summaryrefslogtreecommitdiff
path: root/deps/v8/src/base/atomicops_internals_arm_gcc.h
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/base/atomicops_internals_arm_gcc.h')
-rw-r--r--deps/v8/src/base/atomicops_internals_arm_gcc.h301
1 files changed, 301 insertions, 0 deletions
diff --git a/deps/v8/src/base/atomicops_internals_arm_gcc.h b/deps/v8/src/base/atomicops_internals_arm_gcc.h
new file mode 100644
index 000000000..069b1ffa8
--- /dev/null
+++ b/deps/v8/src/base/atomicops_internals_arm_gcc.h
@@ -0,0 +1,301 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// This file is an internal atomic implementation, use atomicops.h instead.
+//
+// LinuxKernelCmpxchg and Barrier_AtomicIncrement are from Google Gears.
+
+#ifndef V8_BASE_ATOMICOPS_INTERNALS_ARM_GCC_H_
+#define V8_BASE_ATOMICOPS_INTERNALS_ARM_GCC_H_
+
+#if defined(__QNXNTO__)
+#include <sys/cpuinline.h>
+#endif
+
+namespace v8 {
+namespace base {
+
+// Memory barriers on ARM are funky, but the kernel is here to help:
+//
+// * ARMv5 didn't support SMP, there is no memory barrier instruction at
+// all on this architecture, or when targeting its machine code.
+//
+// * Some ARMv6 CPUs support SMP. A full memory barrier can be produced by
+// writing a random value to a very specific coprocessor register.
+//
+// * On ARMv7, the "dmb" instruction is used to perform a full memory
+// barrier (though writing to the co-processor will still work).
+// However, on single core devices (e.g. Nexus One, or Nexus S),
+// this instruction will take up to 200 ns, which is huge, even though
+// it's completely un-needed on these devices.
+//
+// * There is no easy way to determine at runtime if the device is
+// single or multi-core. However, the kernel provides a useful helper
+// function at a fixed memory address (0xffff0fa0), which will always
+// perform a memory barrier in the most efficient way. I.e. on single
+// core devices, this is an empty function that exits immediately.
+// On multi-core devices, it implements a full memory barrier.
+//
+// * This source could be compiled to ARMv5 machine code that runs on a
+// multi-core ARMv6 or ARMv7 device. In this case, memory barriers
+// are needed for correct execution. Always call the kernel helper, even
+// when targeting ARMv5TE.
+//
+
+inline void MemoryBarrier() {
+#if defined(__linux__) || defined(__ANDROID__)
+ // Note: This is a function call, which is also an implicit compiler barrier.
+ typedef void (*KernelMemoryBarrierFunc)();
+ ((KernelMemoryBarrierFunc)0xffff0fa0)();
+#elif defined(__QNXNTO__)
+ __cpu_membarrier();
+#else
+#error MemoryBarrier() is not implemented on this platform.
+#endif
+}
+
+// An ARM toolchain would only define one of these depending on which
+// variant of the target architecture is being used. This tests against
+// any known ARMv6 or ARMv7 variant, where it is possible to directly
+// use ldrex/strex instructions to implement fast atomic operations.
+#if defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || \
+ defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || \
+ defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || \
+ defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || \
+ defined(__ARM_ARCH_6KZ__) || defined(__ARM_ARCH_6T2__)
+
+inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
+ Atomic32 old_value,
+ Atomic32 new_value) {
+ Atomic32 prev_value;
+ int reloop;
+ do {
+ // The following is equivalent to:
+ //
+ // prev_value = LDREX(ptr)
+ // reloop = 0
+ // if (prev_value != old_value)
+ // reloop = STREX(ptr, new_value)
+ __asm__ __volatile__(" ldrex %0, [%3]\n"
+ " mov %1, #0\n"
+ " cmp %0, %4\n"
+#ifdef __thumb2__
+ " it eq\n"
+#endif
+ " strexeq %1, %5, [%3]\n"
+ : "=&r"(prev_value), "=&r"(reloop), "+m"(*ptr)
+ : "r"(ptr), "r"(old_value), "r"(new_value)
+ : "cc", "memory");
+ } while (reloop != 0);
+ return prev_value;
+}
+
+inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
+ Atomic32 old_value,
+ Atomic32 new_value) {
+ Atomic32 result = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
+ MemoryBarrier();
+ return result;
+}
+
+inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
+ Atomic32 old_value,
+ Atomic32 new_value) {
+ MemoryBarrier();
+ return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
+}
+
+inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
+ Atomic32 increment) {
+ Atomic32 value;
+ int reloop;
+ do {
+ // Equivalent to:
+ //
+ // value = LDREX(ptr)
+ // value += increment
+ // reloop = STREX(ptr, value)
+ //
+ __asm__ __volatile__(" ldrex %0, [%3]\n"
+ " add %0, %0, %4\n"
+ " strex %1, %0, [%3]\n"
+ : "=&r"(value), "=&r"(reloop), "+m"(*ptr)
+ : "r"(ptr), "r"(increment)
+ : "cc", "memory");
+ } while (reloop);
+ return value;
+}
+
+inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
+ Atomic32 increment) {
+ // TODO(digit): Investigate if it's possible to implement this with
+ // a single MemoryBarrier() operation between the LDREX and STREX.
+ // See http://crbug.com/246514
+ MemoryBarrier();
+ Atomic32 result = NoBarrier_AtomicIncrement(ptr, increment);
+ MemoryBarrier();
+ return result;
+}
+
+inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
+ Atomic32 new_value) {
+ Atomic32 old_value;
+ int reloop;
+ do {
+ // old_value = LDREX(ptr)
+ // reloop = STREX(ptr, new_value)
+ __asm__ __volatile__(" ldrex %0, [%3]\n"
+ " strex %1, %4, [%3]\n"
+ : "=&r"(old_value), "=&r"(reloop), "+m"(*ptr)
+ : "r"(ptr), "r"(new_value)
+ : "cc", "memory");
+ } while (reloop != 0);
+ return old_value;
+}
+
+// This tests against any known ARMv5 variant.
+#elif defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) || \
+ defined(__ARM_ARCH_5TE__) || defined(__ARM_ARCH_5TEJ__)
+
+// The kernel also provides a helper function to perform an atomic
+// compare-and-swap operation at the hard-wired address 0xffff0fc0.
+// On ARMv5, this is implemented by a special code path that the kernel
+// detects and treats specially when thread pre-emption happens.
+// On ARMv6 and higher, it uses LDREX/STREX instructions instead.
+//
+// Note that this always perform a full memory barrier, there is no
+// need to add calls MemoryBarrier() before or after it. It also
+// returns 0 on success, and 1 on exit.
+//
+// Available and reliable since Linux 2.6.24. Both Android and ChromeOS
+// use newer kernel revisions, so this should not be a concern.
+namespace {
+
+inline int LinuxKernelCmpxchg(Atomic32 old_value,
+ Atomic32 new_value,
+ volatile Atomic32* ptr) {
+ typedef int (*KernelCmpxchgFunc)(Atomic32, Atomic32, volatile Atomic32*);
+ return ((KernelCmpxchgFunc)0xffff0fc0)(old_value, new_value, ptr);
+}
+
+} // namespace
+
+inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
+ Atomic32 old_value,
+ Atomic32 new_value) {
+ Atomic32 prev_value;
+ for (;;) {
+ prev_value = *ptr;
+ if (prev_value != old_value)
+ return prev_value;
+ if (!LinuxKernelCmpxchg(old_value, new_value, ptr))
+ return old_value;
+ }
+}
+
+inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
+ Atomic32 new_value) {
+ Atomic32 old_value;
+ do {
+ old_value = *ptr;
+ } while (LinuxKernelCmpxchg(old_value, new_value, ptr));
+ return old_value;
+}
+
+inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
+ Atomic32 increment) {
+ return Barrier_AtomicIncrement(ptr, increment);
+}
+
+inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
+ Atomic32 increment) {
+ for (;;) {
+ // Atomic exchange the old value with an incremented one.
+ Atomic32 old_value = *ptr;
+ Atomic32 new_value = old_value + increment;
+ if (!LinuxKernelCmpxchg(old_value, new_value, ptr)) {
+ // The exchange took place as expected.
+ return new_value;
+ }
+ // Otherwise, *ptr changed mid-loop and we need to retry.
+ }
+}
+
+inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
+ Atomic32 old_value,
+ Atomic32 new_value) {
+ Atomic32 prev_value;
+ for (;;) {
+ prev_value = *ptr;
+ if (prev_value != old_value) {
+ // Always ensure acquire semantics.
+ MemoryBarrier();
+ return prev_value;
+ }
+ if (!LinuxKernelCmpxchg(old_value, new_value, ptr))
+ return old_value;
+ }
+}
+
+inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
+ Atomic32 old_value,
+ Atomic32 new_value) {
+ // This could be implemented as:
+ // MemoryBarrier();
+ // return NoBarrier_CompareAndSwap();
+ //
+ // But would use 3 barriers per succesful CAS. To save performance,
+ // use Acquire_CompareAndSwap(). Its implementation guarantees that:
+ // - A succesful swap uses only 2 barriers (in the kernel helper).
+ // - An early return due to (prev_value != old_value) performs
+ // a memory barrier with no store, which is equivalent to the
+ // generic implementation above.
+ return Acquire_CompareAndSwap(ptr, old_value, new_value);
+}
+
+#else
+# error "Your CPU's ARM architecture is not supported yet"
+#endif
+
+// NOTE: Atomicity of the following load and store operations is only
+// guaranteed in case of 32-bit alignement of |ptr| values.
+
+inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) {
+ *ptr = value;
+}
+
+inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
+ *ptr = value;
+ MemoryBarrier();
+}
+
+inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) {
+ MemoryBarrier();
+ *ptr = value;
+}
+
+inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) { return *ptr; }
+
+inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) {
+ Atomic32 value = *ptr;
+ MemoryBarrier();
+ return value;
+}
+
+inline Atomic32 Release_Load(volatile const Atomic32* ptr) {
+ MemoryBarrier();
+ return *ptr;
+}
+
+// Byte accessors.
+
+inline void NoBarrier_Store(volatile Atomic8* ptr, Atomic8 value) {
+ *ptr = value;
+}
+
+inline Atomic8 NoBarrier_Load(volatile const Atomic8* ptr) { return *ptr; }
+
+} } // namespace v8::base
+
+#endif // V8_BASE_ATOMICOPS_INTERNALS_ARM_GCC_H_