diff options
Diffstat (limited to 'deps/v8/src/ia32/assembler-ia32.h')
-rw-r--r-- | deps/v8/src/ia32/assembler-ia32.h | 863 |
1 files changed, 863 insertions, 0 deletions
diff --git a/deps/v8/src/ia32/assembler-ia32.h b/deps/v8/src/ia32/assembler-ia32.h new file mode 100644 index 000000000..4c995882e --- /dev/null +++ b/deps/v8/src/ia32/assembler-ia32.h @@ -0,0 +1,863 @@ +// Copyright (c) 1994-2006 Sun Microsystems Inc. +// All Rights Reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// - Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// - Redistribution in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// +// - Neither the name of Sun Microsystems or the names of contributors may +// be used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, +// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR +// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +// The original source code covered by the above license above has been +// modified significantly by Google Inc. +// Copyright 2006-2008 the V8 project authors. All rights reserved. + +// A light-weight IA32 Assembler. + +#ifndef V8_IA32_ASSEMBLER_IA32_H_ +#define V8_IA32_ASSEMBLER_IA32_H_ + +namespace v8 { namespace internal { + +// CPU Registers. +// +// 1) We would prefer to use an enum, but enum values are assignment- +// compatible with int, which has caused code-generation bugs. +// +// 2) We would prefer to use a class instead of a struct but we don't like +// the register initialization to depend on the particular initialization +// order (which appears to be different on OS X, Linux, and Windows for the +// installed versions of C++ we tried). Using a struct permits C-style +// "initialization". Also, the Register objects cannot be const as this +// forces initialization stubs in MSVC, making us dependent on initialization +// order. +// +// 3) By not using an enum, we are possibly preventing the compiler from +// doing certain constant folds, which may significantly reduce the +// code generated for some assembly instructions (because they boil down +// to a few constants). If this is a problem, we could change the code +// such that we use an enum in optimized mode, and the struct in debug +// mode. This way we get the compile-time error checking in debug mode +// and best performance in optimized code. +// +struct Register { + bool is_valid() const { return 0 <= code_ && code_ < 8; } + bool is(Register reg) const { return code_ == reg.code_; } + // eax, ebx, ecx and edx are byte registers, the rest are not. + bool is_byte_register() const { return code_ <= 3; } + int code() const { + ASSERT(is_valid()); + return code_; + } + int bit() const { + ASSERT(is_valid()); + return 1 << code_; + } + + // (unfortunately we can't make this private in a struct) + int code_; +}; + +const int kNumRegisters = 8; + +extern Register eax; +extern Register ecx; +extern Register edx; +extern Register ebx; +extern Register esp; +extern Register ebp; +extern Register esi; +extern Register edi; +extern Register no_reg; + + +struct XMMRegister { + bool is_valid() const { return 0 <= code_ && code_ < 2; } // currently + int code() const { + ASSERT(is_valid()); + return code_; + } + + int code_; +}; + +extern XMMRegister xmm0; +extern XMMRegister xmm1; +extern XMMRegister xmm2; +extern XMMRegister xmm3; +extern XMMRegister xmm4; +extern XMMRegister xmm5; +extern XMMRegister xmm6; +extern XMMRegister xmm7; + +enum Condition { + // any value < 0 is considered no_condition + no_condition = -1, + + overflow = 0, + no_overflow = 1, + below = 2, + above_equal = 3, + equal = 4, + not_equal = 5, + below_equal = 6, + above = 7, + negative = 8, + positive = 9, + parity_even = 10, + parity_odd = 11, + less = 12, + greater_equal = 13, + less_equal = 14, + greater = 15, + + // aliases + carry = below, + not_carry = above_equal, + zero = equal, + not_zero = not_equal, + sign = negative, + not_sign = positive +}; + + +// Returns the equivalent of !cc. +// Negation of the default no_condition (-1) results in a non-default +// no_condition value (-2). As long as tests for no_condition check +// for condition < 0, this will work as expected. +inline Condition NegateCondition(Condition cc); + +// Corresponds to transposing the operands of a comparison. +inline Condition ReverseCondition(Condition cc) { + switch (cc) { + case below: + return above; + case above: + return below; + case above_equal: + return below_equal; + case below_equal: + return above_equal; + case less: + return greater; + case greater: + return less; + case greater_equal: + return less_equal; + case less_equal: + return greater_equal; + default: + return cc; + }; +} + +enum Hint { + no_hint = 0, + not_taken = 0x2e, + taken = 0x3e +}; + +// The result of negating a hint is as if the corresponding condition +// were negated by NegateCondition. That is, no_hint is mapped to +// itself and not_taken and taken are mapped to each other. +inline Hint NegateHint(Hint hint) { + return (hint == no_hint) + ? no_hint + : ((hint == not_taken) ? taken : not_taken); +} + + +// ----------------------------------------------------------------------------- +// Machine instruction Immediates + +class Immediate BASE_EMBEDDED { + public: + inline explicit Immediate(int x); + inline explicit Immediate(const char* s); + inline explicit Immediate(const ExternalReference& ext); + inline explicit Immediate(Handle<Object> handle); + inline explicit Immediate(Smi* value); + + static Immediate CodeRelativeOffset(Label* label) { + return Immediate(label); + } + + bool is_zero() const { return x_ == 0 && rmode_ == RelocInfo::NONE; } + bool is_int8() const { + return -128 <= x_ && x_ < 128 && rmode_ == RelocInfo::NONE; + } + bool is_int16() const { + return -32768 <= x_ && x_ < 32768 && rmode_ == RelocInfo::NONE; + } + + private: + inline explicit Immediate(Label* value); + + int x_; + RelocInfo::Mode rmode_; + + friend class Assembler; +}; + + +// ----------------------------------------------------------------------------- +// Machine instruction Operands + +enum ScaleFactor { + times_1 = 0, + times_2 = 1, + times_4 = 2, + times_8 = 3 +}; + + +class Operand BASE_EMBEDDED { + public: + // reg + INLINE(explicit Operand(Register reg)); + + // [disp/r] + INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode)); + // disp only must always be relocated + + // [base + disp/r] + explicit Operand(Register base, int32_t disp, + RelocInfo::Mode rmode = RelocInfo::NONE); + + // [base + index*scale + disp/r] + explicit Operand(Register base, + Register index, + ScaleFactor scale, + int32_t disp, + RelocInfo::Mode rmode = RelocInfo::NONE); + + // [index*scale + disp/r] + explicit Operand(Register index, + ScaleFactor scale, + int32_t disp, + RelocInfo::Mode rmode = RelocInfo::NONE); + + static Operand StaticVariable(const ExternalReference& ext) { + return Operand(reinterpret_cast<int32_t>(ext.address()), + RelocInfo::EXTERNAL_REFERENCE); + } + + static Operand StaticArray(Register index, + ScaleFactor scale, + const ExternalReference& arr) { + return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()), + RelocInfo::EXTERNAL_REFERENCE); + } + + // Returns true if this Operand is a wrapper for the specified register. + bool is_reg(Register reg) const; + + private: + byte buf_[6]; + // The number of bytes in buf_. + unsigned int len_; + // Only valid if len_ > 4. + RelocInfo::Mode rmode_; + + // Set the ModRM byte without an encoded 'reg' register. The + // register is encoded later as part of the emit_operand operation. + inline void set_modrm(int mod, Register rm); + + inline void set_sib(ScaleFactor scale, Register index, Register base); + inline void set_disp8(int8_t disp); + inline void set_dispr(int32_t disp, RelocInfo::Mode rmode); + + friend class Assembler; +}; + + +// ----------------------------------------------------------------------------- +// A Displacement describes the 32bit immediate field of an instruction which +// may be used together with a Label in order to refer to a yet unknown code +// position. Displacements stored in the instruction stream are used to describe +// the instruction and to chain a list of instructions using the same Label. +// A Displacement contains 2 different fields: +// +// next field: position of next displacement in the chain (0 = end of list) +// type field: instruction type +// +// A next value of null (0) indicates the end of a chain (note that there can +// be no displacement at position zero, because there is always at least one +// instruction byte before the displacement). +// +// Displacement _data field layout +// +// |31.....2|1......0| +// [ next | type | + +class Displacement BASE_EMBEDDED { + public: + enum Type { + UNCONDITIONAL_JUMP, + CODE_RELATIVE, + OTHER + }; + + int data() const { return data_; } + Type type() const { return TypeField::decode(data_); } + void next(Label* L) const { + int n = NextField::decode(data_); + n > 0 ? L->link_to(n) : L->Unuse(); + } + void link_to(Label* L) { init(L, type()); } + + explicit Displacement(int data) { data_ = data; } + + Displacement(Label* L, Type type) { init(L, type); } + + void print() { + PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"), + NextField::decode(data_)); + } + + private: + int data_; + + class TypeField: public BitField<Type, 0, 2> {}; + class NextField: public BitField<int, 2, 32-2> {}; + + void init(Label* L, Type type); +}; + + + +// CpuFeatures keeps track of which features are supported by the target CPU. +// Supported features must be enabled by a Scope before use. +// Example: +// if (CpuFeatures::IsSupported(SSE2)) { +// CpuFeatures::Scope fscope(SSE2); +// // Generate SSE2 floating point code. +// } else { +// // Generate standard x87 floating point code. +// } +class CpuFeatures : public AllStatic { + public: + // Feature flags bit positions. They are mostly based on the CPUID spec. + // (We assign CPUID itself to one of the currently reserved bits -- + // feel free to change this if needed.) + enum Feature { SSE3 = 32, SSE2 = 26, CMOV = 15, RDTSC = 4, CPUID = 10 }; + // Detect features of the target CPU. Set safe defaults if the serializer + // is enabled (snapshots must be portable). + static void Probe(); + // Check whether a feature is supported by the target CPU. + static bool IsSupported(Feature f) { + return (supported_ & (static_cast<uint64_t>(1) << f)) != 0; + } + // Check whether a feature is currently enabled. + static bool IsEnabled(Feature f) { + return (enabled_ & (static_cast<uint64_t>(1) << f)) != 0; + } + // Enable a specified feature within a scope. + class Scope BASE_EMBEDDED { +#ifdef DEBUG + public: + explicit Scope(Feature f) { + ASSERT(CpuFeatures::IsSupported(f)); + old_enabled_ = CpuFeatures::enabled_; + CpuFeatures::enabled_ |= (static_cast<uint64_t>(1) << f); + } + ~Scope() { CpuFeatures::enabled_ = old_enabled_; } + private: + uint64_t old_enabled_; +#else + public: + explicit Scope(Feature f) {} +#endif + }; + private: + static uint64_t supported_; + static uint64_t enabled_; +}; + + +class Assembler : public Malloced { + private: + // The relocation writer's position is kGap bytes below the end of + // the generated instructions. This leaves enough space for the + // longest possible ia32 instruction (17 bytes as of 9/26/06) and + // allows for a single, fast space check per instruction. + static const int kGap = 32; + + public: + // Create an assembler. Instructions and relocation information are emitted + // into a buffer, with the instructions starting from the beginning and the + // relocation information starting from the end of the buffer. See CodeDesc + // for a detailed comment on the layout (globals.h). + // + // If the provided buffer is NULL, the assembler allocates and grows its own + // buffer, and buffer_size determines the initial buffer size. The buffer is + // owned by the assembler and deallocated upon destruction of the assembler. + // + // If the provided buffer is not NULL, the assembler uses the provided buffer + // for code generation and assumes its size to be buffer_size. If the buffer + // is too small, a fatal error occurs. No deallocation of the buffer is done + // upon destruction of the assembler. + Assembler(void* buffer, int buffer_size); + ~Assembler(); + + // GetCode emits any pending (non-emitted) code and fills the descriptor + // desc. GetCode() is idempotent; it returns the same result if no other + // Assembler functions are invoked in between GetCode() calls. + void GetCode(CodeDesc* desc); + + // Read/Modify the code target in the branch/call instruction at pc. + inline static Address target_address_at(Address pc); + inline static void set_target_address_at(Address pc, Address target); + + // Distance between the address of the code target in the call instruction + // and the return address + static const int kTargetAddrToReturnAddrDist = kPointerSize; + + + // --------------------------------------------------------------------------- + // Code generation + // + // - function names correspond one-to-one to ia32 instruction mnemonics + // - unless specified otherwise, instructions operate on 32bit operands + // - instructions on 8bit (byte) operands/registers have a trailing '_b' + // - instructions on 16bit (word) operands/registers have a trailing '_w' + // - naming conflicts with C++ keywords are resolved via a trailing '_' + + // NOTE ON INTERFACE: Currently, the interface is not very consistent + // in the sense that some operations (e.g. mov()) can be called in more + // the one way to generate the same instruction: The Register argument + // can in some cases be replaced with an Operand(Register) argument. + // This should be cleaned up and made more orthogonal. The questions + // is: should we always use Operands instead of Registers where an + // Operand is possible, or should we have a Register (overloaded) form + // instead? We must be careful to make sure that the selected instruction + // is obvious from the parameters to avoid hard-to-find code generation + // bugs. + + // Insert the smallest number of nop instructions + // possible to align the pc offset to a multiple + // of m. m must be a power of 2. + void Align(int m); + + // Stack + void pushad(); + void popad(); + + void pushfd(); + void popfd(); + + void push(const Immediate& x); + void push(Register src); + void push(const Operand& src); + void push(Label* label, RelocInfo::Mode relocation_mode); + + void pop(Register dst); + void pop(const Operand& dst); + + void enter(const Immediate& size); + void leave(); + + // Moves + void mov_b(Register dst, const Operand& src); + void mov_b(const Operand& dst, int8_t imm8); + void mov_b(const Operand& dst, Register src); + + void mov_w(Register dst, const Operand& src); + void mov_w(const Operand& dst, Register src); + + void mov(Register dst, int32_t imm32); + void mov(Register dst, const Immediate& x); + void mov(Register dst, Handle<Object> handle); + void mov(Register dst, const Operand& src); + void mov(Register dst, Register src); + void mov(const Operand& dst, const Immediate& x); + void mov(const Operand& dst, Handle<Object> handle); + void mov(const Operand& dst, Register src); + + void movsx_b(Register dst, const Operand& src); + + void movsx_w(Register dst, const Operand& src); + + void movzx_b(Register dst, const Operand& src); + + void movzx_w(Register dst, const Operand& src); + + // Conditional moves + void cmov(Condition cc, Register dst, int32_t imm32); + void cmov(Condition cc, Register dst, Handle<Object> handle); + void cmov(Condition cc, Register dst, const Operand& src); + + // Exchange two registers + void xchg(Register dst, Register src); + + // Arithmetics + void adc(Register dst, int32_t imm32); + void adc(Register dst, const Operand& src); + + void add(Register dst, const Operand& src); + void add(const Operand& dst, const Immediate& x); + + void and_(Register dst, int32_t imm32); + void and_(Register dst, const Operand& src); + void and_(const Operand& src, Register dst); + void and_(const Operand& dst, const Immediate& x); + + void cmpb(const Operand& op, int8_t imm8); + void cmpb_al(const Operand& op); + void cmpw_ax(const Operand& op); + void cmpw(const Operand& op, Immediate imm16); + void cmp(Register reg, int32_t imm32); + void cmp(Register reg, Handle<Object> handle); + void cmp(Register reg, const Operand& op); + void cmp(const Operand& op, const Immediate& imm); + + void dec_b(Register dst); + + void dec(Register dst); + void dec(const Operand& dst); + + void cdq(); + + void idiv(Register src); + + void imul(Register dst, const Operand& src); + void imul(Register dst, Register src, int32_t imm32); + + void inc(Register dst); + void inc(const Operand& dst); + + void lea(Register dst, const Operand& src); + + void mul(Register src); + + void neg(Register dst); + + void not_(Register dst); + + void or_(Register dst, int32_t imm32); + void or_(Register dst, const Operand& src); + void or_(const Operand& dst, Register src); + void or_(const Operand& dst, const Immediate& x); + + void rcl(Register dst, uint8_t imm8); + + void sar(Register dst, uint8_t imm8); + void sar(Register dst); + + void sbb(Register dst, const Operand& src); + + void shld(Register dst, const Operand& src); + + void shl(Register dst, uint8_t imm8); + void shl(Register dst); + + void shrd(Register dst, const Operand& src); + + void shr(Register dst, uint8_t imm8); + void shr(Register dst); + void shr_cl(Register dst); + + void sub(const Operand& dst, const Immediate& x); + void sub(Register dst, const Operand& src); + void sub(const Operand& dst, Register src); + + void test(Register reg, const Immediate& imm); + void test(Register reg, const Operand& op); + void test(const Operand& op, const Immediate& imm); + + void xor_(Register dst, int32_t imm32); + void xor_(Register dst, const Operand& src); + void xor_(const Operand& src, Register dst); + void xor_(const Operand& dst, const Immediate& x); + + // Bit operations. + void bt(const Operand& dst, Register src); + void bts(const Operand& dst, Register src); + + // Miscellaneous + void hlt(); + void int3(); + void nop(); + void rdtsc(); + void ret(int imm16); + + // Label operations & relative jumps (PPUM Appendix D) + // + // Takes a branch opcode (cc) and a label (L) and generates + // either a backward branch or a forward branch and links it + // to the label fixup chain. Usage: + // + // Label L; // unbound label + // j(cc, &L); // forward branch to unbound label + // bind(&L); // bind label to the current pc + // j(cc, &L); // backward branch to bound label + // bind(&L); // illegal: a label may be bound only once + // + // Note: The same Label can be used for forward and backward branches + // but it may be bound only once. + + void bind(Label* L); // binds an unbound label L to the current code position + + // Calls + void call(Label* L); + void call(byte* entry, RelocInfo::Mode rmode); + void call(const Operand& adr); + void call(Handle<Code> code, RelocInfo::Mode rmode); + + // Jumps + void jmp(Label* L); // unconditional jump to L + void jmp(byte* entry, RelocInfo::Mode rmode); + void jmp(const Operand& adr); + void jmp(Handle<Code> code, RelocInfo::Mode rmode); + + // Conditional jumps + void j(Condition cc, Label* L, Hint hint = no_hint); + void j(Condition cc, byte* entry, RelocInfo::Mode rmode, Hint hint = no_hint); + void j(Condition cc, Handle<Code> code, Hint hint = no_hint); + + // Floating-point operations + void fld(int i); + + void fld1(); + void fldz(); + + void fld_s(const Operand& adr); + void fld_d(const Operand& adr); + + void fstp_s(const Operand& adr); + void fstp_d(const Operand& adr); + + void fild_s(const Operand& adr); + void fild_d(const Operand& adr); + + void fist_s(const Operand& adr); + + void fistp_s(const Operand& adr); + void fistp_d(const Operand& adr); + + void fisttp_s(const Operand& adr); + + void fabs(); + void fchs(); + + void fadd(int i); + void fsub(int i); + void fmul(int i); + void fdiv(int i); + + void fisub_s(const Operand& adr); + + void faddp(int i = 1); + void fsubp(int i = 1); + void fsubrp(int i = 1); + void fmulp(int i = 1); + void fdivp(int i = 1); + void fprem(); + void fprem1(); + + void fxch(int i = 1); + void fincstp(); + void ffree(int i = 0); + + void ftst(); + void fucomp(int i); + void fucompp(); + void fcompp(); + void fnstsw_ax(); + void fwait(); + void fnclex(); + + void frndint(); + + void sahf(); + void setcc(Condition cc, Register reg); + + void cpuid(); + + // SSE2 instructions + void cvttss2si(Register dst, const Operand& src); + void cvttsd2si(Register dst, const Operand& src); + + void cvtsi2sd(XMMRegister dst, const Operand& src); + + void addsd(XMMRegister dst, XMMRegister src); + void subsd(XMMRegister dst, XMMRegister src); + void mulsd(XMMRegister dst, XMMRegister src); + void divsd(XMMRegister dst, XMMRegister src); + + // Use either movsd or movlpd. + void movdbl(XMMRegister dst, const Operand& src); + void movdbl(const Operand& dst, XMMRegister src); + + // Debugging + void Print(); + + // Check the code size generated from label to here. + int SizeOfCodeGeneratedSince(Label* l) { return pc_offset() - l->pos(); } + + // Mark address of the ExitJSFrame code. + void RecordJSReturn(); + + // Record a comment relocation entry that can be used by a disassembler. + // Use --debug_code to enable. + void RecordComment(const char* msg); + + void RecordPosition(int pos); + void RecordStatementPosition(int pos); + void WriteRecordedPositions(); + + // Writes a single word of data in the code stream. + // Used for inline tables, e.g., jump-tables. + void dd(uint32_t data, RelocInfo::Mode reloc_info); + + // Writes the absolute address of a bound label at the given position in + // the generated code. That positions should have the relocation mode + // internal_reference! + void WriteInternalReference(int position, const Label& bound_label); + + int pc_offset() const { return pc_ - buffer_; } + int current_statement_position() const { return current_statement_position_; } + int current_position() const { return current_position_; } + + // Check if there is less than kGap bytes available in the buffer. + // If this is the case, we need to grow the buffer before emitting + // an instruction or relocation information. + inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; } + + // Get the number of bytes available in the buffer. + inline int available_space() const { return reloc_info_writer.pos() - pc_; } + + // Avoid overflows for displacements etc. + static const int kMaximalBufferSize = 512*MB; + static const int kMinimalBufferSize = 4*KB; + + protected: + void movsd(XMMRegister dst, const Operand& src); + void movsd(const Operand& dst, XMMRegister src); + + void emit_sse_operand(XMMRegister reg, const Operand& adr); + void emit_sse_operand(XMMRegister dst, XMMRegister src); + + + private: + byte* addr_at(int pos) { return buffer_ + pos; } + byte byte_at(int pos) { return buffer_[pos]; } + uint32_t long_at(int pos) { + return *reinterpret_cast<uint32_t*>(addr_at(pos)); + } + void long_at_put(int pos, uint32_t x) { + *reinterpret_cast<uint32_t*>(addr_at(pos)) = x; + } + + // code emission + void GrowBuffer(); + inline void emit(uint32_t x); + inline void emit(Handle<Object> handle); + inline void emit(uint32_t x, RelocInfo::Mode rmode); + inline void emit(const Immediate& x); + inline void emit_w(const Immediate& x); + + // Emit the code-object-relative offset of the label's position + inline void emit_code_relative_offset(Label* label); + + // instruction generation + void emit_arith_b(int op1, int op2, Register dst, int imm8); + + // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81) + // with a given destination expression and an immediate operand. It attempts + // to use the shortest encoding possible. + // sel specifies the /n in the modrm byte (see the Intel PRM). + void emit_arith(int sel, Operand dst, const Immediate& x); + + void emit_operand(Register reg, const Operand& adr); + + void emit_farith(int b1, int b2, int i); + + // labels + void print(Label* L); + void bind_to(Label* L, int pos); + void link_to(Label* L, Label* appendix); + + // displacements + inline Displacement disp_at(Label* L); + inline void disp_at_put(Label* L, Displacement disp); + inline void emit_disp(Label* L, Displacement::Type type); + + // record reloc info for current pc_ + void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); + + friend class CodePatcher; + friend class EnsureSpace; + + // Code buffer: + // The buffer into which code and relocation info are generated. + byte* buffer_; + int buffer_size_; + // True if the assembler owns the buffer, false if buffer is external. + bool own_buffer_; + + // code generation + byte* pc_; // the program counter; moves forward + RelocInfoWriter reloc_info_writer; + + // push-pop elimination + byte* last_pc_; + + // source position information + int current_statement_position_; + int current_position_; + int written_statement_position_; + int written_position_; +}; + + +// Helper class that ensures that there is enough space for generating +// instructions and relocation information. The constructor makes +// sure that there is enough space and (in debug mode) the destructor +// checks that we did not generate too much. +class EnsureSpace BASE_EMBEDDED { + public: + explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) { + if (assembler_->overflow()) assembler_->GrowBuffer(); +#ifdef DEBUG + space_before_ = assembler_->available_space(); +#endif + } + +#ifdef DEBUG + ~EnsureSpace() { + int bytes_generated = space_before_ - assembler_->available_space(); + ASSERT(bytes_generated < assembler_->kGap); + } +#endif + + private: + Assembler* assembler_; +#ifdef DEBUG + int space_before_; +#endif +}; + +} } // namespace v8::internal + +#endif // V8_IA32_ASSEMBLER_IA32_H_ |