diff options
Diffstat (limited to 'deps/v8/src/assembler-ia32.cc')
-rw-r--r-- | deps/v8/src/assembler-ia32.cc | 2205 |
1 files changed, 2205 insertions, 0 deletions
diff --git a/deps/v8/src/assembler-ia32.cc b/deps/v8/src/assembler-ia32.cc new file mode 100644 index 000000000..8549261a8 --- /dev/null +++ b/deps/v8/src/assembler-ia32.cc @@ -0,0 +1,2205 @@ +// Copyright (c) 1994-2006 Sun Microsystems Inc. +// All Rights Reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions +// are met: +// +// - Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// - Redistribution in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the +// distribution. +// +// - Neither the name of Sun Microsystems or the names of contributors may +// be used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) +// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, +// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED +// OF THE POSSIBILITY OF SUCH DAMAGE. + +// The original source code covered by the above license above has been modified +// significantly by Google Inc. +// Copyright 2006-2008 the V8 project authors. All rights reserved. + +#include "v8.h" + +#include "disassembler.h" +#include "macro-assembler.h" +#include "serialize.h" + +namespace v8 { namespace internal { + +// ----------------------------------------------------------------------------- +// Implementation of Register + +Register eax = { 0 }; +Register ecx = { 1 }; +Register edx = { 2 }; +Register ebx = { 3 }; +Register esp = { 4 }; +Register ebp = { 5 }; +Register esi = { 6 }; +Register edi = { 7 }; +Register no_reg = { -1 }; + +XMMRegister xmm0 = { 0 }; +XMMRegister xmm1 = { 1 }; +XMMRegister xmm2 = { 2 }; +XMMRegister xmm3 = { 3 }; +XMMRegister xmm4 = { 4 }; +XMMRegister xmm5 = { 5 }; +XMMRegister xmm6 = { 6 }; +XMMRegister xmm7 = { 7 }; + + +// ----------------------------------------------------------------------------- +// Implementation of CpuFeatures + +// Safe default is no features. +uint64_t CpuFeatures::supported_ = 0; +uint64_t CpuFeatures::enabled_ = 0; + + +// The Probe method needs executable memory, so it uses Heap::CreateCode. +// Allocation failure is silent and leads to safe default. +void CpuFeatures::Probe() { + ASSERT(Heap::HasBeenSetup()); + ASSERT(supported_ == 0); + if (Serializer::enabled()) return; // No features if we might serialize. + + Assembler assm(NULL, 0); + Label cpuid, done; +#define __ assm. + // Save old esp, since we are going to modify the stack. + __ push(ebp); + __ pushfd(); + __ push(ecx); + __ push(ebx); + __ mov(ebp, Operand(esp)); + + // If we can modify bit 21 of the EFLAGS register, then CPUID is supported. + __ pushfd(); + __ pop(eax); + __ mov(edx, Operand(eax)); + __ xor_(eax, 0x200000); // Flip bit 21. + __ push(eax); + __ popfd(); + __ pushfd(); + __ pop(eax); + __ xor_(eax, Operand(edx)); // Different if CPUID is supported. + __ j(not_zero, &cpuid); + + // CPUID not supported. Clear the supported features in edx:eax. + __ xor_(eax, Operand(eax)); + __ xor_(edx, Operand(edx)); + __ jmp(&done); + + // Invoke CPUID with 1 in eax to get feature information in + // ecx:edx. Temporarily enable CPUID support because we know it's + // safe here. + __ bind(&cpuid); + __ mov(eax, 1); + supported_ = (1 << CPUID); + { Scope fscope(CPUID); + __ cpuid(); + } + supported_ = 0; + + // Move the result from ecx:edx to edx:eax and make sure to mark the + // CPUID feature as supported. + __ mov(eax, Operand(edx)); + __ or_(eax, 1 << CPUID); + __ mov(edx, Operand(ecx)); + + // Done. + __ bind(&done); + __ mov(esp, Operand(ebp)); + __ pop(ebx); + __ pop(ecx); + __ popfd(); + __ pop(ebp); + __ ret(0); +#undef __ + + CodeDesc desc; + assm.GetCode(&desc); + Object* code = + Heap::CreateCode(desc, NULL, Code::ComputeFlags(Code::STUB), NULL); + if (!code->IsCode()) return; + LOG(CodeCreateEvent("Builtin", Code::cast(code), "CpuFeatures::Probe")); + typedef uint64_t (*F0)(); + F0 probe = FUNCTION_CAST<F0>(Code::cast(code)->entry()); + supported_ = probe(); +} + + +// ----------------------------------------------------------------------------- +// Implementation of Displacement + +void Displacement::init(Label* L, Type type) { + ASSERT(!L->is_bound()); + int next = 0; + if (L->is_linked()) { + next = L->pos(); + ASSERT(next > 0); // Displacements must be at positions > 0 + } + // Ensure that we _never_ overflow the next field. + ASSERT(NextField::is_valid(Assembler::kMaximalBufferSize)); + data_ = NextField::encode(next) | TypeField::encode(type); +} + + +// ----------------------------------------------------------------------------- +// Implementation of RelocInfo + + +const int RelocInfo::kApplyMask = + RelocInfo::kCodeTargetMask | 1 << RelocInfo::RUNTIME_ENTRY | + 1 << RelocInfo::JS_RETURN | 1 << RelocInfo::INTERNAL_REFERENCE; + + +void RelocInfo::PatchCode(byte* instructions, int instruction_count) { + // Patch the code at the current address with the supplied instructions. + for (int i = 0; i < instruction_count; i++) { + *(pc_ + i) = *(instructions + i); + } +} + + +// Patch the code at the current PC with a call to the target address. +// Additional guard int3 instructions can be added if required. +void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { + // Call instruction takes up 5 bytes and int3 takes up one byte. + int code_size = 5 + guard_bytes; + + // Patch the code. + CodePatcher patcher(pc_, code_size); + patcher.masm()->call(target, RelocInfo::NONE); + + // Add the requested number of int3 instructions after the call. + for (int i = 0; i < guard_bytes; i++) { + patcher.masm()->int3(); + } +} + + +// ----------------------------------------------------------------------------- +// Implementation of Operand + +Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) { + // [base + disp/r] + if (disp == 0 && rmode == RelocInfo::NONE && !base.is(ebp)) { + // [base] + set_modrm(0, base); + if (base.is(esp)) set_sib(times_1, esp, base); + } else if (is_int8(disp) && rmode == RelocInfo::NONE) { + // [base + disp8] + set_modrm(1, base); + if (base.is(esp)) set_sib(times_1, esp, base); + set_disp8(disp); + } else { + // [base + disp/r] + set_modrm(2, base); + if (base.is(esp)) set_sib(times_1, esp, base); + set_dispr(disp, rmode); + } +} + + +Operand::Operand(Register base, + Register index, + ScaleFactor scale, + int32_t disp, + RelocInfo::Mode rmode) { + ASSERT(!index.is(esp)); // illegal addressing mode + // [base + index*scale + disp/r] + if (disp == 0 && rmode == RelocInfo::NONE && !base.is(ebp)) { + // [base + index*scale] + set_modrm(0, esp); + set_sib(scale, index, base); + } else if (is_int8(disp) && rmode == RelocInfo::NONE) { + // [base + index*scale + disp8] + set_modrm(1, esp); + set_sib(scale, index, base); + set_disp8(disp); + } else { + // [base + index*scale + disp/r] + set_modrm(2, esp); + set_sib(scale, index, base); + set_dispr(disp, rmode); + } +} + + +Operand::Operand(Register index, + ScaleFactor scale, + int32_t disp, + RelocInfo::Mode rmode) { + ASSERT(!index.is(esp)); // illegal addressing mode + // [index*scale + disp/r] + set_modrm(0, esp); + set_sib(scale, index, ebp); + set_dispr(disp, rmode); +} + + +void Operand::set_sib(ScaleFactor scale, Register index, Register base) { + ASSERT(len_ == 1); + ASSERT((scale & -4) == 0); + buf_[1] = scale << 6 | index.code() << 3 | base.code(); + len_ = 2; +} + + +void Operand::set_disp8(int8_t disp) { + ASSERT(len_ == 1 || len_ == 2); + *reinterpret_cast<int8_t*>(&buf_[len_++]) = disp; +} + + +bool Operand::is_reg(Register reg) const { + return ((buf_[0] & 0xF8) == 0xC0) // addressing mode is register only. + && ((buf_[0] & 0x07) == reg.code()); // register codes match. +} + +// ----------------------------------------------------------------------------- +// Implementation of Assembler + +// Emit a single byte. Must always be inlined. +#define EMIT(x) \ + *pc_++ = (x) + + +// spare_buffer_ +static byte* spare_buffer_ = NULL; + +Assembler::Assembler(void* buffer, int buffer_size) { + if (buffer == NULL) { + // do our own buffer management + if (buffer_size <= kMinimalBufferSize) { + buffer_size = kMinimalBufferSize; + + if (spare_buffer_ != NULL) { + buffer = spare_buffer_; + spare_buffer_ = NULL; + } + } + if (buffer == NULL) { + buffer_ = NewArray<byte>(buffer_size); + } else { + buffer_ = static_cast<byte*>(buffer); + } + buffer_size_ = buffer_size; + own_buffer_ = true; + } else { + // use externally provided buffer instead + ASSERT(buffer_size > 0); + buffer_ = static_cast<byte*>(buffer); + buffer_size_ = buffer_size; + own_buffer_ = false; + } + + // Clear the buffer in debug mode unless it was provided by the + // caller in which case we can't be sure it's okay to overwrite + // existing code in it; see CodePatcher::CodePatcher(...). + if (kDebug && own_buffer_) { + memset(buffer_, 0xCC, buffer_size); // int3 + } + + // setup buffer pointers + ASSERT(buffer_ != NULL); + pc_ = buffer_; + reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); + + last_pc_ = NULL; + current_statement_position_ = RelocInfo::kNoPosition; + current_position_ = RelocInfo::kNoPosition; + written_statement_position_ = current_statement_position_; + written_position_ = current_position_; +} + + +Assembler::~Assembler() { + if (own_buffer_) { + if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { + spare_buffer_ = buffer_; + } else { + DeleteArray(buffer_); + } + } +} + + +void Assembler::GetCode(CodeDesc* desc) { + // finalize code + // (at this point overflow() may be true, but the gap ensures that + // we are still not overlapping instructions and relocation info) + ASSERT(pc_ <= reloc_info_writer.pos()); // no overlap + // setup desc + desc->buffer = buffer_; + desc->buffer_size = buffer_size_; + desc->instr_size = pc_offset(); + desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); + desc->origin = this; + + Counters::reloc_info_size.Increment(desc->reloc_size); +} + + +void Assembler::Align(int m) { + ASSERT(IsPowerOf2(m)); + while ((pc_offset() & (m - 1)) != 0) { + nop(); + } +} + + +void Assembler::cpuid() { + ASSERT(CpuFeatures::IsEnabled(CpuFeatures::CPUID)); + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x0F); + EMIT(0xA2); +} + + +void Assembler::pushad() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x60); +} + + +void Assembler::popad() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x61); +} + + +void Assembler::pushfd() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x9C); +} + + +void Assembler::popfd() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x9D); +} + + +void Assembler::push(const Immediate& x) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + if (x.is_int8()) { + EMIT(0x6a); + EMIT(x.x_); + } else { + EMIT(0x68); + emit(x); + } +} + + +void Assembler::push(Register src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x50 | src.code()); +} + + +void Assembler::push(const Operand& src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xFF); + emit_operand(esi, src); +} + + +void Assembler::pop(Register dst) { + ASSERT(reloc_info_writer.last_pc() != NULL); + if (FLAG_push_pop_elimination && (reloc_info_writer.last_pc() <= last_pc_)) { + // (last_pc_ != NULL) is rolled into the above check + // If a last_pc_ is set, we need to make sure that there has not been any + // relocation information generated between the last instruction and this + // pop instruction. + byte instr = last_pc_[0]; + if ((instr & ~0x7) == 0x50) { + int push_reg_code = instr & 0x7; + if (push_reg_code == dst.code()) { + pc_ = last_pc_; + if (FLAG_print_push_pop_elimination) { + PrintF("%d push/pop (same reg) eliminated\n", pc_offset()); + } + } else { + // Convert 'push src; pop dst' to 'mov dst, src'. + last_pc_[0] = 0x8b; + Register src = { push_reg_code }; + EnsureSpace ensure_space(this); + emit_operand(dst, Operand(src)); + if (FLAG_print_push_pop_elimination) { + PrintF("%d push/pop (reg->reg) eliminated\n", pc_offset()); + } + } + last_pc_ = NULL; + return; + } else if (instr == 0xff) { // push of an operand, convert to a move + byte op1 = last_pc_[1]; + // Check if the operation is really a push + if ((op1 & 0x38) == (6 << 3)) { + op1 = (op1 & ~0x38) | static_cast<byte>(dst.code() << 3); + last_pc_[0] = 0x8b; + last_pc_[1] = op1; + last_pc_ = NULL; + if (FLAG_print_push_pop_elimination) { + PrintF("%d push/pop (op->reg) eliminated\n", pc_offset()); + } + return; + } + } else if ((instr == 0x89) && + (last_pc_[1] == 0x04) && + (last_pc_[2] == 0x24)) { + // 0x71283c 396 890424 mov [esp],eax + // 0x71283f 399 58 pop eax + if (dst.is(eax)) { + // change to + // 0x710fac 216 83c404 add esp,0x4 + last_pc_[0] = 0x83; + last_pc_[1] = 0xc4; + last_pc_[2] = 0x04; + last_pc_ = NULL; + if (FLAG_print_push_pop_elimination) { + PrintF("%d push/pop (mov-pop) eliminated\n", pc_offset()); + } + return; + } + } else if (instr == 0x6a && dst.is(eax)) { // push of immediate 8 bit + byte imm8 = last_pc_[1]; + if (imm8 == 0) { + // 6a00 push 0x0 + // 58 pop eax + last_pc_[0] = 0x31; + last_pc_[1] = 0xc0; + // change to + // 31c0 xor eax,eax + last_pc_ = NULL; + if (FLAG_print_push_pop_elimination) { + PrintF("%d push/pop (imm->reg) eliminated\n", pc_offset()); + } + return; + } else { + // 6a00 push 0xXX + // 58 pop eax + last_pc_[0] = 0xb8; + EnsureSpace ensure_space(this); + if ((imm8 & 0x80) != 0) { + EMIT(0xff); + EMIT(0xff); + EMIT(0xff); + // change to + // b8XXffffff mov eax,0xffffffXX + } else { + EMIT(0x00); + EMIT(0x00); + EMIT(0x00); + // change to + // b8XX000000 mov eax,0x000000XX + } + last_pc_ = NULL; + if (FLAG_print_push_pop_elimination) { + PrintF("%d push/pop (imm->reg) eliminated\n", pc_offset()); + } + return; + } + } else if (instr == 0x68 && dst.is(eax)) { // push of immediate 32 bit + // 68XXXXXXXX push 0xXXXXXXXX + // 58 pop eax + last_pc_[0] = 0xb8; + last_pc_ = NULL; + // change to + // b8XXXXXXXX mov eax,0xXXXXXXXX + if (FLAG_print_push_pop_elimination) { + PrintF("%d push/pop (imm->reg) eliminated\n", pc_offset()); + } + return; + } + + // Other potential patterns for peephole: + // 0x712716 102 890424 mov [esp], eax + // 0x712719 105 8b1424 mov edx, [esp] + } + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x58 | dst.code()); +} + + +void Assembler::pop(const Operand& dst) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x8F); + emit_operand(eax, dst); +} + + +void Assembler::enter(const Immediate& size) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xC8); + emit_w(size); + EMIT(0); +} + + +void Assembler::leave() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xC9); +} + + +void Assembler::mov_b(Register dst, const Operand& src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x8A); + emit_operand(dst, src); +} + + +void Assembler::mov_b(const Operand& dst, int8_t imm8) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xC6); + emit_operand(eax, dst); + EMIT(imm8); +} + + +void Assembler::mov_b(const Operand& dst, Register src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x88); + emit_operand(src, dst); +} + + +void Assembler::mov_w(Register dst, const Operand& src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x66); + EMIT(0x8B); + emit_operand(dst, src); +} + + +void Assembler::mov_w(const Operand& dst, Register src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x66); + EMIT(0x89); + emit_operand(src, dst); +} + + +void Assembler::mov(Register dst, int32_t imm32) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xB8 | dst.code()); + emit(imm32); +} + + +void Assembler::mov(Register dst, const Immediate& x) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xB8 | dst.code()); + emit(x); +} + + +void Assembler::mov(Register dst, Handle<Object> handle) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xB8 | dst.code()); + emit(handle); +} + + +void Assembler::mov(Register dst, const Operand& src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x8B); + emit_operand(dst, src); +} + + +void Assembler::mov(Register dst, Register src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x89); + EMIT(0xC0 | src.code() << 3 | dst.code()); +} + + +void Assembler::mov(const Operand& dst, const Immediate& x) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xC7); + emit_operand(eax, dst); + emit(x); +} + + +void Assembler::mov(const Operand& dst, Handle<Object> handle) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xC7); + emit_operand(eax, dst); + emit(handle); +} + + +void Assembler::mov(const Operand& dst, Register src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x89); + emit_operand(src, dst); +} + + +void Assembler::movsx_b(Register dst, const Operand& src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x0F); + EMIT(0xBE); + emit_operand(dst, src); +} + + +void Assembler::movsx_w(Register dst, const Operand& src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x0F); + EMIT(0xBF); + emit_operand(dst, src); +} + + +void Assembler::movzx_b(Register dst, const Operand& src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x0F); + EMIT(0xB6); + emit_operand(dst, src); +} + + +void Assembler::movzx_w(Register dst, const Operand& src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x0F); + EMIT(0xB7); + emit_operand(dst, src); +} + + +void Assembler::cmov(Condition cc, Register dst, int32_t imm32) { + ASSERT(CpuFeatures::IsEnabled(CpuFeatures::CMOV)); + EnsureSpace ensure_space(this); + last_pc_ = pc_; + UNIMPLEMENTED(); + USE(cc); + USE(dst); + USE(imm32); +} + + +void Assembler::cmov(Condition cc, Register dst, Handle<Object> handle) { + ASSERT(CpuFeatures::IsEnabled(CpuFeatures::CMOV)); + EnsureSpace ensure_space(this); + last_pc_ = pc_; + UNIMPLEMENTED(); + USE(cc); + USE(dst); + USE(handle); +} + + +void Assembler::cmov(Condition cc, Register dst, const Operand& src) { + ASSERT(CpuFeatures::IsEnabled(CpuFeatures::CMOV)); + EnsureSpace ensure_space(this); + last_pc_ = pc_; + UNIMPLEMENTED(); + USE(cc); + USE(dst); + USE(src); +} + + +void Assembler::xchg(Register dst, Register src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + if (src.is(eax) || dst.is(eax)) { // Single-byte encoding + EMIT(0x90 | (src.is(eax) ? dst.code() : src.code())); + } else { + EMIT(0x87); + EMIT(0xC0 | src.code() << 3 | dst.code()); + } +} + + +void Assembler::adc(Register dst, int32_t imm32) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_arith(2, Operand(dst), Immediate(imm32)); +} + + +void Assembler::adc(Register dst, const Operand& src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x13); + emit_operand(dst, src); +} + + +void Assembler::add(Register dst, const Operand& src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x03); + emit_operand(dst, src); +} + + +void Assembler::add(const Operand& dst, const Immediate& x) { + ASSERT(reloc_info_writer.last_pc() != NULL); + if (FLAG_push_pop_elimination && (reloc_info_writer.last_pc() <= last_pc_)) { + byte instr = last_pc_[0]; + if ((instr & 0xf8) == 0x50) { + // Last instruction was a push. Check whether this is a pop without a + // result. + if ((dst.is_reg(esp)) && + (x.x_ == kPointerSize) && (x.rmode_ == RelocInfo::NONE)) { + pc_ = last_pc_; + last_pc_ = NULL; + if (FLAG_print_push_pop_elimination) { + PrintF("%d push/pop(noreg) eliminated\n", pc_offset()); + } + return; + } + } + } + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_arith(0, dst, x); +} + + +void Assembler::and_(Register dst, int32_t imm32) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_arith(4, Operand(dst), Immediate(imm32)); +} + + +void Assembler::and_(Register dst, const Operand& src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x23); + emit_operand(dst, src); +} + + +void Assembler::and_(const Operand& dst, const Immediate& x) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_arith(4, dst, x); +} + + +void Assembler::and_(const Operand& dst, Register src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x21); + emit_operand(src, dst); +} + + +void Assembler::cmpb(const Operand& op, int8_t imm8) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x80); + emit_operand(edi, op); // edi == 7 + EMIT(imm8); +} + + +void Assembler::cmpw(const Operand& op, Immediate imm16) { + ASSERT(imm16.is_int16()); + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x66); + EMIT(0x81); + emit_operand(edi, op); + emit_w(imm16); +} + + +void Assembler::cmp(Register reg, int32_t imm32) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_arith(7, Operand(reg), Immediate(imm32)); +} + + +void Assembler::cmp(Register reg, Handle<Object> handle) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_arith(7, Operand(reg), Immediate(handle)); +} + + +void Assembler::cmp(Register reg, const Operand& op) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x3B); + emit_operand(reg, op); +} + + +void Assembler::cmp(const Operand& op, const Immediate& imm) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_arith(7, op, imm); +} + + +void Assembler::cmpb_al(const Operand& op) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x38); // CMP r/m8, r8 + emit_operand(eax, op); // eax has same code as register al. +} + + +void Assembler::cmpw_ax(const Operand& op) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x66); + EMIT(0x39); // CMP r/m16, r16 + emit_operand(eax, op); // eax has same code as register ax. +} + + +void Assembler::dec_b(Register dst) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xFE); + EMIT(0xC8 | dst.code()); +} + + +void Assembler::dec(Register dst) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x48 | dst.code()); +} + + +void Assembler::dec(const Operand& dst) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xFF); + emit_operand(ecx, dst); +} + + +void Assembler::cdq() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x99); +} + + +void Assembler::idiv(Register src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xF7); + EMIT(0xF8 | src.code()); +} + + +void Assembler::imul(Register dst, const Operand& src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x0F); + EMIT(0xAF); + emit_operand(dst, src); +} + + +void Assembler::imul(Register dst, Register src, int32_t imm32) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + if (is_int8(imm32)) { + EMIT(0x6B); + EMIT(0xC0 | dst.code() << 3 | src.code()); + EMIT(imm32); + } else { + EMIT(0x69); + EMIT(0xC0 | dst.code() << 3 | src.code()); + emit(imm32); + } +} + + +void Assembler::inc(Register dst) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x40 | dst.code()); +} + + +void Assembler::inc(const Operand& dst) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xFF); + emit_operand(eax, dst); +} + + +void Assembler::lea(Register dst, const Operand& src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x8D); + emit_operand(dst, src); +} + + +void Assembler::mul(Register src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xF7); + EMIT(0xE0 | src.code()); +} + + +void Assembler::neg(Register dst) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xF7); + EMIT(0xD8 | dst.code()); +} + + +void Assembler::not_(Register dst) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xF7); + EMIT(0xD0 | dst.code()); +} + + +void Assembler::or_(Register dst, int32_t imm32) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_arith(1, Operand(dst), Immediate(imm32)); +} + + +void Assembler::or_(Register dst, const Operand& src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x0B); + emit_operand(dst, src); +} + + +void Assembler::or_(const Operand& dst, const Immediate& x) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_arith(1, dst, x); +} + + +void Assembler::or_(const Operand& dst, Register src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x09); + emit_operand(src, dst); +} + + +void Assembler::rcl(Register dst, uint8_t imm8) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + ASSERT(is_uint5(imm8)); // illegal shift count + if (imm8 == 1) { + EMIT(0xD1); + EMIT(0xD0 | dst.code()); + } else { + EMIT(0xC1); + EMIT(0xD0 | dst.code()); + EMIT(imm8); + } +} + + +void Assembler::sar(Register dst, uint8_t imm8) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + ASSERT(is_uint5(imm8)); // illegal shift count + if (imm8 == 1) { + EMIT(0xD1); + EMIT(0xF8 | dst.code()); + } else { + EMIT(0xC1); + EMIT(0xF8 | dst.code()); + EMIT(imm8); + } +} + + +void Assembler::sar(Register dst) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xD3); + EMIT(0xF8 | dst.code()); +} + + +void Assembler::sbb(Register dst, const Operand& src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x1B); + emit_operand(dst, src); +} + + +void Assembler::shld(Register dst, const Operand& src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x0F); + EMIT(0xA5); + emit_operand(dst, src); +} + + +void Assembler::shl(Register dst, uint8_t imm8) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + ASSERT(is_uint5(imm8)); // illegal shift count + if (imm8 == 1) { + EMIT(0xD1); + EMIT(0xE0 | dst.code()); + } else { + EMIT(0xC1); + EMIT(0xE0 | dst.code()); + EMIT(imm8); + } +} + + +void Assembler::shl(Register dst) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xD3); + EMIT(0xE0 | dst.code()); +} + + +void Assembler::shrd(Register dst, const Operand& src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x0F); + EMIT(0xAD); + emit_operand(dst, src); +} + + +void Assembler::shr(Register dst, uint8_t imm8) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + ASSERT(is_uint5(imm8)); // illegal shift count + EMIT(0xC1); + EMIT(0xE8 | dst.code()); + EMIT(imm8); +} + + +void Assembler::shr(Register dst) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xD3); + EMIT(0xE8 | dst.code()); +} + + +void Assembler::shr_cl(Register dst) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xD1); + EMIT(0xE8 | dst.code()); +} + + +void Assembler::sub(const Operand& dst, const Immediate& x) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_arith(5, dst, x); +} + + +void Assembler::sub(Register dst, const Operand& src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x2B); + emit_operand(dst, src); +} + + +void Assembler::sub(const Operand& dst, Register src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x29); + emit_operand(src, dst); +} + + +void Assembler::test(Register reg, const Immediate& imm) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + // Only use test against byte for registers that have a byte + // variant: eax, ebx, ecx, and edx. + if (imm.rmode_ == RelocInfo::NONE && is_uint8(imm.x_) && reg.code() < 4) { + uint8_t imm8 = imm.x_; + if (reg.is(eax)) { + EMIT(0xA8); + EMIT(imm8); + } else { + emit_arith_b(0xF6, 0xC0, reg, imm8); + } + } else { + // This is not using emit_arith because test doesn't support + // sign-extension of 8-bit operands. + if (reg.is(eax)) { + EMIT(0xA9); + } else { + EMIT(0xF7); + EMIT(0xC0 | reg.code()); + } + emit(imm); + } +} + + +void Assembler::test(Register reg, const Operand& op) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x85); + emit_operand(reg, op); +} + + +void Assembler::test(const Operand& op, const Immediate& imm) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xF7); + emit_operand(eax, op); + emit(imm); +} + + +void Assembler::xor_(Register dst, int32_t imm32) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_arith(6, Operand(dst), Immediate(imm32)); +} + + +void Assembler::xor_(Register dst, const Operand& src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x33); + emit_operand(dst, src); +} + + +void Assembler::xor_(const Operand& src, Register dst) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x31); + emit_operand(dst, src); +} + + +void Assembler::xor_(const Operand& dst, const Immediate& x) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_arith(6, dst, x); +} + + +void Assembler::bt(const Operand& dst, Register src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x0F); + EMIT(0xA3); + emit_operand(src, dst); +} + + +void Assembler::bts(const Operand& dst, Register src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x0F); + EMIT(0xAB); + emit_operand(src, dst); +} + + +void Assembler::hlt() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xF4); +} + + +void Assembler::int3() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xCC); +} + + +void Assembler::nop() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x90); +} + + +void Assembler::rdtsc() { + ASSERT(CpuFeatures::IsEnabled(CpuFeatures::RDTSC)); + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x0F); + EMIT(0x31); +} + + +void Assembler::ret(int imm16) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + ASSERT(is_uint16(imm16)); + if (imm16 == 0) { + EMIT(0xC3); + } else { + EMIT(0xC2); + EMIT(imm16 & 0xFF); + EMIT((imm16 >> 8) & 0xFF); + } +} + + +// Labels refer to positions in the (to be) generated code. +// There are bound, linked, and unused labels. +// +// Bound labels refer to known positions in the already +// generated code. pos() is the position the label refers to. +// +// Linked labels refer to unknown positions in the code +// to be generated; pos() is the position of the 32bit +// Displacement of the last instruction using the label. + + +void Assembler::print(Label* L) { + if (L->is_unused()) { + PrintF("unused label\n"); + } else if (L->is_bound()) { + PrintF("bound label to %d\n", L->pos()); + } else if (L->is_linked()) { + Label l = *L; + PrintF("unbound label"); + while (l.is_linked()) { + Displacement disp = disp_at(&l); + PrintF("@ %d ", l.pos()); + disp.print(); + PrintF("\n"); + disp.next(&l); + } + } else { + PrintF("label in inconsistent state (pos = %d)\n", L->pos_); + } +} + + +void Assembler::bind_to(Label* L, int pos) { + EnsureSpace ensure_space(this); + last_pc_ = NULL; + ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position + while (L->is_linked()) { + Displacement disp = disp_at(L); + int fixup_pos = L->pos(); + if (disp.type() == Displacement::CODE_RELATIVE) { + // Relative to Code* heap object pointer. + long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag); + } else { + if (disp.type() == Displacement::UNCONDITIONAL_JUMP) { + ASSERT(byte_at(fixup_pos - 1) == 0xE9); // jmp expected + } + // relative address, relative to point after address + int imm32 = pos - (fixup_pos + sizeof(int32_t)); + long_at_put(fixup_pos, imm32); + } + disp.next(L); + } + L->bind_to(pos); +} + + +void Assembler::link_to(Label* L, Label* appendix) { + EnsureSpace ensure_space(this); + last_pc_ = NULL; + if (appendix->is_linked()) { + if (L->is_linked()) { + // append appendix to L's list + Label p; + Label q = *L; + do { + p = q; + Displacement disp = disp_at(&q); + disp.next(&q); + } while (q.is_linked()); + Displacement disp = disp_at(&p); + disp.link_to(appendix); + disp_at_put(&p, disp); + p.Unuse(); // to avoid assertion failure in ~Label + } else { + // L is empty, simply use appendix + *L = *appendix; + } + } + appendix->Unuse(); // appendix should not be used anymore +} + + +void Assembler::bind(Label* L) { + EnsureSpace ensure_space(this); + last_pc_ = NULL; + ASSERT(!L->is_bound()); // label can only be bound once + bind_to(L, pc_offset()); +} + + +void Assembler::call(Label* L) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + if (L->is_bound()) { + const int long_size = 5; + int offs = L->pos() - pc_offset(); + ASSERT(offs <= 0); + // 1110 1000 #32-bit disp + EMIT(0xE8); + emit(offs - long_size); + } else { + // 1110 1000 #32-bit disp + EMIT(0xE8); + emit_disp(L, Displacement::OTHER); + } +} + + +void Assembler::call(byte* entry, RelocInfo::Mode rmode) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + ASSERT(!RelocInfo::IsCodeTarget(rmode)); + EMIT(0xE8); + emit(entry - (pc_ + sizeof(int32_t)), rmode); +} + + +void Assembler::call(const Operand& adr) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xFF); + emit_operand(edx, adr); +} + + +void Assembler::call(Handle<Code> code, RelocInfo::Mode rmode) { + WriteRecordedPositions(); + EnsureSpace ensure_space(this); + last_pc_ = pc_; + ASSERT(RelocInfo::IsCodeTarget(rmode)); + EMIT(0xE8); + emit(reinterpret_cast<intptr_t>(code.location()), rmode); +} + + +void Assembler::jmp(Label* L) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + if (L->is_bound()) { + const int short_size = 2; + const int long_size = 5; + int offs = L->pos() - pc_offset(); + ASSERT(offs <= 0); + if (is_int8(offs - short_size)) { + // 1110 1011 #8-bit disp + EMIT(0xEB); + EMIT((offs - short_size) & 0xFF); + } else { + // 1110 1001 #32-bit disp + EMIT(0xE9); + emit(offs - long_size); + } + } else { + // 1110 1001 #32-bit disp + EMIT(0xE9); + emit_disp(L, Displacement::UNCONDITIONAL_JUMP); + } +} + + +void Assembler::jmp(byte* entry, RelocInfo::Mode rmode) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + ASSERT(!RelocInfo::IsCodeTarget(rmode)); + EMIT(0xE9); + emit(entry - (pc_ + sizeof(int32_t)), rmode); +} + + +void Assembler::jmp(const Operand& adr) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xFF); + emit_operand(esp, adr); +} + + +void Assembler::jmp(Handle<Code> code, RelocInfo::Mode rmode) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + ASSERT(RelocInfo::IsCodeTarget(rmode)); + EMIT(0xE9); + emit(reinterpret_cast<intptr_t>(code.location()), rmode); +} + + + +void Assembler::j(Condition cc, Label* L, Hint hint) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + ASSERT(0 <= cc && cc < 16); + if (FLAG_emit_branch_hints && hint != no_hint) EMIT(hint); + if (L->is_bound()) { + const int short_size = 2; + const int long_size = 6; + int offs = L->pos() - pc_offset(); + ASSERT(offs <= 0); + if (is_int8(offs - short_size)) { + // 0111 tttn #8-bit disp + EMIT(0x70 | cc); + EMIT((offs - short_size) & 0xFF); + } else { + // 0000 1111 1000 tttn #32-bit disp + EMIT(0x0F); + EMIT(0x80 | cc); + emit(offs - long_size); + } + } else { + // 0000 1111 1000 tttn #32-bit disp + // Note: could eliminate cond. jumps to this jump if condition + // is the same however, seems to be rather unlikely case. + EMIT(0x0F); + EMIT(0x80 | cc); + emit_disp(L, Displacement::OTHER); + } +} + + +void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode, Hint hint) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + ASSERT((0 <= cc) && (cc < 16)); + if (FLAG_emit_branch_hints && hint != no_hint) EMIT(hint); + // 0000 1111 1000 tttn #32-bit disp + EMIT(0x0F); + EMIT(0x80 | cc); + emit(entry - (pc_ + sizeof(int32_t)), rmode); +} + + +void Assembler::j(Condition cc, Handle<Code> code, Hint hint) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + if (FLAG_emit_branch_hints && hint != no_hint) EMIT(hint); + // 0000 1111 1000 tttn #32-bit disp + EMIT(0x0F); + EMIT(0x80 | cc); + emit(reinterpret_cast<intptr_t>(code.location()), RelocInfo::CODE_TARGET); +} + + +// FPU instructions + + +void Assembler::fld(int i) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_farith(0xD9, 0xC0, i); +} + + +void Assembler::fld1() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xD9); + EMIT(0xE8); +} + + +void Assembler::fldz() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xD9); + EMIT(0xEE); +} + + +void Assembler::fld_s(const Operand& adr) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xD9); + emit_operand(eax, adr); +} + + +void Assembler::fld_d(const Operand& adr) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xDD); + emit_operand(eax, adr); +} + + +void Assembler::fstp_s(const Operand& adr) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xD9); + emit_operand(ebx, adr); +} + + +void Assembler::fstp_d(const Operand& adr) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xDD); + emit_operand(ebx, adr); +} + + +void Assembler::fild_s(const Operand& adr) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xDB); + emit_operand(eax, adr); +} + + +void Assembler::fild_d(const Operand& adr) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xDF); + emit_operand(ebp, adr); +} + + +void Assembler::fistp_s(const Operand& adr) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xDB); + emit_operand(ebx, adr); +} + + +void Assembler::fisttp_s(const Operand& adr) { + ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE3)); + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xDB); + emit_operand(ecx, adr); +} + + +void Assembler::fist_s(const Operand& adr) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xDB); + emit_operand(edx, adr); +} + + +void Assembler::fistp_d(const Operand& adr) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xDF); + emit_operand(edi, adr); +} + + +void Assembler::fabs() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xD9); + EMIT(0xE1); +} + + +void Assembler::fchs() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xD9); + EMIT(0xE0); +} + + +void Assembler::fadd(int i) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_farith(0xDC, 0xC0, i); +} + + +void Assembler::fsub(int i) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_farith(0xDC, 0xE8, i); +} + + +void Assembler::fisub_s(const Operand& adr) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xDA); + emit_operand(esp, adr); +} + + +void Assembler::fmul(int i) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_farith(0xDC, 0xC8, i); +} + + +void Assembler::fdiv(int i) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_farith(0xDC, 0xF8, i); +} + + +void Assembler::faddp(int i) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_farith(0xDE, 0xC0, i); +} + + +void Assembler::fsubp(int i) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_farith(0xDE, 0xE8, i); +} + + +void Assembler::fsubrp(int i) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_farith(0xDE, 0xE0, i); +} + + +void Assembler::fmulp(int i) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_farith(0xDE, 0xC8, i); +} + + +void Assembler::fdivp(int i) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_farith(0xDE, 0xF8, i); +} + + +void Assembler::fprem() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xD9); + EMIT(0xF8); +} + + +void Assembler::fprem1() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xD9); + EMIT(0xF5); +} + + +void Assembler::fxch(int i) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_farith(0xD9, 0xC8, i); +} + + +void Assembler::fincstp() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xD9); + EMIT(0xF7); +} + + +void Assembler::ffree(int i) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_farith(0xDD, 0xC0, i); +} + + +void Assembler::ftst() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xD9); + EMIT(0xE4); +} + + +void Assembler::fucomp(int i) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + emit_farith(0xDD, 0xE8, i); +} + + +void Assembler::fucompp() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xDA); + EMIT(0xE9); +} + + +void Assembler::fcompp() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xDE); + EMIT(0xD9); +} + + +void Assembler::fnstsw_ax() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xdF); + EMIT(0xE0); +} + + +void Assembler::fwait() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x9B); +} + + +void Assembler::frndint() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xD9); + EMIT(0xFC); +} + + +void Assembler::fnclex() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xDB); + EMIT(0xE2); +} + + +void Assembler::sahf() { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x9E); +} + + +void Assembler::setcc(Condition cc, Register reg) { + ASSERT(reg.is_byte_register()); + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0x0F); + EMIT(0x90 | cc); + EMIT(0xC0 | reg.code()); +} + + +void Assembler::cvttss2si(Register dst, const Operand& src) { + ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xF3); + EMIT(0x0F); + EMIT(0x2C); + emit_operand(dst, src); +} + + +void Assembler::cvttsd2si(Register dst, const Operand& src) { + ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xF2); + EMIT(0x0F); + EMIT(0x2C); + emit_operand(dst, src); +} + + +void Assembler::cvtsi2sd(XMMRegister dst, const Operand& src) { + ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xF2); + EMIT(0x0F); + EMIT(0x2A); + emit_sse_operand(dst, src); +} + + +void Assembler::addsd(XMMRegister dst, XMMRegister src) { + ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xF2); + EMIT(0x0F); + EMIT(0x58); + emit_sse_operand(dst, src); +} + + +void Assembler::mulsd(XMMRegister dst, XMMRegister src) { + ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xF2); + EMIT(0x0F); + EMIT(0x59); + emit_sse_operand(dst, src); +} + + +void Assembler::subsd(XMMRegister dst, XMMRegister src) { + ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xF2); + EMIT(0x0F); + EMIT(0x5C); + emit_sse_operand(dst, src); +} + + +void Assembler::divsd(XMMRegister dst, XMMRegister src) { + ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xF2); + EMIT(0x0F); + EMIT(0x5E); + emit_sse_operand(dst, src); +} + + +void Assembler::movdbl(XMMRegister dst, const Operand& src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + movsd(dst, src); +} + + +void Assembler::movdbl(const Operand& dst, XMMRegister src) { + EnsureSpace ensure_space(this); + last_pc_ = pc_; + movsd(dst, src); +} + + +void Assembler::movsd(const Operand& dst, XMMRegister src ) { + ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xF2); // double + EMIT(0x0F); + EMIT(0x11); // store + emit_sse_operand(src, dst); +} + + +void Assembler::movsd(XMMRegister dst, const Operand& src) { + ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); + EnsureSpace ensure_space(this); + last_pc_ = pc_; + EMIT(0xF2); // double + EMIT(0x0F); + EMIT(0x10); // load + emit_sse_operand(dst, src); +} + + +void Assembler::emit_sse_operand(XMMRegister reg, const Operand& adr) { + Register ireg = { reg.code() }; + emit_operand(ireg, adr); +} + + +void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) { + EMIT(0xC0 | dst.code() << 3 | src.code()); +} + + +void Assembler::Print() { + Disassembler::Decode(stdout, buffer_, pc_); +} + + +void Assembler::RecordJSReturn() { + WriteRecordedPositions(); + EnsureSpace ensure_space(this); + RecordRelocInfo(RelocInfo::JS_RETURN); +} + + +void Assembler::RecordComment(const char* msg) { + if (FLAG_debug_code) { + EnsureSpace ensure_space(this); + RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); + } +} + + +void Assembler::RecordPosition(int pos) { + ASSERT(pos != RelocInfo::kNoPosition); + ASSERT(pos >= 0); + current_position_ = pos; +} + + +void Assembler::RecordStatementPosition(int pos) { + ASSERT(pos != RelocInfo::kNoPosition); + ASSERT(pos >= 0); + current_statement_position_ = pos; +} + + +void Assembler::WriteRecordedPositions() { + // Write the statement position if it is different from what was written last + // time. + if (current_statement_position_ != written_statement_position_) { + EnsureSpace ensure_space(this); + RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_); + written_statement_position_ = current_statement_position_; + } + + // Write the position if it is different from what was written last time and + // also different from the written statement position. + if (current_position_ != written_position_ && + current_position_ != written_statement_position_) { + EnsureSpace ensure_space(this); + RecordRelocInfo(RelocInfo::POSITION, current_position_); + written_position_ = current_position_; + } +} + + +void Assembler::GrowBuffer() { + ASSERT(overflow()); // should not call this otherwise + if (!own_buffer_) FATAL("external code buffer is too small"); + + // compute new buffer size + CodeDesc desc; // the new buffer + if (buffer_size_ < 4*KB) { + desc.buffer_size = 4*KB; + } else { + desc.buffer_size = 2*buffer_size_; + } + // Some internal data structures overflow for very large buffers, + // they must ensure that kMaximalBufferSize is not too large. + if ((desc.buffer_size > kMaximalBufferSize) || + (desc.buffer_size > Heap::OldGenerationSize())) { + V8::FatalProcessOutOfMemory("Assembler::GrowBuffer"); + } + + // setup new buffer + desc.buffer = NewArray<byte>(desc.buffer_size); + desc.instr_size = pc_offset(); + desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos()); + + // Clear the buffer in debug mode. Use 'int3' instructions to make + // sure to get into problems if we ever run uninitialized code. + if (kDebug) { + memset(desc.buffer, 0xCC, desc.buffer_size); + } + + // copy the data + int pc_delta = desc.buffer - buffer_; + int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); + memmove(desc.buffer, buffer_, desc.instr_size); + memmove(rc_delta + reloc_info_writer.pos(), + reloc_info_writer.pos(), desc.reloc_size); + + // switch buffers + if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { + spare_buffer_ = buffer_; + } else { + DeleteArray(buffer_); + } + buffer_ = desc.buffer; + buffer_size_ = desc.buffer_size; + pc_ += pc_delta; + if (last_pc_ != NULL) { + last_pc_ += pc_delta; + } + reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, + reloc_info_writer.last_pc() + pc_delta); + + // relocate runtime entries + for (RelocIterator it(desc); !it.done(); it.next()) { + RelocInfo::Mode rmode = it.rinfo()->rmode(); + if (rmode == RelocInfo::RUNTIME_ENTRY) { + int32_t* p = reinterpret_cast<int32_t*>(it.rinfo()->pc()); + *p -= pc_delta; // relocate entry + } else if (rmode == RelocInfo::INTERNAL_REFERENCE) { + int32_t* p = reinterpret_cast<int32_t*>(it.rinfo()->pc()); + if (*p != 0) { // 0 means uninitialized. + *p += pc_delta; + } + } + } + + ASSERT(!overflow()); +} + + +void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) { + ASSERT(is_uint8(op1) && is_uint8(op2)); // wrong opcode + ASSERT(is_uint8(imm8)); + ASSERT((op1 & 0x01) == 0); // should be 8bit operation + EMIT(op1); + EMIT(op2 | dst.code()); + EMIT(imm8); +} + + +void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) { + ASSERT((0 <= sel) && (sel <= 7)); + Register ireg = { sel }; + if (x.is_int8()) { + EMIT(0x83); // using a sign-extended 8-bit immediate. + emit_operand(ireg, dst); + EMIT(x.x_ & 0xFF); + } else if (dst.is_reg(eax)) { + EMIT((sel << 3) | 0x05); // short form if the destination is eax. + emit(x); + } else { + EMIT(0x81); // using a literal 32-bit immediate. + emit_operand(ireg, dst); + emit(x); + } +} + + +void Assembler::emit_operand(Register reg, const Operand& adr) { + const unsigned length = adr.len_; + ASSERT(length > 0); + + // Emit updated ModRM byte containing the given register. + pc_[0] = (adr.buf_[0] & ~0x38) | (reg.code() << 3); + + // Emit the rest of the encoded operand. + for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i]; + pc_ += length; + + // Emit relocation information if necessary. + if (length >= sizeof(int32_t) && adr.rmode_ != RelocInfo::NONE) { + pc_ -= sizeof(int32_t); // pc_ must be *at* disp32 + RecordRelocInfo(adr.rmode_); + pc_ += sizeof(int32_t); + } +} + + +void Assembler::emit_farith(int b1, int b2, int i) { + ASSERT(is_uint8(b1) && is_uint8(b2)); // wrong opcode + ASSERT(0 <= i && i < 8); // illegal stack offset + EMIT(b1); + EMIT(b2 + i); +} + + +void Assembler::dd(uint32_t data, RelocInfo::Mode reloc_info) { + EnsureSpace ensure_space(this); + emit(data, reloc_info); +} + + +void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { + ASSERT(rmode != RelocInfo::NONE); + // Don't record external references unless the heap will be serialized. + if (rmode == RelocInfo::EXTERNAL_REFERENCE && + !Serializer::enabled() && + !FLAG_debug_code) { + return; + } + RelocInfo rinfo(pc_, rmode, data); + reloc_info_writer.Write(&rinfo); +} + + +void Assembler::WriteInternalReference(int position, const Label& bound_label) { + ASSERT(bound_label.is_bound()); + ASSERT(0 <= position); + ASSERT(position + static_cast<int>(sizeof(uint32_t)) <= pc_offset()); + ASSERT(long_at(position) == 0); // only initialize once! + + uint32_t label_loc = reinterpret_cast<uint32_t>(addr_at(bound_label.pos())); + long_at_put(position, label_loc); +} + +} } // namespace v8::internal |