ContextOperand(scratch2_,
- Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
- __ j(not_equal, &false_result);
- // Set the bit in the map to indicate that it has been checked safe for
- // default valueOf and set true result.
- __ or_(FieldOperand(map_result_, Map::kBitField2Offset),
- Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf));
- __ Set(map_result_, Immediate(1));
- __ jmp(exit_label());
- __ bind(&false_result);
- // Set false result.
- __ Set(map_result_, Immediate(0));
- }
-
- private:
- Register object_;
- Register map_result_;
- Register scratch1_;
- Register scratch2_;
-};
-
-
-void CodeGenerator::GenerateIsStringWrapperSafeForDefaultValueOf(
- ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
- Load(args->at(0));
- Result obj = frame_->Pop(); // Pop the string wrapper.
- obj.ToRegister();
- ASSERT(obj.is_valid());
- if (FLAG_debug_code) {
- __ AbortIfSmi(obj.reg());
- }
-
- // Check whether this map has already been checked to be safe for default
- // valueOf.
- Result map_result = allocator()->Allocate();
- ASSERT(map_result.is_valid());
- __ mov(map_result.reg(), FieldOperand(obj.reg(), HeapObject::kMapOffset));
- __ test_b(FieldOperand(map_result.reg(), Map::kBitField2Offset),
- 1 << Map::kStringWrapperSafeForDefaultValueOf);
- destination()->true_target()->Branch(not_zero);
-
- // We need an additional two scratch registers for the deferred code.
- Result temp1 = allocator()->Allocate();
- ASSERT(temp1.is_valid());
- Result temp2 = allocator()->Allocate();
- ASSERT(temp2.is_valid());
-
- DeferredIsStringWrapperSafeForDefaultValueOf* deferred =
- new DeferredIsStringWrapperSafeForDefaultValueOf(
- obj.reg(), map_result.reg(), temp1.reg(), temp2.reg());
- deferred->Branch(zero);
- deferred->BindExit();
- __ test(map_result.reg(), Operand(map_result.reg()));
- obj.Unuse();
- map_result.Unuse();
- temp1.Unuse();
- temp2.Unuse();
- destination()->Split(not_equal);
-}
-
-
-void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) {
- // This generates a fast version of:
- // (%_ClassOf(arg) === 'Function')
- ASSERT(args->length() == 1);
- Load(args->at(0));
- Result obj = frame_->Pop();
- obj.ToRegister();
- __ test(obj.reg(), Immediate(kSmiTagMask));
- destination()->false_target()->Branch(zero);
- Result temp = allocator()->Allocate();
- ASSERT(temp.is_valid());
- __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, temp.reg());
- obj.Unuse();
- temp.Unuse();
- destination()->Split(equal);
-}
-
-
-void CodeGenerator::GenerateIsUndetectableObject(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
- Load(args->at(0));
- Result obj = frame_->Pop();
- obj.ToRegister();
- __ test(obj.reg(), Immediate(kSmiTagMask));
- destination()->false_target()->Branch(zero);
- Result temp = allocator()->Allocate();
- ASSERT(temp.is_valid());
- __ mov(temp.reg(),
- FieldOperand(obj.reg(), HeapObject::kMapOffset));
- __ test_b(FieldOperand(temp.reg(), Map::kBitFieldOffset),
- 1 << Map::kIsUndetectable);
- obj.Unuse();
- temp.Unuse();
- destination()->Split(not_zero);
-}
-
-
-void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 0);
-
- // Get the frame pointer for the calling frame.
- Result fp = allocator()->Allocate();
- __ mov(fp.reg(), Operand(ebp, StandardFrameConstants::kCallerFPOffset));
-
- // Skip the arguments adaptor frame if it exists.
- Label check_frame_marker;
- __ cmp(Operand(fp.reg(), StandardFrameConstants::kContextOffset),
- Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
- __ j(not_equal, &check_frame_marker);
- __ mov(fp.reg(), Operand(fp.reg(), StandardFrameConstants::kCallerFPOffset));
-
- // Check the marker in the calling frame.
- __ bind(&check_frame_marker);
- __ cmp(Operand(fp.reg(), StandardFrameConstants::kMarkerOffset),
- Immediate(Smi::FromInt(StackFrame::CONSTRUCT)));
- fp.Unuse();
- destination()->Split(equal);
-}
-
-
-void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 0);
-
- Result fp = allocator_->Allocate();
- Result result = allocator_->Allocate();
- ASSERT(fp.is_valid() && result.is_valid());
-
- Label exit;
-
- // Get the number of formal parameters.
- __ Set(result.reg(), Immediate(Smi::FromInt(scope()->num_parameters())));
-
- // Check if the calling frame is an arguments adaptor frame.
- __ mov(fp.reg(), Operand(ebp, StandardFrameConstants::kCallerFPOffset));
- __ cmp(Operand(fp.reg(), StandardFrameConstants::kContextOffset),
- Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
- __ j(not_equal, &exit);
-
- // Arguments adaptor case: Read the arguments length from the
- // adaptor frame.
- __ mov(result.reg(),
- Operand(fp.reg(), ArgumentsAdaptorFrameConstants::kLengthOffset));
-
- __ bind(&exit);
- result.set_type_info(TypeInfo::Smi());
- if (FLAG_debug_code) __ AbortIfNotSmi(result.reg());
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
- JumpTarget leave, null, function, non_function_constructor;
- Load(args->at(0)); // Load the object.
- Result obj = frame_->Pop();
- obj.ToRegister();
- frame_->Spill(obj.reg());
-
- // If the object is a smi, we return null.
- __ test(obj.reg(), Immediate(kSmiTagMask));
- null.Branch(zero);
-
- // Check that the object is a JS object but take special care of JS
- // functions to make sure they have 'Function' as their class.
- __ CmpObjectType(obj.reg(), FIRST_JS_OBJECT_TYPE, obj.reg());
- null.Branch(below);
-
- // As long as JS_FUNCTION_TYPE is the last instance type and it is
- // right after LAST_JS_OBJECT_TYPE, we can avoid checking for
- // LAST_JS_OBJECT_TYPE.
- STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
- STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
- __ CmpInstanceType(obj.reg(), JS_FUNCTION_TYPE);
- function.Branch(equal);
-
- // Check if the constructor in the map is a function.
- { Result tmp = allocator()->Allocate();
- __ mov(obj.reg(), FieldOperand(obj.reg(), Map::kConstructorOffset));
- __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, tmp.reg());
- non_function_constructor.Branch(not_equal);
- }
-
- // The map register now contains the constructor function. Grab the
- // instance class name from there.
- __ mov(obj.reg(),
- FieldOperand(obj.reg(), JSFunction::kSharedFunctionInfoOffset));
- __ mov(obj.reg(),
- FieldOperand(obj.reg(), SharedFunctionInfo::kInstanceClassNameOffset));
- frame_->Push(&obj);
- leave.Jump();
-
- // Functions have class 'Function'.
- function.Bind();
- frame_->Push(Factory::function_class_symbol());
- leave.Jump();
-
- // Objects with a non-function constructor have class 'Object'.
- non_function_constructor.Bind();
- frame_->Push(Factory::Object_symbol());
- leave.Jump();
-
- // Non-JS objects have class null.
- null.Bind();
- frame_->Push(Factory::null_value());
-
- // All done.
- leave.Bind();
-}
-
-
-void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
- JumpTarget leave;
- Load(args->at(0)); // Load the object.
- frame_->Dup();
- Result object = frame_->Pop();
- object.ToRegister();
- ASSERT(object.is_valid());
- // if (object->IsSmi()) return object.
- __ test(object.reg(), Immediate(kSmiTagMask));
- leave.Branch(zero, taken);
- // It is a heap object - get map.
- Result temp = allocator()->Allocate();
- ASSERT(temp.is_valid());
- // if (!object->IsJSValue()) return object.
- __ CmpObjectType(object.reg(), JS_VALUE_TYPE, temp.reg());
- leave.Branch(not_equal, not_taken);
- __ mov(temp.reg(), FieldOperand(object.reg(), JSValue::kValueOffset));
- object.Unuse();
- frame_->SetElementAt(0, &temp);
- leave.Bind();
-}
-
-
-void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 2);
- JumpTarget leave;
- Load(args->at(0)); // Load the object.
- Load(args->at(1)); // Load the value.
- Result value = frame_->Pop();
- Result object = frame_->Pop();
- value.ToRegister();
- object.ToRegister();
-
- // if (object->IsSmi()) return value.
- __ test(object.reg(), Immediate(kSmiTagMask));
- leave.Branch(zero, &value, taken);
-
- // It is a heap object - get its map.
- Result scratch = allocator_->Allocate();
- ASSERT(scratch.is_valid());
- // if (!object->IsJSValue()) return value.
- __ CmpObjectType(object.reg(), JS_VALUE_TYPE, scratch.reg());
- leave.Branch(not_equal, &value, not_taken);
-
- // Store the value.
- __ mov(FieldOperand(object.reg(), JSValue::kValueOffset), value.reg());
- // Update the write barrier. Save the value as it will be
- // overwritten by the write barrier code and is needed afterward.
- Result duplicate_value = allocator_->Allocate();
- ASSERT(duplicate_value.is_valid());
- __ mov(duplicate_value.reg(), value.reg());
- // The object register is also overwritten by the write barrier and
- // possibly aliased in the frame.
- frame_->Spill(object.reg());
- __ RecordWrite(object.reg(), JSValue::kValueOffset, duplicate_value.reg(),
- scratch.reg());
- object.Unuse();
- scratch.Unuse();
- duplicate_value.Unuse();
-
- // Leave.
- leave.Bind(&value);
- frame_->Push(&value);
-}
-
-
-void CodeGenerator::GenerateArguments(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
-
- // ArgumentsAccessStub expects the key in edx and the formal
- // parameter count in eax.
- Load(args->at(0));
- Result key = frame_->Pop();
- // Explicitly create a constant result.
- Result count(Handle<Smi>(Smi::FromInt(scope()->num_parameters())));
- // Call the shared stub to get to arguments[key].
- ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
- Result result = frame_->CallStub(&stub, &key, &count);
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 2);
-
- // Load the two objects into registers and perform the comparison.
- Load(args->at(0));
- Load(args->at(1));
- Result right = frame_->Pop();
- Result left = frame_->Pop();
- right.ToRegister();
- left.ToRegister();
- __ cmp(right.reg(), Operand(left.reg()));
- right.Unuse();
- left.Unuse();
- destination()->Split(equal);
-}
-
-
-void CodeGenerator::GenerateGetFramePointer(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 0);
- STATIC_ASSERT(kSmiTag == 0); // EBP value is aligned, so it looks like a Smi.
- Result ebp_as_smi = allocator_->Allocate();
- ASSERT(ebp_as_smi.is_valid());
- __ mov(ebp_as_smi.reg(), Operand(ebp));
- frame_->Push(&ebp_as_smi);
-}
-
-
-void CodeGenerator::GenerateRandomHeapNumber(
- ZoneList<Expression*>* args) {
- ASSERT(args->length() == 0);
- frame_->SpillAll();
-
- Label slow_allocate_heapnumber;
- Label heapnumber_allocated;
-
- __ AllocateHeapNumber(edi, ebx, ecx, &slow_allocate_heapnumber);
- __ jmp(&heapnumber_allocated);
-
- __ bind(&slow_allocate_heapnumber);
- // Allocate a heap number.
- __ CallRuntime(Runtime::kNumberAlloc, 0);
- __ mov(edi, eax);
-
- __ bind(&heapnumber_allocated);
-
- __ PrepareCallCFunction(0, ebx);
- __ CallCFunction(ExternalReference::random_uint32_function(), 0);
-
- // Convert 32 random bits in eax to 0.(32 random bits) in a double
- // by computing:
- // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)).
- // This is implemented on both SSE2 and FPU.
- if (CpuFeatures::IsSupported(SSE2)) {
- CpuFeatures::Scope fscope(SSE2);
- __ mov(ebx, Immediate(0x49800000)); // 1.0 x 2^20 as single.
- __ movd(xmm1, Operand(ebx));
- __ movd(xmm0, Operand(eax));
- __ cvtss2sd(xmm1, xmm1);
- __ pxor(xmm0, xmm1);
- __ subsd(xmm0, xmm1);
- __ movdbl(FieldOperand(edi, HeapNumber::kValueOffset), xmm0);
- } else {
- // 0x4130000000000000 is 1.0 x 2^20 as a double.
- __ mov(FieldOperand(edi, HeapNumber::kExponentOffset),
- Immediate(0x41300000));
- __ mov(FieldOperand(edi, HeapNumber::kMantissaOffset), eax);
- __ fld_d(FieldOperand(edi, HeapNumber::kValueOffset));
- __ mov(FieldOperand(edi, HeapNumber::kMantissaOffset), Immediate(0));
- __ fld_d(FieldOperand(edi, HeapNumber::kValueOffset));
- __ fsubp(1);
- __ fstp_d(FieldOperand(edi, HeapNumber::kValueOffset));
- }
- __ mov(eax, edi);
-
- Result result = allocator_->Allocate(eax);
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) {
- ASSERT_EQ(2, args->length());
-
- Load(args->at(0));
- Load(args->at(1));
-
- StringAddStub stub(NO_STRING_ADD_FLAGS);
- Result answer = frame_->CallStub(&stub, 2);
- frame_->Push(&answer);
-}
-
-
-void CodeGenerator::GenerateSubString(ZoneList<Expression*>* args) {
- ASSERT_EQ(3, args->length());
-
- Load(args->at(0));
- Load(args->at(1));
- Load(args->at(2));
-
- SubStringStub stub;
- Result answer = frame_->CallStub(&stub, 3);
- frame_->Push(&answer);
-}
-
-
-void CodeGenerator::GenerateStringCompare(ZoneList<Expression*>* args) {
- ASSERT_EQ(2, args->length());
-
- Load(args->at(0));
- Load(args->at(1));
-
- StringCompareStub stub;
- Result answer = frame_->CallStub(&stub, 2);
- frame_->Push(&answer);
-}
-
-
-void CodeGenerator::GenerateRegExpExec(ZoneList<Expression*>* args) {
- ASSERT_EQ(4, args->length());
-
- // Load the arguments on the stack and call the stub.
- Load(args->at(0));
- Load(args->at(1));
- Load(args->at(2));
- Load(args->at(3));
-
- RegExpExecStub stub;
- Result result = frame_->CallStub(&stub, 4);
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateRegExpConstructResult(ZoneList<Expression*>* args) {
- ASSERT_EQ(3, args->length());
-
- Load(args->at(0)); // Size of array, smi.
- Load(args->at(1)); // "index" property value.
- Load(args->at(2)); // "input" property value.
-
- RegExpConstructResultStub stub;
- Result result = frame_->CallStub(&stub, 3);
- frame_->Push(&result);
-}
-
-
-class DeferredSearchCache: public DeferredCode {
- public:
- DeferredSearchCache(Register dst, Register cache, Register key)
- : dst_(dst), cache_(cache), key_(key) {
- set_comment("[ DeferredSearchCache");
- }
-
- virtual void Generate();
-
- private:
- Register dst_; // on invocation Smi index of finger, on exit
- // holds value being looked up.
- Register cache_; // instance of JSFunctionResultCache.
- Register key_; // key being looked up.
-};
-
-
-void DeferredSearchCache::Generate() {
- Label first_loop, search_further, second_loop, cache_miss;
-
- // Smi-tagging is equivalent to multiplying by 2.
- STATIC_ASSERT(kSmiTag == 0);
- STATIC_ASSERT(kSmiTagSize == 1);
-
- Smi* kEntrySizeSmi = Smi::FromInt(JSFunctionResultCache::kEntrySize);
- Smi* kEntriesIndexSmi = Smi::FromInt(JSFunctionResultCache::kEntriesIndex);
-
- // Check the cache from finger to start of the cache.
- __ bind(&first_loop);
- __ sub(Operand(dst_), Immediate(kEntrySizeSmi));
- __ cmp(Operand(dst_), Immediate(kEntriesIndexSmi));
- __ j(less, &search_further);
-
- __ cmp(key_, CodeGenerator::FixedArrayElementOperand(cache_, dst_));
- __ j(not_equal, &first_loop);
-
- __ mov(FieldOperand(cache_, JSFunctionResultCache::kFingerOffset), dst_);
- __ mov(dst_, CodeGenerator::FixedArrayElementOperand(cache_, dst_, 1));
- __ jmp(exit_label());
-
- __ bind(&search_further);
-
- // Check the cache from end of cache up to finger.
- __ mov(dst_, FieldOperand(cache_, JSFunctionResultCache::kCacheSizeOffset));
-
- __ bind(&second_loop);
- __ sub(Operand(dst_), Immediate(kEntrySizeSmi));
- // Consider prefetching into some reg.
- __ cmp(dst_, FieldOperand(cache_, JSFunctionResultCache::kFingerOffset));
- __ j(less_equal, &cache_miss);
-
- __ cmp(key_, CodeGenerator::FixedArrayElementOperand(cache_, dst_));
- __ j(not_equal, &second_loop);
-
- __ mov(FieldOperand(cache_, JSFunctionResultCache::kFingerOffset), dst_);
- __ mov(dst_, CodeGenerator::FixedArrayElementOperand(cache_, dst_, 1));
- __ jmp(exit_label());
-
- __ bind(&cache_miss);
- __ push(cache_); // store a reference to cache
- __ push(key_); // store a key
- __ push(Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
- __ push(key_);
- // On ia32 function must be in edi.
- __ mov(edi, FieldOperand(cache_, JSFunctionResultCache::kFactoryOffset));
- ParameterCount expected(1);
- __ InvokeFunction(edi, expected, CALL_FUNCTION);
-
- // Find a place to put new cached value into.
- Label add_new_entry, update_cache;
- __ mov(ecx, Operand(esp, kPointerSize)); // restore the cache
- // Possible optimization: cache size is constant for the given cache
- // so technically we could use a constant here. However, if we have
- // cache miss this optimization would hardly matter much.
-
- // Check if we could add new entry to cache.
- __ mov(ebx, FieldOperand(ecx, FixedArray::kLengthOffset));
- __ cmp(ebx, FieldOperand(ecx, JSFunctionResultCache::kCacheSizeOffset));
- __ j(greater, &add_new_entry);
-
- // Check if we could evict entry after finger.
- __ mov(edx, FieldOperand(ecx, JSFunctionResultCache::kFingerOffset));
- __ add(Operand(edx), Immediate(kEntrySizeSmi));
- __ cmp(ebx, Operand(edx));
- __ j(greater, &update_cache);
-
- // Need to wrap over the cache.
- __ mov(edx, Immediate(kEntriesIndexSmi));
- __ jmp(&update_cache);
-
- __ bind(&add_new_entry);
- __ mov(edx, FieldOperand(ecx, JSFunctionResultCache::kCacheSizeOffset));
- __ lea(ebx, Operand(edx, JSFunctionResultCache::kEntrySize << 1));
- __ mov(FieldOperand(ecx, JSFunctionResultCache::kCacheSizeOffset), ebx);
-
- // Update the cache itself.
- // edx holds the index.
- __ bind(&update_cache);
- __ pop(ebx); // restore the key
- __ mov(FieldOperand(ecx, JSFunctionResultCache::kFingerOffset), edx);
- // Store key.
- __ mov(CodeGenerator::FixedArrayElementOperand(ecx, edx), ebx);
- __ RecordWrite(ecx, 0, ebx, edx);
-
- // Store value.
- __ pop(ecx); // restore the cache.
- __ mov(edx, FieldOperand(ecx, JSFunctionResultCache::kFingerOffset));
- __ add(Operand(edx), Immediate(Smi::FromInt(1)));
- __ mov(ebx, eax);
- __ mov(CodeGenerator::FixedArrayElementOperand(ecx, edx), ebx);
- __ RecordWrite(ecx, 0, ebx, edx);
-
- if (!dst_.is(eax)) {
- __ mov(dst_, eax);
- }
-}
-
-
-void CodeGenerator::GenerateGetFromCache(ZoneList<Expression*>* args) {
- ASSERT_EQ(2, args->length());
-
- ASSERT_NE(NULL, args->at(0)->AsLiteral());
- int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value();
-
- Handle<FixedArray> jsfunction_result_caches(
- Top::global_context()->jsfunction_result_caches());
- if (jsfunction_result_caches->length() <= cache_id) {
- __ Abort("Attempt to use undefined cache.");
- frame_->Push(Factory::undefined_value());
- return;
- }
-
- Load(args->at(1));
- Result key = frame_->Pop();
- key.ToRegister();
-
- Result cache = allocator()->Allocate();
- ASSERT(cache.is_valid());
- __ mov(cache.reg(), ContextOperand(esi, Context::GLOBAL_INDEX));
- __ mov(cache.reg(),
- FieldOperand(cache.reg(), GlobalObject::kGlobalContextOffset));
- __ mov(cache.reg(),
- ContextOperand(cache.reg(), Context::JSFUNCTION_RESULT_CACHES_INDEX));
- __ mov(cache.reg(),
- FieldOperand(cache.reg(), FixedArray::OffsetOfElementAt(cache_id)));
-
- Result tmp = allocator()->Allocate();
- ASSERT(tmp.is_valid());
-
- DeferredSearchCache* deferred = new DeferredSearchCache(tmp.reg(),
- cache.reg(),
- key.reg());
-
- // tmp.reg() now holds finger offset as a smi.
- STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
- __ mov(tmp.reg(), FieldOperand(cache.reg(),
- JSFunctionResultCache::kFingerOffset));
- __ cmp(key.reg(), FixedArrayElementOperand(cache.reg(), tmp.reg()));
- deferred->Branch(not_equal);
-
- __ mov(tmp.reg(), FixedArrayElementOperand(cache.reg(), tmp.reg(), 1));
-
- deferred->BindExit();
- frame_->Push(&tmp);
-}
-
-
-void CodeGenerator::GenerateNumberToString(ZoneList<Expression*>* args) {
- ASSERT_EQ(args->length(), 1);
-
- // Load the argument on the stack and call the stub.
- Load(args->at(0));
- NumberToStringStub stub;
- Result result = frame_->CallStub(&stub, 1);
- frame_->Push(&result);
-}
-
-
-class DeferredSwapElements: public DeferredCode {
- public:
- DeferredSwapElements(Register object, Register index1, Register index2)
- : object_(object), index1_(index1), index2_(index2) {
- set_comment("[ DeferredSwapElements");
- }
-
- virtual void Generate();
-
- private:
- Register object_, index1_, index2_;
-};
-
-
-void DeferredSwapElements::Generate() {
- __ push(object_);
- __ push(index1_);
- __ push(index2_);
- __ CallRuntime(Runtime::kSwapElements, 3);
-}
-
-
-void CodeGenerator::GenerateSwapElements(ZoneList<Expression*>* args) {
- // Note: this code assumes that indices are passed are within
- // elements' bounds and refer to valid (not holes) values.
- Comment cmnt(masm_, "[ GenerateSwapElements");
-
- ASSERT_EQ(3, args->length());
-
- Load(args->at(0));
- Load(args->at(1));
- Load(args->at(2));
-
- Result index2 = frame_->Pop();
- index2.ToRegister();
-
- Result index1 = frame_->Pop();
- index1.ToRegister();
-
- Result object = frame_->Pop();
- object.ToRegister();
-
- Result tmp1 = allocator()->Allocate();
- tmp1.ToRegister();
- Result tmp2 = allocator()->Allocate();
- tmp2.ToRegister();
-
- frame_->Spill(object.reg());
- frame_->Spill(index1.reg());
- frame_->Spill(index2.reg());
-
- DeferredSwapElements* deferred = new DeferredSwapElements(object.reg(),
- index1.reg(),
- index2.reg());
-
- // Fetch the map and check if array is in fast case.
- // Check that object doesn't require security checks and
- // has no indexed interceptor.
- __ CmpObjectType(object.reg(), FIRST_JS_OBJECT_TYPE, tmp1.reg());
- deferred->Branch(below);
- __ test_b(FieldOperand(tmp1.reg(), Map::kBitFieldOffset),
- KeyedLoadIC::kSlowCaseBitFieldMask);
- deferred->Branch(not_zero);
-
- // Check the object's elements are in fast case and writable.
- __ mov(tmp1.reg(), FieldOperand(object.reg(), JSObject::kElementsOffset));
- __ cmp(FieldOperand(tmp1.reg(), HeapObject::kMapOffset),
- Immediate(Factory::fixed_array_map()));
- deferred->Branch(not_equal);
-
- // Smi-tagging is equivalent to multiplying by 2.
- STATIC_ASSERT(kSmiTag == 0);
- STATIC_ASSERT(kSmiTagSize == 1);
-
- // Check that both indices are smis.
- __ mov(tmp2.reg(), index1.reg());
- __ or_(tmp2.reg(), Operand(index2.reg()));
- __ test(tmp2.reg(), Immediate(kSmiTagMask));
- deferred->Branch(not_zero);
-
- // Check that both indices are valid.
- __ mov(tmp2.reg(), FieldOperand(object.reg(), JSArray::kLengthOffset));
- __ cmp(tmp2.reg(), Operand(index1.reg()));
- deferred->Branch(below_equal);
- __ cmp(tmp2.reg(), Operand(index2.reg()));
- deferred->Branch(below_equal);
-
- // Bring addresses into index1 and index2.
- __ lea(index1.reg(), FixedArrayElementOperand(tmp1.reg(), index1.reg()));
- __ lea(index2.reg(), FixedArrayElementOperand(tmp1.reg(), index2.reg()));
-
- // Swap elements.
- __ mov(object.reg(), Operand(index1.reg(), 0));
- __ mov(tmp2.reg(), Operand(index2.reg(), 0));
- __ mov(Operand(index2.reg(), 0), object.reg());
- __ mov(Operand(index1.reg(), 0), tmp2.reg());
-
- Label done;
- __ InNewSpace(tmp1.reg(), tmp2.reg(), equal, &done);
- // Possible optimization: do a check that both values are Smis
- // (or them and test against Smi mask.)
-
- __ mov(tmp2.reg(), tmp1.reg());
- __ RecordWriteHelper(tmp2.reg(), index1.reg(), object.reg());
- __ RecordWriteHelper(tmp1.reg(), index2.reg(), object.reg());
- __ bind(&done);
-
- deferred->BindExit();
- frame_->Push(Factory::undefined_value());
-}
-
-
-void CodeGenerator::GenerateCallFunction(ZoneList<Expression*>* args) {
- Comment cmnt(masm_, "[ GenerateCallFunction");
-
- ASSERT(args->length() >= 2);
-
- int n_args = args->length() - 2; // for receiver and function.
- Load(args->at(0)); // receiver
- for (int i = 0; i < n_args; i++) {
- Load(args->at(i + 1));
- }
- Load(args->at(n_args + 1)); // function
- Result result = frame_->CallJSFunction(n_args);
- frame_->Push(&result);
-}
-
-
-// Generates the Math.pow method. Only handles special cases and
-// branches to the runtime system for everything else. Please note
-// that this function assumes that the callsite has executed ToNumber
-// on both arguments.
-void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 2);
- Load(args->at(0));
- Load(args->at(1));
- if (!CpuFeatures::IsSupported(SSE2)) {
- Result res = frame_->CallRuntime(Runtime::kMath_pow, 2);
- frame_->Push(&res);
- } else {
- CpuFeatures::Scope use_sse2(SSE2);
- Label allocate_return;
- // Load the two operands while leaving the values on the frame.
- frame()->Dup();
- Result exponent = frame()->Pop();
- exponent.ToRegister();
- frame()->Spill(exponent.reg());
- frame()->PushElementAt(1);
- Result base = frame()->Pop();
- base.ToRegister();
- frame()->Spill(base.reg());
-
- Result answer = allocator()->Allocate();
- ASSERT(answer.is_valid());
- ASSERT(!exponent.reg().is(base.reg()));
- JumpTarget call_runtime;
-
- // Save 1 in xmm3 - we need this several times later on.
- __ mov(answer.reg(), Immediate(1));
- __ cvtsi2sd(xmm3, Operand(answer.reg()));
-
- Label exponent_nonsmi;
- Label base_nonsmi;
- // If the exponent is a heap number go to that specific case.
- __ test(exponent.reg(), Immediate(kSmiTagMask));
- __ j(not_zero, &exponent_nonsmi);
- __ test(base.reg(), Immediate(kSmiTagMask));
- __ j(not_zero, &base_nonsmi);
-
- // Optimized version when y is an integer.
- Label powi;
- __ SmiUntag(base.reg());
- __ cvtsi2sd(xmm0, Operand(base.reg()));
- __ jmp(&powi);
- // exponent is smi and base is a heapnumber.
- __ bind(&base_nonsmi);
- __ cmp(FieldOperand(base.reg(), HeapObject::kMapOffset),
- Factory::heap_number_map());
- call_runtime.Branch(not_equal);
-
- __ movdbl(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset));
-
- // Optimized version of pow if y is an integer.
- __ bind(&powi);
- __ SmiUntag(exponent.reg());
-
- // Save exponent in base as we need to check if exponent is negative later.
- // We know that base and exponent are in different registers.
- __ mov(base.reg(), exponent.reg());
-
- // Get absolute value of exponent.
- Label no_neg;
- __ cmp(exponent.reg(), 0);
- __ j(greater_equal, &no_neg);
- __ neg(exponent.reg());
- __ bind(&no_neg);
-
- // Load xmm1 with 1.
- __ movsd(xmm1, xmm3);
- Label while_true;
- Label no_multiply;
-
- __ bind(&while_true);
- __ shr(exponent.reg(), 1);
- __ j(not_carry, &no_multiply);
- __ mulsd(xmm1, xmm0);
- __ bind(&no_multiply);
- __ test(exponent.reg(), Operand(exponent.reg()));
- __ mulsd(xmm0, xmm0);
- __ j(not_zero, &while_true);
-
- // x has the original value of y - if y is negative return 1/result.
- __ test(base.reg(), Operand(base.reg()));
- __ j(positive, &allocate_return);
- // Special case if xmm1 has reached infinity.
- __ mov(answer.reg(), Immediate(0x7FB00000));
- __ movd(xmm0, Operand(answer.reg()));
- __ cvtss2sd(xmm0, xmm0);
- __ ucomisd(xmm0, xmm1);
- call_runtime.Branch(equal);
- __ divsd(xmm3, xmm1);
- __ movsd(xmm1, xmm3);
- __ jmp(&allocate_return);
-
- // exponent (or both) is a heapnumber - no matter what we should now work
- // on doubles.
- __ bind(&exponent_nonsmi);
- __ cmp(FieldOperand(exponent.reg(), HeapObject::kMapOffset),
- Factory::heap_number_map());
- call_runtime.Branch(not_equal);
- __ movdbl(xmm1, FieldOperand(exponent.reg(), HeapNumber::kValueOffset));
- // Test if exponent is nan.
- __ ucomisd(xmm1, xmm1);
- call_runtime.Branch(parity_even);
-
- Label base_not_smi;
- Label handle_special_cases;
- __ test(base.reg(), Immediate(kSmiTagMask));
- __ j(not_zero, &base_not_smi);
- __ SmiUntag(base.reg());
- __ cvtsi2sd(xmm0, Operand(base.reg()));
- __ jmp(&handle_special_cases);
- __ bind(&base_not_smi);
- __ cmp(FieldOperand(base.reg(), HeapObject::kMapOffset),
- Factory::heap_number_map());
- call_runtime.Branch(not_equal);
- __ mov(answer.reg(), FieldOperand(base.reg(), HeapNumber::kExponentOffset));
- __ and_(answer.reg(), HeapNumber::kExponentMask);
- __ cmp(Operand(answer.reg()), Immediate(HeapNumber::kExponentMask));
- // base is NaN or +/-Infinity
- call_runtime.Branch(greater_equal);
- __ movdbl(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset));
-
- // base is in xmm0 and exponent is in xmm1.
- __ bind(&handle_special_cases);
- Label not_minus_half;
- // Test for -0.5.
- // Load xmm2 with -0.5.
- __ mov(answer.reg(), Immediate(0xBF000000));
- __ movd(xmm2, Operand(answer.reg()));
- __ cvtss2sd(xmm2, xmm2);
- // xmm2 now has -0.5.
- __ ucomisd(xmm2, xmm1);
- __ j(not_equal, &not_minus_half);
-
- // Calculates reciprocal of square root.
- // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
- __ xorpd(xmm1, xmm1);
- __ addsd(xmm1, xmm0);
- __ sqrtsd(xmm1, xmm1);
- __ divsd(xmm3, xmm1);
- __ movsd(xmm1, xmm3);
- __ jmp(&allocate_return);
-
- // Test for 0.5.
- __ bind(&not_minus_half);
- // Load xmm2 with 0.5.
- // Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 + xmm3.
- __ addsd(xmm2, xmm3);
- // xmm2 now has 0.5.
- __ ucomisd(xmm2, xmm1);
- call_runtime.Branch(not_equal);
- // Calculates square root.
- // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
- __ xorpd(xmm1, xmm1);
- __ addsd(xmm1, xmm0);
- __ sqrtsd(xmm1, xmm1);
-
- JumpTarget done;
- Label failure, success;
- __ bind(&allocate_return);
- // Make a copy of the frame to enable us to handle allocation
- // failure after the JumpTarget jump.
- VirtualFrame* clone = new VirtualFrame(frame());
- __ AllocateHeapNumber(answer.reg(), exponent.reg(),
- base.reg(), &failure);
- __ movdbl(FieldOperand(answer.reg(), HeapNumber::kValueOffset), xmm1);
- // Remove the two original values from the frame - we only need those
- // in the case where we branch to runtime.
- frame()->Drop(2);
- exponent.Unuse();
- base.Unuse();
- done.Jump(&answer);
- // Use the copy of the original frame as our current frame.
- RegisterFile empty_regs;
- SetFrame(clone, &empty_regs);
- // If we experience an allocation failure we branch to runtime.
- __ bind(&failure);
- call_runtime.Bind();
- answer = frame()->CallRuntime(Runtime::kMath_pow_cfunction, 2);
-
- done.Bind(&answer);
- frame()->Push(&answer);
- }
-}
-
-
-void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) {
- ASSERT_EQ(args->length(), 1);
- Load(args->at(0));
- TranscendentalCacheStub stub(TranscendentalCache::SIN,
- TranscendentalCacheStub::TAGGED);
- Result result = frame_->CallStub(&stub, 1);
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) {
- ASSERT_EQ(args->length(), 1);
- Load(args->at(0));
- TranscendentalCacheStub stub(TranscendentalCache::COS,
- TranscendentalCacheStub::TAGGED);
- Result result = frame_->CallStub(&stub, 1);
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateMathLog(ZoneList<Expression*>* args) {
- ASSERT_EQ(args->length(), 1);
- Load(args->at(0));
- TranscendentalCacheStub stub(TranscendentalCache::LOG,
- TranscendentalCacheStub::TAGGED);
- Result result = frame_->CallStub(&stub, 1);
- frame_->Push(&result);
-}
-
-
-// Generates the Math.sqrt method. Please note - this function assumes that
-// the callsite has executed ToNumber on the argument.
-void CodeGenerator::GenerateMathSqrt(ZoneList<Expression*>* args) {
- ASSERT_EQ(args->length(), 1);
- Load(args->at(0));
-
- if (!CpuFeatures::IsSupported(SSE2)) {
- Result result = frame()->CallRuntime(Runtime::kMath_sqrt, 1);
- frame()->Push(&result);
- } else {
- CpuFeatures::Scope use_sse2(SSE2);
- // Leave original value on the frame if we need to call runtime.
- frame()->Dup();
- Result result = frame()->Pop();
- result.ToRegister();
- frame()->Spill(result.reg());
- Label runtime;
- Label non_smi;
- Label load_done;
- JumpTarget end;
-
- __ test(result.reg(), Immediate(kSmiTagMask));
- __ j(not_zero, &non_smi);
- __ SmiUntag(result.reg());
- __ cvtsi2sd(xmm0, Operand(result.reg()));
- __ jmp(&load_done);
- __ bind(&non_smi);
- __ cmp(FieldOperand(result.reg(), HeapObject::kMapOffset),
- Factory::heap_number_map());
- __ j(not_equal, &runtime);
- __ movdbl(xmm0, FieldOperand(result.reg(), HeapNumber::kValueOffset));
-
- __ bind(&load_done);
- __ sqrtsd(xmm0, xmm0);
- // A copy of the virtual frame to allow us to go to runtime after the
- // JumpTarget jump.
- Result scratch = allocator()->Allocate();
- VirtualFrame* clone = new VirtualFrame(frame());
- __ AllocateHeapNumber(result.reg(), scratch.reg(), no_reg, &runtime);
-
- __ movdbl(FieldOperand(result.reg(), HeapNumber::kValueOffset), xmm0);
- frame()->Drop(1);
- scratch.Unuse();
- end.Jump(&result);
- // We only branch to runtime if we have an allocation error.
- // Use the copy of the original frame as our current frame.
- RegisterFile empty_regs;
- SetFrame(clone, &empty_regs);
- __ bind(&runtime);
- result = frame()->CallRuntime(Runtime::kMath_sqrt, 1);
-
- end.Bind(&result);
- frame()->Push(&result);
- }
-}
-
-
-void CodeGenerator::GenerateIsRegExpEquivalent(ZoneList<Expression*>* args) {
- ASSERT_EQ(2, args->length());
- Load(args->at(0));
- Load(args->at(1));
- Result right_res = frame_->Pop();
- Result left_res = frame_->Pop();
- right_res.ToRegister();
- left_res.ToRegister();
- Result tmp_res = allocator()->Allocate();
- ASSERT(tmp_res.is_valid());
- Register right = right_res.reg();
- Register left = left_res.reg();
- Register tmp = tmp_res.reg();
- right_res.Unuse();
- left_res.Unuse();
- tmp_res.Unuse();
- __ cmp(left, Operand(right));
- destination()->true_target()->Branch(equal);
- // Fail if either is a non-HeapObject.
- __ mov(tmp, left);
- __ and_(Operand(tmp), right);
- __ test(Operand(tmp), Immediate(kSmiTagMask));
- destination()->false_target()->Branch(equal);
- __ CmpObjectType(left, JS_REGEXP_TYPE, tmp);
- destination()->false_target()->Branch(not_equal);
- __ cmp(tmp, FieldOperand(right, HeapObject::kMapOffset));
- destination()->false_target()->Branch(not_equal);
- __ mov(tmp, FieldOperand(left, JSRegExp::kDataOffset));
- __ cmp(tmp, FieldOperand(right, JSRegExp::kDataOffset));
- destination()->Split(equal);
-}
-
-
-void CodeGenerator::GenerateHasCachedArrayIndex(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
- Load(args->at(0));
- Result value = frame_->Pop();
- value.ToRegister();
- ASSERT(value.is_valid());
- if (FLAG_debug_code) {
- __ AbortIfNotString(value.reg());
- }
-
- __ test(FieldOperand(value.reg(), String::kHashFieldOffset),
- Immediate(String::kContainsCachedArrayIndexMask));
-
- value.Unuse();
- destination()->Split(zero);
-}
-
-
-void CodeGenerator::GenerateGetCachedArrayIndex(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
- Load(args->at(0));
- Result string = frame_->Pop();
- string.ToRegister();
- if (FLAG_debug_code) {
- __ AbortIfNotString(string.reg());
- }
-
- Result number = allocator()->Allocate();
- ASSERT(number.is_valid());
- __ mov(number.reg(), FieldOperand(string.reg(), String::kHashFieldOffset));
- __ IndexFromHash(number.reg(), number.reg());
- string.Unuse();
- frame_->Push(&number);
-}
-
-
-void CodeGenerator::VisitCallRuntime(CallRuntime* node) {
- ASSERT(!in_safe_int32_mode());
- if (CheckForInlineRuntimeCall(node)) {
- return;
- }
-
- ZoneList<Expression*>* args = node->arguments();
- Comment cmnt(masm_, "[ CallRuntime");
- Runtime::Function* function = node->function();
-
- if (function == NULL) {
- // Push the builtins object found in the current global object.
- Result temp = allocator()->Allocate();
- ASSERT(temp.is_valid());
- __ mov(temp.reg(), GlobalObjectOperand());
- __ mov(temp.reg(), FieldOperand(temp.reg(), GlobalObject::kBuiltinsOffset));
- frame_->Push(&temp);
- }
-
- // Push the arguments ("left-to-right").
- int arg_count = args->length();
- for (int i = 0; i < arg_count; i++) {
- Load(args->at(i));
- }
-
- if (function == NULL) {
- // Call the JS runtime function.
- frame_->Push(node->name());
- Result answer = frame_->CallCallIC(RelocInfo::CODE_TARGET,
- arg_count,
- loop_nesting_);
- frame_->RestoreContextRegister();
- frame_->Push(&answer);
- } else {
- // Call the C runtime function.
- Result answer = frame_->CallRuntime(function, arg_count);
- frame_->Push(&answer);
- }
-}
-
-
-void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) {
- Comment cmnt(masm_, "[ UnaryOperation");
-
- Token::Value op = node->op();
-
- if (op == Token::NOT) {
- // Swap the true and false targets but keep the same actual label
- // as the fall through.
- destination()->Invert();
- LoadCondition(node->expression(), destination(), true);
- // Swap the labels back.
- destination()->Invert();
-
- } else if (op == Token::DELETE) {
- Property* property = node->expression()->AsProperty();
- if (property != NULL) {
- Load(property->obj());
- Load(property->key());
- frame_->Push(Smi::FromInt(strict_mode_flag()));
- Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 3);
- frame_->Push(&answer);
- return;
- }
-
- Variable* variable = node->expression()->AsVariableProxy()->AsVariable();
- if (variable != NULL) {
- // Delete of an unqualified identifier is disallowed in strict mode
- // but "delete this" is.
- ASSERT(strict_mode_flag() == kNonStrictMode || variable->is_this());
- Slot* slot = variable->AsSlot();
- if (variable->is_global()) {
- LoadGlobal();
- frame_->Push(variable->name());
- frame_->Push(Smi::FromInt(kNonStrictMode));
- Result answer = frame_->InvokeBuiltin(Builtins::DELETE,
- CALL_FUNCTION, 3);
- frame_->Push(&answer);
-
- } else if (slot != NULL && slot->type() == Slot::LOOKUP) {
- // Call the runtime to delete from the context holding the named
- // variable. Sync the virtual frame eagerly so we can push the
- // arguments directly into place.
- frame_->SyncRange(0, frame_->element_count() - 1);
- frame_->EmitPush(esi);
- frame_->EmitPush(Immediate(variable->name()));
- Result answer = frame_->CallRuntime(Runtime::kDeleteContextSlot, 2);
- frame_->Push(&answer);
- } else {
- // Default: Result of deleting non-global, not dynamically
- // introduced variables is false.
- frame_->Push(Factory::false_value());
- }
- } else {
- // Default: Result of deleting expressions is true.
- Load(node->expression()); // may have side-effects
- frame_->SetElementAt(0, Factory::true_value());
- }
-
- } else if (op == Token::TYPEOF) {
- // Special case for loading the typeof expression; see comment on
- // LoadTypeofExpression().
- LoadTypeofExpression(node->expression());
- Result answer = frame_->CallRuntime(Runtime::kTypeof, 1);
- frame_->Push(&answer);
-
- } else if (op == Token::VOID) {
- Expression* expression = node->expression();
- if (expression && expression->AsLiteral() && (
- expression->AsLiteral()->IsTrue() ||
- expression->AsLiteral()->IsFalse() ||
- expression->AsLiteral()->handle()->IsNumber() ||
- expression->AsLiteral()->handle()->IsString() ||
- expression->AsLiteral()->handle()->IsJSRegExp() ||
- expression->AsLiteral()->IsNull())) {
- // Omit evaluating the value of the primitive literal.
- // It will be discarded anyway, and can have no side effect.
- frame_->Push(Factory::undefined_value());
- } else {
- Load(node->expression());
- frame_->SetElementAt(0, Factory::undefined_value());
- }
-
- } else {
- if (in_safe_int32_mode()) {
- Visit(node->expression());
- Result value = frame_->Pop();
- ASSERT(value.is_untagged_int32());
- // Registers containing an int32 value are not multiply used.
- ASSERT(!value.is_register() || !frame_->is_used(value.reg()));
- value.ToRegister();
- switch (op) {
- case Token::SUB: {
- __ neg(value.reg());
- frame_->Push(&value);
- if (node->no_negative_zero()) {
- // -MIN_INT is MIN_INT with the overflow flag set.
- unsafe_bailout_->Branch(overflow);
- } else {
- // MIN_INT and 0 both have bad negations. They both have 31 zeros.
- __ test(value.reg(), Immediate(0x7FFFFFFF));
- unsafe_bailout_->Branch(zero);
- }
- break;
- }
- case Token::BIT_NOT: {
- __ not_(value.reg());
- frame_->Push(&value);
- break;
- }
- case Token::ADD: {
- // Unary plus has no effect on int32 values.
- frame_->Push(&value);
- break;
- }
- default:
- UNREACHABLE();
- break;
- }
- } else {
- Load(node->expression());
- bool can_overwrite = node->expression()->ResultOverwriteAllowed();
- UnaryOverwriteMode overwrite =
- can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE;
- bool no_negative_zero = node->expression()->no_negative_zero();
- switch (op) {
- case Token::NOT:
- case Token::DELETE:
- case Token::TYPEOF:
- UNREACHABLE(); // handled above
- break;
-
- case Token::SUB: {
- GenericUnaryOpStub stub(
- Token::SUB,
- overwrite,
- NO_UNARY_FLAGS,
- no_negative_zero ? kIgnoreNegativeZero : kStrictNegativeZero);
- Result operand = frame_->Pop();
- Result answer = frame_->CallStub(&stub, &operand);
- answer.set_type_info(TypeInfo::Number());
- frame_->Push(&answer);
- break;
- }
- case Token::BIT_NOT: {
- // Smi check.
- JumpTarget smi_label;
- JumpTarget continue_label;
- Result operand = frame_->Pop();
- TypeInfo operand_info = operand.type_info();
- operand.ToRegister();
- if (operand_info.IsSmi()) {
- if (FLAG_debug_code) __ AbortIfNotSmi(operand.reg());
- frame_->Spill(operand.reg());
- // Set smi tag bit. It will be reset by the not operation.
- __ lea(operand.reg(), Operand(operand.reg(), kSmiTagMask));
- __ not_(operand.reg());
- Result answer = operand;
- answer.set_type_info(TypeInfo::Smi());
- frame_->Push(&answer);
- } else {
- __ test(operand.reg(), Immediate(kSmiTagMask));
- smi_label.Branch(zero, &operand, taken);
-
- GenericUnaryOpStub stub(Token::BIT_NOT,
- overwrite,
- NO_UNARY_SMI_CODE_IN_STUB);
- Result answer = frame_->CallStub(&stub, &operand);
- continue_label.Jump(&answer);
-
- smi_label.Bind(&answer);
- answer.ToRegister();
- frame_->Spill(answer.reg());
- // Set smi tag bit. It will be reset by the not operation.
- __ lea(answer.reg(), Operand(answer.reg(), kSmiTagMask));
- __ not_(answer.reg());
-
- continue_label.Bind(&answer);
- answer.set_type_info(TypeInfo::Integer32());
- frame_->Push(&answer);
- }
- break;
- }
- case Token::ADD: {
- // Smi check.
- JumpTarget continue_label;
- Result operand = frame_->Pop();
- TypeInfo operand_info = operand.type_info();
- operand.ToRegister();
- __ test(operand.reg(), Immediate(kSmiTagMask));
- continue_label.Branch(zero, &operand, taken);
-
- frame_->Push(&operand);
- Result answer = frame_->InvokeBuiltin(Builtins::TO_NUMBER,
- CALL_FUNCTION, 1);
-
- continue_label.Bind(&answer);
- if (operand_info.IsSmi()) {
- answer.set_type_info(TypeInfo::Smi());
- } else if (operand_info.IsInteger32()) {
- answer.set_type_info(TypeInfo::Integer32());
- } else {
- answer.set_type_info(TypeInfo::Number());
- }
- frame_->Push(&answer);
- break;
- }
- default:
- UNREACHABLE();
- }
- }
- }
-}
-
-
-// The value in dst was optimistically incremented or decremented. The
-// result overflowed or was not smi tagged. Undo the operation, call
-// into the runtime to convert the argument to a number, and call the
-// specialized add or subtract stub. The result is left in dst.
-class DeferredPrefixCountOperation: public DeferredCode {
- public:
- DeferredPrefixCountOperation(Register dst,
- bool is_increment,
- TypeInfo input_type)
- : dst_(dst), is_increment_(is_increment), input_type_(input_type) {
- set_comment("[ DeferredCountOperation");
- }
-
- virtual void Generate();
-
- private:
- Register dst_;
- bool is_increment_;
- TypeInfo input_type_;
-};
-
-
-void DeferredPrefixCountOperation::Generate() {
- // Undo the optimistic smi operation.
- if (is_increment_) {
- __ sub(Operand(dst_), Immediate(Smi::FromInt(1)));
- } else {
- __ add(Operand(dst_), Immediate(Smi::FromInt(1)));
- }
- Register left;
- if (input_type_.IsNumber()) {
- left = dst_;
- } else {
- __ push(dst_);
- __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
- left = eax;
- }
-
- GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB,
- NO_OVERWRITE,
- NO_GENERIC_BINARY_FLAGS,
- TypeInfo::Number());
- stub.GenerateCall(masm_, left, Smi::FromInt(1));
-
- if (!dst_.is(eax)) __ mov(dst_, eax);
-}
-
-
-// The value in dst was optimistically incremented or decremented. The
-// result overflowed or was not smi tagged. Undo the operation and call
-// into the runtime to convert the argument to a number. Update the
-// original value in old. Call the specialized add or subtract stub.
-// The result is left in dst.
-class DeferredPostfixCountOperation: public DeferredCode {
- public:
- DeferredPostfixCountOperation(Register dst,
- Register old,
- bool is_increment,
- TypeInfo input_type)
- : dst_(dst),
- old_(old),
- is_increment_(is_increment),
- input_type_(input_type) {
- set_comment("[ DeferredCountOperation");
- }
-
- virtual void Generate();
-
- private:
- Register dst_;
- Register old_;
- bool is_increment_;
- TypeInfo input_type_;
-};
-
-
-void DeferredPostfixCountOperation::Generate() {
- // Undo the optimistic smi operation.
- if (is_increment_) {
- __ sub(Operand(dst_), Immediate(Smi::FromInt(1)));
- } else {
- __ add(Operand(dst_), Immediate(Smi::FromInt(1)));
- }
- Register left;
- if (input_type_.IsNumber()) {
- __ push(dst_); // Save the input to use as the old value.
- left = dst_;
- } else {
- __ push(dst_);
- __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
- __ push(eax); // Save the result of ToNumber to use as the old value.
- left = eax;
- }
-
- GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB,
- NO_OVERWRITE,
- NO_GENERIC_BINARY_FLAGS,
- TypeInfo::Number());
- stub.GenerateCall(masm_, left, Smi::FromInt(1));
-
- if (!dst_.is(eax)) __ mov(dst_, eax);
- __ pop(old_);
-}
-
-
-void CodeGenerator::VisitCountOperation(CountOperation* node) {
- ASSERT(!in_safe_int32_mode());
- Comment cmnt(masm_, "[ CountOperation");
-
- bool is_postfix = node->is_postfix();
- bool is_increment = node->op() == Token::INC;
-
- Variable* var = node->expression()->AsVariableProxy()->AsVariable();
- bool is_const = (var != NULL && var->mode() == Variable::CONST);
-
- // Postfix operations need a stack slot under the reference to hold
- // the old value while the new value is being stored. This is so that
- // in the case that storing the new value requires a call, the old
- // value will be in the frame to be spilled.
- if (is_postfix) frame_->Push(Smi::FromInt(0));
-
- // A constant reference is not saved to, so a constant reference is not a
- // compound assignment reference.
- { Reference target(this, node->expression(), !is_const);
- if (target.is_illegal()) {
- // Spoof the virtual frame to have the expected height (one higher
- // than on entry).
- if (!is_postfix) frame_->Push(Smi::FromInt(0));
- return;
- }
- target.TakeValue();
-
- Result new_value = frame_->Pop();
- new_value.ToRegister();
-
- Result old_value; // Only allocated in the postfix case.
- if (is_postfix) {
- // Allocate a temporary to preserve the old value.
- old_value = allocator_->Allocate();
- ASSERT(old_value.is_valid());
- __ mov(old_value.reg(), new_value.reg());
-
- // The return value for postfix operations is ToNumber(input).
- // Keep more precise type info if the input is some kind of
- // number already. If the input is not a number we have to wait
- // for the deferred code to convert it.
- if (new_value.type_info().IsNumber()) {
- old_value.set_type_info(new_value.type_info());
- }
- }
-
- // Ensure the new value is writable.
- frame_->Spill(new_value.reg());
-
- Result tmp;
- if (new_value.is_smi()) {
- if (FLAG_debug_code) __ AbortIfNotSmi(new_value.reg());
- } else {
- // We don't know statically if the input is a smi.
- // In order to combine the overflow and the smi tag check, we need
- // to be able to allocate a byte register. We attempt to do so
- // without spilling. If we fail, we will generate separate overflow
- // and smi tag checks.
- // We allocate and clear a temporary byte register before performing
- // the count operation since clearing the register using xor will clear
- // the overflow flag.
- tmp = allocator_->AllocateByteRegisterWithoutSpilling();
- if (tmp.is_valid()) {
- __ Set(tmp.reg(), Immediate(0));
- }
- }
-
- if (is_increment) {
- __ add(Operand(new_value.reg()), Immediate(Smi::FromInt(1)));
- } else {
- __ sub(Operand(new_value.reg()), Immediate(Smi::FromInt(1)));
- }
-
- DeferredCode* deferred = NULL;
- if (is_postfix) {
- deferred = new DeferredPostfixCountOperation(new_value.reg(),
- old_value.reg(),
- is_increment,
- new_value.type_info());
- } else {
- deferred = new DeferredPrefixCountOperation(new_value.reg(),
- is_increment,
- new_value.type_info());
- }
-
- if (new_value.is_smi()) {
- // In case we have a smi as input just check for overflow.
- deferred->Branch(overflow);
- } else {
- // If the count operation didn't overflow and the result is a valid
- // smi, we're done. Otherwise, we jump to the deferred slow-case
- // code.
- // We combine the overflow and the smi tag check if we could
- // successfully allocate a temporary byte register.
- if (tmp.is_valid()) {
- __ setcc(overflow, tmp.reg());
- __ or_(Operand(tmp.reg()), new_value.reg());
- __ test(tmp.reg(), Immediate(kSmiTagMask));
- tmp.Unuse();
- deferred->Branch(not_zero);
- } else {
- // Otherwise we test separately for overflow and smi tag.
- deferred->Branch(overflow);
- __ test(new_value.reg(), Immediate(kSmiTagMask));
- deferred->Branch(not_zero);
- }
- }
- deferred->BindExit();
-
- // Postfix count operations return their input converted to
- // number. The case when the input is already a number is covered
- // above in the allocation code for old_value.
- if (is_postfix && !new_value.type_info().IsNumber()) {
- old_value.set_type_info(TypeInfo::Number());
- }
-
- // The result of ++ or -- is an Integer32 if the
- // input is a smi. Otherwise it is a number.
- if (new_value.is_smi()) {
- new_value.set_type_info(TypeInfo::Integer32());
- } else {
- new_value.set_type_info(TypeInfo::Number());
- }
-
- // Postfix: store the old value in the allocated slot under the
- // reference.
- if (is_postfix) frame_->SetElementAt(target.size(), &old_value);
-
- frame_->Push(&new_value);
- // Non-constant: update the reference.
- if (!is_const) target.SetValue(NOT_CONST_INIT);
- }
-
- // Postfix: drop the new value and use the old.
- if (is_postfix) frame_->Drop();
-}
-
-
-void CodeGenerator::Int32BinaryOperation(BinaryOperation* node) {
- Token::Value op = node->op();
- Comment cmnt(masm_, "[ Int32BinaryOperation");
- ASSERT(in_safe_int32_mode());
- ASSERT(safe_int32_mode_enabled());
- ASSERT(FLAG_safe_int32_compiler);
-
- if (op == Token::COMMA) {
- // Discard left value.
- frame_->Nip(1);
- return;
- }
-
- Result right = frame_->Pop();
- Result left = frame_->Pop();
-
- ASSERT(right.is_untagged_int32());
- ASSERT(left.is_untagged_int32());
- // Registers containing an int32 value are not multiply used.
- ASSERT(!left.is_register() || !frame_->is_used(left.reg()));
- ASSERT(!right.is_register() || !frame_->is_used(right.reg()));
-
- switch (op) {
- case Token::COMMA:
- case Token::OR:
- case Token::AND:
- UNREACHABLE();
- break;
- case Token::BIT_OR:
- case Token::BIT_XOR:
- case Token::BIT_AND:
- if (left.is_constant() || right.is_constant()) {
- int32_t value; // Put constant in value, non-constant in left.
- // Constants are known to be int32 values, from static analysis,
- // or else will be converted to int32 by implicit ECMA [[ToInt32]].
- if (left.is_constant()) {
- ASSERT(left.handle()->IsSmi() || left.handle()->IsHeapNumber());
- value = NumberToInt32(*left.handle());
- left = right;
- } else {
- ASSERT(right.handle()->IsSmi() || right.handle()->IsHeapNumber());
- value = NumberToInt32(*right.handle());
- }
-
- left.ToRegister();
- if (op == Token::BIT_OR) {
- __ or_(Operand(left.reg()), Immediate(value));
- } else if (op == Token::BIT_XOR) {
- __ xor_(Operand(left.reg()), Immediate(value));
- } else {
- ASSERT(op == Token::BIT_AND);
- __ and_(Operand(left.reg()), Immediate(value));
- }
- } else {
- ASSERT(left.is_register());
- ASSERT(right.is_register());
- if (op == Token::BIT_OR) {
- __ or_(left.reg(), Operand(right.reg()));
- } else if (op == Token::BIT_XOR) {
- __ xor_(left.reg(), Operand(right.reg()));
- } else {
- ASSERT(op == Token::BIT_AND);
- __ and_(left.reg(), Operand(right.reg()));
- }
- }
- frame_->Push(&left);
- right.Unuse();
- break;
- case Token::SAR:
- case Token::SHL:
- case Token::SHR: {
- bool test_shr_overflow = false;
- left.ToRegister();
- if (right.is_constant()) {
- ASSERT(right.handle()->IsSmi() || right.handle()->IsHeapNumber());
- int shift_amount = NumberToInt32(*right.handle()) & 0x1F;
- if (op == Token::SAR) {
- __ sar(left.reg(), shift_amount);
- } else if (op == Token::SHL) {
- __ shl(left.reg(), shift_amount);
- } else {
- ASSERT(op == Token::SHR);
- __ shr(left.reg(), shift_amount);
- if (shift_amount == 0) test_shr_overflow = true;
- }
- } else {
- // Move right to ecx
- if (left.is_register() && left.reg().is(ecx)) {
- right.ToRegister();
- __ xchg(left.reg(), right.reg());
- left = right; // Left is unused here, copy of right unused by Push.
- } else {
- right.ToRegister(ecx);
- left.ToRegister();
- }
- if (op == Token::SAR) {
- __ sar_cl(left.reg());
- } else if (op == Token::SHL) {
- __ shl_cl(left.reg());
- } else {
- ASSERT(op == Token::SHR);
- __ shr_cl(left.reg());
- test_shr_overflow = true;
- }
- }
- {
- Register left_reg = left.reg();
- frame_->Push(&left);
- right.Unuse();
- if (test_shr_overflow && !node->to_int32()) {
- // Uint32 results with top bit set are not Int32 values.
- // If they will be forced to Int32, skip the test.
- // Test is needed because shr with shift amount 0 does not set flags.
- __ test(left_reg, Operand(left_reg));
- unsafe_bailout_->Branch(sign);
- }
- }
- break;
- }
- case Token::ADD:
- case Token::SUB:
- case Token::MUL:
- if ((left.is_constant() && op != Token::SUB) || right.is_constant()) {
- int32_t value; // Put constant in value, non-constant in left.
- if (right.is_constant()) {
- ASSERT(right.handle()->IsSmi() || right.handle()->IsHeapNumber());
- value = NumberToInt32(*right.handle());
- } else {
- ASSERT(left.handle()->IsSmi() || left.handle()->IsHeapNumber());
- value = NumberToInt32(*left.handle());
- left = right;
- }
-
- left.ToRegister();
- if (op == Token::ADD) {
- __ add(Operand(left.reg()), Immediate(value));
- } else if (op == Token::SUB) {
- __ sub(Operand(left.reg()), Immediate(value));
- } else {
- ASSERT(op == Token::MUL);
- __ imul(left.reg(), left.reg(), value);
- }
- } else {
- left.ToRegister();
- ASSERT(left.is_register());
- ASSERT(right.is_register());
- if (op == Token::ADD) {
- __ add(left.reg(), Operand(right.reg()));
- } else if (op == Token::SUB) {
- __ sub(left.reg(), Operand(right.reg()));
- } else {
- ASSERT(op == Token::MUL);
- // We have statically verified that a negative zero can be ignored.
- __ imul(left.reg(), Operand(right.reg()));
- }
- }
- right.Unuse();
- frame_->Push(&left);
- if (!node->to_int32() || op == Token::MUL) {
- // If ToInt32 is called on the result of ADD, SUB, we don't
- // care about overflows.
- // Result of MUL can be non-representable precisely in double so
- // we have to check for overflow.
- unsafe_bailout_->Branch(overflow);
- }
- break;
- case Token::DIV:
- case Token::MOD: {
- if (right.is_register() && (right.reg().is(eax) || right.reg().is(edx))) {
- if (left.is_register() && left.reg().is(edi)) {
- right.ToRegister(ebx);
- } else {
- right.ToRegister(edi);
- }
- }
- left.ToRegister(eax);
- Result edx_reg = allocator_->Allocate(edx);
- right.ToRegister();
- // The results are unused here because BreakTarget::Branch cannot handle
- // live results.
- Register right_reg = right.reg();
- left.Unuse();
- right.Unuse();
- edx_reg.Unuse();
- __ cmp(right_reg, 0);
- // Ensure divisor is positive: no chance of non-int32 or -0 result.
- unsafe_bailout_->Branch(less_equal);
- __ cdq(); // Sign-extend eax into edx:eax
- __ idiv(right_reg);
- if (op == Token::MOD) {
- // Negative zero can arise as a negative divident with a zero result.
- if (!node->no_negative_zero()) {
- Label not_negative_zero;
- __ test(edx, Operand(edx));
- __ j(not_zero, &not_negative_zero);
- __ test(eax, Operand(eax));
- unsafe_bailout_->Branch(negative);
- __ bind(&not_negative_zero);
- }
- Result edx_result(edx, TypeInfo::Integer32());
- edx_result.set_untagged_int32(true);
- frame_->Push(&edx_result);
- } else {
- ASSERT(op == Token::DIV);
- __ test(edx, Operand(edx));
- unsafe_bailout_->Branch(not_equal);
- Result eax_result(eax, TypeInfo::Integer32());
- eax_result.set_untagged_int32(true);
- frame_->Push(&eax_result);
- }
- break;
- }
- default:
- UNREACHABLE();
- break;
- }
-}
-
-
-void CodeGenerator::GenerateLogicalBooleanOperation(BinaryOperation* node) {
- // According to ECMA-262 section 11.11, page 58, the binary logical
- // operators must yield the result of one of the two expressions
- // before any ToBoolean() conversions. This means that the value
- // produced by a && or || operator is not necessarily a boolean.
-
- // NOTE: If the left hand side produces a materialized value (not
- // control flow), we force the right hand side to do the same. This
- // is necessary because we assume that if we get control flow on the
- // last path out of an expression we got it on all paths.
- if (node->op() == Token::AND) {
- ASSERT(!in_safe_int32_mode());
- JumpTarget is_true;
- ControlDestination dest(&is_true, destination()->false_target(), true);
- LoadCondition(node->left(), &dest, false);
-
- if (dest.false_was_fall_through()) {
- // The current false target was used as the fall-through. If
- // there are no dangling jumps to is_true then the left
- // subexpression was unconditionally false. Otherwise we have
- // paths where we do have to evaluate the right subexpression.
- if (is_true.is_linked()) {
- // We need to compile the right subexpression. If the jump to
- // the current false target was a forward jump then we have a
- // valid frame, we have just bound the false target, and we
- // have to jump around the code for the right subexpression.
- if (has_valid_frame()) {
- destination()->false_target()->Unuse();
- destination()->false_target()->Jump();
- }
- is_true.Bind();
- // The left subexpression compiled to control flow, so the
- // right one is free to do so as well.
- LoadCondition(node->right(), destination(), false);
- } else {
- // We have actually just jumped to or bound the current false
- // target but the current control destination is not marked as
- // used.
- destination()->Use(false);
- }
-
- } else if (dest.is_used()) {
- // The left subexpression compiled to control flow (and is_true
- // was just bound), so the right is free to do so as well.
- LoadCondition(node->right(), destination(), false);
-
- } else {
- // We have a materialized value on the frame, so we exit with
- // one on all paths. There are possibly also jumps to is_true
- // from nested subexpressions.
- JumpTarget pop_and_continue;
- JumpTarget exit;
-
- // Avoid popping the result if it converts to 'false' using the
- // standard ToBoolean() conversion as described in ECMA-262,
- // section 9.2, page 30.
- //
- // Duplicate the TOS value. The duplicate will be popped by
- // ToBoolean.
- frame_->Dup();
- ControlDestination dest(&pop_and_continue, &exit, true);
- ToBoolean(&dest);
-
- // Pop the result of evaluating the first part.
- frame_->Drop();
-
- // Compile right side expression.
- is_true.Bind();
- Load(node->right());
-
- // Exit (always with a materialized value).
- exit.Bind();
- }
-
- } else {
- ASSERT(node->op() == Token::OR);
- ASSERT(!in_safe_int32_mode());
- JumpTarget is_false;
- ControlDestination dest(destination()->true_target(), &is_false, false);
- LoadCondition(node->left(), &dest, false);
-
- if (dest.true_was_fall_through()) {
- // The current true target was used as the fall-through. If
- // there are no dangling jumps to is_false then the left
- // subexpression was unconditionally true. Otherwise we have
- // paths where we do have to evaluate the right subexpression.
- if (is_false.is_linked()) {
- // We need to compile the right subexpression. If the jump to
- // the current true target was a forward jump then we have a
- // valid frame, we have just bound the true target, and we
- // have to jump around the code for the right subexpression.
- if (has_valid_frame()) {
- destination()->true_target()->Unuse();
- destination()->true_target()->Jump();
- }
- is_false.Bind();
- // The left subexpression compiled to control flow, so the
- // right one is free to do so as well.
- LoadCondition(node->right(), destination(), false);
- } else {
- // We have just jumped to or bound the current true target but
- // the current control destination is not marked as used.
- destination()->Use(true);
- }
-
- } else if (dest.is_used()) {
- // The left subexpression compiled to control flow (and is_false
- // was just bound), so the right is free to do so as well.
- LoadCondition(node->right(), destination(), false);
-
- } else {
- // We have a materialized value on the frame, so we exit with
- // one on all paths. There are possibly also jumps to is_false
- // from nested subexpressions.
- JumpTarget pop_and_continue;
- JumpTarget exit;
-
- // Avoid popping the result if it converts to 'true' using the
- // standard ToBoolean() conversion as described in ECMA-262,
- // section 9.2, page 30.
- //
- // Duplicate the TOS value. The duplicate will be popped by
- // ToBoolean.
- frame_->Dup();
- ControlDestination dest(&exit, &pop_and_continue, false);
- ToBoolean(&dest);
-
- // Pop the result of evaluating the first part.
- frame_->Drop();
-
- // Compile right side expression.
- is_false.Bind();
- Load(node->right());
-
- // Exit (always with a materialized value).
- exit.Bind();
- }
- }
-}
-
-
-void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) {
- Comment cmnt(masm_, "[ BinaryOperation");
-
- if (node->op() == Token::AND || node->op() == Token::OR) {
- GenerateLogicalBooleanOperation(node);
- } else if (in_safe_int32_mode()) {
- Visit(node->left());
- Visit(node->right());
- Int32BinaryOperation(node);
- } else {
- // NOTE: The code below assumes that the slow cases (calls to runtime)
- // never return a constant/immutable object.
- OverwriteMode overwrite_mode = NO_OVERWRITE;
- if (node->left()->ResultOverwriteAllowed()) {
- overwrite_mode = OVERWRITE_LEFT;
- } else if (node->right()->ResultOverwriteAllowed()) {
- overwrite_mode = OVERWRITE_RIGHT;
- }
-
- if (node->left()->IsTrivial()) {
- Load(node->right());
- Result right = frame_->Pop();
- frame_->Push(node->left());
- frame_->Push(&right);
- } else {
- Load(node->left());
- Load(node->right());
- }
- GenericBinaryOperation(node, overwrite_mode);
- }
-}
-
-
-void CodeGenerator::VisitThisFunction(ThisFunction* node) {
- ASSERT(!in_safe_int32_mode());
- frame_->PushFunction();
-}
-
-
-void CodeGenerator::VisitCompareOperation(CompareOperation* node) {
- ASSERT(!in_safe_int32_mode());
- Comment cmnt(masm_, "[ CompareOperation");
-
- bool left_already_loaded = false;
-
- // Get the expressions from the node.
- Expression* left = node->left();
- Expression* right = node->right();
- Token::Value op = node->op();
- // To make typeof testing for natives implemented in JavaScript really
- // efficient, we generate special code for expressions of the form:
- // 'typeof <expression> == <string>'.
- UnaryOperation* operation = left->AsUnaryOperation();
- if ((op == Token::EQ || op == Token::EQ_STRICT) &&
- (operation != NULL && operation->op() == Token::TYPEOF) &&
- (right->AsLiteral() != NULL &&
- right->AsLiteral()->handle()->IsString())) {
- Handle<String> check(String::cast(*right->AsLiteral()->handle()));
-
- // Load the operand and move it to a register.
- LoadTypeofExpression(operation->expression());
- Result answer = frame_->Pop();
- answer.ToRegister();
-
- if (check->Equals(Heap::number_symbol())) {
- __ test(answer.reg(), Immediate(kSmiTagMask));
- destination()->true_target()->Branch(zero);
- frame_->Spill(answer.reg());
- __ mov(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
- __ cmp(answer.reg(), Factory::heap_number_map());
- answer.Unuse();
- destination()->Split(equal);
-
- } else if (check->Equals(Heap::string_symbol())) {
- __ test(answer.reg(), Immediate(kSmiTagMask));
- destination()->false_target()->Branch(zero);
-
- // It can be an undetectable string object.
- Result temp = allocator()->Allocate();
- ASSERT(temp.is_valid());
- __ mov(temp.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
- __ test_b(FieldOperand(temp.reg(), Map::kBitFieldOffset),
- 1 << Map::kIsUndetectable);
- destination()->false_target()->Branch(not_zero);
- __ CmpInstanceType(temp.reg(), FIRST_NONSTRING_TYPE);
- temp.Unuse();
- answer.Unuse();
- destination()->Split(below);
-
- } else if (check->Equals(Heap::boolean_symbol())) {
- __ cmp(answer.reg(), Factory::true_value());
- destination()->true_target()->Branch(equal);
- __ cmp(answer.reg(), Factory::false_value());
- answer.Unuse();
- destination()->Split(equal);
-
- } else if (check->Equals(Heap::undefined_symbol())) {
- __ cmp(answer.reg(), Factory::undefined_value());
- destination()->true_target()->Branch(equal);
-
- __ test(answer.reg(), Immediate(kSmiTagMask));
- destination()->false_target()->Branch(zero);
-
- // It can be an undetectable object.
- frame_->Spill(answer.reg());
- __ mov(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
- __ test_b(FieldOperand(answer.reg(), Map::kBitFieldOffset),
- 1 << Map::kIsUndetectable);
- answer.Unuse();
- destination()->Split(not_zero);
-
- } else if (check->Equals(Heap::function_symbol())) {
- __ test(answer.reg(), Immediate(kSmiTagMask));
- destination()->false_target()->Branch(zero);
- frame_->Spill(answer.reg());
- __ CmpObjectType(answer.reg(), JS_FUNCTION_TYPE, answer.reg());
- destination()->true_target()->Branch(equal);
- // Regular expressions are callable so typeof == 'function'.
- __ CmpInstanceType(answer.reg(), JS_REGEXP_TYPE);
- answer.Unuse();
- destination()->Split(equal);
- } else if (check->Equals(Heap::object_symbol())) {
- __ test(answer.reg(), Immediate(kSmiTagMask));
- destination()->false_target()->Branch(zero);
- __ cmp(answer.reg(), Factory::null_value());
- destination()->true_target()->Branch(equal);
-
- Result map = allocator()->Allocate();
- ASSERT(map.is_valid());
- // Regular expressions are typeof == 'function', not 'object'.
- __ CmpObjectType(answer.reg(), JS_REGEXP_TYPE, map.reg());
- destination()->false_target()->Branch(equal);
-
- // It can be an undetectable object.
- __ test_b(FieldOperand(map.reg(), Map::kBitFieldOffset),
- 1 << Map::kIsUndetectable);
- destination()->false_target()->Branch(not_zero);
- // Do a range test for JSObject type. We can't use
- // MacroAssembler::IsInstanceJSObjectType, because we are using a
- // ControlDestination, so we copy its implementation here.
- __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kInstanceTypeOffset));
- __ sub(Operand(map.reg()), Immediate(FIRST_JS_OBJECT_TYPE));
- __ cmp(map.reg(), LAST_JS_OBJECT_TYPE - FIRST_JS_OBJECT_TYPE);
- answer.Unuse();
- map.Unuse();
- destination()->Split(below_equal);
- } else {
- // Uncommon case: typeof testing against a string literal that is
- // never returned from the typeof operator.
- answer.Unuse();
- destination()->Goto(false);
- }
- return;
- } else if (op == Token::LT &&
- right->AsLiteral() != NULL &&
- right->AsLiteral()->handle()->IsHeapNumber()) {
- Handle<HeapNumber> check(HeapNumber::cast(*right->AsLiteral()->handle()));
- if (check->value() == 2147483648.0) { // 0x80000000.
- Load(left);
- left_already_loaded = true;
- Result lhs = frame_->Pop();
- lhs.ToRegister();
- __ test(lhs.reg(), Immediate(kSmiTagMask));
- destination()->true_target()->Branch(zero); // All Smis are less.
- Result scratch = allocator()->Allocate();
- ASSERT(scratch.is_valid());
- __ mov(scratch.reg(), FieldOperand(lhs.reg(), HeapObject::kMapOffset));
- __ cmp(scratch.reg(), Factory::heap_number_map());
- JumpTarget not_a_number;
- not_a_number.Branch(not_equal, &lhs);
- __ mov(scratch.reg(),
- FieldOperand(lhs.reg(), HeapNumber::kExponentOffset));
- __ cmp(Operand(scratch.reg()), Immediate(0xfff00000));
- not_a_number.Branch(above_equal, &lhs); // It's a negative NaN or -Inf.
- const uint32_t borderline_exponent =
- (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift;
- __ cmp(Operand(scratch.reg()), Immediate(borderline_exponent));
- scratch.Unuse();
- lhs.Unuse();
- destination()->true_target()->Branch(less);
- destination()->false_target()->Jump();
-
- not_a_number.Bind(&lhs);
- frame_->Push(&lhs);
- }
- }
-
- Condition cc = no_condition;
- bool strict = false;
- switch (op) {
- case Token::EQ_STRICT:
- strict = true;
- // Fall through
- case Token::EQ:
- cc = equal;
- break;
- case Token::LT:
- cc = less;
- break;
- case Token::GT:
- cc = greater;
- break;
- case Token::LTE:
- cc = less_equal;
- break;
- case Token::GTE:
- cc = greater_equal;
- break;
- case Token::IN: {
- if (!left_already_loaded) Load(left);
- Load(right);
- Result answer = frame_->InvokeBuiltin(Builtins::IN, CALL_FUNCTION, 2);
- frame_->Push(&answer); // push the result
- return;
- }
- case Token::INSTANCEOF: {
- if (!left_already_loaded) Load(left);
- Load(right);
- InstanceofStub stub(InstanceofStub::kNoFlags);
- Result answer = frame_->CallStub(&stub, 2);
- answer.ToRegister();
- __ test(answer.reg(), Operand(answer.reg()));
- answer.Unuse();
- destination()->Split(zero);
- return;
- }
- default:
- UNREACHABLE();
- }
-
- if (left->IsTrivial()) {
- if (!left_already_loaded) {
- Load(right);
- Result right_result = frame_->Pop();
- frame_->Push(left);
- frame_->Push(&right_result);
- } else {
- Load(right);
- }
- } else {
- if (!left_already_loaded) Load(left);
- Load(right);
- }
- Comparison(node, cc, strict, destination());
-}
-
-
-void CodeGenerator::VisitCompareToNull(CompareToNull* node) {
- ASSERT(!in_safe_int32_mode());
- Comment cmnt(masm_, "[ CompareToNull");
-
- Load(node->expression());
- Result operand = frame_->Pop();
- operand.ToRegister();
- __ cmp(operand.reg(), Factory::null_value());
- if (node->is_strict()) {
- operand.Unuse();
- destination()->Split(equal);
- } else {
- // The 'null' value is only equal to 'undefined' if using non-strict
- // comparisons.
- destination()->true_target()->Branch(equal);
- __ cmp(operand.reg(), Factory::undefined_value());
- destination()->true_target()->Branch(equal);
- __ test(operand.reg(), Immediate(kSmiTagMask));
- destination()->false_target()->Branch(equal);
-
- // It can be an undetectable object.
- // Use a scratch register in preference to spilling operand.reg().
- Result temp = allocator()->Allocate();
- ASSERT(temp.is_valid());
- __ mov(temp.reg(),
- FieldOperand(operand.reg(), HeapObject::kMapOffset));
- __ test_b(FieldOperand(temp.reg(), Map::kBitFieldOffset),
- 1 << Map::kIsUndetectable);
- temp.Unuse();
- operand.Unuse();
- destination()->Split(not_zero);
- }
-}
-
-
-#ifdef DEBUG
-bool CodeGenerator::HasValidEntryRegisters() {
- return (allocator()->count(eax) == (frame()->is_used(eax) ? 1 : 0))
- && (allocator()->count(ebx) == (frame()->is_used(ebx) ? 1 : 0))
- && (allocator()->count(ecx) == (frame()->is_used(ecx) ? 1 : 0))
- && (allocator()->count(edx) == (frame()->is_used(edx) ? 1 : 0))
- && (allocator()->count(edi) == (frame()->is_used(edi) ? 1 : 0));
-}
-#endif
-
-
-// Emit a LoadIC call to get the value from receiver and leave it in
-// dst.
-class DeferredReferenceGetNamedValue: public DeferredCode {
- public:
- DeferredReferenceGetNamedValue(Register dst,
- Register receiver,
- Handle<String> name,
- bool is_contextual)
- : dst_(dst),
- receiver_(receiver),
- name_(name),
- is_contextual_(is_contextual),
- is_dont_delete_(false) {
- set_comment(is_contextual
- ? "[ DeferredReferenceGetNamedValue (contextual)"
- : "[ DeferredReferenceGetNamedValue");
- }
-
- virtual void Generate();
-
- Label* patch_site() { return &patch_site_; }
-
- void set_is_dont_delete(bool value) {
- ASSERT(is_contextual_);
- is_dont_delete_ = value;
- }
-
- private:
- Label patch_site_;
- Register dst_;
- Register receiver_;
- Handle<String> name_;
- bool is_contextual_;
- bool is_dont_delete_;
-};
-
-
-void DeferredReferenceGetNamedValue::Generate() {
- if (!receiver_.is(eax)) {
- __ mov(eax, receiver_);
- }
- __ Set(ecx, Immediate(name_));
- Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
- RelocInfo::Mode mode = is_contextual_
- ? RelocInfo::CODE_TARGET_CONTEXT
- : RelocInfo::CODE_TARGET;
- __ call(ic, mode);
- // The call must be followed by:
- // - a test eax instruction to indicate that the inobject property
- // case was inlined.
- // - a mov ecx or mov edx instruction to indicate that the
- // contextual property load was inlined.
- //
- // Store the delta to the map check instruction here in the test
- // instruction. Use masm_-> instead of the __ macro since the
- // latter can't return a value.
- int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
- // Here we use masm_-> instead of the __ macro because this is the
- // instruction that gets patched and coverage code gets in the way.
- if (is_contextual_) {
- masm_->mov(is_dont_delete_ ? edx : ecx, -delta_to_patch_site);
- __ IncrementCounter(&Counters::named_load_global_inline_miss, 1);
- if (is_dont_delete_) {
- __ IncrementCounter(&Counters::dont_delete_hint_miss, 1);
- }
- } else {
- masm_->test(eax, Immediate(-delta_to_patch_site));
- __ IncrementCounter(&Counters::named_load_inline_miss, 1);
- }
-
- if (!dst_.is(eax)) __ mov(dst_, eax);
-}
-
-
-class DeferredReferenceGetKeyedValue: public DeferredCode {
- public:
- explicit DeferredReferenceGetKeyedValue(Register dst,
- Register receiver,
- Register key)
- : dst_(dst), receiver_(receiver), key_(key) {
- set_comment("[ DeferredReferenceGetKeyedValue");
- }
-
- virtual void Generate();
-
- Label* patch_site() { return &patch_site_; }
-
- private:
- Label patch_site_;
- Register dst_;
- Register receiver_;
- Register key_;
-};
-
-
-void DeferredReferenceGetKeyedValue::Generate() {
- if (!receiver_.is(eax)) {
- // Register eax is available for key.
- if (!key_.is(eax)) {
- __ mov(eax, key_);
- }
- if (!receiver_.is(edx)) {
- __ mov(edx, receiver_);
- }
- } else if (!key_.is(edx)) {
- // Register edx is available for receiver.
- if (!receiver_.is(edx)) {
- __ mov(edx, receiver_);
- }
- if (!key_.is(eax)) {
- __ mov(eax, key_);
- }
- } else {
- __ xchg(edx, eax);
- }
- // Calculate the delta from the IC call instruction to the map check
- // cmp instruction in the inlined version. This delta is stored in
- // a test(eax, delta) instruction after the call so that we can find
- // it in the IC initialization code and patch the cmp instruction.
- // This means that we cannot allow test instructions after calls to
- // KeyedLoadIC stubs in other places.
- Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
- __ call(ic, RelocInfo::CODE_TARGET);
- // The delta from the start of the map-compare instruction to the
- // test instruction. We use masm_-> directly here instead of the __
- // macro because the macro sometimes uses macro expansion to turn
- // into something that can't return a value. This is encountered
- // when doing generated code coverage tests.
- int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
- // Here we use masm_-> instead of the __ macro because this is the
- // instruction that gets patched and coverage code gets in the way.
- masm_->test(eax, Immediate(-delta_to_patch_site));
- __ IncrementCounter(&Counters::keyed_load_inline_miss, 1);
-
- if (!dst_.is(eax)) __ mov(dst_, eax);
-}
-
-
-class DeferredReferenceSetKeyedValue: public DeferredCode {
- public:
- DeferredReferenceSetKeyedValue(Register value,
- Register key,
- Register receiver,
- Register scratch,
- StrictModeFlag strict_mode)
- : value_(value),
- key_(key),
- receiver_(receiver),
- scratch_(scratch),
- strict_mode_(strict_mode) {
- set_comment("[ DeferredReferenceSetKeyedValue");
- }
-
- virtual void Generate();
-
- Label* patch_site() { return &patch_site_; }
-
- private:
- Register value_;
- Register key_;
- Register receiver_;
- Register scratch_;
- Label patch_site_;
- StrictModeFlag strict_mode_;
-};
-
-
-void DeferredReferenceSetKeyedValue::Generate() {
- __ IncrementCounter(&Counters::keyed_store_inline_miss, 1);
- // Move value_ to eax, key_ to ecx, and receiver_ to edx.
- Register old_value = value_;
-
- // First, move value to eax.
- if (!value_.is(eax)) {
- if (key_.is(eax)) {
- // Move key_ out of eax, preferably to ecx.
- if (!value_.is(ecx) && !receiver_.is(ecx)) {
- __ mov(ecx, key_);
- key_ = ecx;
- } else {
- __ mov(scratch_, key_);
- key_ = scratch_;
- }
- }
- if (receiver_.is(eax)) {
- // Move receiver_ out of eax, preferably to edx.
- if (!value_.is(edx) && !key_.is(edx)) {
- __ mov(edx, receiver_);
- receiver_ = edx;
- } else {
- // Both moves to scratch are from eax, also, no valid path hits both.
- __ mov(scratch_, receiver_);
- receiver_ = scratch_;
- }
- }
- __ mov(eax, value_);
- value_ = eax;
- }
-
- // Now value_ is in eax. Move the other two to the right positions.
- // We do not update the variables key_ and receiver_ to ecx and edx.
- if (key_.is(ecx)) {
- if (!receiver_.is(edx)) {
- __ mov(edx, receiver_);
- }
- } else if (key_.is(edx)) {
- if (receiver_.is(ecx)) {
- __ xchg(edx, ecx);
- } else {
- __ mov(ecx, key_);
- if (!receiver_.is(edx)) {
- __ mov(edx, receiver_);
- }
- }
- } else { // Key is not in edx or ecx.
- if (!receiver_.is(edx)) {
- __ mov(edx, receiver_);
- }
- __ mov(ecx, key_);
- }
-
- // Call the IC stub.
- Handle<Code> ic(Builtins::builtin(
- (strict_mode_ == kStrictMode) ? Builtins::KeyedStoreIC_Initialize_Strict
- : Builtins::KeyedStoreIC_Initialize));
- __ call(ic, RelocInfo::CODE_TARGET);
- // The delta from the start of the map-compare instruction to the
- // test instruction. We use masm_-> directly here instead of the
- // __ macro because the macro sometimes uses macro expansion to turn
- // into something that can't return a value. This is encountered
- // when doing generated code coverage tests.
- int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
- // Here we use masm_-> instead of the __ macro because this is the
- // instruction that gets patched and coverage code gets in the way.
- masm_->test(eax, Immediate(-delta_to_patch_site));
- // Restore value (returned from store IC) register.
- if (!old_value.is(eax)) __ mov(old_value, eax);
-}
-
-
-Result CodeGenerator::EmitNamedLoad(Handle<String> name, bool is_contextual) {
-#ifdef DEBUG
- int original_height = frame()->height();
-#endif
-
- bool contextual_load_in_builtin =
- is_contextual &&
- (Bootstrapper::IsActive() ||
- (!info_->closure().is_null() && info_->closure()->IsBuiltin()));
-
- Result result;
- // Do not inline in the global code or when not in loop.
- if (scope()->is_global_scope() ||
- loop_nesting() == 0 ||
- contextual_load_in_builtin) {
- Comment cmnt(masm(), "[ Load from named Property");
- frame()->Push(name);
-
- RelocInfo::Mode mode = is_contextual
- ? RelocInfo::CODE_TARGET_CONTEXT
- : RelocInfo::CODE_TARGET;
- result = frame()->CallLoadIC(mode);
- // A test eax instruction following the call signals that the inobject
- // property case was inlined. Ensure that there is not a test eax
- // instruction here.
- __ nop();
- } else {
- // Inline the property load.
- Comment cmnt(masm(), is_contextual
- ? "[ Inlined contextual property load"
- : "[ Inlined named property load");
- Result receiver = frame()->Pop();
- receiver.ToRegister();
-
- result = allocator()->Allocate();
- ASSERT(result.is_valid());
- DeferredReferenceGetNamedValue* deferred =
- new DeferredReferenceGetNamedValue(result.reg(),
- receiver.reg(),
- name,
- is_contextual);
-
- if (!is_contextual) {
- // Check that the receiver is a heap object.
- __ test(receiver.reg(), Immediate(kSmiTagMask));
- deferred->Branch(zero);
- }
-
- __ bind(deferred->patch_site());
- // This is the map check instruction that will be patched (so we can't
- // use the double underscore macro that may insert instructions).
- // Initially use an invalid map to force a failure.
- masm()->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
- Immediate(Factory::null_value()));
- // This branch is always a forwards branch so it's always a fixed size
- // which allows the assert below to succeed and patching to work.
- deferred->Branch(not_equal);
-
- // The delta from the patch label to the actual load must be
- // statically known.
- ASSERT(masm()->SizeOfCodeGeneratedSince(deferred->patch_site()) ==
- LoadIC::kOffsetToLoadInstruction);
-
- if (is_contextual) {
- // Load the (initialy invalid) cell and get its value.
- masm()->mov(result.reg(), Factory::null_value());
- if (FLAG_debug_code) {
- __ cmp(FieldOperand(result.reg(), HeapObject::kMapOffset),
- Factory::global_property_cell_map());
- __ Assert(equal, "Uninitialized inlined contextual load");
- }
- __ mov(result.reg(),
- FieldOperand(result.reg(), JSGlobalPropertyCell::kValueOffset));
- bool is_dont_delete = false;
- if (!info_->closure().is_null()) {
- // When doing lazy compilation we can check if the global cell
- // already exists and use its "don't delete" status as a hint.
- AssertNoAllocation no_gc;
- v8::internal::GlobalObject* global_object =
- info_->closure()->context()->global();
- LookupResult lookup;
- global_object->LocalLookupRealNamedProperty(*name, &lookup);
- if (lookup.IsProperty() && lookup.type() == NORMAL) {
- ASSERT(lookup.holder() == global_object);
- ASSERT(global_object->property_dictionary()->ValueAt(
- lookup.GetDictionaryEntry())->IsJSGlobalPropertyCell());
- is_dont_delete = lookup.IsDontDelete();
- }
- }
- deferred->set_is_dont_delete(is_dont_delete);
- if (!is_dont_delete) {
- __ cmp(result.reg(), Factory::the_hole_value());
- deferred->Branch(equal);
- } else if (FLAG_debug_code) {
- __ cmp(result.reg(), Factory::the_hole_value());
- __ Check(not_equal, "DontDelete cells can't contain the hole");
- }
- __ IncrementCounter(&Counters::named_load_global_inline, 1);
- if (is_dont_delete) {
- __ IncrementCounter(&Counters::dont_delete_hint_hit, 1);
- }
- } else {
- // The initial (invalid) offset has to be large enough to force a 32-bit
- // instruction encoding to allow patching with an arbitrary offset. Use
- // kMaxInt (minus kHeapObjectTag).
- int offset = kMaxInt;
- masm()->mov(result.reg(), FieldOperand(receiver.reg(), offset));
- __ IncrementCounter(&Counters::named_load_inline, 1);
- }
-
- deferred->BindExit();
- }
- ASSERT(frame()->height() == original_height - 1);
- return result;
-}
-
-
-Result CodeGenerator::EmitNamedStore(Handle<String> name, bool is_contextual) {
-#ifdef DEBUG
- int expected_height = frame()->height() - (is_contextual ? 1 : 2);
-#endif
-
- Result result;
- if (is_contextual || scope()->is_global_scope() || loop_nesting() == 0) {
- result = frame()->CallStoreIC(name, is_contextual, strict_mode_flag());
- // A test eax instruction following the call signals that the inobject
- // property case was inlined. Ensure that there is not a test eax
- // instruction here.
- __ nop();
- } else {
- // Inline the in-object property case.
- JumpTarget slow, done;
- Label patch_site;
-
- // Get the value and receiver from the stack.
- Result value = frame()->Pop();
- value.ToRegister();
- Result receiver = frame()->Pop();
- receiver.ToRegister();
-
- // Allocate result register.
- result = allocator()->Allocate();
- ASSERT(result.is_valid() && receiver.is_valid() && value.is_valid());
-
- // Check that the receiver is a heap object.
- __ test(receiver.reg(), Immediate(kSmiTagMask));
- slow.Branch(zero, &value, &receiver);
-
- // This is the map check instruction that will be patched (so we can't
- // use the double underscore macro that may insert instructions).
- // Initially use an invalid map to force a failure.
- __ bind(&patch_site);
- masm()->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
- Immediate(Factory::null_value()));
- // This branch is always a forwards branch so it's always a fixed size
- // which allows the assert below to succeed and patching to work.
- slow.Branch(not_equal, &value, &receiver);
-
- // The delta from the patch label to the store offset must be
- // statically known.
- ASSERT(masm()->SizeOfCodeGeneratedSince(&patch_site) ==
- StoreIC::kOffsetToStoreInstruction);
-
- // The initial (invalid) offset has to be large enough to force a 32-bit
- // instruction encoding to allow patching with an arbitrary offset. Use
- // kMaxInt (minus kHeapObjectTag).
- int offset = kMaxInt;
- __ mov(FieldOperand(receiver.reg(), offset), value.reg());
- __ mov(result.reg(), Operand(value.reg()));
-
- // Allocate scratch register for write barrier.
- Result scratch = allocator()->Allocate();
- ASSERT(scratch.is_valid());
-
- // The write barrier clobbers all input registers, so spill the
- // receiver and the value.
- frame_->Spill(receiver.reg());
- frame_->Spill(value.reg());
-
- // If the receiver and the value share a register allocate a new
- // register for the receiver.
- if (receiver.reg().is(value.reg())) {
- receiver = allocator()->Allocate();
- ASSERT(receiver.is_valid());
- __ mov(receiver.reg(), Operand(value.reg()));
- }
-
- // Update the write barrier. To save instructions in the inlined
- // version we do not filter smis.
- Label skip_write_barrier;
- __ InNewSpace(receiver.reg(), value.reg(), equal, &skip_write_barrier);
- int delta_to_record_write = masm_->SizeOfCodeGeneratedSince(&patch_site);
- __ lea(scratch.reg(), Operand(receiver.reg(), offset));
- __ RecordWriteHelper(receiver.reg(), scratch.reg(), value.reg());
- if (FLAG_debug_code) {
- __ mov(receiver.reg(), Immediate(BitCast<int32_t>(kZapValue)));
- __ mov(value.reg(), Immediate(BitCast<int32_t>(kZapValue)));
- __ mov(scratch.reg(), Immediate(BitCast<int32_t>(kZapValue)));
- }
- __ bind(&skip_write_barrier);
- value.Unuse();
- scratch.Unuse();
- receiver.Unuse();
- done.Jump(&result);
-
- slow.Bind(&value, &receiver);
- frame()->Push(&receiver);
- frame()->Push(&value);
- result = frame()->CallStoreIC(name, is_contextual, strict_mode_flag());
- // Encode the offset to the map check instruction and the offset
- // to the write barrier store address computation in a test eax
- // instruction.
- int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site);
- __ test(eax,
- Immediate((delta_to_record_write << 16) | delta_to_patch_site));
- done.Bind(&result);
- }
-
- ASSERT_EQ(expected_height, frame()->height());
- return result;
-}
-
-
-Result CodeGenerator::EmitKeyedLoad() {
-#ifdef DEBUG
- int original_height = frame()->height();
-#endif
- Result result;
- // Inline array load code if inside of a loop. We do not know the
- // receiver map yet, so we initially generate the code with a check
- // against an invalid map. In the inline cache code, we patch the map
- // check if appropriate.
- if (loop_nesting() > 0) {
- Comment cmnt(masm_, "[ Inlined load from keyed Property");
-
- // Use a fresh temporary to load the elements without destroying
- // the receiver which is needed for the deferred slow case.
- Result elements = allocator()->Allocate();
- ASSERT(elements.is_valid());
-
- Result key = frame_->Pop();
- Result receiver = frame_->Pop();
- key.ToRegister();
- receiver.ToRegister();
-
- // If key and receiver are shared registers on the frame, their values will
- // be automatically saved and restored when going to deferred code.
- // The result is in elements, which is guaranteed non-shared.
- DeferredReferenceGetKeyedValue* deferred =
- new DeferredReferenceGetKeyedValue(elements.reg(),
- receiver.reg(),
- key.reg());
-
- __ test(receiver.reg(), Immediate(kSmiTagMask));
- deferred->Branch(zero);
-
- // Check that the receiver has the expected map.
- // Initially, use an invalid map. The map is patched in the IC
- // initialization code.
- __ bind(deferred->patch_site());
- // Use masm-> here instead of the double underscore macro since extra
- // coverage code can interfere with the patching.
- masm_->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
- Immediate(Factory::null_value()));
- deferred->Branch(not_equal);
-
- // Check that the key is a smi.
- if (!key.is_smi()) {
- __ test(key.reg(), Immediate(kSmiTagMask));
- deferred->Branch(not_zero);
- } else {
- if (FLAG_debug_code) __ AbortIfNotSmi(key.reg());
- }
-
- // Get the elements array from the receiver.
- __ mov(elements.reg(),
- FieldOperand(receiver.reg(), JSObject::kElementsOffset));
- __ AssertFastElements(elements.reg());
-
- // Check that the key is within bounds.
- __ cmp(key.reg(),
- FieldOperand(elements.reg(), FixedArray::kLengthOffset));
- deferred->Branch(above_equal);
-
- // Load and check that the result is not the hole.
- // Key holds a smi.
- STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
- __ mov(elements.reg(),
- FieldOperand(elements.reg(),
- key.reg(),
- times_2,
- FixedArray::kHeaderSize));
- result = elements;
- __ cmp(Operand(result.reg()), Immediate(Factory::the_hole_value()));
- deferred->Branch(equal);
- __ IncrementCounter(&Counters::keyed_load_inline, 1);
-
- deferred->BindExit();
- } else {
- Comment cmnt(masm_, "[ Load from keyed Property");
- result = frame_->CallKeyedLoadIC(RelocInfo::CODE_TARGET);
- // Make sure that we do not have a test instruction after the
- // call. A test instruction after the call is used to
- // indicate that we have generated an inline version of the
- // keyed load. The explicit nop instruction is here because
- // the push that follows might be peep-hole optimized away.
- __ nop();
- }
- ASSERT(frame()->height() == original_height - 2);
- return result;
-}
-
-
-Result CodeGenerator::EmitKeyedStore(StaticType* key_type) {
-#ifdef DEBUG
- int original_height = frame()->height();
-#endif
- Result result;
- // Generate inlined version of the keyed store if the code is in a loop
- // and the key is likely to be a smi.
- if (loop_nesting() > 0 && key_type->IsLikelySmi()) {
- Comment cmnt(masm(), "[ Inlined store to keyed Property");
-
- // Get the receiver, key and value into registers.
- result = frame()->Pop();
- Result key = frame()->Pop();
- Result receiver = frame()->Pop();
-
- Result tmp = allocator_->Allocate();
- ASSERT(tmp.is_valid());
- Result tmp2 = allocator_->Allocate();
- ASSERT(tmp2.is_valid());
-
- // Determine whether the value is a constant before putting it in a
- // register.
- bool value_is_constant = result.is_constant();
-
- // Make sure that value, key and receiver are in registers.
- result.ToRegister();
- key.ToRegister();
- receiver.ToRegister();
-
- DeferredReferenceSetKeyedValue* deferred =
- new DeferredReferenceSetKeyedValue(result.reg(),
- key.reg(),
- receiver.reg(),
- tmp.reg(),
- strict_mode_flag());
-
- // Check that the receiver is not a smi.
- __ test(receiver.reg(), Immediate(kSmiTagMask));
- deferred->Branch(zero);
-
- // Check that the key is a smi.
- if (!key.is_smi()) {
- __ test(key.reg(), Immediate(kSmiTagMask));
- deferred->Branch(not_zero);
- } else {
- if (FLAG_debug_code) __ AbortIfNotSmi(key.reg());
- }
-
- // Check that the receiver is a JSArray.
- __ CmpObjectType(receiver.reg(), JS_ARRAY_TYPE, tmp.reg());
- deferred->Branch(not_equal);
-
- // Check that the key is within bounds. Both the key and the length of
- // the JSArray are smis. Use unsigned comparison to handle negative keys.
- __ cmp(key.reg(),
- FieldOperand(receiver.reg(), JSArray::kLengthOffset));
- deferred->Branch(above_equal);
-
- // Get the elements array from the receiver and check that it is not a
- // dictionary.
- __ mov(tmp.reg(),
- FieldOperand(receiver.reg(), JSArray::kElementsOffset));
-
- // Check whether it is possible to omit the write barrier. If the elements
- // array is in new space or the value written is a smi we can safely update
- // the elements array without write barrier.
- Label in_new_space;
- __ InNewSpace(tmp.reg(), tmp2.reg(), equal, &in_new_space);
- if (!value_is_constant) {
- __ test(result.reg(), Immediate(kSmiTagMask));
- deferred->Branch(not_zero);
- }
-
- __ bind(&in_new_space);
- // Bind the deferred code patch site to be able to locate the fixed
- // array map comparison. When debugging, we patch this comparison to
- // always fail so that we will hit the IC call in the deferred code
- // which will allow the debugger to break for fast case stores.
- __ bind(deferred->patch_site());
- __ cmp(FieldOperand(tmp.reg(), HeapObject::kMapOffset),
- Immediate(Factory::fixed_array_map()));
- deferred->Branch(not_equal);
-
- // Store the value.
- __ mov(FixedArrayElementOperand(tmp.reg(), key.reg()), result.reg());
- __ IncrementCounter(&Counters::keyed_store_inline, 1);
-
- deferred->BindExit();
- } else {
- result = frame()->CallKeyedStoreIC(strict_mode_flag());
- // Make sure that we do not have a test instruction after the
- // call. A test instruction after the call is used to
- // indicate that we have generated an inline version of the
- // keyed store.
- __ nop();
- }
- ASSERT(frame()->height() == original_height - 3);
- return result;
-}
-
-
-#undef __
-#define __ ACCESS_MASM(masm)
-
-
-Handle<String> Reference::GetName() {
- ASSERT(type_ == NAMED);
- Property* property = expression_->AsProperty();
- if (property == NULL) {
- // Global variable reference treated as a named property reference.
- VariableProxy* proxy = expression_->AsVariableProxy();
- ASSERT(proxy->AsVariable() != NULL);
- ASSERT(proxy->AsVariable()->is_global());
- return proxy->name();
- } else {
- Literal* raw_name = property->key()->AsLiteral();
- ASSERT(raw_name != NULL);
- return Handle<String>::cast(raw_name->handle());
- }
-}
-
-
-void Reference::GetValue() {
- ASSERT(!cgen_->in_spilled_code());
- ASSERT(cgen_->HasValidEntryRegisters());
- ASSERT(!is_illegal());
- MacroAssembler* masm = cgen_->masm();
-
- // Record the source position for the property load.
- Property* property = expression_->AsProperty();
- if (property != NULL) {
- cgen_->CodeForSourcePosition(property->position());
- }
-
- switch (type_) {
- case SLOT: {
- Comment cmnt(masm, "[ Load from Slot");
- Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot();
- ASSERT(slot != NULL);
- cgen_->LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF);
- if (!persist_after_get_) set_unloaded();
- break;
- }
-
- case NAMED: {
- Variable* var = expression_->AsVariableProxy()->AsVariable();
- bool is_global = var != NULL;
- ASSERT(!is_global || var->is_global());
- if (persist_after_get_) cgen_->frame()->Dup();
- Result result = cgen_->EmitNamedLoad(GetName(), is_global);
- if (!persist_after_get_) set_unloaded();
- cgen_->frame()->Push(&result);
- break;
- }
-
- case KEYED: {
- if (persist_after_get_) {
- cgen_->frame()->PushElementAt(1);
- cgen_->frame()->PushElementAt(1);
- }
- Result value = cgen_->EmitKeyedLoad();
- cgen_->frame()->Push(&value);
- if (!persist_after_get_) set_unloaded();
- break;
- }
-
- default:
- UNREACHABLE();
- }
-}
-
-
-void Reference::TakeValue() {
- // For non-constant frame-allocated slots, we invalidate the value in the
- // slot. For all others, we fall back on GetValue.
- ASSERT(!cgen_->in_spilled_code());
- ASSERT(!is_illegal());
- if (type_ != SLOT) {
- GetValue();
- return;
- }
-
- Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot();
- ASSERT(slot != NULL);
- if (slot->type() == Slot::LOOKUP ||
- slot->type() == Slot::CONTEXT ||
- slot->var()->mode() == Variable::CONST ||
- slot->is_arguments()) {
- GetValue();
- return;
- }
-
- // Only non-constant, frame-allocated parameters and locals can
- // reach here. Be careful not to use the optimizations for arguments
- // object access since it may not have been initialized yet.
- ASSERT(!slot->is_arguments());
- if (slot->type() == Slot::PARAMETER) {
- cgen_->frame()->TakeParameterAt(slot->index());
- } else {
- ASSERT(slot->type() == Slot::LOCAL);
- cgen_->frame()->TakeLocalAt(slot->index());
- }
-
- ASSERT(persist_after_get_);
- // Do not unload the reference, because it is used in SetValue.
-}
-
-
-void Reference::SetValue(InitState init_state) {
- ASSERT(cgen_->HasValidEntryRegisters());
- ASSERT(!is_illegal());
- MacroAssembler* masm = cgen_->masm();
- switch (type_) {
- case SLOT: {
- Comment cmnt(masm, "[ Store to Slot");
- Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot();
- ASSERT(slot != NULL);
- cgen_->StoreToSlot(slot, init_state);
- set_unloaded();
- break;
- }
-
- case NAMED: {
- Comment cmnt(masm, "[ Store to named Property");
- Result answer = cgen_->EmitNamedStore(GetName(), false);
- cgen_->frame()->Push(&answer);
- set_unloaded();
- break;
- }
-
- case KEYED: {
- Comment cmnt(masm, "[ Store to keyed Property");
- Property* property = expression()->AsProperty();
- ASSERT(property != NULL);
-
- Result answer = cgen_->EmitKeyedStore(property->key()->type());
- cgen_->frame()->Push(&answer);
- set_unloaded();
- break;
- }
-
- case UNLOADED:
- case ILLEGAL:
- UNREACHABLE();
- }
-}
-
-
-#undef __
-
#define __ masm.
-
static void MemCopyWrapper(void* dest, const void* src, size_t size) {
memcpy(dest, src, size);
}
-MemCopyFunction CreateMemCopyFunction() {
- HandleScope scope;
- MacroAssembler masm(NULL, 1 * KB);
+OS::MemCopyFunction CreateMemCopyFunction() {
+ size_t actual_size;
+ // Allocate buffer in executable space.
+ byte* buffer = static_cast<byte*>(OS::Allocate(1 * KB,
+ &actual_size,
+ true));
+ if (buffer == NULL) return &MemCopyWrapper;
+ MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size));
// Generated code is put into a fixed, unmovable, buffer, and not into
// the V8 heap. We can't, and don't, refer to any relocatable addresses
@@ -10165,7 +84,7 @@ MemCopyFunction CreateMemCopyFunction() {
if (FLAG_debug_code) {
__ cmp(Operand(esp, kSizeOffset + stack_offset),
- Immediate(kMinComplexMemCopy));
+ Immediate(OS::kMinComplexMemCopy));
Label ok;
__ j(greater_equal, &ok);
__ int3();
@@ -10199,7 +118,6 @@ MemCopyFunction CreateMemCopyFunction() {
__ test(Operand(src), Immediate(0x0F));
__ j(not_zero, &unaligned_source);
{
- __ IncrementCounter(&Counters::memcopy_aligned, 1);
// Copy loop for aligned source and destination.
__ mov(edx, count);
Register loop_count = ecx;
@@ -10247,7 +165,6 @@ MemCopyFunction CreateMemCopyFunction() {
// Copy loop for unaligned source and aligned destination.
// If source is not aligned, we can't read it as efficiently.
__ bind(&unaligned_source);
- __ IncrementCounter(&Counters::memcopy_unaligned, 1);
__ mov(edx, ecx);
Register loop_count = ecx;
Register count = edx;
@@ -10291,7 +208,6 @@ MemCopyFunction CreateMemCopyFunction() {
}
} else {
- __ IncrementCounter(&Counters::memcopy_noxmm, 1);
// SSE2 not supported. Unlikely to happen in practice.
__ push(edi);
__ push(esi);
@@ -10338,13 +254,8 @@ MemCopyFunction CreateMemCopyFunction() {
masm.GetCode(&desc);
ASSERT(desc.reloc_size == 0);
- // Copy the generated code into an executable chunk and return a pointer
- // to the first instruction in it as a C++ function pointer.
- LargeObjectChunk* chunk = LargeObjectChunk::New(desc.instr_size, EXECUTABLE);
- if (chunk == NULL) return &MemCopyWrapper;
- memcpy(chunk->GetStartAddress(), desc.buffer, desc.instr_size);
- CPU::FlushICache(chunk->GetStartAddress(), desc.instr_size);
- return FUNCTION_CAST<MemCopyFunction>(chunk->GetStartAddress());
+ CPU::FlushICache(buffer, actual_size);
+ return FUNCTION_CAST<OS::MemCopyFunction>(buffer);
}
#undef __