summaryrefslogtreecommitdiff
path: root/deps/v8/src/ia32/assembler-ia32.h
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/ia32/assembler-ia32.h')
-rw-r--r--deps/v8/src/ia32/assembler-ia32.h863
1 files changed, 863 insertions, 0 deletions
diff --git a/deps/v8/src/ia32/assembler-ia32.h b/deps/v8/src/ia32/assembler-ia32.h
new file mode 100644
index 000000000..4c995882e
--- /dev/null
+++ b/deps/v8/src/ia32/assembler-ia32.h
@@ -0,0 +1,863 @@
+// Copyright (c) 1994-2006 Sun Microsystems Inc.
+// All Rights Reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// - Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// - Redistribution in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// - Neither the name of Sun Microsystems or the names of contributors may
+// be used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
+// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// The original source code covered by the above license above has been
+// modified significantly by Google Inc.
+// Copyright 2006-2008 the V8 project authors. All rights reserved.
+
+// A light-weight IA32 Assembler.
+
+#ifndef V8_IA32_ASSEMBLER_IA32_H_
+#define V8_IA32_ASSEMBLER_IA32_H_
+
+namespace v8 { namespace internal {
+
+// CPU Registers.
+//
+// 1) We would prefer to use an enum, but enum values are assignment-
+// compatible with int, which has caused code-generation bugs.
+//
+// 2) We would prefer to use a class instead of a struct but we don't like
+// the register initialization to depend on the particular initialization
+// order (which appears to be different on OS X, Linux, and Windows for the
+// installed versions of C++ we tried). Using a struct permits C-style
+// "initialization". Also, the Register objects cannot be const as this
+// forces initialization stubs in MSVC, making us dependent on initialization
+// order.
+//
+// 3) By not using an enum, we are possibly preventing the compiler from
+// doing certain constant folds, which may significantly reduce the
+// code generated for some assembly instructions (because they boil down
+// to a few constants). If this is a problem, we could change the code
+// such that we use an enum in optimized mode, and the struct in debug
+// mode. This way we get the compile-time error checking in debug mode
+// and best performance in optimized code.
+//
+struct Register {
+ bool is_valid() const { return 0 <= code_ && code_ < 8; }
+ bool is(Register reg) const { return code_ == reg.code_; }
+ // eax, ebx, ecx and edx are byte registers, the rest are not.
+ bool is_byte_register() const { return code_ <= 3; }
+ int code() const {
+ ASSERT(is_valid());
+ return code_;
+ }
+ int bit() const {
+ ASSERT(is_valid());
+ return 1 << code_;
+ }
+
+ // (unfortunately we can't make this private in a struct)
+ int code_;
+};
+
+const int kNumRegisters = 8;
+
+extern Register eax;
+extern Register ecx;
+extern Register edx;
+extern Register ebx;
+extern Register esp;
+extern Register ebp;
+extern Register esi;
+extern Register edi;
+extern Register no_reg;
+
+
+struct XMMRegister {
+ bool is_valid() const { return 0 <= code_ && code_ < 2; } // currently
+ int code() const {
+ ASSERT(is_valid());
+ return code_;
+ }
+
+ int code_;
+};
+
+extern XMMRegister xmm0;
+extern XMMRegister xmm1;
+extern XMMRegister xmm2;
+extern XMMRegister xmm3;
+extern XMMRegister xmm4;
+extern XMMRegister xmm5;
+extern XMMRegister xmm6;
+extern XMMRegister xmm7;
+
+enum Condition {
+ // any value < 0 is considered no_condition
+ no_condition = -1,
+
+ overflow = 0,
+ no_overflow = 1,
+ below = 2,
+ above_equal = 3,
+ equal = 4,
+ not_equal = 5,
+ below_equal = 6,
+ above = 7,
+ negative = 8,
+ positive = 9,
+ parity_even = 10,
+ parity_odd = 11,
+ less = 12,
+ greater_equal = 13,
+ less_equal = 14,
+ greater = 15,
+
+ // aliases
+ carry = below,
+ not_carry = above_equal,
+ zero = equal,
+ not_zero = not_equal,
+ sign = negative,
+ not_sign = positive
+};
+
+
+// Returns the equivalent of !cc.
+// Negation of the default no_condition (-1) results in a non-default
+// no_condition value (-2). As long as tests for no_condition check
+// for condition < 0, this will work as expected.
+inline Condition NegateCondition(Condition cc);
+
+// Corresponds to transposing the operands of a comparison.
+inline Condition ReverseCondition(Condition cc) {
+ switch (cc) {
+ case below:
+ return above;
+ case above:
+ return below;
+ case above_equal:
+ return below_equal;
+ case below_equal:
+ return above_equal;
+ case less:
+ return greater;
+ case greater:
+ return less;
+ case greater_equal:
+ return less_equal;
+ case less_equal:
+ return greater_equal;
+ default:
+ return cc;
+ };
+}
+
+enum Hint {
+ no_hint = 0,
+ not_taken = 0x2e,
+ taken = 0x3e
+};
+
+// The result of negating a hint is as if the corresponding condition
+// were negated by NegateCondition. That is, no_hint is mapped to
+// itself and not_taken and taken are mapped to each other.
+inline Hint NegateHint(Hint hint) {
+ return (hint == no_hint)
+ ? no_hint
+ : ((hint == not_taken) ? taken : not_taken);
+}
+
+
+// -----------------------------------------------------------------------------
+// Machine instruction Immediates
+
+class Immediate BASE_EMBEDDED {
+ public:
+ inline explicit Immediate(int x);
+ inline explicit Immediate(const char* s);
+ inline explicit Immediate(const ExternalReference& ext);
+ inline explicit Immediate(Handle<Object> handle);
+ inline explicit Immediate(Smi* value);
+
+ static Immediate CodeRelativeOffset(Label* label) {
+ return Immediate(label);
+ }
+
+ bool is_zero() const { return x_ == 0 && rmode_ == RelocInfo::NONE; }
+ bool is_int8() const {
+ return -128 <= x_ && x_ < 128 && rmode_ == RelocInfo::NONE;
+ }
+ bool is_int16() const {
+ return -32768 <= x_ && x_ < 32768 && rmode_ == RelocInfo::NONE;
+ }
+
+ private:
+ inline explicit Immediate(Label* value);
+
+ int x_;
+ RelocInfo::Mode rmode_;
+
+ friend class Assembler;
+};
+
+
+// -----------------------------------------------------------------------------
+// Machine instruction Operands
+
+enum ScaleFactor {
+ times_1 = 0,
+ times_2 = 1,
+ times_4 = 2,
+ times_8 = 3
+};
+
+
+class Operand BASE_EMBEDDED {
+ public:
+ // reg
+ INLINE(explicit Operand(Register reg));
+
+ // [disp/r]
+ INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode));
+ // disp only must always be relocated
+
+ // [base + disp/r]
+ explicit Operand(Register base, int32_t disp,
+ RelocInfo::Mode rmode = RelocInfo::NONE);
+
+ // [base + index*scale + disp/r]
+ explicit Operand(Register base,
+ Register index,
+ ScaleFactor scale,
+ int32_t disp,
+ RelocInfo::Mode rmode = RelocInfo::NONE);
+
+ // [index*scale + disp/r]
+ explicit Operand(Register index,
+ ScaleFactor scale,
+ int32_t disp,
+ RelocInfo::Mode rmode = RelocInfo::NONE);
+
+ static Operand StaticVariable(const ExternalReference& ext) {
+ return Operand(reinterpret_cast<int32_t>(ext.address()),
+ RelocInfo::EXTERNAL_REFERENCE);
+ }
+
+ static Operand StaticArray(Register index,
+ ScaleFactor scale,
+ const ExternalReference& arr) {
+ return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()),
+ RelocInfo::EXTERNAL_REFERENCE);
+ }
+
+ // Returns true if this Operand is a wrapper for the specified register.
+ bool is_reg(Register reg) const;
+
+ private:
+ byte buf_[6];
+ // The number of bytes in buf_.
+ unsigned int len_;
+ // Only valid if len_ > 4.
+ RelocInfo::Mode rmode_;
+
+ // Set the ModRM byte without an encoded 'reg' register. The
+ // register is encoded later as part of the emit_operand operation.
+ inline void set_modrm(int mod, Register rm);
+
+ inline void set_sib(ScaleFactor scale, Register index, Register base);
+ inline void set_disp8(int8_t disp);
+ inline void set_dispr(int32_t disp, RelocInfo::Mode rmode);
+
+ friend class Assembler;
+};
+
+
+// -----------------------------------------------------------------------------
+// A Displacement describes the 32bit immediate field of an instruction which
+// may be used together with a Label in order to refer to a yet unknown code
+// position. Displacements stored in the instruction stream are used to describe
+// the instruction and to chain a list of instructions using the same Label.
+// A Displacement contains 2 different fields:
+//
+// next field: position of next displacement in the chain (0 = end of list)
+// type field: instruction type
+//
+// A next value of null (0) indicates the end of a chain (note that there can
+// be no displacement at position zero, because there is always at least one
+// instruction byte before the displacement).
+//
+// Displacement _data field layout
+//
+// |31.....2|1......0|
+// [ next | type |
+
+class Displacement BASE_EMBEDDED {
+ public:
+ enum Type {
+ UNCONDITIONAL_JUMP,
+ CODE_RELATIVE,
+ OTHER
+ };
+
+ int data() const { return data_; }
+ Type type() const { return TypeField::decode(data_); }
+ void next(Label* L) const {
+ int n = NextField::decode(data_);
+ n > 0 ? L->link_to(n) : L->Unuse();
+ }
+ void link_to(Label* L) { init(L, type()); }
+
+ explicit Displacement(int data) { data_ = data; }
+
+ Displacement(Label* L, Type type) { init(L, type); }
+
+ void print() {
+ PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
+ NextField::decode(data_));
+ }
+
+ private:
+ int data_;
+
+ class TypeField: public BitField<Type, 0, 2> {};
+ class NextField: public BitField<int, 2, 32-2> {};
+
+ void init(Label* L, Type type);
+};
+
+
+
+// CpuFeatures keeps track of which features are supported by the target CPU.
+// Supported features must be enabled by a Scope before use.
+// Example:
+// if (CpuFeatures::IsSupported(SSE2)) {
+// CpuFeatures::Scope fscope(SSE2);
+// // Generate SSE2 floating point code.
+// } else {
+// // Generate standard x87 floating point code.
+// }
+class CpuFeatures : public AllStatic {
+ public:
+ // Feature flags bit positions. They are mostly based on the CPUID spec.
+ // (We assign CPUID itself to one of the currently reserved bits --
+ // feel free to change this if needed.)
+ enum Feature { SSE3 = 32, SSE2 = 26, CMOV = 15, RDTSC = 4, CPUID = 10 };
+ // Detect features of the target CPU. Set safe defaults if the serializer
+ // is enabled (snapshots must be portable).
+ static void Probe();
+ // Check whether a feature is supported by the target CPU.
+ static bool IsSupported(Feature f) {
+ return (supported_ & (static_cast<uint64_t>(1) << f)) != 0;
+ }
+ // Check whether a feature is currently enabled.
+ static bool IsEnabled(Feature f) {
+ return (enabled_ & (static_cast<uint64_t>(1) << f)) != 0;
+ }
+ // Enable a specified feature within a scope.
+ class Scope BASE_EMBEDDED {
+#ifdef DEBUG
+ public:
+ explicit Scope(Feature f) {
+ ASSERT(CpuFeatures::IsSupported(f));
+ old_enabled_ = CpuFeatures::enabled_;
+ CpuFeatures::enabled_ |= (static_cast<uint64_t>(1) << f);
+ }
+ ~Scope() { CpuFeatures::enabled_ = old_enabled_; }
+ private:
+ uint64_t old_enabled_;
+#else
+ public:
+ explicit Scope(Feature f) {}
+#endif
+ };
+ private:
+ static uint64_t supported_;
+ static uint64_t enabled_;
+};
+
+
+class Assembler : public Malloced {
+ private:
+ // The relocation writer's position is kGap bytes below the end of
+ // the generated instructions. This leaves enough space for the
+ // longest possible ia32 instruction (17 bytes as of 9/26/06) and
+ // allows for a single, fast space check per instruction.
+ static const int kGap = 32;
+
+ public:
+ // Create an assembler. Instructions and relocation information are emitted
+ // into a buffer, with the instructions starting from the beginning and the
+ // relocation information starting from the end of the buffer. See CodeDesc
+ // for a detailed comment on the layout (globals.h).
+ //
+ // If the provided buffer is NULL, the assembler allocates and grows its own
+ // buffer, and buffer_size determines the initial buffer size. The buffer is
+ // owned by the assembler and deallocated upon destruction of the assembler.
+ //
+ // If the provided buffer is not NULL, the assembler uses the provided buffer
+ // for code generation and assumes its size to be buffer_size. If the buffer
+ // is too small, a fatal error occurs. No deallocation of the buffer is done
+ // upon destruction of the assembler.
+ Assembler(void* buffer, int buffer_size);
+ ~Assembler();
+
+ // GetCode emits any pending (non-emitted) code and fills the descriptor
+ // desc. GetCode() is idempotent; it returns the same result if no other
+ // Assembler functions are invoked in between GetCode() calls.
+ void GetCode(CodeDesc* desc);
+
+ // Read/Modify the code target in the branch/call instruction at pc.
+ inline static Address target_address_at(Address pc);
+ inline static void set_target_address_at(Address pc, Address target);
+
+ // Distance between the address of the code target in the call instruction
+ // and the return address
+ static const int kTargetAddrToReturnAddrDist = kPointerSize;
+
+
+ // ---------------------------------------------------------------------------
+ // Code generation
+ //
+ // - function names correspond one-to-one to ia32 instruction mnemonics
+ // - unless specified otherwise, instructions operate on 32bit operands
+ // - instructions on 8bit (byte) operands/registers have a trailing '_b'
+ // - instructions on 16bit (word) operands/registers have a trailing '_w'
+ // - naming conflicts with C++ keywords are resolved via a trailing '_'
+
+ // NOTE ON INTERFACE: Currently, the interface is not very consistent
+ // in the sense that some operations (e.g. mov()) can be called in more
+ // the one way to generate the same instruction: The Register argument
+ // can in some cases be replaced with an Operand(Register) argument.
+ // This should be cleaned up and made more orthogonal. The questions
+ // is: should we always use Operands instead of Registers where an
+ // Operand is possible, or should we have a Register (overloaded) form
+ // instead? We must be careful to make sure that the selected instruction
+ // is obvious from the parameters to avoid hard-to-find code generation
+ // bugs.
+
+ // Insert the smallest number of nop instructions
+ // possible to align the pc offset to a multiple
+ // of m. m must be a power of 2.
+ void Align(int m);
+
+ // Stack
+ void pushad();
+ void popad();
+
+ void pushfd();
+ void popfd();
+
+ void push(const Immediate& x);
+ void push(Register src);
+ void push(const Operand& src);
+ void push(Label* label, RelocInfo::Mode relocation_mode);
+
+ void pop(Register dst);
+ void pop(const Operand& dst);
+
+ void enter(const Immediate& size);
+ void leave();
+
+ // Moves
+ void mov_b(Register dst, const Operand& src);
+ void mov_b(const Operand& dst, int8_t imm8);
+ void mov_b(const Operand& dst, Register src);
+
+ void mov_w(Register dst, const Operand& src);
+ void mov_w(const Operand& dst, Register src);
+
+ void mov(Register dst, int32_t imm32);
+ void mov(Register dst, const Immediate& x);
+ void mov(Register dst, Handle<Object> handle);
+ void mov(Register dst, const Operand& src);
+ void mov(Register dst, Register src);
+ void mov(const Operand& dst, const Immediate& x);
+ void mov(const Operand& dst, Handle<Object> handle);
+ void mov(const Operand& dst, Register src);
+
+ void movsx_b(Register dst, const Operand& src);
+
+ void movsx_w(Register dst, const Operand& src);
+
+ void movzx_b(Register dst, const Operand& src);
+
+ void movzx_w(Register dst, const Operand& src);
+
+ // Conditional moves
+ void cmov(Condition cc, Register dst, int32_t imm32);
+ void cmov(Condition cc, Register dst, Handle<Object> handle);
+ void cmov(Condition cc, Register dst, const Operand& src);
+
+ // Exchange two registers
+ void xchg(Register dst, Register src);
+
+ // Arithmetics
+ void adc(Register dst, int32_t imm32);
+ void adc(Register dst, const Operand& src);
+
+ void add(Register dst, const Operand& src);
+ void add(const Operand& dst, const Immediate& x);
+
+ void and_(Register dst, int32_t imm32);
+ void and_(Register dst, const Operand& src);
+ void and_(const Operand& src, Register dst);
+ void and_(const Operand& dst, const Immediate& x);
+
+ void cmpb(const Operand& op, int8_t imm8);
+ void cmpb_al(const Operand& op);
+ void cmpw_ax(const Operand& op);
+ void cmpw(const Operand& op, Immediate imm16);
+ void cmp(Register reg, int32_t imm32);
+ void cmp(Register reg, Handle<Object> handle);
+ void cmp(Register reg, const Operand& op);
+ void cmp(const Operand& op, const Immediate& imm);
+
+ void dec_b(Register dst);
+
+ void dec(Register dst);
+ void dec(const Operand& dst);
+
+ void cdq();
+
+ void idiv(Register src);
+
+ void imul(Register dst, const Operand& src);
+ void imul(Register dst, Register src, int32_t imm32);
+
+ void inc(Register dst);
+ void inc(const Operand& dst);
+
+ void lea(Register dst, const Operand& src);
+
+ void mul(Register src);
+
+ void neg(Register dst);
+
+ void not_(Register dst);
+
+ void or_(Register dst, int32_t imm32);
+ void or_(Register dst, const Operand& src);
+ void or_(const Operand& dst, Register src);
+ void or_(const Operand& dst, const Immediate& x);
+
+ void rcl(Register dst, uint8_t imm8);
+
+ void sar(Register dst, uint8_t imm8);
+ void sar(Register dst);
+
+ void sbb(Register dst, const Operand& src);
+
+ void shld(Register dst, const Operand& src);
+
+ void shl(Register dst, uint8_t imm8);
+ void shl(Register dst);
+
+ void shrd(Register dst, const Operand& src);
+
+ void shr(Register dst, uint8_t imm8);
+ void shr(Register dst);
+ void shr_cl(Register dst);
+
+ void sub(const Operand& dst, const Immediate& x);
+ void sub(Register dst, const Operand& src);
+ void sub(const Operand& dst, Register src);
+
+ void test(Register reg, const Immediate& imm);
+ void test(Register reg, const Operand& op);
+ void test(const Operand& op, const Immediate& imm);
+
+ void xor_(Register dst, int32_t imm32);
+ void xor_(Register dst, const Operand& src);
+ void xor_(const Operand& src, Register dst);
+ void xor_(const Operand& dst, const Immediate& x);
+
+ // Bit operations.
+ void bt(const Operand& dst, Register src);
+ void bts(const Operand& dst, Register src);
+
+ // Miscellaneous
+ void hlt();
+ void int3();
+ void nop();
+ void rdtsc();
+ void ret(int imm16);
+
+ // Label operations & relative jumps (PPUM Appendix D)
+ //
+ // Takes a branch opcode (cc) and a label (L) and generates
+ // either a backward branch or a forward branch and links it
+ // to the label fixup chain. Usage:
+ //
+ // Label L; // unbound label
+ // j(cc, &L); // forward branch to unbound label
+ // bind(&L); // bind label to the current pc
+ // j(cc, &L); // backward branch to bound label
+ // bind(&L); // illegal: a label may be bound only once
+ //
+ // Note: The same Label can be used for forward and backward branches
+ // but it may be bound only once.
+
+ void bind(Label* L); // binds an unbound label L to the current code position
+
+ // Calls
+ void call(Label* L);
+ void call(byte* entry, RelocInfo::Mode rmode);
+ void call(const Operand& adr);
+ void call(Handle<Code> code, RelocInfo::Mode rmode);
+
+ // Jumps
+ void jmp(Label* L); // unconditional jump to L
+ void jmp(byte* entry, RelocInfo::Mode rmode);
+ void jmp(const Operand& adr);
+ void jmp(Handle<Code> code, RelocInfo::Mode rmode);
+
+ // Conditional jumps
+ void j(Condition cc, Label* L, Hint hint = no_hint);
+ void j(Condition cc, byte* entry, RelocInfo::Mode rmode, Hint hint = no_hint);
+ void j(Condition cc, Handle<Code> code, Hint hint = no_hint);
+
+ // Floating-point operations
+ void fld(int i);
+
+ void fld1();
+ void fldz();
+
+ void fld_s(const Operand& adr);
+ void fld_d(const Operand& adr);
+
+ void fstp_s(const Operand& adr);
+ void fstp_d(const Operand& adr);
+
+ void fild_s(const Operand& adr);
+ void fild_d(const Operand& adr);
+
+ void fist_s(const Operand& adr);
+
+ void fistp_s(const Operand& adr);
+ void fistp_d(const Operand& adr);
+
+ void fisttp_s(const Operand& adr);
+
+ void fabs();
+ void fchs();
+
+ void fadd(int i);
+ void fsub(int i);
+ void fmul(int i);
+ void fdiv(int i);
+
+ void fisub_s(const Operand& adr);
+
+ void faddp(int i = 1);
+ void fsubp(int i = 1);
+ void fsubrp(int i = 1);
+ void fmulp(int i = 1);
+ void fdivp(int i = 1);
+ void fprem();
+ void fprem1();
+
+ void fxch(int i = 1);
+ void fincstp();
+ void ffree(int i = 0);
+
+ void ftst();
+ void fucomp(int i);
+ void fucompp();
+ void fcompp();
+ void fnstsw_ax();
+ void fwait();
+ void fnclex();
+
+ void frndint();
+
+ void sahf();
+ void setcc(Condition cc, Register reg);
+
+ void cpuid();
+
+ // SSE2 instructions
+ void cvttss2si(Register dst, const Operand& src);
+ void cvttsd2si(Register dst, const Operand& src);
+
+ void cvtsi2sd(XMMRegister dst, const Operand& src);
+
+ void addsd(XMMRegister dst, XMMRegister src);
+ void subsd(XMMRegister dst, XMMRegister src);
+ void mulsd(XMMRegister dst, XMMRegister src);
+ void divsd(XMMRegister dst, XMMRegister src);
+
+ // Use either movsd or movlpd.
+ void movdbl(XMMRegister dst, const Operand& src);
+ void movdbl(const Operand& dst, XMMRegister src);
+
+ // Debugging
+ void Print();
+
+ // Check the code size generated from label to here.
+ int SizeOfCodeGeneratedSince(Label* l) { return pc_offset() - l->pos(); }
+
+ // Mark address of the ExitJSFrame code.
+ void RecordJSReturn();
+
+ // Record a comment relocation entry that can be used by a disassembler.
+ // Use --debug_code to enable.
+ void RecordComment(const char* msg);
+
+ void RecordPosition(int pos);
+ void RecordStatementPosition(int pos);
+ void WriteRecordedPositions();
+
+ // Writes a single word of data in the code stream.
+ // Used for inline tables, e.g., jump-tables.
+ void dd(uint32_t data, RelocInfo::Mode reloc_info);
+
+ // Writes the absolute address of a bound label at the given position in
+ // the generated code. That positions should have the relocation mode
+ // internal_reference!
+ void WriteInternalReference(int position, const Label& bound_label);
+
+ int pc_offset() const { return pc_ - buffer_; }
+ int current_statement_position() const { return current_statement_position_; }
+ int current_position() const { return current_position_; }
+
+ // Check if there is less than kGap bytes available in the buffer.
+ // If this is the case, we need to grow the buffer before emitting
+ // an instruction or relocation information.
+ inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
+
+ // Get the number of bytes available in the buffer.
+ inline int available_space() const { return reloc_info_writer.pos() - pc_; }
+
+ // Avoid overflows for displacements etc.
+ static const int kMaximalBufferSize = 512*MB;
+ static const int kMinimalBufferSize = 4*KB;
+
+ protected:
+ void movsd(XMMRegister dst, const Operand& src);
+ void movsd(const Operand& dst, XMMRegister src);
+
+ void emit_sse_operand(XMMRegister reg, const Operand& adr);
+ void emit_sse_operand(XMMRegister dst, XMMRegister src);
+
+
+ private:
+ byte* addr_at(int pos) { return buffer_ + pos; }
+ byte byte_at(int pos) { return buffer_[pos]; }
+ uint32_t long_at(int pos) {
+ return *reinterpret_cast<uint32_t*>(addr_at(pos));
+ }
+ void long_at_put(int pos, uint32_t x) {
+ *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
+ }
+
+ // code emission
+ void GrowBuffer();
+ inline void emit(uint32_t x);
+ inline void emit(Handle<Object> handle);
+ inline void emit(uint32_t x, RelocInfo::Mode rmode);
+ inline void emit(const Immediate& x);
+ inline void emit_w(const Immediate& x);
+
+ // Emit the code-object-relative offset of the label's position
+ inline void emit_code_relative_offset(Label* label);
+
+ // instruction generation
+ void emit_arith_b(int op1, int op2, Register dst, int imm8);
+
+ // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
+ // with a given destination expression and an immediate operand. It attempts
+ // to use the shortest encoding possible.
+ // sel specifies the /n in the modrm byte (see the Intel PRM).
+ void emit_arith(int sel, Operand dst, const Immediate& x);
+
+ void emit_operand(Register reg, const Operand& adr);
+
+ void emit_farith(int b1, int b2, int i);
+
+ // labels
+ void print(Label* L);
+ void bind_to(Label* L, int pos);
+ void link_to(Label* L, Label* appendix);
+
+ // displacements
+ inline Displacement disp_at(Label* L);
+ inline void disp_at_put(Label* L, Displacement disp);
+ inline void emit_disp(Label* L, Displacement::Type type);
+
+ // record reloc info for current pc_
+ void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
+
+ friend class CodePatcher;
+ friend class EnsureSpace;
+
+ // Code buffer:
+ // The buffer into which code and relocation info are generated.
+ byte* buffer_;
+ int buffer_size_;
+ // True if the assembler owns the buffer, false if buffer is external.
+ bool own_buffer_;
+
+ // code generation
+ byte* pc_; // the program counter; moves forward
+ RelocInfoWriter reloc_info_writer;
+
+ // push-pop elimination
+ byte* last_pc_;
+
+ // source position information
+ int current_statement_position_;
+ int current_position_;
+ int written_statement_position_;
+ int written_position_;
+};
+
+
+// Helper class that ensures that there is enough space for generating
+// instructions and relocation information. The constructor makes
+// sure that there is enough space and (in debug mode) the destructor
+// checks that we did not generate too much.
+class EnsureSpace BASE_EMBEDDED {
+ public:
+ explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
+ if (assembler_->overflow()) assembler_->GrowBuffer();
+#ifdef DEBUG
+ space_before_ = assembler_->available_space();
+#endif
+ }
+
+#ifdef DEBUG
+ ~EnsureSpace() {
+ int bytes_generated = space_before_ - assembler_->available_space();
+ ASSERT(bytes_generated < assembler_->kGap);
+ }
+#endif
+
+ private:
+ Assembler* assembler_;
+#ifdef DEBUG
+ int space_before_;
+#endif
+};
+
+} } // namespace v8::internal
+
+#endif // V8_IA32_ASSEMBLER_IA32_H_