summaryrefslogtreecommitdiff
path: root/deps/v8/src/mips64/macro-assembler-mips64.cc
diff options
context:
space:
mode:
authorRefael Ackermann <refack@gmail.com>2014-09-29 13:20:04 +0400
committerFedor Indutny <fedor@indutny.com>2014-10-08 15:44:38 +0400
commit9116b240c924d37627313416b7ee038d0580afbc (patch)
tree86c586915a96d308b1b04de679a8ae293caf3e41 /deps/v8/src/mips64/macro-assembler-mips64.cc
parenta2a3fd48934f36d94575dd33d2a2cb732f937f77 (diff)
downloadnode-9116b240c924d37627313416b7ee038d0580afbc.tar.gz
deps: update v8 to 3.28.73
Reviewed-By: Fedor Indutny <fedor@indutny.com> PR-URL: https://github.com/joyent/node/pull/8476
Diffstat (limited to 'deps/v8/src/mips64/macro-assembler-mips64.cc')
-rw-r--r--deps/v8/src/mips64/macro-assembler-mips64.cc6111
1 files changed, 6111 insertions, 0 deletions
diff --git a/deps/v8/src/mips64/macro-assembler-mips64.cc b/deps/v8/src/mips64/macro-assembler-mips64.cc
new file mode 100644
index 000000000..87124dca1
--- /dev/null
+++ b/deps/v8/src/mips64/macro-assembler-mips64.cc
@@ -0,0 +1,6111 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <limits.h> // For LONG_MIN, LONG_MAX.
+
+#include "src/v8.h"
+
+#if V8_TARGET_ARCH_MIPS64
+
+#include "src/bootstrapper.h"
+#include "src/codegen.h"
+#include "src/cpu-profiler.h"
+#include "src/debug.h"
+#include "src/isolate-inl.h"
+#include "src/runtime.h"
+
+namespace v8 {
+namespace internal {
+
+MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
+ : Assembler(arg_isolate, buffer, size),
+ generating_stub_(false),
+ has_frame_(false) {
+ if (isolate() != NULL) {
+ code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
+ isolate());
+ }
+}
+
+
+void MacroAssembler::Load(Register dst,
+ const MemOperand& src,
+ Representation r) {
+ DCHECK(!r.IsDouble());
+ if (r.IsInteger8()) {
+ lb(dst, src);
+ } else if (r.IsUInteger8()) {
+ lbu(dst, src);
+ } else if (r.IsInteger16()) {
+ lh(dst, src);
+ } else if (r.IsUInteger16()) {
+ lhu(dst, src);
+ } else if (r.IsInteger32()) {
+ lw(dst, src);
+ } else {
+ ld(dst, src);
+ }
+}
+
+
+void MacroAssembler::Store(Register src,
+ const MemOperand& dst,
+ Representation r) {
+ DCHECK(!r.IsDouble());
+ if (r.IsInteger8() || r.IsUInteger8()) {
+ sb(src, dst);
+ } else if (r.IsInteger16() || r.IsUInteger16()) {
+ sh(src, dst);
+ } else if (r.IsInteger32()) {
+ sw(src, dst);
+ } else {
+ if (r.IsHeapObject()) {
+ AssertNotSmi(src);
+ } else if (r.IsSmi()) {
+ AssertSmi(src);
+ }
+ sd(src, dst);
+ }
+}
+
+
+void MacroAssembler::LoadRoot(Register destination,
+ Heap::RootListIndex index) {
+ ld(destination, MemOperand(s6, index << kPointerSizeLog2));
+}
+
+
+void MacroAssembler::LoadRoot(Register destination,
+ Heap::RootListIndex index,
+ Condition cond,
+ Register src1, const Operand& src2) {
+ Branch(2, NegateCondition(cond), src1, src2);
+ ld(destination, MemOperand(s6, index << kPointerSizeLog2));
+}
+
+
+void MacroAssembler::StoreRoot(Register source,
+ Heap::RootListIndex index) {
+ sd(source, MemOperand(s6, index << kPointerSizeLog2));
+}
+
+
+void MacroAssembler::StoreRoot(Register source,
+ Heap::RootListIndex index,
+ Condition cond,
+ Register src1, const Operand& src2) {
+ Branch(2, NegateCondition(cond), src1, src2);
+ sd(source, MemOperand(s6, index << kPointerSizeLog2));
+}
+
+
+// Push and pop all registers that can hold pointers.
+void MacroAssembler::PushSafepointRegisters() {
+ // Safepoints expect a block of kNumSafepointRegisters values on the
+ // stack, so adjust the stack for unsaved registers.
+ const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
+ DCHECK(num_unsaved >= 0);
+ if (num_unsaved > 0) {
+ Dsubu(sp, sp, Operand(num_unsaved * kPointerSize));
+ }
+ MultiPush(kSafepointSavedRegisters);
+}
+
+
+void MacroAssembler::PopSafepointRegisters() {
+ const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
+ MultiPop(kSafepointSavedRegisters);
+ if (num_unsaved > 0) {
+ Daddu(sp, sp, Operand(num_unsaved * kPointerSize));
+ }
+}
+
+
+void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) {
+ sd(src, SafepointRegisterSlot(dst));
+}
+
+
+void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
+ ld(dst, SafepointRegisterSlot(src));
+}
+
+
+int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
+ // The registers are pushed starting with the highest encoding,
+ // which means that lowest encodings are closest to the stack pointer.
+ return kSafepointRegisterStackIndexMap[reg_code];
+}
+
+
+MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) {
+ return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
+}
+
+
+MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) {
+ UNIMPLEMENTED_MIPS();
+ // General purpose registers are pushed last on the stack.
+ int doubles_size = FPURegister::NumAllocatableRegisters() * kDoubleSize;
+ int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize;
+ return MemOperand(sp, doubles_size + register_offset);
+}
+
+
+void MacroAssembler::InNewSpace(Register object,
+ Register scratch,
+ Condition cc,
+ Label* branch) {
+ DCHECK(cc == eq || cc == ne);
+ And(scratch, object, Operand(ExternalReference::new_space_mask(isolate())));
+ Branch(branch, cc, scratch,
+ Operand(ExternalReference::new_space_start(isolate())));
+}
+
+
+void MacroAssembler::RecordWriteField(
+ Register object,
+ int offset,
+ Register value,
+ Register dst,
+ RAStatus ra_status,
+ SaveFPRegsMode save_fp,
+ RememberedSetAction remembered_set_action,
+ SmiCheck smi_check,
+ PointersToHereCheck pointers_to_here_check_for_value) {
+ DCHECK(!AreAliased(value, dst, t8, object));
+ // First, check if a write barrier is even needed. The tests below
+ // catch stores of Smis.
+ Label done;
+
+ // Skip barrier if writing a smi.
+ if (smi_check == INLINE_SMI_CHECK) {
+ JumpIfSmi(value, &done);
+ }
+
+ // Although the object register is tagged, the offset is relative to the start
+ // of the object, so so offset must be a multiple of kPointerSize.
+ DCHECK(IsAligned(offset, kPointerSize));
+
+ Daddu(dst, object, Operand(offset - kHeapObjectTag));
+ if (emit_debug_code()) {
+ Label ok;
+ And(t8, dst, Operand((1 << kPointerSizeLog2) - 1));
+ Branch(&ok, eq, t8, Operand(zero_reg));
+ stop("Unaligned cell in write barrier");
+ bind(&ok);
+ }
+
+ RecordWrite(object,
+ dst,
+ value,
+ ra_status,
+ save_fp,
+ remembered_set_action,
+ OMIT_SMI_CHECK,
+ pointers_to_here_check_for_value);
+
+ bind(&done);
+
+ // Clobber clobbered input registers when running with the debug-code flag
+ // turned on to provoke errors.
+ if (emit_debug_code()) {
+ li(value, Operand(BitCast<int64_t>(kZapValue + 4)));
+ li(dst, Operand(BitCast<int64_t>(kZapValue + 8)));
+ }
+}
+
+
+// Will clobber 4 registers: object, map, dst, ip. The
+// register 'object' contains a heap object pointer.
+void MacroAssembler::RecordWriteForMap(Register object,
+ Register map,
+ Register dst,
+ RAStatus ra_status,
+ SaveFPRegsMode fp_mode) {
+ if (emit_debug_code()) {
+ DCHECK(!dst.is(at));
+ ld(dst, FieldMemOperand(map, HeapObject::kMapOffset));
+ Check(eq,
+ kWrongAddressOrValuePassedToRecordWrite,
+ dst,
+ Operand(isolate()->factory()->meta_map()));
+ }
+
+ if (!FLAG_incremental_marking) {
+ return;
+ }
+
+ if (emit_debug_code()) {
+ ld(at, FieldMemOperand(object, HeapObject::kMapOffset));
+ Check(eq,
+ kWrongAddressOrValuePassedToRecordWrite,
+ map,
+ Operand(at));
+ }
+
+ Label done;
+
+ // A single check of the map's pages interesting flag suffices, since it is
+ // only set during incremental collection, and then it's also guaranteed that
+ // the from object's page's interesting flag is also set. This optimization
+ // relies on the fact that maps can never be in new space.
+ CheckPageFlag(map,
+ map, // Used as scratch.
+ MemoryChunk::kPointersToHereAreInterestingMask,
+ eq,
+ &done);
+
+ Daddu(dst, object, Operand(HeapObject::kMapOffset - kHeapObjectTag));
+ if (emit_debug_code()) {
+ Label ok;
+ And(at, dst, Operand((1 << kPointerSizeLog2) - 1));
+ Branch(&ok, eq, at, Operand(zero_reg));
+ stop("Unaligned cell in write barrier");
+ bind(&ok);
+ }
+
+ // Record the actual write.
+ if (ra_status == kRAHasNotBeenSaved) {
+ push(ra);
+ }
+ RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
+ fp_mode);
+ CallStub(&stub);
+ if (ra_status == kRAHasNotBeenSaved) {
+ pop(ra);
+ }
+
+ bind(&done);
+
+ // Count number of write barriers in generated code.
+ isolate()->counters()->write_barriers_static()->Increment();
+ IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, at, dst);
+
+ // Clobber clobbered registers when running with the debug-code flag
+ // turned on to provoke errors.
+ if (emit_debug_code()) {
+ li(dst, Operand(BitCast<int64_t>(kZapValue + 12)));
+ li(map, Operand(BitCast<int64_t>(kZapValue + 16)));
+ }
+}
+
+
+// Will clobber 4 registers: object, address, scratch, ip. The
+// register 'object' contains a heap object pointer. The heap object
+// tag is shifted away.
+void MacroAssembler::RecordWrite(
+ Register object,
+ Register address,
+ Register value,
+ RAStatus ra_status,
+ SaveFPRegsMode fp_mode,
+ RememberedSetAction remembered_set_action,
+ SmiCheck smi_check,
+ PointersToHereCheck pointers_to_here_check_for_value) {
+ DCHECK(!AreAliased(object, address, value, t8));
+ DCHECK(!AreAliased(object, address, value, t9));
+
+ if (emit_debug_code()) {
+ ld(at, MemOperand(address));
+ Assert(
+ eq, kWrongAddressOrValuePassedToRecordWrite, at, Operand(value));
+ }
+
+ if (remembered_set_action == OMIT_REMEMBERED_SET &&
+ !FLAG_incremental_marking) {
+ return;
+ }
+
+ // First, check if a write barrier is even needed. The tests below
+ // catch stores of smis and stores into the young generation.
+ Label done;
+
+ if (smi_check == INLINE_SMI_CHECK) {
+ DCHECK_EQ(0, kSmiTag);
+ JumpIfSmi(value, &done);
+ }
+
+ if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
+ CheckPageFlag(value,
+ value, // Used as scratch.
+ MemoryChunk::kPointersToHereAreInterestingMask,
+ eq,
+ &done);
+ }
+ CheckPageFlag(object,
+ value, // Used as scratch.
+ MemoryChunk::kPointersFromHereAreInterestingMask,
+ eq,
+ &done);
+
+ // Record the actual write.
+ if (ra_status == kRAHasNotBeenSaved) {
+ push(ra);
+ }
+ RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
+ fp_mode);
+ CallStub(&stub);
+ if (ra_status == kRAHasNotBeenSaved) {
+ pop(ra);
+ }
+
+ bind(&done);
+
+ // Count number of write barriers in generated code.
+ isolate()->counters()->write_barriers_static()->Increment();
+ IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, at,
+ value);
+
+ // Clobber clobbered registers when running with the debug-code flag
+ // turned on to provoke errors.
+ if (emit_debug_code()) {
+ li(address, Operand(BitCast<int64_t>(kZapValue + 12)));
+ li(value, Operand(BitCast<int64_t>(kZapValue + 16)));
+ }
+}
+
+
+void MacroAssembler::RememberedSetHelper(Register object, // For debug tests.
+ Register address,
+ Register scratch,
+ SaveFPRegsMode fp_mode,
+ RememberedSetFinalAction and_then) {
+ Label done;
+ if (emit_debug_code()) {
+ Label ok;
+ JumpIfNotInNewSpace(object, scratch, &ok);
+ stop("Remembered set pointer is in new space");
+ bind(&ok);
+ }
+ // Load store buffer top.
+ ExternalReference store_buffer =
+ ExternalReference::store_buffer_top(isolate());
+ li(t8, Operand(store_buffer));
+ ld(scratch, MemOperand(t8));
+ // Store pointer to buffer and increment buffer top.
+ sd(address, MemOperand(scratch));
+ Daddu(scratch, scratch, kPointerSize);
+ // Write back new top of buffer.
+ sd(scratch, MemOperand(t8));
+ // Call stub on end of buffer.
+ // Check for end of buffer.
+ And(t8, scratch, Operand(StoreBuffer::kStoreBufferOverflowBit));
+ DCHECK(!scratch.is(t8));
+ if (and_then == kFallThroughAtEnd) {
+ Branch(&done, eq, t8, Operand(zero_reg));
+ } else {
+ DCHECK(and_then == kReturnAtEnd);
+ Ret(eq, t8, Operand(zero_reg));
+ }
+ push(ra);
+ StoreBufferOverflowStub store_buffer_overflow =
+ StoreBufferOverflowStub(isolate(), fp_mode);
+ CallStub(&store_buffer_overflow);
+ pop(ra);
+ bind(&done);
+ if (and_then == kReturnAtEnd) {
+ Ret();
+ }
+}
+
+
+// -----------------------------------------------------------------------------
+// Allocation support.
+
+
+void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
+ Register scratch,
+ Label* miss) {
+ Label same_contexts;
+
+ DCHECK(!holder_reg.is(scratch));
+ DCHECK(!holder_reg.is(at));
+ DCHECK(!scratch.is(at));
+
+ // Load current lexical context from the stack frame.
+ ld(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ // In debug mode, make sure the lexical context is set.
+#ifdef DEBUG
+ Check(ne, kWeShouldNotHaveAnEmptyLexicalContext,
+ scratch, Operand(zero_reg));
+#endif
+
+ // Load the native context of the current context.
+ int offset =
+ Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
+ ld(scratch, FieldMemOperand(scratch, offset));
+ ld(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
+
+ // Check the context is a native context.
+ if (emit_debug_code()) {
+ push(holder_reg); // Temporarily save holder on the stack.
+ // Read the first word and compare to the native_context_map.
+ ld(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
+ LoadRoot(at, Heap::kNativeContextMapRootIndex);
+ Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext,
+ holder_reg, Operand(at));
+ pop(holder_reg); // Restore holder.
+ }
+
+ // Check if both contexts are the same.
+ ld(at, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
+ Branch(&same_contexts, eq, scratch, Operand(at));
+
+ // Check the context is a native context.
+ if (emit_debug_code()) {
+ push(holder_reg); // Temporarily save holder on the stack.
+ mov(holder_reg, at); // Move at to its holding place.
+ LoadRoot(at, Heap::kNullValueRootIndex);
+ Check(ne, kJSGlobalProxyContextShouldNotBeNull,
+ holder_reg, Operand(at));
+
+ ld(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
+ LoadRoot(at, Heap::kNativeContextMapRootIndex);
+ Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext,
+ holder_reg, Operand(at));
+ // Restore at is not needed. at is reloaded below.
+ pop(holder_reg); // Restore holder.
+ // Restore at to holder's context.
+ ld(at, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
+ }
+
+ // Check that the security token in the calling global object is
+ // compatible with the security token in the receiving global
+ // object.
+ int token_offset = Context::kHeaderSize +
+ Context::SECURITY_TOKEN_INDEX * kPointerSize;
+
+ ld(scratch, FieldMemOperand(scratch, token_offset));
+ ld(at, FieldMemOperand(at, token_offset));
+ Branch(miss, ne, scratch, Operand(at));
+
+ bind(&same_contexts);
+}
+
+
+// Compute the hash code from the untagged key. This must be kept in sync with
+// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
+// code-stub-hydrogen.cc
+void MacroAssembler::GetNumberHash(Register reg0, Register scratch) {
+ // First of all we assign the hash seed to scratch.
+ LoadRoot(scratch, Heap::kHashSeedRootIndex);
+ SmiUntag(scratch);
+
+ // Xor original key with a seed.
+ xor_(reg0, reg0, scratch);
+
+ // Compute the hash code from the untagged key. This must be kept in sync
+ // with ComputeIntegerHash in utils.h.
+ //
+ // hash = ~hash + (hash << 15);
+ // The algorithm uses 32-bit integer values.
+ nor(scratch, reg0, zero_reg);
+ sll(at, reg0, 15);
+ addu(reg0, scratch, at);
+
+ // hash = hash ^ (hash >> 12);
+ srl(at, reg0, 12);
+ xor_(reg0, reg0, at);
+
+ // hash = hash + (hash << 2);
+ sll(at, reg0, 2);
+ addu(reg0, reg0, at);
+
+ // hash = hash ^ (hash >> 4);
+ srl(at, reg0, 4);
+ xor_(reg0, reg0, at);
+
+ // hash = hash * 2057;
+ sll(scratch, reg0, 11);
+ sll(at, reg0, 3);
+ addu(reg0, reg0, at);
+ addu(reg0, reg0, scratch);
+
+ // hash = hash ^ (hash >> 16);
+ srl(at, reg0, 16);
+ xor_(reg0, reg0, at);
+}
+
+
+void MacroAssembler::LoadFromNumberDictionary(Label* miss,
+ Register elements,
+ Register key,
+ Register result,
+ Register reg0,
+ Register reg1,
+ Register reg2) {
+ // Register use:
+ //
+ // elements - holds the slow-case elements of the receiver on entry.
+ // Unchanged unless 'result' is the same register.
+ //
+ // key - holds the smi key on entry.
+ // Unchanged unless 'result' is the same register.
+ //
+ //
+ // result - holds the result on exit if the load succeeded.
+ // Allowed to be the same as 'key' or 'result'.
+ // Unchanged on bailout so 'key' or 'result' can be used
+ // in further computation.
+ //
+ // Scratch registers:
+ //
+ // reg0 - holds the untagged key on entry and holds the hash once computed.
+ //
+ // reg1 - Used to hold the capacity mask of the dictionary.
+ //
+ // reg2 - Used for the index into the dictionary.
+ // at - Temporary (avoid MacroAssembler instructions also using 'at').
+ Label done;
+
+ GetNumberHash(reg0, reg1);
+
+ // Compute the capacity mask.
+ ld(reg1, FieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset));
+ SmiUntag(reg1, reg1);
+ Dsubu(reg1, reg1, Operand(1));
+
+ // Generate an unrolled loop that performs a few probes before giving up.
+ for (int i = 0; i < kNumberDictionaryProbes; i++) {
+ // Use reg2 for index calculations and keep the hash intact in reg0.
+ mov(reg2, reg0);
+ // Compute the masked index: (hash + i + i * i) & mask.
+ if (i > 0) {
+ Daddu(reg2, reg2, Operand(SeededNumberDictionary::GetProbeOffset(i)));
+ }
+ and_(reg2, reg2, reg1);
+
+ // Scale the index by multiplying by the element size.
+ DCHECK(SeededNumberDictionary::kEntrySize == 3);
+ dsll(at, reg2, 1); // 2x.
+ daddu(reg2, reg2, at); // reg2 = reg2 * 3.
+
+ // Check if the key is identical to the name.
+ dsll(at, reg2, kPointerSizeLog2);
+ daddu(reg2, elements, at);
+
+ ld(at, FieldMemOperand(reg2, SeededNumberDictionary::kElementsStartOffset));
+ if (i != kNumberDictionaryProbes - 1) {
+ Branch(&done, eq, key, Operand(at));
+ } else {
+ Branch(miss, ne, key, Operand(at));
+ }
+ }
+
+ bind(&done);
+ // Check that the value is a normal property.
+ // reg2: elements + (index * kPointerSize).
+ const int kDetailsOffset =
+ SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
+ ld(reg1, FieldMemOperand(reg2, kDetailsOffset));
+ And(at, reg1, Operand(Smi::FromInt(PropertyDetails::TypeField::kMask)));
+ Branch(miss, ne, at, Operand(zero_reg));
+
+ // Get the value at the masked, scaled index and return.
+ const int kValueOffset =
+ SeededNumberDictionary::kElementsStartOffset + kPointerSize;
+ ld(result, FieldMemOperand(reg2, kValueOffset));
+}
+
+
+// ---------------------------------------------------------------------------
+// Instruction macros.
+
+void MacroAssembler::Addu(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ addu(rd, rs, rt.rm());
+ } else {
+ if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
+ addiu(rd, rs, rt.imm64_);
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ addu(rd, rs, at);
+ }
+ }
+}
+
+
+void MacroAssembler::Daddu(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ daddu(rd, rs, rt.rm());
+ } else {
+ if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
+ daddiu(rd, rs, rt.imm64_);
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ daddu(rd, rs, at);
+ }
+ }
+}
+
+
+void MacroAssembler::Subu(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ subu(rd, rs, rt.rm());
+ } else {
+ if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
+ addiu(rd, rs, -rt.imm64_); // No subiu instr, use addiu(x, y, -imm).
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ subu(rd, rs, at);
+ }
+ }
+}
+
+
+void MacroAssembler::Dsubu(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ dsubu(rd, rs, rt.rm());
+ } else {
+ if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
+ daddiu(rd, rs, -rt.imm64_); // No subiu instr, use addiu(x, y, -imm).
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ dsubu(rd, rs, at);
+ }
+ }
+}
+
+
+void MacroAssembler::Mul(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ mul(rd, rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ mul(rd, rs, at);
+ }
+}
+
+
+void MacroAssembler::Mulh(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ if (kArchVariant != kMips64r6) {
+ mult(rs, rt.rm());
+ mfhi(rd);
+ } else {
+ muh(rd, rs, rt.rm());
+ }
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ if (kArchVariant != kMips64r6) {
+ mult(rs, at);
+ mfhi(rd);
+ } else {
+ muh(rd, rs, at);
+ }
+ }
+}
+
+
+void MacroAssembler::Dmul(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ if (kArchVariant == kMips64r6) {
+ dmul(rd, rs, rt.rm());
+ } else {
+ dmult(rs, rt.rm());
+ mflo(rd);
+ }
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ if (kArchVariant == kMips64r6) {
+ dmul(rd, rs, at);
+ } else {
+ dmult(rs, at);
+ mflo(rd);
+ }
+ }
+}
+
+
+void MacroAssembler::Dmulh(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ if (kArchVariant == kMips64r6) {
+ dmuh(rd, rs, rt.rm());
+ } else {
+ dmult(rs, rt.rm());
+ mfhi(rd);
+ }
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ if (kArchVariant == kMips64r6) {
+ dmuh(rd, rs, at);
+ } else {
+ dmult(rs, at);
+ mfhi(rd);
+ }
+ }
+}
+
+
+void MacroAssembler::Mult(Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ mult(rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ mult(rs, at);
+ }
+}
+
+
+void MacroAssembler::Dmult(Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ dmult(rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ dmult(rs, at);
+ }
+}
+
+
+void MacroAssembler::Multu(Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ multu(rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ multu(rs, at);
+ }
+}
+
+
+void MacroAssembler::Dmultu(Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ dmultu(rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ dmultu(rs, at);
+ }
+}
+
+
+void MacroAssembler::Div(Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ div(rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ div(rs, at);
+ }
+}
+
+
+void MacroAssembler::Ddiv(Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ ddiv(rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ ddiv(rs, at);
+ }
+}
+
+
+void MacroAssembler::Ddiv(Register rd, Register rs, const Operand& rt) {
+ if (kArchVariant != kMips64r6) {
+ if (rt.is_reg()) {
+ ddiv(rs, rt.rm());
+ mflo(rd);
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ ddiv(rs, at);
+ mflo(rd);
+ }
+ } else {
+ if (rt.is_reg()) {
+ ddiv(rd, rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ ddiv(rd, rs, at);
+ }
+ }
+}
+
+
+void MacroAssembler::Divu(Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ divu(rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ divu(rs, at);
+ }
+}
+
+
+void MacroAssembler::Ddivu(Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ ddivu(rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ ddivu(rs, at);
+ }
+}
+
+
+void MacroAssembler::Dmod(Register rd, Register rs, const Operand& rt) {
+ if (kArchVariant != kMips64r6) {
+ if (rt.is_reg()) {
+ ddiv(rs, rt.rm());
+ mfhi(rd);
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ ddiv(rs, at);
+ mfhi(rd);
+ }
+ } else {
+ if (rt.is_reg()) {
+ dmod(rd, rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ dmod(rd, rs, at);
+ }
+ }
+}
+
+
+void MacroAssembler::And(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ and_(rd, rs, rt.rm());
+ } else {
+ if (is_uint16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
+ andi(rd, rs, rt.imm64_);
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ and_(rd, rs, at);
+ }
+ }
+}
+
+
+void MacroAssembler::Or(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ or_(rd, rs, rt.rm());
+ } else {
+ if (is_uint16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
+ ori(rd, rs, rt.imm64_);
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ or_(rd, rs, at);
+ }
+ }
+}
+
+
+void MacroAssembler::Xor(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ xor_(rd, rs, rt.rm());
+ } else {
+ if (is_uint16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
+ xori(rd, rs, rt.imm64_);
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ xor_(rd, rs, at);
+ }
+ }
+}
+
+
+void MacroAssembler::Nor(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ nor(rd, rs, rt.rm());
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ nor(rd, rs, at);
+ }
+}
+
+
+void MacroAssembler::Neg(Register rs, const Operand& rt) {
+ DCHECK(rt.is_reg());
+ DCHECK(!at.is(rs));
+ DCHECK(!at.is(rt.rm()));
+ li(at, -1);
+ xor_(rs, rt.rm(), at);
+}
+
+
+void MacroAssembler::Slt(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ slt(rd, rs, rt.rm());
+ } else {
+ if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
+ slti(rd, rs, rt.imm64_);
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ slt(rd, rs, at);
+ }
+ }
+}
+
+
+void MacroAssembler::Sltu(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ sltu(rd, rs, rt.rm());
+ } else {
+ if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
+ sltiu(rd, rs, rt.imm64_);
+ } else {
+ // li handles the relocation.
+ DCHECK(!rs.is(at));
+ li(at, rt);
+ sltu(rd, rs, at);
+ }
+ }
+}
+
+
+void MacroAssembler::Ror(Register rd, Register rs, const Operand& rt) {
+ if (kArchVariant == kMips64r2) {
+ if (rt.is_reg()) {
+ rotrv(rd, rs, rt.rm());
+ } else {
+ rotr(rd, rs, rt.imm64_);
+ }
+ } else {
+ if (rt.is_reg()) {
+ subu(at, zero_reg, rt.rm());
+ sllv(at, rs, at);
+ srlv(rd, rs, rt.rm());
+ or_(rd, rd, at);
+ } else {
+ if (rt.imm64_ == 0) {
+ srl(rd, rs, 0);
+ } else {
+ srl(at, rs, rt.imm64_);
+ sll(rd, rs, (0x20 - rt.imm64_) & 0x1f);
+ or_(rd, rd, at);
+ }
+ }
+ }
+}
+
+
+void MacroAssembler::Dror(Register rd, Register rs, const Operand& rt) {
+ if (rt.is_reg()) {
+ drotrv(rd, rs, rt.rm());
+ } else {
+ drotr(rd, rs, rt.imm64_);
+ }
+}
+
+
+void MacroAssembler::Pref(int32_t hint, const MemOperand& rs) {
+ pref(hint, rs);
+}
+
+
+// ------------Pseudo-instructions-------------
+
+void MacroAssembler::Ulw(Register rd, const MemOperand& rs) {
+ lwr(rd, rs);
+ lwl(rd, MemOperand(rs.rm(), rs.offset() + 3));
+}
+
+
+void MacroAssembler::Usw(Register rd, const MemOperand& rs) {
+ swr(rd, rs);
+ swl(rd, MemOperand(rs.rm(), rs.offset() + 3));
+}
+
+
+// Do 64-bit load from unaligned address. Note this only handles
+// the specific case of 32-bit aligned, but not 64-bit aligned.
+void MacroAssembler::Uld(Register rd, const MemOperand& rs, Register scratch) {
+ // Assert fail if the offset from start of object IS actually aligned.
+ // ONLY use with known misalignment, since there is performance cost.
+ DCHECK((rs.offset() + kHeapObjectTag) & (kPointerSize - 1));
+ // TODO(plind): endian dependency.
+ lwu(rd, rs);
+ lw(scratch, MemOperand(rs.rm(), rs.offset() + kPointerSize / 2));
+ dsll32(scratch, scratch, 0);
+ Daddu(rd, rd, scratch);
+}
+
+
+// Do 64-bit store to unaligned address. Note this only handles
+// the specific case of 32-bit aligned, but not 64-bit aligned.
+void MacroAssembler::Usd(Register rd, const MemOperand& rs, Register scratch) {
+ // Assert fail if the offset from start of object IS actually aligned.
+ // ONLY use with known misalignment, since there is performance cost.
+ DCHECK((rs.offset() + kHeapObjectTag) & (kPointerSize - 1));
+ // TODO(plind): endian dependency.
+ sw(rd, rs);
+ dsrl32(scratch, rd, 0);
+ sw(scratch, MemOperand(rs.rm(), rs.offset() + kPointerSize / 2));
+}
+
+
+void MacroAssembler::li(Register dst, Handle<Object> value, LiFlags mode) {
+ AllowDeferredHandleDereference smi_check;
+ if (value->IsSmi()) {
+ li(dst, Operand(value), mode);
+ } else {
+ DCHECK(value->IsHeapObject());
+ if (isolate()->heap()->InNewSpace(*value)) {
+ Handle<Cell> cell = isolate()->factory()->NewCell(value);
+ li(dst, Operand(cell));
+ ld(dst, FieldMemOperand(dst, Cell::kValueOffset));
+ } else {
+ li(dst, Operand(value));
+ }
+ }
+}
+
+
+void MacroAssembler::li(Register rd, Operand j, LiFlags mode) {
+ DCHECK(!j.is_reg());
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ if (!MustUseReg(j.rmode_) && mode == OPTIMIZE_SIZE) {
+ // Normal load of an immediate value which does not need Relocation Info.
+ if (is_int32(j.imm64_)) {
+ if (is_int16(j.imm64_)) {
+ daddiu(rd, zero_reg, (j.imm64_ & kImm16Mask));
+ } else if (!(j.imm64_ & kHiMask)) {
+ ori(rd, zero_reg, (j.imm64_ & kImm16Mask));
+ } else if (!(j.imm64_ & kImm16Mask)) {
+ lui(rd, (j.imm64_ >> kLuiShift) & kImm16Mask);
+ } else {
+ lui(rd, (j.imm64_ >> kLuiShift) & kImm16Mask);
+ ori(rd, rd, (j.imm64_ & kImm16Mask));
+ }
+ } else {
+ lui(rd, (j.imm64_ >> 48) & kImm16Mask);
+ ori(rd, rd, (j.imm64_ >> 32) & kImm16Mask);
+ dsll(rd, rd, 16);
+ ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
+ dsll(rd, rd, 16);
+ ori(rd, rd, j.imm64_ & kImm16Mask);
+ }
+ } else if (MustUseReg(j.rmode_)) {
+ RecordRelocInfo(j.rmode_, j.imm64_);
+ lui(rd, (j.imm64_ >> 32) & kImm16Mask);
+ ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
+ dsll(rd, rd, 16);
+ ori(rd, rd, j.imm64_ & kImm16Mask);
+ } else if (mode == ADDRESS_LOAD) {
+ // We always need the same number of instructions as we may need to patch
+ // this code to load another value which may need all 4 instructions.
+ lui(rd, (j.imm64_ >> 32) & kImm16Mask);
+ ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
+ dsll(rd, rd, 16);
+ ori(rd, rd, j.imm64_ & kImm16Mask);
+ } else {
+ lui(rd, (j.imm64_ >> 48) & kImm16Mask);
+ ori(rd, rd, (j.imm64_ >> 32) & kImm16Mask);
+ dsll(rd, rd, 16);
+ ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
+ dsll(rd, rd, 16);
+ ori(rd, rd, j.imm64_ & kImm16Mask);
+ }
+}
+
+
+void MacroAssembler::MultiPush(RegList regs) {
+ int16_t num_to_push = NumberOfBitsSet(regs);
+ int16_t stack_offset = num_to_push * kPointerSize;
+
+ Dsubu(sp, sp, Operand(stack_offset));
+ for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
+ if ((regs & (1 << i)) != 0) {
+ stack_offset -= kPointerSize;
+ sd(ToRegister(i), MemOperand(sp, stack_offset));
+ }
+ }
+}
+
+
+void MacroAssembler::MultiPushReversed(RegList regs) {
+ int16_t num_to_push = NumberOfBitsSet(regs);
+ int16_t stack_offset = num_to_push * kPointerSize;
+
+ Dsubu(sp, sp, Operand(stack_offset));
+ for (int16_t i = 0; i < kNumRegisters; i++) {
+ if ((regs & (1 << i)) != 0) {
+ stack_offset -= kPointerSize;
+ sd(ToRegister(i), MemOperand(sp, stack_offset));
+ }
+ }
+}
+
+
+void MacroAssembler::MultiPop(RegList regs) {
+ int16_t stack_offset = 0;
+
+ for (int16_t i = 0; i < kNumRegisters; i++) {
+ if ((regs & (1 << i)) != 0) {
+ ld(ToRegister(i), MemOperand(sp, stack_offset));
+ stack_offset += kPointerSize;
+ }
+ }
+ daddiu(sp, sp, stack_offset);
+}
+
+
+void MacroAssembler::MultiPopReversed(RegList regs) {
+ int16_t stack_offset = 0;
+
+ for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
+ if ((regs & (1 << i)) != 0) {
+ ld(ToRegister(i), MemOperand(sp, stack_offset));
+ stack_offset += kPointerSize;
+ }
+ }
+ daddiu(sp, sp, stack_offset);
+}
+
+
+void MacroAssembler::MultiPushFPU(RegList regs) {
+ int16_t num_to_push = NumberOfBitsSet(regs);
+ int16_t stack_offset = num_to_push * kDoubleSize;
+
+ Dsubu(sp, sp, Operand(stack_offset));
+ for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
+ if ((regs & (1 << i)) != 0) {
+ stack_offset -= kDoubleSize;
+ sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
+ }
+ }
+}
+
+
+void MacroAssembler::MultiPushReversedFPU(RegList regs) {
+ int16_t num_to_push = NumberOfBitsSet(regs);
+ int16_t stack_offset = num_to_push * kDoubleSize;
+
+ Dsubu(sp, sp, Operand(stack_offset));
+ for (int16_t i = 0; i < kNumRegisters; i++) {
+ if ((regs & (1 << i)) != 0) {
+ stack_offset -= kDoubleSize;
+ sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
+ }
+ }
+}
+
+
+void MacroAssembler::MultiPopFPU(RegList regs) {
+ int16_t stack_offset = 0;
+
+ for (int16_t i = 0; i < kNumRegisters; i++) {
+ if ((regs & (1 << i)) != 0) {
+ ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
+ stack_offset += kDoubleSize;
+ }
+ }
+ daddiu(sp, sp, stack_offset);
+}
+
+
+void MacroAssembler::MultiPopReversedFPU(RegList regs) {
+ int16_t stack_offset = 0;
+
+ for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
+ if ((regs & (1 << i)) != 0) {
+ ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
+ stack_offset += kDoubleSize;
+ }
+ }
+ daddiu(sp, sp, stack_offset);
+}
+
+
+void MacroAssembler::FlushICache(Register address, unsigned instructions) {
+ RegList saved_regs = kJSCallerSaved | ra.bit();
+ MultiPush(saved_regs);
+ AllowExternalCallThatCantCauseGC scope(this);
+
+ // Save to a0 in case address == a4.
+ Move(a0, address);
+ PrepareCallCFunction(2, a4);
+
+ li(a1, instructions * kInstrSize);
+ CallCFunction(ExternalReference::flush_icache_function(isolate()), 2);
+ MultiPop(saved_regs);
+}
+
+
+void MacroAssembler::Ext(Register rt,
+ Register rs,
+ uint16_t pos,
+ uint16_t size) {
+ DCHECK(pos < 32);
+ DCHECK(pos + size < 33);
+ ext_(rt, rs, pos, size);
+}
+
+
+void MacroAssembler::Ins(Register rt,
+ Register rs,
+ uint16_t pos,
+ uint16_t size) {
+ DCHECK(pos < 32);
+ DCHECK(pos + size <= 32);
+ DCHECK(size != 0);
+ ins_(rt, rs, pos, size);
+}
+
+
+void MacroAssembler::Cvt_d_uw(FPURegister fd,
+ FPURegister fs,
+ FPURegister scratch) {
+ // Move the data from fs to t8.
+ mfc1(t8, fs);
+ Cvt_d_uw(fd, t8, scratch);
+}
+
+
+void MacroAssembler::Cvt_d_uw(FPURegister fd,
+ Register rs,
+ FPURegister scratch) {
+ // Convert rs to a FP value in fd (and fd + 1).
+ // We do this by converting rs minus the MSB to avoid sign conversion,
+ // then adding 2^31 to the result (if needed).
+
+ DCHECK(!fd.is(scratch));
+ DCHECK(!rs.is(t9));
+ DCHECK(!rs.is(at));
+
+ // Save rs's MSB to t9.
+ Ext(t9, rs, 31, 1);
+ // Remove rs's MSB.
+ Ext(at, rs, 0, 31);
+ // Move the result to fd.
+ mtc1(at, fd);
+ mthc1(zero_reg, fd);
+
+ // Convert fd to a real FP value.
+ cvt_d_w(fd, fd);
+
+ Label conversion_done;
+
+ // If rs's MSB was 0, it's done.
+ // Otherwise we need to add that to the FP register.
+ Branch(&conversion_done, eq, t9, Operand(zero_reg));
+
+ // Load 2^31 into f20 as its float representation.
+ li(at, 0x41E00000);
+ mtc1(zero_reg, scratch);
+ mthc1(at, scratch);
+ // Add it to fd.
+ add_d(fd, fd, scratch);
+
+ bind(&conversion_done);
+}
+
+
+void MacroAssembler::Round_l_d(FPURegister fd, FPURegister fs) {
+ round_l_d(fd, fs);
+}
+
+
+void MacroAssembler::Floor_l_d(FPURegister fd, FPURegister fs) {
+ floor_l_d(fd, fs);
+}
+
+
+void MacroAssembler::Ceil_l_d(FPURegister fd, FPURegister fs) {
+ ceil_l_d(fd, fs);
+}
+
+
+void MacroAssembler::Trunc_l_d(FPURegister fd, FPURegister fs) {
+ trunc_l_d(fd, fs);
+}
+
+
+void MacroAssembler::Trunc_l_ud(FPURegister fd,
+ FPURegister fs,
+ FPURegister scratch) {
+ // Load to GPR.
+ dmfc1(t8, fs);
+ // Reset sign bit.
+ li(at, 0x7fffffffffffffff);
+ and_(t8, t8, at);
+ dmtc1(t8, fs);
+ trunc_l_d(fd, fs);
+}
+
+
+void MacroAssembler::Trunc_uw_d(FPURegister fd,
+ FPURegister fs,
+ FPURegister scratch) {
+ Trunc_uw_d(fs, t8, scratch);
+ mtc1(t8, fd);
+}
+
+
+void MacroAssembler::Trunc_w_d(FPURegister fd, FPURegister fs) {
+ trunc_w_d(fd, fs);
+}
+
+
+void MacroAssembler::Round_w_d(FPURegister fd, FPURegister fs) {
+ round_w_d(fd, fs);
+}
+
+
+void MacroAssembler::Floor_w_d(FPURegister fd, FPURegister fs) {
+ floor_w_d(fd, fs);
+}
+
+
+void MacroAssembler::Ceil_w_d(FPURegister fd, FPURegister fs) {
+ ceil_w_d(fd, fs);
+}
+
+
+void MacroAssembler::Trunc_uw_d(FPURegister fd,
+ Register rs,
+ FPURegister scratch) {
+ DCHECK(!fd.is(scratch));
+ DCHECK(!rs.is(at));
+
+ // Load 2^31 into scratch as its float representation.
+ li(at, 0x41E00000);
+ mtc1(zero_reg, scratch);
+ mthc1(at, scratch);
+ // Test if scratch > fd.
+ // If fd < 2^31 we can convert it normally.
+ Label simple_convert;
+ BranchF(&simple_convert, NULL, lt, fd, scratch);
+
+ // First we subtract 2^31 from fd, then trunc it to rs
+ // and add 2^31 to rs.
+ sub_d(scratch, fd, scratch);
+ trunc_w_d(scratch, scratch);
+ mfc1(rs, scratch);
+ Or(rs, rs, 1 << 31);
+
+ Label done;
+ Branch(&done);
+ // Simple conversion.
+ bind(&simple_convert);
+ trunc_w_d(scratch, fd);
+ mfc1(rs, scratch);
+
+ bind(&done);
+}
+
+
+void MacroAssembler::Madd_d(FPURegister fd, FPURegister fr, FPURegister fs,
+ FPURegister ft, FPURegister scratch) {
+ if (0) { // TODO(plind): find reasonable arch-variant symbol names.
+ madd_d(fd, fr, fs, ft);
+ } else {
+ // Can not change source regs's value.
+ DCHECK(!fr.is(scratch) && !fs.is(scratch) && !ft.is(scratch));
+ mul_d(scratch, fs, ft);
+ add_d(fd, fr, scratch);
+ }
+}
+
+
+void MacroAssembler::BranchF(Label* target,
+ Label* nan,
+ Condition cc,
+ FPURegister cmp1,
+ FPURegister cmp2,
+ BranchDelaySlot bd) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ if (cc == al) {
+ Branch(bd, target);
+ return;
+ }
+
+ DCHECK(nan || target);
+ // Check for unordered (NaN) cases.
+ if (nan) {
+ if (kArchVariant != kMips64r6) {
+ c(UN, D, cmp1, cmp2);
+ bc1t(nan);
+ } else {
+ // Use f31 for comparison result. It has to be unavailable to lithium
+ // register allocator.
+ DCHECK(!cmp1.is(f31) && !cmp2.is(f31));
+ cmp(UN, L, f31, cmp1, cmp2);
+ bc1nez(nan, f31);
+ }
+ }
+
+ if (kArchVariant != kMips64r6) {
+ if (target) {
+ // Here NaN cases were either handled by this function or are assumed to
+ // have been handled by the caller.
+ switch (cc) {
+ case lt:
+ c(OLT, D, cmp1, cmp2);
+ bc1t(target);
+ break;
+ case gt:
+ c(ULE, D, cmp1, cmp2);
+ bc1f(target);
+ break;
+ case ge:
+ c(ULT, D, cmp1, cmp2);
+ bc1f(target);
+ break;
+ case le:
+ c(OLE, D, cmp1, cmp2);
+ bc1t(target);
+ break;
+ case eq:
+ c(EQ, D, cmp1, cmp2);
+ bc1t(target);
+ break;
+ case ueq:
+ c(UEQ, D, cmp1, cmp2);
+ bc1t(target);
+ break;
+ case ne:
+ c(EQ, D, cmp1, cmp2);
+ bc1f(target);
+ break;
+ case nue:
+ c(UEQ, D, cmp1, cmp2);
+ bc1f(target);
+ break;
+ default:
+ CHECK(0);
+ }
+ }
+ } else {
+ if (target) {
+ // Here NaN cases were either handled by this function or are assumed to
+ // have been handled by the caller.
+ // Unsigned conditions are treated as their signed counterpart.
+ // Use f31 for comparison result, it is valid in fp64 (FR = 1) mode.
+ DCHECK(!cmp1.is(f31) && !cmp2.is(f31));
+ switch (cc) {
+ case lt:
+ cmp(OLT, L, f31, cmp1, cmp2);
+ bc1nez(target, f31);
+ break;
+ case gt:
+ cmp(ULE, L, f31, cmp1, cmp2);
+ bc1eqz(target, f31);
+ break;
+ case ge:
+ cmp(ULT, L, f31, cmp1, cmp2);
+ bc1eqz(target, f31);
+ break;
+ case le:
+ cmp(OLE, L, f31, cmp1, cmp2);
+ bc1nez(target, f31);
+ break;
+ case eq:
+ cmp(EQ, L, f31, cmp1, cmp2);
+ bc1nez(target, f31);
+ break;
+ case ueq:
+ cmp(UEQ, L, f31, cmp1, cmp2);
+ bc1nez(target, f31);
+ break;
+ case ne:
+ cmp(EQ, L, f31, cmp1, cmp2);
+ bc1eqz(target, f31);
+ break;
+ case nue:
+ cmp(UEQ, L, f31, cmp1, cmp2);
+ bc1eqz(target, f31);
+ break;
+ default:
+ CHECK(0);
+ }
+ }
+ }
+
+ if (bd == PROTECT) {
+ nop();
+ }
+}
+
+
+void MacroAssembler::Move(FPURegister dst, double imm) {
+ static const DoubleRepresentation minus_zero(-0.0);
+ static const DoubleRepresentation zero(0.0);
+ DoubleRepresentation value_rep(imm);
+ // Handle special values first.
+ bool force_load = dst.is(kDoubleRegZero);
+ if (value_rep == zero && !force_load) {
+ mov_d(dst, kDoubleRegZero);
+ } else if (value_rep == minus_zero && !force_load) {
+ neg_d(dst, kDoubleRegZero);
+ } else {
+ uint32_t lo, hi;
+ DoubleAsTwoUInt32(imm, &lo, &hi);
+ // Move the low part of the double into the lower bits of the corresponding
+ // FPU register.
+ if (lo != 0) {
+ li(at, Operand(lo));
+ mtc1(at, dst);
+ } else {
+ mtc1(zero_reg, dst);
+ }
+ // Move the high part of the double into the high bits of the corresponding
+ // FPU register.
+ if (hi != 0) {
+ li(at, Operand(hi));
+ mthc1(at, dst);
+ } else {
+ mthc1(zero_reg, dst);
+ }
+ }
+}
+
+
+void MacroAssembler::Movz(Register rd, Register rs, Register rt) {
+ if (kArchVariant == kMips64r6) {
+ Label done;
+ Branch(&done, ne, rt, Operand(zero_reg));
+ mov(rd, rs);
+ bind(&done);
+ } else {
+ movz(rd, rs, rt);
+ }
+}
+
+
+void MacroAssembler::Movn(Register rd, Register rs, Register rt) {
+ if (kArchVariant == kMips64r6) {
+ Label done;
+ Branch(&done, eq, rt, Operand(zero_reg));
+ mov(rd, rs);
+ bind(&done);
+ } else {
+ movn(rd, rs, rt);
+ }
+}
+
+
+void MacroAssembler::Movt(Register rd, Register rs, uint16_t cc) {
+ movt(rd, rs, cc);
+}
+
+
+void MacroAssembler::Movf(Register rd, Register rs, uint16_t cc) {
+ movf(rd, rs, cc);
+}
+
+
+void MacroAssembler::Clz(Register rd, Register rs) {
+ clz(rd, rs);
+}
+
+
+void MacroAssembler::EmitFPUTruncate(FPURoundingMode rounding_mode,
+ Register result,
+ DoubleRegister double_input,
+ Register scratch,
+ DoubleRegister double_scratch,
+ Register except_flag,
+ CheckForInexactConversion check_inexact) {
+ DCHECK(!result.is(scratch));
+ DCHECK(!double_input.is(double_scratch));
+ DCHECK(!except_flag.is(scratch));
+
+ Label done;
+
+ // Clear the except flag (0 = no exception)
+ mov(except_flag, zero_reg);
+
+ // Test for values that can be exactly represented as a signed 32-bit integer.
+ cvt_w_d(double_scratch, double_input);
+ mfc1(result, double_scratch);
+ cvt_d_w(double_scratch, double_scratch);
+ BranchF(&done, NULL, eq, double_input, double_scratch);
+
+ int32_t except_mask = kFCSRFlagMask; // Assume interested in all exceptions.
+
+ if (check_inexact == kDontCheckForInexactConversion) {
+ // Ignore inexact exceptions.
+ except_mask &= ~kFCSRInexactFlagMask;
+ }
+
+ // Save FCSR.
+ cfc1(scratch, FCSR);
+ // Disable FPU exceptions.
+ ctc1(zero_reg, FCSR);
+
+ // Do operation based on rounding mode.
+ switch (rounding_mode) {
+ case kRoundToNearest:
+ Round_w_d(double_scratch, double_input);
+ break;
+ case kRoundToZero:
+ Trunc_w_d(double_scratch, double_input);
+ break;
+ case kRoundToPlusInf:
+ Ceil_w_d(double_scratch, double_input);
+ break;
+ case kRoundToMinusInf:
+ Floor_w_d(double_scratch, double_input);
+ break;
+ } // End of switch-statement.
+
+ // Retrieve FCSR.
+ cfc1(except_flag, FCSR);
+ // Restore FCSR.
+ ctc1(scratch, FCSR);
+ // Move the converted value into the result register.
+ mfc1(result, double_scratch);
+
+ // Check for fpu exceptions.
+ And(except_flag, except_flag, Operand(except_mask));
+
+ bind(&done);
+}
+
+
+void MacroAssembler::TryInlineTruncateDoubleToI(Register result,
+ DoubleRegister double_input,
+ Label* done) {
+ DoubleRegister single_scratch = kLithiumScratchDouble.low();
+ Register scratch = at;
+ Register scratch2 = t9;
+
+ // Clear cumulative exception flags and save the FCSR.
+ cfc1(scratch2, FCSR);
+ ctc1(zero_reg, FCSR);
+ // Try a conversion to a signed integer.
+ trunc_w_d(single_scratch, double_input);
+ mfc1(result, single_scratch);
+ // Retrieve and restore the FCSR.
+ cfc1(scratch, FCSR);
+ ctc1(scratch2, FCSR);
+ // Check for overflow and NaNs.
+ And(scratch,
+ scratch,
+ kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask);
+ // If we had no exceptions we are done.
+ Branch(done, eq, scratch, Operand(zero_reg));
+}
+
+
+void MacroAssembler::TruncateDoubleToI(Register result,
+ DoubleRegister double_input) {
+ Label done;
+
+ TryInlineTruncateDoubleToI(result, double_input, &done);
+
+ // If we fell through then inline version didn't succeed - call stub instead.
+ push(ra);
+ Dsubu(sp, sp, Operand(kDoubleSize)); // Put input on stack.
+ sdc1(double_input, MemOperand(sp, 0));
+
+ DoubleToIStub stub(isolate(), sp, result, 0, true, true);
+ CallStub(&stub);
+
+ Daddu(sp, sp, Operand(kDoubleSize));
+ pop(ra);
+
+ bind(&done);
+}
+
+
+void MacroAssembler::TruncateHeapNumberToI(Register result, Register object) {
+ Label done;
+ DoubleRegister double_scratch = f12;
+ DCHECK(!result.is(object));
+
+ ldc1(double_scratch,
+ MemOperand(object, HeapNumber::kValueOffset - kHeapObjectTag));
+ TryInlineTruncateDoubleToI(result, double_scratch, &done);
+
+ // If we fell through then inline version didn't succeed - call stub instead.
+ push(ra);
+ DoubleToIStub stub(isolate(),
+ object,
+ result,
+ HeapNumber::kValueOffset - kHeapObjectTag,
+ true,
+ true);
+ CallStub(&stub);
+ pop(ra);
+
+ bind(&done);
+}
+
+
+void MacroAssembler::TruncateNumberToI(Register object,
+ Register result,
+ Register heap_number_map,
+ Register scratch,
+ Label* not_number) {
+ Label done;
+ DCHECK(!result.is(object));
+
+ UntagAndJumpIfSmi(result, object, &done);
+ JumpIfNotHeapNumber(object, heap_number_map, scratch, not_number);
+ TruncateHeapNumberToI(result, object);
+
+ bind(&done);
+}
+
+
+void MacroAssembler::GetLeastBitsFromSmi(Register dst,
+ Register src,
+ int num_least_bits) {
+ // Ext(dst, src, kSmiTagSize, num_least_bits);
+ SmiUntag(dst, src);
+ And(dst, dst, Operand((1 << num_least_bits) - 1));
+}
+
+
+void MacroAssembler::GetLeastBitsFromInt32(Register dst,
+ Register src,
+ int num_least_bits) {
+ DCHECK(!src.is(dst));
+ And(dst, src, Operand((1 << num_least_bits) - 1));
+}
+
+
+// Emulated condtional branches do not emit a nop in the branch delay slot.
+//
+// BRANCH_ARGS_CHECK checks that conditional jump arguments are correct.
+#define BRANCH_ARGS_CHECK(cond, rs, rt) DCHECK( \
+ (cond == cc_always && rs.is(zero_reg) && rt.rm().is(zero_reg)) || \
+ (cond != cc_always && (!rs.is(zero_reg) || !rt.rm().is(zero_reg))))
+
+
+void MacroAssembler::Branch(int16_t offset, BranchDelaySlot bdslot) {
+ BranchShort(offset, bdslot);
+}
+
+
+void MacroAssembler::Branch(int16_t offset, Condition cond, Register rs,
+ const Operand& rt,
+ BranchDelaySlot bdslot) {
+ BranchShort(offset, cond, rs, rt, bdslot);
+}
+
+
+void MacroAssembler::Branch(Label* L, BranchDelaySlot bdslot) {
+ if (L->is_bound()) {
+ if (is_near(L)) {
+ BranchShort(L, bdslot);
+ } else {
+ Jr(L, bdslot);
+ }
+ } else {
+ if (is_trampoline_emitted()) {
+ Jr(L, bdslot);
+ } else {
+ BranchShort(L, bdslot);
+ }
+ }
+}
+
+
+void MacroAssembler::Branch(Label* L, Condition cond, Register rs,
+ const Operand& rt,
+ BranchDelaySlot bdslot) {
+ if (L->is_bound()) {
+ if (is_near(L)) {
+ BranchShort(L, cond, rs, rt, bdslot);
+ } else {
+ if (cond != cc_always) {
+ Label skip;
+ Condition neg_cond = NegateCondition(cond);
+ BranchShort(&skip, neg_cond, rs, rt);
+ Jr(L, bdslot);
+ bind(&skip);
+ } else {
+ Jr(L, bdslot);
+ }
+ }
+ } else {
+ if (is_trampoline_emitted()) {
+ if (cond != cc_always) {
+ Label skip;
+ Condition neg_cond = NegateCondition(cond);
+ BranchShort(&skip, neg_cond, rs, rt);
+ Jr(L, bdslot);
+ bind(&skip);
+ } else {
+ Jr(L, bdslot);
+ }
+ } else {
+ BranchShort(L, cond, rs, rt, bdslot);
+ }
+ }
+}
+
+
+void MacroAssembler::Branch(Label* L,
+ Condition cond,
+ Register rs,
+ Heap::RootListIndex index,
+ BranchDelaySlot bdslot) {
+ LoadRoot(at, index);
+ Branch(L, cond, rs, Operand(at), bdslot);
+}
+
+
+void MacroAssembler::BranchShort(int16_t offset, BranchDelaySlot bdslot) {
+ b(offset);
+
+ // Emit a nop in the branch delay slot if required.
+ if (bdslot == PROTECT)
+ nop();
+}
+
+
+void MacroAssembler::BranchShort(int16_t offset, Condition cond, Register rs,
+ const Operand& rt,
+ BranchDelaySlot bdslot) {
+ BRANCH_ARGS_CHECK(cond, rs, rt);
+ DCHECK(!rs.is(zero_reg));
+ Register r2 = no_reg;
+ Register scratch = at;
+
+ if (rt.is_reg()) {
+ // NOTE: 'at' can be clobbered by Branch but it is legal to use it as rs or
+ // rt.
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ r2 = rt.rm_;
+ switch (cond) {
+ case cc_always:
+ b(offset);
+ break;
+ case eq:
+ beq(rs, r2, offset);
+ break;
+ case ne:
+ bne(rs, r2, offset);
+ break;
+ // Signed comparison.
+ case greater:
+ if (r2.is(zero_reg)) {
+ bgtz(rs, offset);
+ } else {
+ slt(scratch, r2, rs);
+ bne(scratch, zero_reg, offset);
+ }
+ break;
+ case greater_equal:
+ if (r2.is(zero_reg)) {
+ bgez(rs, offset);
+ } else {
+ slt(scratch, rs, r2);
+ beq(scratch, zero_reg, offset);
+ }
+ break;
+ case less:
+ if (r2.is(zero_reg)) {
+ bltz(rs, offset);
+ } else {
+ slt(scratch, rs, r2);
+ bne(scratch, zero_reg, offset);
+ }
+ break;
+ case less_equal:
+ if (r2.is(zero_reg)) {
+ blez(rs, offset);
+ } else {
+ slt(scratch, r2, rs);
+ beq(scratch, zero_reg, offset);
+ }
+ break;
+ // Unsigned comparison.
+ case Ugreater:
+ if (r2.is(zero_reg)) {
+ bgtz(rs, offset);
+ } else {
+ sltu(scratch, r2, rs);
+ bne(scratch, zero_reg, offset);
+ }
+ break;
+ case Ugreater_equal:
+ if (r2.is(zero_reg)) {
+ bgez(rs, offset);
+ } else {
+ sltu(scratch, rs, r2);
+ beq(scratch, zero_reg, offset);
+ }
+ break;
+ case Uless:
+ if (r2.is(zero_reg)) {
+ // No code needs to be emitted.
+ return;
+ } else {
+ sltu(scratch, rs, r2);
+ bne(scratch, zero_reg, offset);
+ }
+ break;
+ case Uless_equal:
+ if (r2.is(zero_reg)) {
+ b(offset);
+ } else {
+ sltu(scratch, r2, rs);
+ beq(scratch, zero_reg, offset);
+ }
+ break;
+ default:
+ UNREACHABLE();
+ }
+ } else {
+ // Be careful to always use shifted_branch_offset only just before the
+ // branch instruction, as the location will be remember for patching the
+ // target.
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ switch (cond) {
+ case cc_always:
+ b(offset);
+ break;
+ case eq:
+ // We don't want any other register but scratch clobbered.
+ DCHECK(!scratch.is(rs));
+ r2 = scratch;
+ li(r2, rt);
+ beq(rs, r2, offset);
+ break;
+ case ne:
+ // We don't want any other register but scratch clobbered.
+ DCHECK(!scratch.is(rs));
+ r2 = scratch;
+ li(r2, rt);
+ bne(rs, r2, offset);
+ break;
+ // Signed comparison.
+ case greater:
+ if (rt.imm64_ == 0) {
+ bgtz(rs, offset);
+ } else {
+ r2 = scratch;
+ li(r2, rt);
+ slt(scratch, r2, rs);
+ bne(scratch, zero_reg, offset);
+ }
+ break;
+ case greater_equal:
+ if (rt.imm64_ == 0) {
+ bgez(rs, offset);
+ } else if (is_int16(rt.imm64_)) {
+ slti(scratch, rs, rt.imm64_);
+ beq(scratch, zero_reg, offset);
+ } else {
+ r2 = scratch;
+ li(r2, rt);
+ slt(scratch, rs, r2);
+ beq(scratch, zero_reg, offset);
+ }
+ break;
+ case less:
+ if (rt.imm64_ == 0) {
+ bltz(rs, offset);
+ } else if (is_int16(rt.imm64_)) {
+ slti(scratch, rs, rt.imm64_);
+ bne(scratch, zero_reg, offset);
+ } else {
+ r2 = scratch;
+ li(r2, rt);
+ slt(scratch, rs, r2);
+ bne(scratch, zero_reg, offset);
+ }
+ break;
+ case less_equal:
+ if (rt.imm64_ == 0) {
+ blez(rs, offset);
+ } else {
+ r2 = scratch;
+ li(r2, rt);
+ slt(scratch, r2, rs);
+ beq(scratch, zero_reg, offset);
+ }
+ break;
+ // Unsigned comparison.
+ case Ugreater:
+ if (rt.imm64_ == 0) {
+ bgtz(rs, offset);
+ } else {
+ r2 = scratch;
+ li(r2, rt);
+ sltu(scratch, r2, rs);
+ bne(scratch, zero_reg, offset);
+ }
+ break;
+ case Ugreater_equal:
+ if (rt.imm64_ == 0) {
+ bgez(rs, offset);
+ } else if (is_int16(rt.imm64_)) {
+ sltiu(scratch, rs, rt.imm64_);
+ beq(scratch, zero_reg, offset);
+ } else {
+ r2 = scratch;
+ li(r2, rt);
+ sltu(scratch, rs, r2);
+ beq(scratch, zero_reg, offset);
+ }
+ break;
+ case Uless:
+ if (rt.imm64_ == 0) {
+ // No code needs to be emitted.
+ return;
+ } else if (is_int16(rt.imm64_)) {
+ sltiu(scratch, rs, rt.imm64_);
+ bne(scratch, zero_reg, offset);
+ } else {
+ r2 = scratch;
+ li(r2, rt);
+ sltu(scratch, rs, r2);
+ bne(scratch, zero_reg, offset);
+ }
+ break;
+ case Uless_equal:
+ if (rt.imm64_ == 0) {
+ b(offset);
+ } else {
+ r2 = scratch;
+ li(r2, rt);
+ sltu(scratch, r2, rs);
+ beq(scratch, zero_reg, offset);
+ }
+ break;
+ default:
+ UNREACHABLE();
+ }
+ }
+ // Emit a nop in the branch delay slot if required.
+ if (bdslot == PROTECT)
+ nop();
+}
+
+
+void MacroAssembler::BranchShort(Label* L, BranchDelaySlot bdslot) {
+ // We use branch_offset as an argument for the branch instructions to be sure
+ // it is called just before generating the branch instruction, as needed.
+
+ b(shifted_branch_offset(L, false));
+
+ // Emit a nop in the branch delay slot if required.
+ if (bdslot == PROTECT)
+ nop();
+}
+
+
+void MacroAssembler::BranchShort(Label* L, Condition cond, Register rs,
+ const Operand& rt,
+ BranchDelaySlot bdslot) {
+ BRANCH_ARGS_CHECK(cond, rs, rt);
+
+ int32_t offset = 0;
+ Register r2 = no_reg;
+ Register scratch = at;
+ if (rt.is_reg()) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ r2 = rt.rm_;
+ // Be careful to always use shifted_branch_offset only just before the
+ // branch instruction, as the location will be remember for patching the
+ // target.
+ switch (cond) {
+ case cc_always:
+ offset = shifted_branch_offset(L, false);
+ b(offset);
+ break;
+ case eq:
+ offset = shifted_branch_offset(L, false);
+ beq(rs, r2, offset);
+ break;
+ case ne:
+ offset = shifted_branch_offset(L, false);
+ bne(rs, r2, offset);
+ break;
+ // Signed comparison.
+ case greater:
+ if (r2.is(zero_reg)) {
+ offset = shifted_branch_offset(L, false);
+ bgtz(rs, offset);
+ } else {
+ slt(scratch, r2, rs);
+ offset = shifted_branch_offset(L, false);
+ bne(scratch, zero_reg, offset);
+ }
+ break;
+ case greater_equal:
+ if (r2.is(zero_reg)) {
+ offset = shifted_branch_offset(L, false);
+ bgez(rs, offset);
+ } else {
+ slt(scratch, rs, r2);
+ offset = shifted_branch_offset(L, false);
+ beq(scratch, zero_reg, offset);
+ }
+ break;
+ case less:
+ if (r2.is(zero_reg)) {
+ offset = shifted_branch_offset(L, false);
+ bltz(rs, offset);
+ } else {
+ slt(scratch, rs, r2);
+ offset = shifted_branch_offset(L, false);
+ bne(scratch, zero_reg, offset);
+ }
+ break;
+ case less_equal:
+ if (r2.is(zero_reg)) {
+ offset = shifted_branch_offset(L, false);
+ blez(rs, offset);
+ } else {
+ slt(scratch, r2, rs);
+ offset = shifted_branch_offset(L, false);
+ beq(scratch, zero_reg, offset);
+ }
+ break;
+ // Unsigned comparison.
+ case Ugreater:
+ if (r2.is(zero_reg)) {
+ offset = shifted_branch_offset(L, false);
+ bgtz(rs, offset);
+ } else {
+ sltu(scratch, r2, rs);
+ offset = shifted_branch_offset(L, false);
+ bne(scratch, zero_reg, offset);
+ }
+ break;
+ case Ugreater_equal:
+ if (r2.is(zero_reg)) {
+ offset = shifted_branch_offset(L, false);
+ bgez(rs, offset);
+ } else {
+ sltu(scratch, rs, r2);
+ offset = shifted_branch_offset(L, false);
+ beq(scratch, zero_reg, offset);
+ }
+ break;
+ case Uless:
+ if (r2.is(zero_reg)) {
+ // No code needs to be emitted.
+ return;
+ } else {
+ sltu(scratch, rs, r2);
+ offset = shifted_branch_offset(L, false);
+ bne(scratch, zero_reg, offset);
+ }
+ break;
+ case Uless_equal:
+ if (r2.is(zero_reg)) {
+ offset = shifted_branch_offset(L, false);
+ b(offset);
+ } else {
+ sltu(scratch, r2, rs);
+ offset = shifted_branch_offset(L, false);
+ beq(scratch, zero_reg, offset);
+ }
+ break;
+ default:
+ UNREACHABLE();
+ }
+ } else {
+ // Be careful to always use shifted_branch_offset only just before the
+ // branch instruction, as the location will be remember for patching the
+ // target.
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ switch (cond) {
+ case cc_always:
+ offset = shifted_branch_offset(L, false);
+ b(offset);
+ break;
+ case eq:
+ DCHECK(!scratch.is(rs));
+ r2 = scratch;
+ li(r2, rt);
+ offset = shifted_branch_offset(L, false);
+ beq(rs, r2, offset);
+ break;
+ case ne:
+ DCHECK(!scratch.is(rs));
+ r2 = scratch;
+ li(r2, rt);
+ offset = shifted_branch_offset(L, false);
+ bne(rs, r2, offset);
+ break;
+ // Signed comparison.
+ case greater:
+ if (rt.imm64_ == 0) {
+ offset = shifted_branch_offset(L, false);
+ bgtz(rs, offset);
+ } else {
+ DCHECK(!scratch.is(rs));
+ r2 = scratch;
+ li(r2, rt);
+ slt(scratch, r2, rs);
+ offset = shifted_branch_offset(L, false);
+ bne(scratch, zero_reg, offset);
+ }
+ break;
+ case greater_equal:
+ if (rt.imm64_ == 0) {
+ offset = shifted_branch_offset(L, false);
+ bgez(rs, offset);
+ } else if (is_int16(rt.imm64_)) {
+ slti(scratch, rs, rt.imm64_);
+ offset = shifted_branch_offset(L, false);
+ beq(scratch, zero_reg, offset);
+ } else {
+ DCHECK(!scratch.is(rs));
+ r2 = scratch;
+ li(r2, rt);
+ slt(scratch, rs, r2);
+ offset = shifted_branch_offset(L, false);
+ beq(scratch, zero_reg, offset);
+ }
+ break;
+ case less:
+ if (rt.imm64_ == 0) {
+ offset = shifted_branch_offset(L, false);
+ bltz(rs, offset);
+ } else if (is_int16(rt.imm64_)) {
+ slti(scratch, rs, rt.imm64_);
+ offset = shifted_branch_offset(L, false);
+ bne(scratch, zero_reg, offset);
+ } else {
+ DCHECK(!scratch.is(rs));
+ r2 = scratch;
+ li(r2, rt);
+ slt(scratch, rs, r2);
+ offset = shifted_branch_offset(L, false);
+ bne(scratch, zero_reg, offset);
+ }
+ break;
+ case less_equal:
+ if (rt.imm64_ == 0) {
+ offset = shifted_branch_offset(L, false);
+ blez(rs, offset);
+ } else {
+ DCHECK(!scratch.is(rs));
+ r2 = scratch;
+ li(r2, rt);
+ slt(scratch, r2, rs);
+ offset = shifted_branch_offset(L, false);
+ beq(scratch, zero_reg, offset);
+ }
+ break;
+ // Unsigned comparison.
+ case Ugreater:
+ if (rt.imm64_ == 0) {
+ offset = shifted_branch_offset(L, false);
+ bne(rs, zero_reg, offset);
+ } else {
+ DCHECK(!scratch.is(rs));
+ r2 = scratch;
+ li(r2, rt);
+ sltu(scratch, r2, rs);
+ offset = shifted_branch_offset(L, false);
+ bne(scratch, zero_reg, offset);
+ }
+ break;
+ case Ugreater_equal:
+ if (rt.imm64_ == 0) {
+ offset = shifted_branch_offset(L, false);
+ bgez(rs, offset);
+ } else if (is_int16(rt.imm64_)) {
+ sltiu(scratch, rs, rt.imm64_);
+ offset = shifted_branch_offset(L, false);
+ beq(scratch, zero_reg, offset);
+ } else {
+ DCHECK(!scratch.is(rs));
+ r2 = scratch;
+ li(r2, rt);
+ sltu(scratch, rs, r2);
+ offset = shifted_branch_offset(L, false);
+ beq(scratch, zero_reg, offset);
+ }
+ break;
+ case Uless:
+ if (rt.imm64_ == 0) {
+ // No code needs to be emitted.
+ return;
+ } else if (is_int16(rt.imm64_)) {
+ sltiu(scratch, rs, rt.imm64_);
+ offset = shifted_branch_offset(L, false);
+ bne(scratch, zero_reg, offset);
+ } else {
+ DCHECK(!scratch.is(rs));
+ r2 = scratch;
+ li(r2, rt);
+ sltu(scratch, rs, r2);
+ offset = shifted_branch_offset(L, false);
+ bne(scratch, zero_reg, offset);
+ }
+ break;
+ case Uless_equal:
+ if (rt.imm64_ == 0) {
+ offset = shifted_branch_offset(L, false);
+ beq(rs, zero_reg, offset);
+ } else {
+ DCHECK(!scratch.is(rs));
+ r2 = scratch;
+ li(r2, rt);
+ sltu(scratch, r2, rs);
+ offset = shifted_branch_offset(L, false);
+ beq(scratch, zero_reg, offset);
+ }
+ break;
+ default:
+ UNREACHABLE();
+ }
+ }
+ // Check that offset could actually hold on an int16_t.
+ DCHECK(is_int16(offset));
+ // Emit a nop in the branch delay slot if required.
+ if (bdslot == PROTECT)
+ nop();
+}
+
+
+void MacroAssembler::BranchAndLink(int16_t offset, BranchDelaySlot bdslot) {
+ BranchAndLinkShort(offset, bdslot);
+}
+
+
+void MacroAssembler::BranchAndLink(int16_t offset, Condition cond, Register rs,
+ const Operand& rt,
+ BranchDelaySlot bdslot) {
+ BranchAndLinkShort(offset, cond, rs, rt, bdslot);
+}
+
+
+void MacroAssembler::BranchAndLink(Label* L, BranchDelaySlot bdslot) {
+ if (L->is_bound()) {
+ if (is_near(L)) {
+ BranchAndLinkShort(L, bdslot);
+ } else {
+ Jalr(L, bdslot);
+ }
+ } else {
+ if (is_trampoline_emitted()) {
+ Jalr(L, bdslot);
+ } else {
+ BranchAndLinkShort(L, bdslot);
+ }
+ }
+}
+
+
+void MacroAssembler::BranchAndLink(Label* L, Condition cond, Register rs,
+ const Operand& rt,
+ BranchDelaySlot bdslot) {
+ if (L->is_bound()) {
+ if (is_near(L)) {
+ BranchAndLinkShort(L, cond, rs, rt, bdslot);
+ } else {
+ Label skip;
+ Condition neg_cond = NegateCondition(cond);
+ BranchShort(&skip, neg_cond, rs, rt);
+ Jalr(L, bdslot);
+ bind(&skip);
+ }
+ } else {
+ if (is_trampoline_emitted()) {
+ Label skip;
+ Condition neg_cond = NegateCondition(cond);
+ BranchShort(&skip, neg_cond, rs, rt);
+ Jalr(L, bdslot);
+ bind(&skip);
+ } else {
+ BranchAndLinkShort(L, cond, rs, rt, bdslot);
+ }
+ }
+}
+
+
+// We need to use a bgezal or bltzal, but they can't be used directly with the
+// slt instructions. We could use sub or add instead but we would miss overflow
+// cases, so we keep slt and add an intermediate third instruction.
+void MacroAssembler::BranchAndLinkShort(int16_t offset,
+ BranchDelaySlot bdslot) {
+ bal(offset);
+
+ // Emit a nop in the branch delay slot if required.
+ if (bdslot == PROTECT)
+ nop();
+}
+
+
+void MacroAssembler::BranchAndLinkShort(int16_t offset, Condition cond,
+ Register rs, const Operand& rt,
+ BranchDelaySlot bdslot) {
+ BRANCH_ARGS_CHECK(cond, rs, rt);
+ Register r2 = no_reg;
+ Register scratch = at;
+
+ if (rt.is_reg()) {
+ r2 = rt.rm_;
+ } else if (cond != cc_always) {
+ r2 = scratch;
+ li(r2, rt);
+ }
+
+ {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ switch (cond) {
+ case cc_always:
+ bal(offset);
+ break;
+ case eq:
+ bne(rs, r2, 2);
+ nop();
+ bal(offset);
+ break;
+ case ne:
+ beq(rs, r2, 2);
+ nop();
+ bal(offset);
+ break;
+
+ // Signed comparison.
+ case greater:
+ // rs > rt
+ slt(scratch, r2, rs);
+ beq(scratch, zero_reg, 2);
+ nop();
+ bal(offset);
+ break;
+ case greater_equal:
+ // rs >= rt
+ slt(scratch, rs, r2);
+ bne(scratch, zero_reg, 2);
+ nop();
+ bal(offset);
+ break;
+ case less:
+ // rs < r2
+ slt(scratch, rs, r2);
+ bne(scratch, zero_reg, 2);
+ nop();
+ bal(offset);
+ break;
+ case less_equal:
+ // rs <= r2
+ slt(scratch, r2, rs);
+ bne(scratch, zero_reg, 2);
+ nop();
+ bal(offset);
+ break;
+
+
+ // Unsigned comparison.
+ case Ugreater:
+ // rs > rt
+ sltu(scratch, r2, rs);
+ beq(scratch, zero_reg, 2);
+ nop();
+ bal(offset);
+ break;
+ case Ugreater_equal:
+ // rs >= rt
+ sltu(scratch, rs, r2);
+ bne(scratch, zero_reg, 2);
+ nop();
+ bal(offset);
+ break;
+ case Uless:
+ // rs < r2
+ sltu(scratch, rs, r2);
+ bne(scratch, zero_reg, 2);
+ nop();
+ bal(offset);
+ break;
+ case Uless_equal:
+ // rs <= r2
+ sltu(scratch, r2, rs);
+ bne(scratch, zero_reg, 2);
+ nop();
+ bal(offset);
+ break;
+ default:
+ UNREACHABLE();
+ }
+ }
+ // Emit a nop in the branch delay slot if required.
+ if (bdslot == PROTECT)
+ nop();
+}
+
+
+void MacroAssembler::BranchAndLinkShort(Label* L, BranchDelaySlot bdslot) {
+ bal(shifted_branch_offset(L, false));
+
+ // Emit a nop in the branch delay slot if required.
+ if (bdslot == PROTECT)
+ nop();
+}
+
+
+void MacroAssembler::BranchAndLinkShort(Label* L, Condition cond, Register rs,
+ const Operand& rt,
+ BranchDelaySlot bdslot) {
+ BRANCH_ARGS_CHECK(cond, rs, rt);
+
+ int32_t offset = 0;
+ Register r2 = no_reg;
+ Register scratch = at;
+ if (rt.is_reg()) {
+ r2 = rt.rm_;
+ } else if (cond != cc_always) {
+ r2 = scratch;
+ li(r2, rt);
+ }
+
+ {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ switch (cond) {
+ case cc_always:
+ offset = shifted_branch_offset(L, false);
+ bal(offset);
+ break;
+ case eq:
+ bne(rs, r2, 2);
+ nop();
+ offset = shifted_branch_offset(L, false);
+ bal(offset);
+ break;
+ case ne:
+ beq(rs, r2, 2);
+ nop();
+ offset = shifted_branch_offset(L, false);
+ bal(offset);
+ break;
+
+ // Signed comparison.
+ case greater:
+ // rs > rt
+ slt(scratch, r2, rs);
+ beq(scratch, zero_reg, 2);
+ nop();
+ offset = shifted_branch_offset(L, false);
+ bal(offset);
+ break;
+ case greater_equal:
+ // rs >= rt
+ slt(scratch, rs, r2);
+ bne(scratch, zero_reg, 2);
+ nop();
+ offset = shifted_branch_offset(L, false);
+ bal(offset);
+ break;
+ case less:
+ // rs < r2
+ slt(scratch, rs, r2);
+ bne(scratch, zero_reg, 2);
+ nop();
+ offset = shifted_branch_offset(L, false);
+ bal(offset);
+ break;
+ case less_equal:
+ // rs <= r2
+ slt(scratch, r2, rs);
+ bne(scratch, zero_reg, 2);
+ nop();
+ offset = shifted_branch_offset(L, false);
+ bal(offset);
+ break;
+
+
+ // Unsigned comparison.
+ case Ugreater:
+ // rs > rt
+ sltu(scratch, r2, rs);
+ beq(scratch, zero_reg, 2);
+ nop();
+ offset = shifted_branch_offset(L, false);
+ bal(offset);
+ break;
+ case Ugreater_equal:
+ // rs >= rt
+ sltu(scratch, rs, r2);
+ bne(scratch, zero_reg, 2);
+ nop();
+ offset = shifted_branch_offset(L, false);
+ bal(offset);
+ break;
+ case Uless:
+ // rs < r2
+ sltu(scratch, rs, r2);
+ bne(scratch, zero_reg, 2);
+ nop();
+ offset = shifted_branch_offset(L, false);
+ bal(offset);
+ break;
+ case Uless_equal:
+ // rs <= r2
+ sltu(scratch, r2, rs);
+ bne(scratch, zero_reg, 2);
+ nop();
+ offset = shifted_branch_offset(L, false);
+ bal(offset);
+ break;
+
+ default:
+ UNREACHABLE();
+ }
+ }
+ // Check that offset could actually hold on an int16_t.
+ DCHECK(is_int16(offset));
+
+ // Emit a nop in the branch delay slot if required.
+ if (bdslot == PROTECT)
+ nop();
+}
+
+
+void MacroAssembler::Jump(Register target,
+ Condition cond,
+ Register rs,
+ const Operand& rt,
+ BranchDelaySlot bd) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ if (cond == cc_always) {
+ jr(target);
+ } else {
+ BRANCH_ARGS_CHECK(cond, rs, rt);
+ Branch(2, NegateCondition(cond), rs, rt);
+ jr(target);
+ }
+ // Emit a nop in the branch delay slot if required.
+ if (bd == PROTECT)
+ nop();
+}
+
+
+void MacroAssembler::Jump(intptr_t target,
+ RelocInfo::Mode rmode,
+ Condition cond,
+ Register rs,
+ const Operand& rt,
+ BranchDelaySlot bd) {
+ Label skip;
+ if (cond != cc_always) {
+ Branch(USE_DELAY_SLOT, &skip, NegateCondition(cond), rs, rt);
+ }
+ // The first instruction of 'li' may be placed in the delay slot.
+ // This is not an issue, t9 is expected to be clobbered anyway.
+ li(t9, Operand(target, rmode));
+ Jump(t9, al, zero_reg, Operand(zero_reg), bd);
+ bind(&skip);
+}
+
+
+void MacroAssembler::Jump(Address target,
+ RelocInfo::Mode rmode,
+ Condition cond,
+ Register rs,
+ const Operand& rt,
+ BranchDelaySlot bd) {
+ DCHECK(!RelocInfo::IsCodeTarget(rmode));
+ Jump(reinterpret_cast<intptr_t>(target), rmode, cond, rs, rt, bd);
+}
+
+
+void MacroAssembler::Jump(Handle<Code> code,
+ RelocInfo::Mode rmode,
+ Condition cond,
+ Register rs,
+ const Operand& rt,
+ BranchDelaySlot bd) {
+ DCHECK(RelocInfo::IsCodeTarget(rmode));
+ AllowDeferredHandleDereference embedding_raw_address;
+ Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond, rs, rt, bd);
+}
+
+
+int MacroAssembler::CallSize(Register target,
+ Condition cond,
+ Register rs,
+ const Operand& rt,
+ BranchDelaySlot bd) {
+ int size = 0;
+
+ if (cond == cc_always) {
+ size += 1;
+ } else {
+ size += 3;
+ }
+
+ if (bd == PROTECT)
+ size += 1;
+
+ return size * kInstrSize;
+}
+
+
+// Note: To call gcc-compiled C code on mips, you must call thru t9.
+void MacroAssembler::Call(Register target,
+ Condition cond,
+ Register rs,
+ const Operand& rt,
+ BranchDelaySlot bd) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Label start;
+ bind(&start);
+ if (cond == cc_always) {
+ jalr(target);
+ } else {
+ BRANCH_ARGS_CHECK(cond, rs, rt);
+ Branch(2, NegateCondition(cond), rs, rt);
+ jalr(target);
+ }
+ // Emit a nop in the branch delay slot if required.
+ if (bd == PROTECT)
+ nop();
+
+ DCHECK_EQ(CallSize(target, cond, rs, rt, bd),
+ SizeOfCodeGeneratedSince(&start));
+}
+
+
+int MacroAssembler::CallSize(Address target,
+ RelocInfo::Mode rmode,
+ Condition cond,
+ Register rs,
+ const Operand& rt,
+ BranchDelaySlot bd) {
+ int size = CallSize(t9, cond, rs, rt, bd);
+ return size + 4 * kInstrSize;
+}
+
+
+void MacroAssembler::Call(Address target,
+ RelocInfo::Mode rmode,
+ Condition cond,
+ Register rs,
+ const Operand& rt,
+ BranchDelaySlot bd) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Label start;
+ bind(&start);
+ int64_t target_int = reinterpret_cast<int64_t>(target);
+ // Must record previous source positions before the
+ // li() generates a new code target.
+ positions_recorder()->WriteRecordedPositions();
+ li(t9, Operand(target_int, rmode), ADDRESS_LOAD);
+ Call(t9, cond, rs, rt, bd);
+ DCHECK_EQ(CallSize(target, rmode, cond, rs, rt, bd),
+ SizeOfCodeGeneratedSince(&start));
+}
+
+
+int MacroAssembler::CallSize(Handle<Code> code,
+ RelocInfo::Mode rmode,
+ TypeFeedbackId ast_id,
+ Condition cond,
+ Register rs,
+ const Operand& rt,
+ BranchDelaySlot bd) {
+ AllowDeferredHandleDereference using_raw_address;
+ return CallSize(reinterpret_cast<Address>(code.location()),
+ rmode, cond, rs, rt, bd);
+}
+
+
+void MacroAssembler::Call(Handle<Code> code,
+ RelocInfo::Mode rmode,
+ TypeFeedbackId ast_id,
+ Condition cond,
+ Register rs,
+ const Operand& rt,
+ BranchDelaySlot bd) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Label start;
+ bind(&start);
+ DCHECK(RelocInfo::IsCodeTarget(rmode));
+ if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
+ SetRecordedAstId(ast_id);
+ rmode = RelocInfo::CODE_TARGET_WITH_ID;
+ }
+ AllowDeferredHandleDereference embedding_raw_address;
+ Call(reinterpret_cast<Address>(code.location()), rmode, cond, rs, rt, bd);
+ DCHECK_EQ(CallSize(code, rmode, ast_id, cond, rs, rt, bd),
+ SizeOfCodeGeneratedSince(&start));
+}
+
+
+void MacroAssembler::Ret(Condition cond,
+ Register rs,
+ const Operand& rt,
+ BranchDelaySlot bd) {
+ Jump(ra, cond, rs, rt, bd);
+}
+
+
+void MacroAssembler::J(Label* L, BranchDelaySlot bdslot) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+
+ uint64_t imm28;
+ imm28 = jump_address(L);
+ imm28 &= kImm28Mask;
+ { BlockGrowBufferScope block_buf_growth(this);
+ // Buffer growth (and relocation) must be blocked for internal references
+ // until associated instructions are emitted and available to be patched.
+ RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
+ j(imm28);
+ }
+ // Emit a nop in the branch delay slot if required.
+ if (bdslot == PROTECT)
+ nop();
+}
+
+
+void MacroAssembler::Jr(Label* L, BranchDelaySlot bdslot) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+
+ uint64_t imm64;
+ imm64 = jump_address(L);
+ { BlockGrowBufferScope block_buf_growth(this);
+ // Buffer growth (and relocation) must be blocked for internal references
+ // until associated instructions are emitted and available to be patched.
+ RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
+ li(at, Operand(imm64), ADDRESS_LOAD);
+ }
+ jr(at);
+
+ // Emit a nop in the branch delay slot if required.
+ if (bdslot == PROTECT)
+ nop();
+}
+
+
+void MacroAssembler::Jalr(Label* L, BranchDelaySlot bdslot) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+
+ uint64_t imm64;
+ imm64 = jump_address(L);
+ { BlockGrowBufferScope block_buf_growth(this);
+ // Buffer growth (and relocation) must be blocked for internal references
+ // until associated instructions are emitted and available to be patched.
+ RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
+ li(at, Operand(imm64), ADDRESS_LOAD);
+ }
+ jalr(at);
+
+ // Emit a nop in the branch delay slot if required.
+ if (bdslot == PROTECT)
+ nop();
+}
+
+
+void MacroAssembler::DropAndRet(int drop) {
+ Ret(USE_DELAY_SLOT);
+ daddiu(sp, sp, drop * kPointerSize);
+}
+
+void MacroAssembler::DropAndRet(int drop,
+ Condition cond,
+ Register r1,
+ const Operand& r2) {
+ // Both Drop and Ret need to be conditional.
+ Label skip;
+ if (cond != cc_always) {
+ Branch(&skip, NegateCondition(cond), r1, r2);
+ }
+
+ Drop(drop);
+ Ret();
+
+ if (cond != cc_always) {
+ bind(&skip);
+ }
+}
+
+
+void MacroAssembler::Drop(int count,
+ Condition cond,
+ Register reg,
+ const Operand& op) {
+ if (count <= 0) {
+ return;
+ }
+
+ Label skip;
+
+ if (cond != al) {
+ Branch(&skip, NegateCondition(cond), reg, op);
+ }
+
+ daddiu(sp, sp, count * kPointerSize);
+
+ if (cond != al) {
+ bind(&skip);
+ }
+}
+
+
+
+void MacroAssembler::Swap(Register reg1,
+ Register reg2,
+ Register scratch) {
+ if (scratch.is(no_reg)) {
+ Xor(reg1, reg1, Operand(reg2));
+ Xor(reg2, reg2, Operand(reg1));
+ Xor(reg1, reg1, Operand(reg2));
+ } else {
+ mov(scratch, reg1);
+ mov(reg1, reg2);
+ mov(reg2, scratch);
+ }
+}
+
+
+void MacroAssembler::Call(Label* target) {
+ BranchAndLink(target);
+}
+
+
+void MacroAssembler::Push(Handle<Object> handle) {
+ li(at, Operand(handle));
+ push(at);
+}
+
+
+void MacroAssembler::PushRegisterAsTwoSmis(Register src, Register scratch) {
+ DCHECK(!src.is(scratch));
+ mov(scratch, src);
+ dsrl32(src, src, 0);
+ dsll32(src, src, 0);
+ push(src);
+ dsll32(scratch, scratch, 0);
+ push(scratch);
+}
+
+
+void MacroAssembler::PopRegisterAsTwoSmis(Register dst, Register scratch) {
+ DCHECK(!dst.is(scratch));
+ pop(scratch);
+ dsrl32(scratch, scratch, 0);
+ pop(dst);
+ dsrl32(dst, dst, 0);
+ dsll32(dst, dst, 0);
+ or_(dst, dst, scratch);
+}
+
+
+void MacroAssembler::DebugBreak() {
+ PrepareCEntryArgs(0);
+ PrepareCEntryFunction(ExternalReference(Runtime::kDebugBreak, isolate()));
+ CEntryStub ces(isolate(), 1);
+ DCHECK(AllowThisStubCall(&ces));
+ Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
+}
+
+
+// ---------------------------------------------------------------------------
+// Exception handling.
+
+void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
+ int handler_index) {
+ // Adjust this code if not the case.
+ STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
+
+ // For the JSEntry handler, we must preserve a0-a3 and s0.
+ // a5-a7 are available. We will build up the handler from the bottom by
+ // pushing on the stack.
+ // Set up the code object (a5) and the state (a6) for pushing.
+ unsigned state =
+ StackHandler::IndexField::encode(handler_index) |
+ StackHandler::KindField::encode(kind);
+ li(a5, Operand(CodeObject()), CONSTANT_SIZE);
+ li(a6, Operand(state));
+
+ // Push the frame pointer, context, state, and code object.
+ if (kind == StackHandler::JS_ENTRY) {
+ DCHECK_EQ(Smi::FromInt(0), 0);
+ // The second zero_reg indicates no context.
+ // The first zero_reg is the NULL frame pointer.
+ // The operands are reversed to match the order of MultiPush/Pop.
+ Push(zero_reg, zero_reg, a6, a5);
+ } else {
+ MultiPush(a5.bit() | a6.bit() | cp.bit() | fp.bit());
+ }
+
+ // Link the current handler as the next handler.
+ li(a6, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
+ ld(a5, MemOperand(a6));
+ push(a5);
+ // Set this new handler as the current one.
+ sd(sp, MemOperand(a6));
+}
+
+
+void MacroAssembler::PopTryHandler() {
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
+ pop(a1);
+ Daddu(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
+ li(at, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
+ sd(a1, MemOperand(at));
+}
+
+
+void MacroAssembler::JumpToHandlerEntry() {
+ // Compute the handler entry address and jump to it. The handler table is
+ // a fixed array of (smi-tagged) code offsets.
+ // v0 = exception, a1 = code object, a2 = state.
+ Uld(a3, FieldMemOperand(a1, Code::kHandlerTableOffset));
+ Daddu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ dsrl(a2, a2, StackHandler::kKindWidth); // Handler index.
+ dsll(a2, a2, kPointerSizeLog2);
+ Daddu(a2, a3, a2);
+ ld(a2, MemOperand(a2)); // Smi-tagged offset.
+ Daddu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start.
+ dsra32(t9, a2, 0);
+ Daddu(t9, t9, a1);
+ Jump(t9); // Jump.
+}
+
+
+void MacroAssembler::Throw(Register value) {
+ // Adjust this code if not the case.
+ STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
+ STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
+
+ // The exception is expected in v0.
+ Move(v0, value);
+
+ // Drop the stack pointer to the top of the top handler.
+ li(a3, Operand(ExternalReference(Isolate::kHandlerAddress,
+ isolate())));
+ ld(sp, MemOperand(a3));
+
+ // Restore the next handler.
+ pop(a2);
+ sd(a2, MemOperand(a3));
+
+ // Get the code object (a1) and state (a2). Restore the context and frame
+ // pointer.
+ MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit());
+
+ // If the handler is a JS frame, restore the context to the frame.
+ // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp
+ // or cp.
+ Label done;
+ Branch(&done, eq, cp, Operand(zero_reg));
+ sd(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ bind(&done);
+
+ JumpToHandlerEntry();
+}
+
+
+void MacroAssembler::ThrowUncatchable(Register value) {
+ // Adjust this code if not the case.
+ STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
+
+ // The exception is expected in v0.
+ if (!value.is(v0)) {
+ mov(v0, value);
+ }
+ // Drop the stack pointer to the top of the top stack handler.
+ li(a3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
+ ld(sp, MemOperand(a3));
+
+ // Unwind the handlers until the ENTRY handler is found.
+ Label fetch_next, check_kind;
+ jmp(&check_kind);
+ bind(&fetch_next);
+ ld(sp, MemOperand(sp, StackHandlerConstants::kNextOffset));
+
+ bind(&check_kind);
+ STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
+ ld(a2, MemOperand(sp, StackHandlerConstants::kStateOffset));
+ And(a2, a2, Operand(StackHandler::KindField::kMask));
+ Branch(&fetch_next, ne, a2, Operand(zero_reg));
+
+ // Set the top handler address to next handler past the top ENTRY handler.
+ pop(a2);
+ sd(a2, MemOperand(a3));
+
+ // Get the code object (a1) and state (a2). Clear the context and frame
+ // pointer (0 was saved in the handler).
+ MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit());
+
+ JumpToHandlerEntry();
+}
+
+
+void MacroAssembler::Allocate(int object_size,
+ Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required,
+ AllocationFlags flags) {
+ DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
+ if (!FLAG_inline_new) {
+ if (emit_debug_code()) {
+ // Trash the registers to simulate an allocation failure.
+ li(result, 0x7091);
+ li(scratch1, 0x7191);
+ li(scratch2, 0x7291);
+ }
+ jmp(gc_required);
+ return;
+ }
+
+ DCHECK(!result.is(scratch1));
+ DCHECK(!result.is(scratch2));
+ DCHECK(!scratch1.is(scratch2));
+ DCHECK(!scratch1.is(t9));
+ DCHECK(!scratch2.is(t9));
+ DCHECK(!result.is(t9));
+
+ // Make object size into bytes.
+ if ((flags & SIZE_IN_WORDS) != 0) {
+ object_size *= kPointerSize;
+ }
+ DCHECK(0 == (object_size & kObjectAlignmentMask));
+
+ // Check relative positions of allocation top and limit addresses.
+ // ARM adds additional checks to make sure the ldm instruction can be
+ // used. On MIPS we don't have ldm so we don't need additional checks either.
+ ExternalReference allocation_top =
+ AllocationUtils::GetAllocationTopReference(isolate(), flags);
+ ExternalReference allocation_limit =
+ AllocationUtils::GetAllocationLimitReference(isolate(), flags);
+
+ intptr_t top =
+ reinterpret_cast<intptr_t>(allocation_top.address());
+ intptr_t limit =
+ reinterpret_cast<intptr_t>(allocation_limit.address());
+ DCHECK((limit - top) == kPointerSize);
+
+ // Set up allocation top address and object size registers.
+ Register topaddr = scratch1;
+ li(topaddr, Operand(allocation_top));
+
+ // This code stores a temporary value in t9.
+ if ((flags & RESULT_CONTAINS_TOP) == 0) {
+ // Load allocation top into result and allocation limit into t9.
+ ld(result, MemOperand(topaddr));
+ ld(t9, MemOperand(topaddr, kPointerSize));
+ } else {
+ if (emit_debug_code()) {
+ // Assert that result actually contains top on entry. t9 is used
+ // immediately below so this use of t9 does not cause difference with
+ // respect to register content between debug and release mode.
+ ld(t9, MemOperand(topaddr));
+ Check(eq, kUnexpectedAllocationTop, result, Operand(t9));
+ }
+ // Load allocation limit into t9. Result already contains allocation top.
+ ld(t9, MemOperand(topaddr, limit - top));
+ }
+
+ DCHECK(kPointerSize == kDoubleSize);
+ if (emit_debug_code()) {
+ And(at, result, Operand(kDoubleAlignmentMask));
+ Check(eq, kAllocationIsNotDoubleAligned, at, Operand(zero_reg));
+ }
+
+ // Calculate new top and bail out if new space is exhausted. Use result
+ // to calculate the new top.
+ Daddu(scratch2, result, Operand(object_size));
+ Branch(gc_required, Ugreater, scratch2, Operand(t9));
+ sd(scratch2, MemOperand(topaddr));
+
+ // Tag object if requested.
+ if ((flags & TAG_OBJECT) != 0) {
+ Daddu(result, result, Operand(kHeapObjectTag));
+ }
+}
+
+
+void MacroAssembler::Allocate(Register object_size,
+ Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required,
+ AllocationFlags flags) {
+ if (!FLAG_inline_new) {
+ if (emit_debug_code()) {
+ // Trash the registers to simulate an allocation failure.
+ li(result, 0x7091);
+ li(scratch1, 0x7191);
+ li(scratch2, 0x7291);
+ }
+ jmp(gc_required);
+ return;
+ }
+
+ DCHECK(!result.is(scratch1));
+ DCHECK(!result.is(scratch2));
+ DCHECK(!scratch1.is(scratch2));
+ DCHECK(!object_size.is(t9));
+ DCHECK(!scratch1.is(t9) && !scratch2.is(t9) && !result.is(t9));
+
+ // Check relative positions of allocation top and limit addresses.
+ // ARM adds additional checks to make sure the ldm instruction can be
+ // used. On MIPS we don't have ldm so we don't need additional checks either.
+ ExternalReference allocation_top =
+ AllocationUtils::GetAllocationTopReference(isolate(), flags);
+ ExternalReference allocation_limit =
+ AllocationUtils::GetAllocationLimitReference(isolate(), flags);
+ intptr_t top =
+ reinterpret_cast<intptr_t>(allocation_top.address());
+ intptr_t limit =
+ reinterpret_cast<intptr_t>(allocation_limit.address());
+ DCHECK((limit - top) == kPointerSize);
+
+ // Set up allocation top address and object size registers.
+ Register topaddr = scratch1;
+ li(topaddr, Operand(allocation_top));
+
+ // This code stores a temporary value in t9.
+ if ((flags & RESULT_CONTAINS_TOP) == 0) {
+ // Load allocation top into result and allocation limit into t9.
+ ld(result, MemOperand(topaddr));
+ ld(t9, MemOperand(topaddr, kPointerSize));
+ } else {
+ if (emit_debug_code()) {
+ // Assert that result actually contains top on entry. t9 is used
+ // immediately below so this use of t9 does not cause difference with
+ // respect to register content between debug and release mode.
+ ld(t9, MemOperand(topaddr));
+ Check(eq, kUnexpectedAllocationTop, result, Operand(t9));
+ }
+ // Load allocation limit into t9. Result already contains allocation top.
+ ld(t9, MemOperand(topaddr, limit - top));
+ }
+
+ DCHECK(kPointerSize == kDoubleSize);
+ if (emit_debug_code()) {
+ And(at, result, Operand(kDoubleAlignmentMask));
+ Check(eq, kAllocationIsNotDoubleAligned, at, Operand(zero_reg));
+ }
+
+ // Calculate new top and bail out if new space is exhausted. Use result
+ // to calculate the new top. Object size may be in words so a shift is
+ // required to get the number of bytes.
+ if ((flags & SIZE_IN_WORDS) != 0) {
+ dsll(scratch2, object_size, kPointerSizeLog2);
+ Daddu(scratch2, result, scratch2);
+ } else {
+ Daddu(scratch2, result, Operand(object_size));
+ }
+ Branch(gc_required, Ugreater, scratch2, Operand(t9));
+
+ // Update allocation top. result temporarily holds the new top.
+ if (emit_debug_code()) {
+ And(t9, scratch2, Operand(kObjectAlignmentMask));
+ Check(eq, kUnalignedAllocationInNewSpace, t9, Operand(zero_reg));
+ }
+ sd(scratch2, MemOperand(topaddr));
+
+ // Tag object if requested.
+ if ((flags & TAG_OBJECT) != 0) {
+ Daddu(result, result, Operand(kHeapObjectTag));
+ }
+}
+
+
+void MacroAssembler::UndoAllocationInNewSpace(Register object,
+ Register scratch) {
+ ExternalReference new_space_allocation_top =
+ ExternalReference::new_space_allocation_top_address(isolate());
+
+ // Make sure the object has no tag before resetting top.
+ And(object, object, Operand(~kHeapObjectTagMask));
+#ifdef DEBUG
+ // Check that the object un-allocated is below the current top.
+ li(scratch, Operand(new_space_allocation_top));
+ ld(scratch, MemOperand(scratch));
+ Check(less, kUndoAllocationOfNonAllocatedMemory,
+ object, Operand(scratch));
+#endif
+ // Write the address of the object to un-allocate as the current top.
+ li(scratch, Operand(new_space_allocation_top));
+ sd(object, MemOperand(scratch));
+}
+
+
+void MacroAssembler::AllocateTwoByteString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* gc_required) {
+ // Calculate the number of bytes needed for the characters in the string while
+ // observing object alignment.
+ DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
+ dsll(scratch1, length, 1); // Length in bytes, not chars.
+ daddiu(scratch1, scratch1,
+ kObjectAlignmentMask + SeqTwoByteString::kHeaderSize);
+ And(scratch1, scratch1, Operand(~kObjectAlignmentMask));
+
+ // Allocate two-byte string in new space.
+ Allocate(scratch1,
+ result,
+ scratch2,
+ scratch3,
+ gc_required,
+ TAG_OBJECT);
+
+ // Set the map, length and hash field.
+ InitializeNewString(result,
+ length,
+ Heap::kStringMapRootIndex,
+ scratch1,
+ scratch2);
+}
+
+
+void MacroAssembler::AllocateAsciiString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* gc_required) {
+ // Calculate the number of bytes needed for the characters in the string
+ // while observing object alignment.
+ DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
+ DCHECK(kCharSize == 1);
+ daddiu(scratch1, length,
+ kObjectAlignmentMask + SeqOneByteString::kHeaderSize);
+ And(scratch1, scratch1, Operand(~kObjectAlignmentMask));
+
+ // Allocate ASCII string in new space.
+ Allocate(scratch1,
+ result,
+ scratch2,
+ scratch3,
+ gc_required,
+ TAG_OBJECT);
+
+ // Set the map, length and hash field.
+ InitializeNewString(result,
+ length,
+ Heap::kAsciiStringMapRootIndex,
+ scratch1,
+ scratch2);
+}
+
+
+void MacroAssembler::AllocateTwoByteConsString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required) {
+ Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
+ TAG_OBJECT);
+ InitializeNewString(result,
+ length,
+ Heap::kConsStringMapRootIndex,
+ scratch1,
+ scratch2);
+}
+
+
+void MacroAssembler::AllocateAsciiConsString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required) {
+ Allocate(ConsString::kSize,
+ result,
+ scratch1,
+ scratch2,
+ gc_required,
+ TAG_OBJECT);
+
+ InitializeNewString(result,
+ length,
+ Heap::kConsAsciiStringMapRootIndex,
+ scratch1,
+ scratch2);
+}
+
+
+void MacroAssembler::AllocateTwoByteSlicedString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required) {
+ Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
+ TAG_OBJECT);
+
+ InitializeNewString(result,
+ length,
+ Heap::kSlicedStringMapRootIndex,
+ scratch1,
+ scratch2);
+}
+
+
+void MacroAssembler::AllocateAsciiSlicedString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required) {
+ Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
+ TAG_OBJECT);
+
+ InitializeNewString(result,
+ length,
+ Heap::kSlicedAsciiStringMapRootIndex,
+ scratch1,
+ scratch2);
+}
+
+
+void MacroAssembler::JumpIfNotUniqueName(Register reg,
+ Label* not_unique_name) {
+ STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
+ Label succeed;
+ And(at, reg, Operand(kIsNotStringMask | kIsNotInternalizedMask));
+ Branch(&succeed, eq, at, Operand(zero_reg));
+ Branch(not_unique_name, ne, reg, Operand(SYMBOL_TYPE));
+
+ bind(&succeed);
+}
+
+
+// Allocates a heap number or jumps to the label if the young space is full and
+// a scavenge is needed.
+void MacroAssembler::AllocateHeapNumber(Register result,
+ Register scratch1,
+ Register scratch2,
+ Register heap_number_map,
+ Label* need_gc,
+ TaggingMode tagging_mode,
+ MutableMode mode) {
+ // Allocate an object in the heap for the heap number and tag it as a heap
+ // object.
+ Allocate(HeapNumber::kSize, result, scratch1, scratch2, need_gc,
+ tagging_mode == TAG_RESULT ? TAG_OBJECT : NO_ALLOCATION_FLAGS);
+
+ Heap::RootListIndex map_index = mode == MUTABLE
+ ? Heap::kMutableHeapNumberMapRootIndex
+ : Heap::kHeapNumberMapRootIndex;
+ AssertIsRoot(heap_number_map, map_index);
+
+ // Store heap number map in the allocated object.
+ if (tagging_mode == TAG_RESULT) {
+ sd(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
+ } else {
+ sd(heap_number_map, MemOperand(result, HeapObject::kMapOffset));
+ }
+}
+
+
+void MacroAssembler::AllocateHeapNumberWithValue(Register result,
+ FPURegister value,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required) {
+ LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
+ AllocateHeapNumber(result, scratch1, scratch2, t8, gc_required);
+ sdc1(value, FieldMemOperand(result, HeapNumber::kValueOffset));
+}
+
+
+// Copies a fixed number of fields of heap objects from src to dst.
+void MacroAssembler::CopyFields(Register dst,
+ Register src,
+ RegList temps,
+ int field_count) {
+ DCHECK((temps & dst.bit()) == 0);
+ DCHECK((temps & src.bit()) == 0);
+ // Primitive implementation using only one temporary register.
+
+ Register tmp = no_reg;
+ // Find a temp register in temps list.
+ for (int i = 0; i < kNumRegisters; i++) {
+ if ((temps & (1 << i)) != 0) {
+ tmp.code_ = i;
+ break;
+ }
+ }
+ DCHECK(!tmp.is(no_reg));
+
+ for (int i = 0; i < field_count; i++) {
+ ld(tmp, FieldMemOperand(src, i * kPointerSize));
+ sd(tmp, FieldMemOperand(dst, i * kPointerSize));
+ }
+}
+
+
+void MacroAssembler::CopyBytes(Register src,
+ Register dst,
+ Register length,
+ Register scratch) {
+ Label align_loop_1, word_loop, byte_loop, byte_loop_1, done;
+
+ // Align src before copying in word size chunks.
+ Branch(&byte_loop, le, length, Operand(kPointerSize));
+ bind(&align_loop_1);
+ And(scratch, src, kPointerSize - 1);
+ Branch(&word_loop, eq, scratch, Operand(zero_reg));
+ lbu(scratch, MemOperand(src));
+ Daddu(src, src, 1);
+ sb(scratch, MemOperand(dst));
+ Daddu(dst, dst, 1);
+ Dsubu(length, length, Operand(1));
+ Branch(&align_loop_1, ne, length, Operand(zero_reg));
+
+ // Copy bytes in word size chunks.
+ bind(&word_loop);
+ if (emit_debug_code()) {
+ And(scratch, src, kPointerSize - 1);
+ Assert(eq, kExpectingAlignmentForCopyBytes,
+ scratch, Operand(zero_reg));
+ }
+ Branch(&byte_loop, lt, length, Operand(kPointerSize));
+ ld(scratch, MemOperand(src));
+ Daddu(src, src, kPointerSize);
+
+ // TODO(kalmard) check if this can be optimized to use sw in most cases.
+ // Can't use unaligned access - copy byte by byte.
+ sb(scratch, MemOperand(dst, 0));
+ dsrl(scratch, scratch, 8);
+ sb(scratch, MemOperand(dst, 1));
+ dsrl(scratch, scratch, 8);
+ sb(scratch, MemOperand(dst, 2));
+ dsrl(scratch, scratch, 8);
+ sb(scratch, MemOperand(dst, 3));
+ dsrl(scratch, scratch, 8);
+ sb(scratch, MemOperand(dst, 4));
+ dsrl(scratch, scratch, 8);
+ sb(scratch, MemOperand(dst, 5));
+ dsrl(scratch, scratch, 8);
+ sb(scratch, MemOperand(dst, 6));
+ dsrl(scratch, scratch, 8);
+ sb(scratch, MemOperand(dst, 7));
+ Daddu(dst, dst, 8);
+
+ Dsubu(length, length, Operand(kPointerSize));
+ Branch(&word_loop);
+
+ // Copy the last bytes if any left.
+ bind(&byte_loop);
+ Branch(&done, eq, length, Operand(zero_reg));
+ bind(&byte_loop_1);
+ lbu(scratch, MemOperand(src));
+ Daddu(src, src, 1);
+ sb(scratch, MemOperand(dst));
+ Daddu(dst, dst, 1);
+ Dsubu(length, length, Operand(1));
+ Branch(&byte_loop_1, ne, length, Operand(zero_reg));
+ bind(&done);
+}
+
+
+void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
+ Register end_offset,
+ Register filler) {
+ Label loop, entry;
+ Branch(&entry);
+ bind(&loop);
+ sd(filler, MemOperand(start_offset));
+ Daddu(start_offset, start_offset, kPointerSize);
+ bind(&entry);
+ Branch(&loop, lt, start_offset, Operand(end_offset));
+}
+
+
+void MacroAssembler::CheckFastElements(Register map,
+ Register scratch,
+ Label* fail) {
+ STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
+ STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
+ STATIC_ASSERT(FAST_ELEMENTS == 2);
+ STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
+ lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset));
+ Branch(fail, hi, scratch,
+ Operand(Map::kMaximumBitField2FastHoleyElementValue));
+}
+
+
+void MacroAssembler::CheckFastObjectElements(Register map,
+ Register scratch,
+ Label* fail) {
+ STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
+ STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
+ STATIC_ASSERT(FAST_ELEMENTS == 2);
+ STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
+ lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset));
+ Branch(fail, ls, scratch,
+ Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
+ Branch(fail, hi, scratch,
+ Operand(Map::kMaximumBitField2FastHoleyElementValue));
+}
+
+
+void MacroAssembler::CheckFastSmiElements(Register map,
+ Register scratch,
+ Label* fail) {
+ STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
+ STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
+ lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset));
+ Branch(fail, hi, scratch,
+ Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
+}
+
+
+void MacroAssembler::StoreNumberToDoubleElements(Register value_reg,
+ Register key_reg,
+ Register elements_reg,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* fail,
+ int elements_offset) {
+ Label smi_value, maybe_nan, have_double_value, is_nan, done;
+ Register mantissa_reg = scratch2;
+ Register exponent_reg = scratch3;
+
+ // Handle smi values specially.
+ JumpIfSmi(value_reg, &smi_value);
+
+ // Ensure that the object is a heap number
+ CheckMap(value_reg,
+ scratch1,
+ Heap::kHeapNumberMapRootIndex,
+ fail,
+ DONT_DO_SMI_CHECK);
+
+ // Check for nan: all NaN values have a value greater (signed) than 0x7ff00000
+ // in the exponent.
+ li(scratch1, Operand(kNaNOrInfinityLowerBoundUpper32));
+ lw(exponent_reg, FieldMemOperand(value_reg, HeapNumber::kExponentOffset));
+ Branch(&maybe_nan, ge, exponent_reg, Operand(scratch1));
+
+ lwu(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset));
+
+ bind(&have_double_value);
+ // dsll(scratch1, key_reg, kDoubleSizeLog2 - kSmiTagSize);
+ dsra(scratch1, key_reg, 32 - kDoubleSizeLog2);
+ Daddu(scratch1, scratch1, elements_reg);
+ sw(mantissa_reg, FieldMemOperand(
+ scratch1, FixedDoubleArray::kHeaderSize - elements_offset));
+ uint32_t offset = FixedDoubleArray::kHeaderSize - elements_offset +
+ sizeof(kHoleNanLower32);
+ sw(exponent_reg, FieldMemOperand(scratch1, offset));
+ jmp(&done);
+
+ bind(&maybe_nan);
+ // Could be NaN, Infinity or -Infinity. If fraction is not zero, it's NaN,
+ // otherwise it's Infinity or -Infinity, and the non-NaN code path applies.
+ lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset));
+ Branch(&have_double_value, eq, mantissa_reg, Operand(zero_reg));
+ bind(&is_nan);
+ // Load canonical NaN for storing into the double array.
+ LoadRoot(at, Heap::kNanValueRootIndex);
+ lw(mantissa_reg, FieldMemOperand(at, HeapNumber::kMantissaOffset));
+ lw(exponent_reg, FieldMemOperand(at, HeapNumber::kExponentOffset));
+ jmp(&have_double_value);
+
+ bind(&smi_value);
+ Daddu(scratch1, elements_reg,
+ Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag -
+ elements_offset));
+ // dsll(scratch2, key_reg, kDoubleSizeLog2 - kSmiTagSize);
+ dsra(scratch2, key_reg, 32 - kDoubleSizeLog2);
+ Daddu(scratch1, scratch1, scratch2);
+ // scratch1 is now effective address of the double element
+
+ Register untagged_value = elements_reg;
+ SmiUntag(untagged_value, value_reg);
+ mtc1(untagged_value, f2);
+ cvt_d_w(f0, f2);
+ sdc1(f0, MemOperand(scratch1, 0));
+ bind(&done);
+}
+
+
+void MacroAssembler::CompareMapAndBranch(Register obj,
+ Register scratch,
+ Handle<Map> map,
+ Label* early_success,
+ Condition cond,
+ Label* branch_to) {
+ ld(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
+ CompareMapAndBranch(scratch, map, early_success, cond, branch_to);
+}
+
+
+void MacroAssembler::CompareMapAndBranch(Register obj_map,
+ Handle<Map> map,
+ Label* early_success,
+ Condition cond,
+ Label* branch_to) {
+ Branch(branch_to, cond, obj_map, Operand(map));
+}
+
+
+void MacroAssembler::CheckMap(Register obj,
+ Register scratch,
+ Handle<Map> map,
+ Label* fail,
+ SmiCheckType smi_check_type) {
+ if (smi_check_type == DO_SMI_CHECK) {
+ JumpIfSmi(obj, fail);
+ }
+ Label success;
+ CompareMapAndBranch(obj, scratch, map, &success, ne, fail);
+ bind(&success);
+}
+
+
+void MacroAssembler::DispatchMap(Register obj,
+ Register scratch,
+ Handle<Map> map,
+ Handle<Code> success,
+ SmiCheckType smi_check_type) {
+ Label fail;
+ if (smi_check_type == DO_SMI_CHECK) {
+ JumpIfSmi(obj, &fail);
+ }
+ ld(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
+ Jump(success, RelocInfo::CODE_TARGET, eq, scratch, Operand(map));
+ bind(&fail);
+}
+
+
+void MacroAssembler::CheckMap(Register obj,
+ Register scratch,
+ Heap::RootListIndex index,
+ Label* fail,
+ SmiCheckType smi_check_type) {
+ if (smi_check_type == DO_SMI_CHECK) {
+ JumpIfSmi(obj, fail);
+ }
+ ld(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
+ LoadRoot(at, index);
+ Branch(fail, ne, scratch, Operand(at));
+}
+
+
+void MacroAssembler::MovFromFloatResult(const DoubleRegister dst) {
+ if (IsMipsSoftFloatABI) {
+ Move(dst, v0, v1);
+ } else {
+ Move(dst, f0); // Reg f0 is o32 ABI FP return value.
+ }
+}
+
+
+void MacroAssembler::MovFromFloatParameter(const DoubleRegister dst) {
+ if (IsMipsSoftFloatABI) {
+ Move(dst, a0, a1);
+ } else {
+ Move(dst, f12); // Reg f12 is o32 ABI FP first argument value.
+ }
+}
+
+
+void MacroAssembler::MovToFloatParameter(DoubleRegister src) {
+ if (!IsMipsSoftFloatABI) {
+ Move(f12, src);
+ } else {
+ Move(a0, a1, src);
+ }
+}
+
+
+void MacroAssembler::MovToFloatResult(DoubleRegister src) {
+ if (!IsMipsSoftFloatABI) {
+ Move(f0, src);
+ } else {
+ Move(v0, v1, src);
+ }
+}
+
+
+void MacroAssembler::MovToFloatParameters(DoubleRegister src1,
+ DoubleRegister src2) {
+ if (!IsMipsSoftFloatABI) {
+ const DoubleRegister fparg2 = (kMipsAbi == kN64) ? f13 : f14;
+ if (src2.is(f12)) {
+ DCHECK(!src1.is(fparg2));
+ Move(fparg2, src2);
+ Move(f12, src1);
+ } else {
+ Move(f12, src1);
+ Move(fparg2, src2);
+ }
+ } else {
+ Move(a0, a1, src1);
+ Move(a2, a3, src2);
+ }
+}
+
+
+// -----------------------------------------------------------------------------
+// JavaScript invokes.
+
+void MacroAssembler::InvokePrologue(const ParameterCount& expected,
+ const ParameterCount& actual,
+ Handle<Code> code_constant,
+ Register code_reg,
+ Label* done,
+ bool* definitely_mismatches,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ bool definitely_matches = false;
+ *definitely_mismatches = false;
+ Label regular_invoke;
+
+ // Check whether the expected and actual arguments count match. If not,
+ // setup registers according to contract with ArgumentsAdaptorTrampoline:
+ // a0: actual arguments count
+ // a1: function (passed through to callee)
+ // a2: expected arguments count
+
+ // The code below is made a lot easier because the calling code already sets
+ // up actual and expected registers according to the contract if values are
+ // passed in registers.
+ DCHECK(actual.is_immediate() || actual.reg().is(a0));
+ DCHECK(expected.is_immediate() || expected.reg().is(a2));
+ DCHECK((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(a3));
+
+ if (expected.is_immediate()) {
+ DCHECK(actual.is_immediate());
+ if (expected.immediate() == actual.immediate()) {
+ definitely_matches = true;
+ } else {
+ li(a0, Operand(actual.immediate()));
+ const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
+ if (expected.immediate() == sentinel) {
+ // Don't worry about adapting arguments for builtins that
+ // don't want that done. Skip adaption code by making it look
+ // like we have a match between expected and actual number of
+ // arguments.
+ definitely_matches = true;
+ } else {
+ *definitely_mismatches = true;
+ li(a2, Operand(expected.immediate()));
+ }
+ }
+ } else if (actual.is_immediate()) {
+ Branch(&regular_invoke, eq, expected.reg(), Operand(actual.immediate()));
+ li(a0, Operand(actual.immediate()));
+ } else {
+ Branch(&regular_invoke, eq, expected.reg(), Operand(actual.reg()));
+ }
+
+ if (!definitely_matches) {
+ if (!code_constant.is_null()) {
+ li(a3, Operand(code_constant));
+ daddiu(a3, a3, Code::kHeaderSize - kHeapObjectTag);
+ }
+
+ Handle<Code> adaptor =
+ isolate()->builtins()->ArgumentsAdaptorTrampoline();
+ if (flag == CALL_FUNCTION) {
+ call_wrapper.BeforeCall(CallSize(adaptor));
+ Call(adaptor);
+ call_wrapper.AfterCall();
+ if (!*definitely_mismatches) {
+ Branch(done);
+ }
+ } else {
+ Jump(adaptor, RelocInfo::CODE_TARGET);
+ }
+ bind(&regular_invoke);
+ }
+}
+
+
+void MacroAssembler::InvokeCode(Register code,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ // You can't call a function without a valid frame.
+ DCHECK(flag == JUMP_FUNCTION || has_frame());
+
+ Label done;
+
+ bool definitely_mismatches = false;
+ InvokePrologue(expected, actual, Handle<Code>::null(), code,
+ &done, &definitely_mismatches, flag,
+ call_wrapper);
+ if (!definitely_mismatches) {
+ if (flag == CALL_FUNCTION) {
+ call_wrapper.BeforeCall(CallSize(code));
+ Call(code);
+ call_wrapper.AfterCall();
+ } else {
+ DCHECK(flag == JUMP_FUNCTION);
+ Jump(code);
+ }
+ // Continue here if InvokePrologue does handle the invocation due to
+ // mismatched parameter counts.
+ bind(&done);
+ }
+}
+
+
+void MacroAssembler::InvokeFunction(Register function,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ // You can't call a function without a valid frame.
+ DCHECK(flag == JUMP_FUNCTION || has_frame());
+
+ // Contract with called JS functions requires that function is passed in a1.
+ DCHECK(function.is(a1));
+ Register expected_reg = a2;
+ Register code_reg = a3;
+ ld(code_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
+ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
+ // The argument count is stored as int32_t on 64-bit platforms.
+ // TODO(plind): Smi on 32-bit platforms.
+ lw(expected_reg,
+ FieldMemOperand(code_reg,
+ SharedFunctionInfo::kFormalParameterCountOffset));
+ ld(code_reg, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
+ ParameterCount expected(expected_reg);
+ InvokeCode(code_reg, expected, actual, flag, call_wrapper);
+}
+
+
+void MacroAssembler::InvokeFunction(Register function,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ // You can't call a function without a valid frame.
+ DCHECK(flag == JUMP_FUNCTION || has_frame());
+
+ // Contract with called JS functions requires that function is passed in a1.
+ DCHECK(function.is(a1));
+
+ // Get the function and setup the context.
+ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
+
+ // We call indirectly through the code field in the function to
+ // allow recompilation to take effect without changing any of the
+ // call sites.
+ ld(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
+ InvokeCode(a3, expected, actual, flag, call_wrapper);
+}
+
+
+void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ li(a1, function);
+ InvokeFunction(a1, expected, actual, flag, call_wrapper);
+}
+
+
+void MacroAssembler::IsObjectJSObjectType(Register heap_object,
+ Register map,
+ Register scratch,
+ Label* fail) {
+ ld(map, FieldMemOperand(heap_object, HeapObject::kMapOffset));
+ IsInstanceJSObjectType(map, scratch, fail);
+}
+
+
+void MacroAssembler::IsInstanceJSObjectType(Register map,
+ Register scratch,
+ Label* fail) {
+ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
+ Branch(fail, lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
+ Branch(fail, gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
+}
+
+
+void MacroAssembler::IsObjectJSStringType(Register object,
+ Register scratch,
+ Label* fail) {
+ DCHECK(kNotStringTag != 0);
+
+ ld(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
+ lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
+ And(scratch, scratch, Operand(kIsNotStringMask));
+ Branch(fail, ne, scratch, Operand(zero_reg));
+}
+
+
+void MacroAssembler::IsObjectNameType(Register object,
+ Register scratch,
+ Label* fail) {
+ ld(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
+ lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
+ Branch(fail, hi, scratch, Operand(LAST_NAME_TYPE));
+}
+
+
+// ---------------------------------------------------------------------------
+// Support functions.
+
+
+void MacroAssembler::TryGetFunctionPrototype(Register function,
+ Register result,
+ Register scratch,
+ Label* miss,
+ bool miss_on_bound_function) {
+ Label non_instance;
+ if (miss_on_bound_function) {
+ // Check that the receiver isn't a smi.
+ JumpIfSmi(function, miss);
+
+ // Check that the function really is a function. Load map into result reg.
+ GetObjectType(function, result, scratch);
+ Branch(miss, ne, scratch, Operand(JS_FUNCTION_TYPE));
+
+ ld(scratch,
+ FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
+ lwu(scratch,
+ FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
+ And(scratch, scratch,
+ Operand(1 << SharedFunctionInfo::kBoundFunction));
+ Branch(miss, ne, scratch, Operand(zero_reg));
+
+ // Make sure that the function has an instance prototype.
+ lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
+ And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype));
+ Branch(&non_instance, ne, scratch, Operand(zero_reg));
+ }
+
+ // Get the prototype or initial map from the function.
+ ld(result,
+ FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
+
+ // If the prototype or initial map is the hole, don't return it and
+ // simply miss the cache instead. This will allow us to allocate a
+ // prototype object on-demand in the runtime system.
+ LoadRoot(t8, Heap::kTheHoleValueRootIndex);
+ Branch(miss, eq, result, Operand(t8));
+
+ // If the function does not have an initial map, we're done.
+ Label done;
+ GetObjectType(result, scratch, scratch);
+ Branch(&done, ne, scratch, Operand(MAP_TYPE));
+
+ // Get the prototype from the initial map.
+ ld(result, FieldMemOperand(result, Map::kPrototypeOffset));
+
+ if (miss_on_bound_function) {
+ jmp(&done);
+
+ // Non-instance prototype: Fetch prototype from constructor field
+ // in initial map.
+ bind(&non_instance);
+ ld(result, FieldMemOperand(result, Map::kConstructorOffset));
+ }
+
+ // All done.
+ bind(&done);
+}
+
+
+void MacroAssembler::GetObjectType(Register object,
+ Register map,
+ Register type_reg) {
+ ld(map, FieldMemOperand(object, HeapObject::kMapOffset));
+ lbu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
+}
+
+
+// -----------------------------------------------------------------------------
+// Runtime calls.
+
+void MacroAssembler::CallStub(CodeStub* stub,
+ TypeFeedbackId ast_id,
+ Condition cond,
+ Register r1,
+ const Operand& r2,
+ BranchDelaySlot bd) {
+ DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs.
+ Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id,
+ cond, r1, r2, bd);
+}
+
+
+void MacroAssembler::TailCallStub(CodeStub* stub,
+ Condition cond,
+ Register r1,
+ const Operand& r2,
+ BranchDelaySlot bd) {
+ Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond, r1, r2, bd);
+}
+
+
+static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
+ int64_t offset = (ref0.address() - ref1.address());
+ DCHECK(static_cast<int>(offset) == offset);
+ return static_cast<int>(offset);
+}
+
+
+void MacroAssembler::CallApiFunctionAndReturn(
+ Register function_address,
+ ExternalReference thunk_ref,
+ int stack_space,
+ MemOperand return_value_operand,
+ MemOperand* context_restore_operand) {
+ ExternalReference next_address =
+ ExternalReference::handle_scope_next_address(isolate());
+ const int kNextOffset = 0;
+ const int kLimitOffset = AddressOffset(
+ ExternalReference::handle_scope_limit_address(isolate()),
+ next_address);
+ const int kLevelOffset = AddressOffset(
+ ExternalReference::handle_scope_level_address(isolate()),
+ next_address);
+
+ DCHECK(function_address.is(a1) || function_address.is(a2));
+
+ Label profiler_disabled;
+ Label end_profiler_check;
+ li(t9, Operand(ExternalReference::is_profiling_address(isolate())));
+ lb(t9, MemOperand(t9, 0));
+ Branch(&profiler_disabled, eq, t9, Operand(zero_reg));
+
+ // Additional parameter is the address of the actual callback.
+ li(t9, Operand(thunk_ref));
+ jmp(&end_profiler_check);
+
+ bind(&profiler_disabled);
+ mov(t9, function_address);
+ bind(&end_profiler_check);
+
+ // Allocate HandleScope in callee-save registers.
+ li(s3, Operand(next_address));
+ ld(s0, MemOperand(s3, kNextOffset));
+ ld(s1, MemOperand(s3, kLimitOffset));
+ ld(s2, MemOperand(s3, kLevelOffset));
+ Daddu(s2, s2, Operand(1));
+ sd(s2, MemOperand(s3, kLevelOffset));
+
+ if (FLAG_log_timer_events) {
+ FrameScope frame(this, StackFrame::MANUAL);
+ PushSafepointRegisters();
+ PrepareCallCFunction(1, a0);
+ li(a0, Operand(ExternalReference::isolate_address(isolate())));
+ CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
+ PopSafepointRegisters();
+ }
+
+ // Native call returns to the DirectCEntry stub which redirects to the
+ // return address pushed on stack (could have moved after GC).
+ // DirectCEntry stub itself is generated early and never moves.
+ DirectCEntryStub stub(isolate());
+ stub.GenerateCall(this, t9);
+
+ if (FLAG_log_timer_events) {
+ FrameScope frame(this, StackFrame::MANUAL);
+ PushSafepointRegisters();
+ PrepareCallCFunction(1, a0);
+ li(a0, Operand(ExternalReference::isolate_address(isolate())));
+ CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
+ PopSafepointRegisters();
+ }
+
+ Label promote_scheduled_exception;
+ Label exception_handled;
+ Label delete_allocated_handles;
+ Label leave_exit_frame;
+ Label return_value_loaded;
+
+ // Load value from ReturnValue.
+ ld(v0, return_value_operand);
+ bind(&return_value_loaded);
+
+ // No more valid handles (the result handle was the last one). Restore
+ // previous handle scope.
+ sd(s0, MemOperand(s3, kNextOffset));
+ if (emit_debug_code()) {
+ ld(a1, MemOperand(s3, kLevelOffset));
+ Check(eq, kUnexpectedLevelAfterReturnFromApiCall, a1, Operand(s2));
+ }
+ Dsubu(s2, s2, Operand(1));
+ sd(s2, MemOperand(s3, kLevelOffset));
+ ld(at, MemOperand(s3, kLimitOffset));
+ Branch(&delete_allocated_handles, ne, s1, Operand(at));
+
+ // Check if the function scheduled an exception.
+ bind(&leave_exit_frame);
+ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
+ li(at, Operand(ExternalReference::scheduled_exception_address(isolate())));
+ ld(a5, MemOperand(at));
+ Branch(&promote_scheduled_exception, ne, a4, Operand(a5));
+ bind(&exception_handled);
+
+ bool restore_context = context_restore_operand != NULL;
+ if (restore_context) {
+ ld(cp, *context_restore_operand);
+ }
+ li(s0, Operand(stack_space));
+ LeaveExitFrame(false, s0, !restore_context, EMIT_RETURN);
+
+ bind(&promote_scheduled_exception);
+ {
+ FrameScope frame(this, StackFrame::INTERNAL);
+ CallExternalReference(
+ ExternalReference(Runtime::kPromoteScheduledException, isolate()),
+ 0);
+ }
+ jmp(&exception_handled);
+
+ // HandleScope limit has changed. Delete allocated extensions.
+ bind(&delete_allocated_handles);
+ sd(s1, MemOperand(s3, kLimitOffset));
+ mov(s0, v0);
+ mov(a0, v0);
+ PrepareCallCFunction(1, s1);
+ li(a0, Operand(ExternalReference::isolate_address(isolate())));
+ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate()),
+ 1);
+ mov(v0, s0);
+ jmp(&leave_exit_frame);
+}
+
+
+bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
+ return has_frame_ || !stub->SometimesSetsUpAFrame();
+}
+
+
+void MacroAssembler::IndexFromHash(Register hash, Register index) {
+ // If the hash field contains an array index pick it out. The assert checks
+ // that the constants for the maximum number of digits for an array index
+ // cached in the hash field and the number of bits reserved for it does not
+ // conflict.
+ DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
+ (1 << String::kArrayIndexValueBits));
+ DecodeFieldToSmi<String::ArrayIndexValueBits>(index, hash);
+}
+
+
+void MacroAssembler::ObjectToDoubleFPURegister(Register object,
+ FPURegister result,
+ Register scratch1,
+ Register scratch2,
+ Register heap_number_map,
+ Label* not_number,
+ ObjectToDoubleFlags flags) {
+ Label done;
+ if ((flags & OBJECT_NOT_SMI) == 0) {
+ Label not_smi;
+ JumpIfNotSmi(object, &not_smi);
+ // Remove smi tag and convert to double.
+ // dsra(scratch1, object, kSmiTagSize);
+ dsra32(scratch1, object, 0);
+ mtc1(scratch1, result);
+ cvt_d_w(result, result);
+ Branch(&done);
+ bind(&not_smi);
+ }
+ // Check for heap number and load double value from it.
+ ld(scratch1, FieldMemOperand(object, HeapObject::kMapOffset));
+ Branch(not_number, ne, scratch1, Operand(heap_number_map));
+
+ if ((flags & AVOID_NANS_AND_INFINITIES) != 0) {
+ // If exponent is all ones the number is either a NaN or +/-Infinity.
+ Register exponent = scratch1;
+ Register mask_reg = scratch2;
+ lwu(exponent, FieldMemOperand(object, HeapNumber::kExponentOffset));
+ li(mask_reg, HeapNumber::kExponentMask);
+
+ And(exponent, exponent, mask_reg);
+ Branch(not_number, eq, exponent, Operand(mask_reg));
+ }
+ ldc1(result, FieldMemOperand(object, HeapNumber::kValueOffset));
+ bind(&done);
+}
+
+
+void MacroAssembler::SmiToDoubleFPURegister(Register smi,
+ FPURegister value,
+ Register scratch1) {
+ // dsra(scratch1, smi, kSmiTagSize);
+ dsra32(scratch1, smi, 0);
+ mtc1(scratch1, value);
+ cvt_d_w(value, value);
+}
+
+
+void MacroAssembler::AdduAndCheckForOverflow(Register dst,
+ Register left,
+ Register right,
+ Register overflow_dst,
+ Register scratch) {
+ DCHECK(!dst.is(overflow_dst));
+ DCHECK(!dst.is(scratch));
+ DCHECK(!overflow_dst.is(scratch));
+ DCHECK(!overflow_dst.is(left));
+ DCHECK(!overflow_dst.is(right));
+
+ if (left.is(right) && dst.is(left)) {
+ DCHECK(!dst.is(t9));
+ DCHECK(!scratch.is(t9));
+ DCHECK(!left.is(t9));
+ DCHECK(!right.is(t9));
+ DCHECK(!overflow_dst.is(t9));
+ mov(t9, right);
+ right = t9;
+ }
+
+ if (dst.is(left)) {
+ mov(scratch, left); // Preserve left.
+ daddu(dst, left, right); // Left is overwritten.
+ xor_(scratch, dst, scratch); // Original left.
+ xor_(overflow_dst, dst, right);
+ and_(overflow_dst, overflow_dst, scratch);
+ } else if (dst.is(right)) {
+ mov(scratch, right); // Preserve right.
+ daddu(dst, left, right); // Right is overwritten.
+ xor_(scratch, dst, scratch); // Original right.
+ xor_(overflow_dst, dst, left);
+ and_(overflow_dst, overflow_dst, scratch);
+ } else {
+ daddu(dst, left, right);
+ xor_(overflow_dst, dst, left);
+ xor_(scratch, dst, right);
+ and_(overflow_dst, scratch, overflow_dst);
+ }
+}
+
+
+void MacroAssembler::SubuAndCheckForOverflow(Register dst,
+ Register left,
+ Register right,
+ Register overflow_dst,
+ Register scratch) {
+ DCHECK(!dst.is(overflow_dst));
+ DCHECK(!dst.is(scratch));
+ DCHECK(!overflow_dst.is(scratch));
+ DCHECK(!overflow_dst.is(left));
+ DCHECK(!overflow_dst.is(right));
+ DCHECK(!scratch.is(left));
+ DCHECK(!scratch.is(right));
+
+ // This happens with some crankshaft code. Since Subu works fine if
+ // left == right, let's not make that restriction here.
+ if (left.is(right)) {
+ mov(dst, zero_reg);
+ mov(overflow_dst, zero_reg);
+ return;
+ }
+
+ if (dst.is(left)) {
+ mov(scratch, left); // Preserve left.
+ dsubu(dst, left, right); // Left is overwritten.
+ xor_(overflow_dst, dst, scratch); // scratch is original left.
+ xor_(scratch, scratch, right); // scratch is original left.
+ and_(overflow_dst, scratch, overflow_dst);
+ } else if (dst.is(right)) {
+ mov(scratch, right); // Preserve right.
+ dsubu(dst, left, right); // Right is overwritten.
+ xor_(overflow_dst, dst, left);
+ xor_(scratch, left, scratch); // Original right.
+ and_(overflow_dst, scratch, overflow_dst);
+ } else {
+ dsubu(dst, left, right);
+ xor_(overflow_dst, dst, left);
+ xor_(scratch, left, right);
+ and_(overflow_dst, scratch, overflow_dst);
+ }
+}
+
+
+void MacroAssembler::CallRuntime(const Runtime::Function* f,
+ int num_arguments,
+ SaveFPRegsMode save_doubles) {
+ // All parameters are on the stack. v0 has the return value after call.
+
+ // If the expected number of arguments of the runtime function is
+ // constant, we check that the actual number of arguments match the
+ // expectation.
+ CHECK(f->nargs < 0 || f->nargs == num_arguments);
+
+ // TODO(1236192): Most runtime routines don't need the number of
+ // arguments passed in because it is constant. At some point we
+ // should remove this need and make the runtime routine entry code
+ // smarter.
+ PrepareCEntryArgs(num_arguments);
+ PrepareCEntryFunction(ExternalReference(f, isolate()));
+ CEntryStub stub(isolate(), 1, save_doubles);
+ CallStub(&stub);
+}
+
+
+void MacroAssembler::CallExternalReference(const ExternalReference& ext,
+ int num_arguments,
+ BranchDelaySlot bd) {
+ PrepareCEntryArgs(num_arguments);
+ PrepareCEntryFunction(ext);
+
+ CEntryStub stub(isolate(), 1);
+ CallStub(&stub, TypeFeedbackId::None(), al, zero_reg, Operand(zero_reg), bd);
+}
+
+
+void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
+ int num_arguments,
+ int result_size) {
+ // TODO(1236192): Most runtime routines don't need the number of
+ // arguments passed in because it is constant. At some point we
+ // should remove this need and make the runtime routine entry code
+ // smarter.
+ PrepareCEntryArgs(num_arguments);
+ JumpToExternalReference(ext);
+}
+
+
+void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
+ int num_arguments,
+ int result_size) {
+ TailCallExternalReference(ExternalReference(fid, isolate()),
+ num_arguments,
+ result_size);
+}
+
+
+void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin,
+ BranchDelaySlot bd) {
+ PrepareCEntryFunction(builtin);
+ CEntryStub stub(isolate(), 1);
+ Jump(stub.GetCode(),
+ RelocInfo::CODE_TARGET,
+ al,
+ zero_reg,
+ Operand(zero_reg),
+ bd);
+}
+
+
+void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ // You can't call a builtin without a valid frame.
+ DCHECK(flag == JUMP_FUNCTION || has_frame());
+
+ GetBuiltinEntry(t9, id);
+ if (flag == CALL_FUNCTION) {
+ call_wrapper.BeforeCall(CallSize(t9));
+ Call(t9);
+ call_wrapper.AfterCall();
+ } else {
+ DCHECK(flag == JUMP_FUNCTION);
+ Jump(t9);
+ }
+}
+
+
+void MacroAssembler::GetBuiltinFunction(Register target,
+ Builtins::JavaScript id) {
+ // Load the builtins object into target register.
+ ld(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
+ ld(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
+ // Load the JavaScript builtin function from the builtins object.
+ ld(target, FieldMemOperand(target,
+ JSBuiltinsObject::OffsetOfFunctionWithId(id)));
+}
+
+
+void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
+ DCHECK(!target.is(a1));
+ GetBuiltinFunction(a1, id);
+ // Load the code entry point from the builtins object.
+ ld(target, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
+}
+
+
+void MacroAssembler::SetCounter(StatsCounter* counter, int value,
+ Register scratch1, Register scratch2) {
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ li(scratch1, Operand(value));
+ li(scratch2, Operand(ExternalReference(counter)));
+ sd(scratch1, MemOperand(scratch2));
+ }
+}
+
+
+void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
+ Register scratch1, Register scratch2) {
+ DCHECK(value > 0);
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ li(scratch2, Operand(ExternalReference(counter)));
+ ld(scratch1, MemOperand(scratch2));
+ Daddu(scratch1, scratch1, Operand(value));
+ sd(scratch1, MemOperand(scratch2));
+ }
+}
+
+
+void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
+ Register scratch1, Register scratch2) {
+ DCHECK(value > 0);
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ li(scratch2, Operand(ExternalReference(counter)));
+ ld(scratch1, MemOperand(scratch2));
+ Dsubu(scratch1, scratch1, Operand(value));
+ sd(scratch1, MemOperand(scratch2));
+ }
+}
+
+
+// -----------------------------------------------------------------------------
+// Debugging.
+
+void MacroAssembler::Assert(Condition cc, BailoutReason reason,
+ Register rs, Operand rt) {
+ if (emit_debug_code())
+ Check(cc, reason, rs, rt);
+}
+
+
+void MacroAssembler::AssertFastElements(Register elements) {
+ if (emit_debug_code()) {
+ DCHECK(!elements.is(at));
+ Label ok;
+ push(elements);
+ ld(elements, FieldMemOperand(elements, HeapObject::kMapOffset));
+ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
+ Branch(&ok, eq, elements, Operand(at));
+ LoadRoot(at, Heap::kFixedDoubleArrayMapRootIndex);
+ Branch(&ok, eq, elements, Operand(at));
+ LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex);
+ Branch(&ok, eq, elements, Operand(at));
+ Abort(kJSObjectWithFastElementsMapHasSlowElements);
+ bind(&ok);
+ pop(elements);
+ }
+}
+
+
+void MacroAssembler::Check(Condition cc, BailoutReason reason,
+ Register rs, Operand rt) {
+ Label L;
+ Branch(&L, cc, rs, rt);
+ Abort(reason);
+ // Will not return here.
+ bind(&L);
+}
+
+
+void MacroAssembler::Abort(BailoutReason reason) {
+ Label abort_start;
+ bind(&abort_start);
+#ifdef DEBUG
+ const char* msg = GetBailoutReason(reason);
+ if (msg != NULL) {
+ RecordComment("Abort message: ");
+ RecordComment(msg);
+ }
+
+ if (FLAG_trap_on_abort) {
+ stop(msg);
+ return;
+ }
+#endif
+
+ li(a0, Operand(Smi::FromInt(reason)));
+ push(a0);
+ // Disable stub call restrictions to always allow calls to abort.
+ if (!has_frame_) {
+ // We don't actually want to generate a pile of code for this, so just
+ // claim there is a stack frame, without generating one.
+ FrameScope scope(this, StackFrame::NONE);
+ CallRuntime(Runtime::kAbort, 1);
+ } else {
+ CallRuntime(Runtime::kAbort, 1);
+ }
+ // Will not return here.
+ if (is_trampoline_pool_blocked()) {
+ // If the calling code cares about the exact number of
+ // instructions generated, we insert padding here to keep the size
+ // of the Abort macro constant.
+ // Currently in debug mode with debug_code enabled the number of
+ // generated instructions is 10, so we use this as a maximum value.
+ static const int kExpectedAbortInstructions = 10;
+ int abort_instructions = InstructionsGeneratedSince(&abort_start);
+ DCHECK(abort_instructions <= kExpectedAbortInstructions);
+ while (abort_instructions++ < kExpectedAbortInstructions) {
+ nop();
+ }
+ }
+}
+
+
+void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
+ if (context_chain_length > 0) {
+ // Move up the chain of contexts to the context containing the slot.
+ ld(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
+ for (int i = 1; i < context_chain_length; i++) {
+ ld(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
+ }
+ } else {
+ // Slot is in the current function context. Move it into the
+ // destination register in case we store into it (the write barrier
+ // cannot be allowed to destroy the context in esi).
+ Move(dst, cp);
+ }
+}
+
+
+void MacroAssembler::LoadTransitionedArrayMapConditional(
+ ElementsKind expected_kind,
+ ElementsKind transitioned_kind,
+ Register map_in_out,
+ Register scratch,
+ Label* no_map_match) {
+ // Load the global or builtins object from the current context.
+ ld(scratch,
+ MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
+ ld(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
+
+ // Check that the function's map is the same as the expected cached map.
+ ld(scratch,
+ MemOperand(scratch,
+ Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX)));
+ size_t offset = expected_kind * kPointerSize +
+ FixedArrayBase::kHeaderSize;
+ ld(at, FieldMemOperand(scratch, offset));
+ Branch(no_map_match, ne, map_in_out, Operand(at));
+
+ // Use the transitioned cached map.
+ offset = transitioned_kind * kPointerSize +
+ FixedArrayBase::kHeaderSize;
+ ld(map_in_out, FieldMemOperand(scratch, offset));
+}
+
+
+void MacroAssembler::LoadGlobalFunction(int index, Register function) {
+ // Load the global or builtins object from the current context.
+ ld(function,
+ MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
+ // Load the native context from the global or builtins object.
+ ld(function, FieldMemOperand(function,
+ GlobalObject::kNativeContextOffset));
+ // Load the function from the native context.
+ ld(function, MemOperand(function, Context::SlotOffset(index)));
+}
+
+
+void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
+ Register map,
+ Register scratch) {
+ // Load the initial map. The global functions all have initial maps.
+ ld(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
+ if (emit_debug_code()) {
+ Label ok, fail;
+ CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
+ Branch(&ok);
+ bind(&fail);
+ Abort(kGlobalFunctionsMustHaveInitialMap);
+ bind(&ok);
+ }
+}
+
+
+void MacroAssembler::StubPrologue() {
+ Push(ra, fp, cp);
+ Push(Smi::FromInt(StackFrame::STUB));
+ // Adjust FP to point to saved FP.
+ Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
+}
+
+
+void MacroAssembler::Prologue(bool code_pre_aging) {
+ PredictableCodeSizeScope predictible_code_size_scope(
+ this, kNoCodeAgeSequenceLength);
+ // The following three instructions must remain together and unmodified
+ // for code aging to work properly.
+ if (code_pre_aging) {
+ // Pre-age the code.
+ Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
+ nop(Assembler::CODE_AGE_MARKER_NOP);
+ // Load the stub address to t9 and call it,
+ // GetCodeAgeAndParity() extracts the stub address from this instruction.
+ li(t9,
+ Operand(reinterpret_cast<uint64_t>(stub->instruction_start())),
+ ADDRESS_LOAD);
+ nop(); // Prevent jalr to jal optimization.
+ jalr(t9, a0);
+ nop(); // Branch delay slot nop.
+ nop(); // Pad the empty space.
+ } else {
+ Push(ra, fp, cp, a1);
+ nop(Assembler::CODE_AGE_SEQUENCE_NOP);
+ nop(Assembler::CODE_AGE_SEQUENCE_NOP);
+ nop(Assembler::CODE_AGE_SEQUENCE_NOP);
+ // Adjust fp to point to caller's fp.
+ Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
+ }
+}
+
+
+void MacroAssembler::EnterFrame(StackFrame::Type type) {
+ daddiu(sp, sp, -5 * kPointerSize);
+ li(t8, Operand(Smi::FromInt(type)));
+ li(t9, Operand(CodeObject()), CONSTANT_SIZE);
+ sd(ra, MemOperand(sp, 4 * kPointerSize));
+ sd(fp, MemOperand(sp, 3 * kPointerSize));
+ sd(cp, MemOperand(sp, 2 * kPointerSize));
+ sd(t8, MemOperand(sp, 1 * kPointerSize));
+ sd(t9, MemOperand(sp, 0 * kPointerSize));
+ // Adjust FP to point to saved FP.
+ Daddu(fp, sp,
+ Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize));
+}
+
+
+void MacroAssembler::LeaveFrame(StackFrame::Type type) {
+ mov(sp, fp);
+ ld(fp, MemOperand(sp, 0 * kPointerSize));
+ ld(ra, MemOperand(sp, 1 * kPointerSize));
+ daddiu(sp, sp, 2 * kPointerSize);
+}
+
+
+void MacroAssembler::EnterExitFrame(bool save_doubles,
+ int stack_space) {
+ // Set up the frame structure on the stack.
+ STATIC_ASSERT(2 * kPointerSize == ExitFrameConstants::kCallerSPDisplacement);
+ STATIC_ASSERT(1 * kPointerSize == ExitFrameConstants::kCallerPCOffset);
+ STATIC_ASSERT(0 * kPointerSize == ExitFrameConstants::kCallerFPOffset);
+
+ // This is how the stack will look:
+ // fp + 2 (==kCallerSPDisplacement) - old stack's end
+ // [fp + 1 (==kCallerPCOffset)] - saved old ra
+ // [fp + 0 (==kCallerFPOffset)] - saved old fp
+ // [fp - 1 (==kSPOffset)] - sp of the called function
+ // [fp - 2 (==kCodeOffset)] - CodeObject
+ // fp - (2 + stack_space + alignment) == sp == [fp - kSPOffset] - top of the
+ // new stack (will contain saved ra)
+
+ // Save registers.
+ daddiu(sp, sp, -4 * kPointerSize);
+ sd(ra, MemOperand(sp, 3 * kPointerSize));
+ sd(fp, MemOperand(sp, 2 * kPointerSize));
+ daddiu(fp, sp, 2 * kPointerSize); // Set up new frame pointer.
+
+ if (emit_debug_code()) {
+ sd(zero_reg, MemOperand(fp, ExitFrameConstants::kSPOffset));
+ }
+
+ // Accessed from ExitFrame::code_slot.
+ li(t8, Operand(CodeObject()), CONSTANT_SIZE);
+ sd(t8, MemOperand(fp, ExitFrameConstants::kCodeOffset));
+
+ // Save the frame pointer and the context in top.
+ li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
+ sd(fp, MemOperand(t8));
+ li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
+ sd(cp, MemOperand(t8));
+
+ const int frame_alignment = MacroAssembler::ActivationFrameAlignment();
+ if (save_doubles) {
+ // The stack is already aligned to 0 modulo 8 for stores with sdc1.
+ int kNumOfSavedRegisters = FPURegister::kMaxNumRegisters / 2;
+ int space = kNumOfSavedRegisters * kDoubleSize ;
+ Dsubu(sp, sp, Operand(space));
+ // Remember: we only need to save every 2nd double FPU value.
+ for (int i = 0; i < kNumOfSavedRegisters; i++) {
+ FPURegister reg = FPURegister::from_code(2 * i);
+ sdc1(reg, MemOperand(sp, i * kDoubleSize));
+ }
+ }
+
+ // Reserve place for the return address, stack space and an optional slot
+ // (used by the DirectCEntryStub to hold the return value if a struct is
+ // returned) and align the frame preparing for calling the runtime function.
+ DCHECK(stack_space >= 0);
+ Dsubu(sp, sp, Operand((stack_space + 2) * kPointerSize));
+ if (frame_alignment > 0) {
+ DCHECK(IsPowerOf2(frame_alignment));
+ And(sp, sp, Operand(-frame_alignment)); // Align stack.
+ }
+
+ // Set the exit frame sp value to point just before the return address
+ // location.
+ daddiu(at, sp, kPointerSize);
+ sd(at, MemOperand(fp, ExitFrameConstants::kSPOffset));
+}
+
+
+void MacroAssembler::LeaveExitFrame(bool save_doubles,
+ Register argument_count,
+ bool restore_context,
+ bool do_return) {
+ // Optionally restore all double registers.
+ if (save_doubles) {
+ // Remember: we only need to restore every 2nd double FPU value.
+ int kNumOfSavedRegisters = FPURegister::kMaxNumRegisters / 2;
+ Dsubu(t8, fp, Operand(ExitFrameConstants::kFrameSize +
+ kNumOfSavedRegisters * kDoubleSize));
+ for (int i = 0; i < kNumOfSavedRegisters; i++) {
+ FPURegister reg = FPURegister::from_code(2 * i);
+ ldc1(reg, MemOperand(t8, i * kDoubleSize));
+ }
+ }
+
+ // Clear top frame.
+ li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
+ sd(zero_reg, MemOperand(t8));
+
+ // Restore current context from top and clear it in debug mode.
+ if (restore_context) {
+ li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
+ ld(cp, MemOperand(t8));
+ }
+#ifdef DEBUG
+ li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
+ sd(a3, MemOperand(t8));
+#endif
+
+ // Pop the arguments, restore registers, and return.
+ mov(sp, fp); // Respect ABI stack constraint.
+ ld(fp, MemOperand(sp, ExitFrameConstants::kCallerFPOffset));
+ ld(ra, MemOperand(sp, ExitFrameConstants::kCallerPCOffset));
+
+ if (argument_count.is_valid()) {
+ dsll(t8, argument_count, kPointerSizeLog2);
+ daddu(sp, sp, t8);
+ }
+
+ if (do_return) {
+ Ret(USE_DELAY_SLOT);
+ // If returning, the instruction in the delay slot will be the addiu below.
+ }
+ daddiu(sp, sp, 2 * kPointerSize);
+}
+
+
+void MacroAssembler::InitializeNewString(Register string,
+ Register length,
+ Heap::RootListIndex map_index,
+ Register scratch1,
+ Register scratch2) {
+ // dsll(scratch1, length, kSmiTagSize);
+ dsll32(scratch1, length, 0);
+ LoadRoot(scratch2, map_index);
+ sd(scratch1, FieldMemOperand(string, String::kLengthOffset));
+ li(scratch1, Operand(String::kEmptyHashField));
+ sd(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
+ sd(scratch1, FieldMemOperand(string, String::kHashFieldOffset));
+}
+
+
+int MacroAssembler::ActivationFrameAlignment() {
+#if V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
+ // Running on the real platform. Use the alignment as mandated by the local
+ // environment.
+ // Note: This will break if we ever start generating snapshots on one Mips
+ // platform for another Mips platform with a different alignment.
+ return base::OS::ActivationFrameAlignment();
+#else // V8_HOST_ARCH_MIPS
+ // If we are using the simulator then we should always align to the expected
+ // alignment. As the simulator is used to generate snapshots we do not know
+ // if the target platform will need alignment, so this is controlled from a
+ // flag.
+ return FLAG_sim_stack_alignment;
+#endif // V8_HOST_ARCH_MIPS
+}
+
+
+void MacroAssembler::AssertStackIsAligned() {
+ if (emit_debug_code()) {
+ const int frame_alignment = ActivationFrameAlignment();
+ const int frame_alignment_mask = frame_alignment - 1;
+
+ if (frame_alignment > kPointerSize) {
+ Label alignment_as_expected;
+ DCHECK(IsPowerOf2(frame_alignment));
+ andi(at, sp, frame_alignment_mask);
+ Branch(&alignment_as_expected, eq, at, Operand(zero_reg));
+ // Don't use Check here, as it will call Runtime_Abort re-entering here.
+ stop("Unexpected stack alignment");
+ bind(&alignment_as_expected);
+ }
+ }
+}
+
+
+void MacroAssembler::JumpIfNotPowerOfTwoOrZero(
+ Register reg,
+ Register scratch,
+ Label* not_power_of_two_or_zero) {
+ Dsubu(scratch, reg, Operand(1));
+ Branch(USE_DELAY_SLOT, not_power_of_two_or_zero, lt,
+ scratch, Operand(zero_reg));
+ and_(at, scratch, reg); // In the delay slot.
+ Branch(not_power_of_two_or_zero, ne, at, Operand(zero_reg));
+}
+
+
+void MacroAssembler::SmiTagCheckOverflow(Register reg, Register overflow) {
+ DCHECK(!reg.is(overflow));
+ mov(overflow, reg); // Save original value.
+ SmiTag(reg);
+ xor_(overflow, overflow, reg); // Overflow if (value ^ 2 * value) < 0.
+}
+
+
+void MacroAssembler::SmiTagCheckOverflow(Register dst,
+ Register src,
+ Register overflow) {
+ if (dst.is(src)) {
+ // Fall back to slower case.
+ SmiTagCheckOverflow(dst, overflow);
+ } else {
+ DCHECK(!dst.is(src));
+ DCHECK(!dst.is(overflow));
+ DCHECK(!src.is(overflow));
+ SmiTag(dst, src);
+ xor_(overflow, dst, src); // Overflow if (value ^ 2 * value) < 0.
+ }
+}
+
+
+void MacroAssembler::SmiLoadUntag(Register dst, MemOperand src) {
+ if (SmiValuesAre32Bits()) {
+ lw(dst, UntagSmiMemOperand(src.rm(), src.offset()));
+ } else {
+ lw(dst, src);
+ SmiUntag(dst);
+ }
+}
+
+
+void MacroAssembler::SmiLoadScale(Register dst, MemOperand src, int scale) {
+ if (SmiValuesAre32Bits()) {
+ // TODO(plind): not clear if lw or ld faster here, need micro-benchmark.
+ lw(dst, UntagSmiMemOperand(src.rm(), src.offset()));
+ dsll(dst, dst, scale);
+ } else {
+ lw(dst, src);
+ DCHECK(scale >= kSmiTagSize);
+ sll(dst, dst, scale - kSmiTagSize);
+ }
+}
+
+
+// Returns 2 values: the Smi and a scaled version of the int within the Smi.
+void MacroAssembler::SmiLoadWithScale(Register d_smi,
+ Register d_scaled,
+ MemOperand src,
+ int scale) {
+ if (SmiValuesAre32Bits()) {
+ ld(d_smi, src);
+ dsra(d_scaled, d_smi, kSmiShift - scale);
+ } else {
+ lw(d_smi, src);
+ DCHECK(scale >= kSmiTagSize);
+ sll(d_scaled, d_smi, scale - kSmiTagSize);
+ }
+}
+
+
+// Returns 2 values: the untagged Smi (int32) and scaled version of that int.
+void MacroAssembler::SmiLoadUntagWithScale(Register d_int,
+ Register d_scaled,
+ MemOperand src,
+ int scale) {
+ if (SmiValuesAre32Bits()) {
+ lw(d_int, UntagSmiMemOperand(src.rm(), src.offset()));
+ dsll(d_scaled, d_int, scale);
+ } else {
+ lw(d_int, src);
+ // Need both the int and the scaled in, so use two instructions.
+ SmiUntag(d_int);
+ sll(d_scaled, d_int, scale);
+ }
+}
+
+
+void MacroAssembler::UntagAndJumpIfSmi(Register dst,
+ Register src,
+ Label* smi_case) {
+ // DCHECK(!dst.is(src));
+ JumpIfSmi(src, smi_case, at, USE_DELAY_SLOT);
+ SmiUntag(dst, src);
+}
+
+
+void MacroAssembler::UntagAndJumpIfNotSmi(Register dst,
+ Register src,
+ Label* non_smi_case) {
+ // DCHECK(!dst.is(src));
+ JumpIfNotSmi(src, non_smi_case, at, USE_DELAY_SLOT);
+ SmiUntag(dst, src);
+}
+
+void MacroAssembler::JumpIfSmi(Register value,
+ Label* smi_label,
+ Register scratch,
+ BranchDelaySlot bd) {
+ DCHECK_EQ(0, kSmiTag);
+ andi(scratch, value, kSmiTagMask);
+ Branch(bd, smi_label, eq, scratch, Operand(zero_reg));
+}
+
+void MacroAssembler::JumpIfNotSmi(Register value,
+ Label* not_smi_label,
+ Register scratch,
+ BranchDelaySlot bd) {
+ DCHECK_EQ(0, kSmiTag);
+ andi(scratch, value, kSmiTagMask);
+ Branch(bd, not_smi_label, ne, scratch, Operand(zero_reg));
+}
+
+
+void MacroAssembler::JumpIfNotBothSmi(Register reg1,
+ Register reg2,
+ Label* on_not_both_smi) {
+ STATIC_ASSERT(kSmiTag == 0);
+ // TODO(plind): Find some better to fix this assert issue.
+#if defined(__APPLE__)
+ DCHECK_EQ(1, kSmiTagMask);
+#else
+ DCHECK_EQ((uint64_t)1, kSmiTagMask);
+#endif
+ or_(at, reg1, reg2);
+ JumpIfNotSmi(at, on_not_both_smi);
+}
+
+
+void MacroAssembler::JumpIfEitherSmi(Register reg1,
+ Register reg2,
+ Label* on_either_smi) {
+ STATIC_ASSERT(kSmiTag == 0);
+ // TODO(plind): Find some better to fix this assert issue.
+#if defined(__APPLE__)
+ DCHECK_EQ(1, kSmiTagMask);
+#else
+ DCHECK_EQ((uint64_t)1, kSmiTagMask);
+#endif
+ // Both Smi tags must be 1 (not Smi).
+ and_(at, reg1, reg2);
+ JumpIfSmi(at, on_either_smi);
+}
+
+
+void MacroAssembler::AssertNotSmi(Register object) {
+ if (emit_debug_code()) {
+ STATIC_ASSERT(kSmiTag == 0);
+ andi(at, object, kSmiTagMask);
+ Check(ne, kOperandIsASmi, at, Operand(zero_reg));
+ }
+}
+
+
+void MacroAssembler::AssertSmi(Register object) {
+ if (emit_debug_code()) {
+ STATIC_ASSERT(kSmiTag == 0);
+ andi(at, object, kSmiTagMask);
+ Check(eq, kOperandIsASmi, at, Operand(zero_reg));
+ }
+}
+
+
+void MacroAssembler::AssertString(Register object) {
+ if (emit_debug_code()) {
+ STATIC_ASSERT(kSmiTag == 0);
+ SmiTst(object, a4);
+ Check(ne, kOperandIsASmiAndNotAString, a4, Operand(zero_reg));
+ push(object);
+ ld(object, FieldMemOperand(object, HeapObject::kMapOffset));
+ lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset));
+ Check(lo, kOperandIsNotAString, object, Operand(FIRST_NONSTRING_TYPE));
+ pop(object);
+ }
+}
+
+
+void MacroAssembler::AssertName(Register object) {
+ if (emit_debug_code()) {
+ STATIC_ASSERT(kSmiTag == 0);
+ SmiTst(object, a4);
+ Check(ne, kOperandIsASmiAndNotAName, a4, Operand(zero_reg));
+ push(object);
+ ld(object, FieldMemOperand(object, HeapObject::kMapOffset));
+ lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset));
+ Check(le, kOperandIsNotAName, object, Operand(LAST_NAME_TYPE));
+ pop(object);
+ }
+}
+
+
+void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
+ Register scratch) {
+ if (emit_debug_code()) {
+ Label done_checking;
+ AssertNotSmi(object);
+ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
+ Branch(&done_checking, eq, object, Operand(scratch));
+ push(object);
+ ld(object, FieldMemOperand(object, HeapObject::kMapOffset));
+ LoadRoot(scratch, Heap::kAllocationSiteMapRootIndex);
+ Assert(eq, kExpectedUndefinedOrCell, object, Operand(scratch));
+ pop(object);
+ bind(&done_checking);
+ }
+}
+
+
+void MacroAssembler::AssertIsRoot(Register reg, Heap::RootListIndex index) {
+ if (emit_debug_code()) {
+ DCHECK(!reg.is(at));
+ LoadRoot(at, index);
+ Check(eq, kHeapNumberMapRegisterClobbered, reg, Operand(at));
+ }
+}
+
+
+void MacroAssembler::JumpIfNotHeapNumber(Register object,
+ Register heap_number_map,
+ Register scratch,
+ Label* on_not_heap_number) {
+ ld(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
+ AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
+ Branch(on_not_heap_number, ne, scratch, Operand(heap_number_map));
+}
+
+
+void MacroAssembler::LookupNumberStringCache(Register object,
+ Register result,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* not_found) {
+ // Use of registers. Register result is used as a temporary.
+ Register number_string_cache = result;
+ Register mask = scratch3;
+
+ // Load the number string cache.
+ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
+
+ // Make the hash mask from the length of the number string cache. It
+ // contains two elements (number and string) for each cache entry.
+ ld(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
+ // Divide length by two (length is a smi).
+ // dsra(mask, mask, kSmiTagSize + 1);
+ dsra32(mask, mask, 1);
+ Daddu(mask, mask, -1); // Make mask.
+
+ // Calculate the entry in the number string cache. The hash value in the
+ // number string cache for smis is just the smi value, and the hash for
+ // doubles is the xor of the upper and lower words. See
+ // Heap::GetNumberStringCache.
+ Label is_smi;
+ Label load_result_from_cache;
+ JumpIfSmi(object, &is_smi);
+ CheckMap(object,
+ scratch1,
+ Heap::kHeapNumberMapRootIndex,
+ not_found,
+ DONT_DO_SMI_CHECK);
+
+ STATIC_ASSERT(8 == kDoubleSize);
+ Daddu(scratch1,
+ object,
+ Operand(HeapNumber::kValueOffset - kHeapObjectTag));
+ ld(scratch2, MemOperand(scratch1, kPointerSize));
+ ld(scratch1, MemOperand(scratch1, 0));
+ Xor(scratch1, scratch1, Operand(scratch2));
+ And(scratch1, scratch1, Operand(mask));
+
+ // Calculate address of entry in string cache: each entry consists
+ // of two pointer sized fields.
+ dsll(scratch1, scratch1, kPointerSizeLog2 + 1);
+ Daddu(scratch1, number_string_cache, scratch1);
+
+ Register probe = mask;
+ ld(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
+ JumpIfSmi(probe, not_found);
+ ldc1(f12, FieldMemOperand(object, HeapNumber::kValueOffset));
+ ldc1(f14, FieldMemOperand(probe, HeapNumber::kValueOffset));
+ BranchF(&load_result_from_cache, NULL, eq, f12, f14);
+ Branch(not_found);
+
+ bind(&is_smi);
+ Register scratch = scratch1;
+ // dsra(scratch, object, 1); // Shift away the tag.
+ dsra32(scratch, scratch, 0);
+ And(scratch, mask, Operand(scratch));
+
+ // Calculate address of entry in string cache: each entry consists
+ // of two pointer sized fields.
+ dsll(scratch, scratch, kPointerSizeLog2 + 1);
+ Daddu(scratch, number_string_cache, scratch);
+
+ // Check if the entry is the smi we are looking for.
+ ld(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
+ Branch(not_found, ne, object, Operand(probe));
+
+ // Get the result from the cache.
+ bind(&load_result_from_cache);
+ ld(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
+
+ IncrementCounter(isolate()->counters()->number_to_string_native(),
+ 1,
+ scratch1,
+ scratch2);
+}
+
+
+void MacroAssembler::JumpIfNonSmisNotBothSequentialAsciiStrings(
+ Register first,
+ Register second,
+ Register scratch1,
+ Register scratch2,
+ Label* failure) {
+ // Test that both first and second are sequential ASCII strings.
+ // Assume that they are non-smis.
+ ld(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
+ ld(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
+ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
+ lbu(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
+
+ JumpIfBothInstanceTypesAreNotSequentialAscii(scratch1,
+ scratch2,
+ scratch1,
+ scratch2,
+ failure);
+}
+
+
+void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first,
+ Register second,
+ Register scratch1,
+ Register scratch2,
+ Label* failure) {
+ // Check that neither is a smi.
+ STATIC_ASSERT(kSmiTag == 0);
+ And(scratch1, first, Operand(second));
+ JumpIfSmi(scratch1, failure);
+ JumpIfNonSmisNotBothSequentialAsciiStrings(first,
+ second,
+ scratch1,
+ scratch2,
+ failure);
+}
+
+
+void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
+ Register first,
+ Register second,
+ Register scratch1,
+ Register scratch2,
+ Label* failure) {
+ const int kFlatAsciiStringMask =
+ kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
+ const int kFlatAsciiStringTag =
+ kStringTag | kOneByteStringTag | kSeqStringTag;
+ DCHECK(kFlatAsciiStringTag <= 0xffff); // Ensure this fits 16-bit immed.
+ andi(scratch1, first, kFlatAsciiStringMask);
+ Branch(failure, ne, scratch1, Operand(kFlatAsciiStringTag));
+ andi(scratch2, second, kFlatAsciiStringMask);
+ Branch(failure, ne, scratch2, Operand(kFlatAsciiStringTag));
+}
+
+
+void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type,
+ Register scratch,
+ Label* failure) {
+ const int kFlatAsciiStringMask =
+ kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
+ const int kFlatAsciiStringTag =
+ kStringTag | kOneByteStringTag | kSeqStringTag;
+ And(scratch, type, Operand(kFlatAsciiStringMask));
+ Branch(failure, ne, scratch, Operand(kFlatAsciiStringTag));
+}
+
+
+static const int kRegisterPassedArguments = (kMipsAbi == kN64) ? 8 : 4;
+
+int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments,
+ int num_double_arguments) {
+ int stack_passed_words = 0;
+ num_reg_arguments += 2 * num_double_arguments;
+
+ // O32: Up to four simple arguments are passed in registers a0..a3.
+ // N64: Up to eight simple arguments are passed in registers a0..a7.
+ if (num_reg_arguments > kRegisterPassedArguments) {
+ stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
+ }
+ stack_passed_words += kCArgSlotCount;
+ return stack_passed_words;
+}
+
+
+void MacroAssembler::EmitSeqStringSetCharCheck(Register string,
+ Register index,
+ Register value,
+ Register scratch,
+ uint32_t encoding_mask) {
+ Label is_object;
+ SmiTst(string, at);
+ Check(ne, kNonObject, at, Operand(zero_reg));
+
+ ld(at, FieldMemOperand(string, HeapObject::kMapOffset));
+ lbu(at, FieldMemOperand(at, Map::kInstanceTypeOffset));
+
+ andi(at, at, kStringRepresentationMask | kStringEncodingMask);
+ li(scratch, Operand(encoding_mask));
+ Check(eq, kUnexpectedStringType, at, Operand(scratch));
+
+ // TODO(plind): requires Smi size check code for mips32.
+
+ ld(at, FieldMemOperand(string, String::kLengthOffset));
+ Check(lt, kIndexIsTooLarge, index, Operand(at));
+
+ DCHECK(Smi::FromInt(0) == 0);
+ Check(ge, kIndexIsNegative, index, Operand(zero_reg));
+}
+
+
+void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
+ int num_double_arguments,
+ Register scratch) {
+ int frame_alignment = ActivationFrameAlignment();
+
+ // n64: Up to eight simple arguments in a0..a3, a4..a7, No argument slots.
+ // O32: Up to four simple arguments are passed in registers a0..a3.
+ // Those four arguments must have reserved argument slots on the stack for
+ // mips, even though those argument slots are not normally used.
+ // Both ABIs: Remaining arguments are pushed on the stack, above (higher
+ // address than) the (O32) argument slots. (arg slot calculation handled by
+ // CalculateStackPassedWords()).
+ int stack_passed_arguments = CalculateStackPassedWords(
+ num_reg_arguments, num_double_arguments);
+ if (frame_alignment > kPointerSize) {
+ // Make stack end at alignment and make room for num_arguments - 4 words
+ // and the original value of sp.
+ mov(scratch, sp);
+ Dsubu(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
+ DCHECK(IsPowerOf2(frame_alignment));
+ And(sp, sp, Operand(-frame_alignment));
+ sd(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
+ } else {
+ Dsubu(sp, sp, Operand(stack_passed_arguments * kPointerSize));
+ }
+}
+
+
+void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
+ Register scratch) {
+ PrepareCallCFunction(num_reg_arguments, 0, scratch);
+}
+
+
+void MacroAssembler::CallCFunction(ExternalReference function,
+ int num_reg_arguments,
+ int num_double_arguments) {
+ li(t8, Operand(function));
+ CallCFunctionHelper(t8, num_reg_arguments, num_double_arguments);
+}
+
+
+void MacroAssembler::CallCFunction(Register function,
+ int num_reg_arguments,
+ int num_double_arguments) {
+ CallCFunctionHelper(function, num_reg_arguments, num_double_arguments);
+}
+
+
+void MacroAssembler::CallCFunction(ExternalReference function,
+ int num_arguments) {
+ CallCFunction(function, num_arguments, 0);
+}
+
+
+void MacroAssembler::CallCFunction(Register function,
+ int num_arguments) {
+ CallCFunction(function, num_arguments, 0);
+}
+
+
+void MacroAssembler::CallCFunctionHelper(Register function,
+ int num_reg_arguments,
+ int num_double_arguments) {
+ DCHECK(has_frame());
+ // Make sure that the stack is aligned before calling a C function unless
+ // running in the simulator. The simulator has its own alignment check which
+ // provides more information.
+ // The argument stots are presumed to have been set up by
+ // PrepareCallCFunction. The C function must be called via t9, for mips ABI.
+
+#if V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
+ if (emit_debug_code()) {
+ int frame_alignment = base::OS::ActivationFrameAlignment();
+ int frame_alignment_mask = frame_alignment - 1;
+ if (frame_alignment > kPointerSize) {
+ DCHECK(IsPowerOf2(frame_alignment));
+ Label alignment_as_expected;
+ And(at, sp, Operand(frame_alignment_mask));
+ Branch(&alignment_as_expected, eq, at, Operand(zero_reg));
+ // Don't use Check here, as it will call Runtime_Abort possibly
+ // re-entering here.
+ stop("Unexpected alignment in CallCFunction");
+ bind(&alignment_as_expected);
+ }
+ }
+#endif // V8_HOST_ARCH_MIPS
+
+ // Just call directly. The function called cannot cause a GC, or
+ // allow preemption, so the return address in the link register
+ // stays correct.
+
+ if (!function.is(t9)) {
+ mov(t9, function);
+ function = t9;
+ }
+
+ Call(function);
+
+ int stack_passed_arguments = CalculateStackPassedWords(
+ num_reg_arguments, num_double_arguments);
+
+ if (base::OS::ActivationFrameAlignment() > kPointerSize) {
+ ld(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
+ } else {
+ Daddu(sp, sp, Operand(stack_passed_arguments * kPointerSize));
+ }
+}
+
+
+#undef BRANCH_ARGS_CHECK
+
+
+void MacroAssembler::PatchRelocatedValue(Register li_location,
+ Register scratch,
+ Register new_value) {
+ lwu(scratch, MemOperand(li_location));
+ // At this point scratch is a lui(at, ...) instruction.
+ if (emit_debug_code()) {
+ And(scratch, scratch, kOpcodeMask);
+ Check(eq, kTheInstructionToPatchShouldBeALui,
+ scratch, Operand(LUI));
+ lwu(scratch, MemOperand(li_location));
+ }
+ dsrl32(t9, new_value, 0);
+ Ins(scratch, t9, 0, kImm16Bits);
+ sw(scratch, MemOperand(li_location));
+
+ lwu(scratch, MemOperand(li_location, kInstrSize));
+ // scratch is now ori(at, ...).
+ if (emit_debug_code()) {
+ And(scratch, scratch, kOpcodeMask);
+ Check(eq, kTheInstructionToPatchShouldBeAnOri,
+ scratch, Operand(ORI));
+ lwu(scratch, MemOperand(li_location, kInstrSize));
+ }
+ dsrl(t9, new_value, kImm16Bits);
+ Ins(scratch, t9, 0, kImm16Bits);
+ sw(scratch, MemOperand(li_location, kInstrSize));
+
+ lwu(scratch, MemOperand(li_location, kInstrSize * 3));
+ // scratch is now ori(at, ...).
+ if (emit_debug_code()) {
+ And(scratch, scratch, kOpcodeMask);
+ Check(eq, kTheInstructionToPatchShouldBeAnOri,
+ scratch, Operand(ORI));
+ lwu(scratch, MemOperand(li_location, kInstrSize * 3));
+ }
+
+ Ins(scratch, new_value, 0, kImm16Bits);
+ sw(scratch, MemOperand(li_location, kInstrSize * 3));
+
+ // Update the I-cache so the new lui and ori can be executed.
+ FlushICache(li_location, 4);
+}
+
+void MacroAssembler::GetRelocatedValue(Register li_location,
+ Register value,
+ Register scratch) {
+ lwu(value, MemOperand(li_location));
+ if (emit_debug_code()) {
+ And(value, value, kOpcodeMask);
+ Check(eq, kTheInstructionShouldBeALui,
+ value, Operand(LUI));
+ lwu(value, MemOperand(li_location));
+ }
+
+ // value now holds a lui instruction. Extract the immediate.
+ andi(value, value, kImm16Mask);
+ dsll32(value, value, kImm16Bits);
+
+ lwu(scratch, MemOperand(li_location, kInstrSize));
+ if (emit_debug_code()) {
+ And(scratch, scratch, kOpcodeMask);
+ Check(eq, kTheInstructionShouldBeAnOri,
+ scratch, Operand(ORI));
+ lwu(scratch, MemOperand(li_location, kInstrSize));
+ }
+ // "scratch" now holds an ori instruction. Extract the immediate.
+ andi(scratch, scratch, kImm16Mask);
+ dsll32(scratch, scratch, 0);
+
+ or_(value, value, scratch);
+
+ lwu(scratch, MemOperand(li_location, kInstrSize * 3));
+ if (emit_debug_code()) {
+ And(scratch, scratch, kOpcodeMask);
+ Check(eq, kTheInstructionShouldBeAnOri,
+ scratch, Operand(ORI));
+ lwu(scratch, MemOperand(li_location, kInstrSize * 3));
+ }
+ // "scratch" now holds an ori instruction. Extract the immediate.
+ andi(scratch, scratch, kImm16Mask);
+ dsll(scratch, scratch, kImm16Bits);
+
+ or_(value, value, scratch);
+ // Sign extend extracted address.
+ dsra(value, value, kImm16Bits);
+}
+
+
+void MacroAssembler::CheckPageFlag(
+ Register object,
+ Register scratch,
+ int mask,
+ Condition cc,
+ Label* condition_met) {
+ And(scratch, object, Operand(~Page::kPageAlignmentMask));
+ ld(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
+ And(scratch, scratch, Operand(mask));
+ Branch(condition_met, cc, scratch, Operand(zero_reg));
+}
+
+
+void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
+ Register scratch,
+ Label* if_deprecated) {
+ if (map->CanBeDeprecated()) {
+ li(scratch, Operand(map));
+ ld(scratch, FieldMemOperand(scratch, Map::kBitField3Offset));
+ And(scratch, scratch, Operand(Map::Deprecated::kMask));
+ Branch(if_deprecated, ne, scratch, Operand(zero_reg));
+ }
+}
+
+
+void MacroAssembler::JumpIfBlack(Register object,
+ Register scratch0,
+ Register scratch1,
+ Label* on_black) {
+ HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern.
+ DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
+}
+
+
+void MacroAssembler::HasColor(Register object,
+ Register bitmap_scratch,
+ Register mask_scratch,
+ Label* has_color,
+ int first_bit,
+ int second_bit) {
+ DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, t8));
+ DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, t9));
+
+ GetMarkBits(object, bitmap_scratch, mask_scratch);
+
+ Label other_color;
+ // Note that we are using a 4-byte aligned 8-byte load.
+ Uld(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
+ And(t8, t9, Operand(mask_scratch));
+ Branch(&other_color, first_bit == 1 ? eq : ne, t8, Operand(zero_reg));
+ // Shift left 1 by adding.
+ Daddu(mask_scratch, mask_scratch, Operand(mask_scratch));
+ And(t8, t9, Operand(mask_scratch));
+ Branch(has_color, second_bit == 1 ? ne : eq, t8, Operand(zero_reg));
+
+ bind(&other_color);
+}
+
+
+// Detect some, but not all, common pointer-free objects. This is used by the
+// incremental write barrier which doesn't care about oddballs (they are always
+// marked black immediately so this code is not hit).
+void MacroAssembler::JumpIfDataObject(Register value,
+ Register scratch,
+ Label* not_data_object) {
+ DCHECK(!AreAliased(value, scratch, t8, no_reg));
+ Label is_data_object;
+ ld(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
+ LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
+ Branch(&is_data_object, eq, t8, Operand(scratch));
+ DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
+ DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
+ // If it's a string and it's not a cons string then it's an object containing
+ // no GC pointers.
+ lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
+ And(t8, scratch, Operand(kIsIndirectStringMask | kIsNotStringMask));
+ Branch(not_data_object, ne, t8, Operand(zero_reg));
+ bind(&is_data_object);
+}
+
+
+void MacroAssembler::GetMarkBits(Register addr_reg,
+ Register bitmap_reg,
+ Register mask_reg) {
+ DCHECK(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg));
+ // addr_reg is divided into fields:
+ // |63 page base 20|19 high 8|7 shift 3|2 0|
+ // 'high' gives the index of the cell holding color bits for the object.
+ // 'shift' gives the offset in the cell for this object's color.
+ And(bitmap_reg, addr_reg, Operand(~Page::kPageAlignmentMask));
+ Ext(mask_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
+ const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
+ Ext(t8, addr_reg, kLowBits, kPageSizeBits - kLowBits);
+ dsll(t8, t8, Bitmap::kBytesPerCellLog2);
+ Daddu(bitmap_reg, bitmap_reg, t8);
+ li(t8, Operand(1));
+ dsllv(mask_reg, t8, mask_reg);
+}
+
+
+void MacroAssembler::EnsureNotWhite(
+ Register value,
+ Register bitmap_scratch,
+ Register mask_scratch,
+ Register load_scratch,
+ Label* value_is_white_and_not_data) {
+ DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, t8));
+ GetMarkBits(value, bitmap_scratch, mask_scratch);
+
+ // If the value is black or grey we don't need to do anything.
+ DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
+ DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
+ DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
+ DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
+
+ Label done;
+
+ // Since both black and grey have a 1 in the first position and white does
+ // not have a 1 there we only need to check one bit.
+ // Note that we are using a 4-byte aligned 8-byte load.
+ Uld(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
+ And(t8, mask_scratch, load_scratch);
+ Branch(&done, ne, t8, Operand(zero_reg));
+
+ if (emit_debug_code()) {
+ // Check for impossible bit pattern.
+ Label ok;
+ // sll may overflow, making the check conservative.
+ dsll(t8, mask_scratch, 1);
+ And(t8, load_scratch, t8);
+ Branch(&ok, eq, t8, Operand(zero_reg));
+ stop("Impossible marking bit pattern");
+ bind(&ok);
+ }
+
+ // Value is white. We check whether it is data that doesn't need scanning.
+ // Currently only checks for HeapNumber and non-cons strings.
+ Register map = load_scratch; // Holds map while checking type.
+ Register length = load_scratch; // Holds length of object after testing type.
+ Label is_data_object;
+
+ // Check for heap-number
+ ld(map, FieldMemOperand(value, HeapObject::kMapOffset));
+ LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
+ {
+ Label skip;
+ Branch(&skip, ne, t8, Operand(map));
+ li(length, HeapNumber::kSize);
+ Branch(&is_data_object);
+ bind(&skip);
+ }
+
+ // Check for strings.
+ DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
+ DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
+ // If it's a string and it's not a cons string then it's an object containing
+ // no GC pointers.
+ Register instance_type = load_scratch;
+ lbu(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
+ And(t8, instance_type, Operand(kIsIndirectStringMask | kIsNotStringMask));
+ Branch(value_is_white_and_not_data, ne, t8, Operand(zero_reg));
+ // It's a non-indirect (non-cons and non-slice) string.
+ // If it's external, the length is just ExternalString::kSize.
+ // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
+ // External strings are the only ones with the kExternalStringTag bit
+ // set.
+ DCHECK_EQ(0, kSeqStringTag & kExternalStringTag);
+ DCHECK_EQ(0, kConsStringTag & kExternalStringTag);
+ And(t8, instance_type, Operand(kExternalStringTag));
+ {
+ Label skip;
+ Branch(&skip, eq, t8, Operand(zero_reg));
+ li(length, ExternalString::kSize);
+ Branch(&is_data_object);
+ bind(&skip);
+ }
+
+ // Sequential string, either ASCII or UC16.
+ // For ASCII (char-size of 1) we shift the smi tag away to get the length.
+ // For UC16 (char-size of 2) we just leave the smi tag in place, thereby
+ // getting the length multiplied by 2.
+ DCHECK(kOneByteStringTag == 4 && kStringEncodingMask == 4);
+ DCHECK(kSmiTag == 0 && kSmiTagSize == 1);
+ lw(t9, UntagSmiFieldMemOperand(value, String::kLengthOffset));
+ And(t8, instance_type, Operand(kStringEncodingMask));
+ {
+ Label skip;
+ Branch(&skip, ne, t8, Operand(zero_reg));
+ // Adjust length for UC16.
+ dsll(t9, t9, 1);
+ bind(&skip);
+ }
+ Daddu(length, t9, Operand(SeqString::kHeaderSize + kObjectAlignmentMask));
+ DCHECK(!length.is(t8));
+ And(length, length, Operand(~kObjectAlignmentMask));
+
+ bind(&is_data_object);
+ // Value is a data object, and it is white. Mark it black. Since we know
+ // that the object is white we can make it black by flipping one bit.
+ Uld(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
+ Or(t8, t8, Operand(mask_scratch));
+ Usd(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
+
+ And(bitmap_scratch, bitmap_scratch, Operand(~Page::kPageAlignmentMask));
+ Uld(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
+ Daddu(t8, t8, Operand(length));
+ Usd(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
+
+ bind(&done);
+}
+
+
+void MacroAssembler::LoadInstanceDescriptors(Register map,
+ Register descriptors) {
+ ld(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
+}
+
+
+void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
+ ld(dst, FieldMemOperand(map, Map::kBitField3Offset));
+ DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
+}
+
+
+void MacroAssembler::EnumLength(Register dst, Register map) {
+ STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
+ ld(dst, FieldMemOperand(map, Map::kBitField3Offset));
+ And(dst, dst, Operand(Map::EnumLengthBits::kMask));
+ SmiTag(dst);
+}
+
+
+void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) {
+ Register empty_fixed_array_value = a6;
+ LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
+ Label next, start;
+ mov(a2, a0);
+
+ // Check if the enum length field is properly initialized, indicating that
+ // there is an enum cache.
+ ld(a1, FieldMemOperand(a2, HeapObject::kMapOffset));
+
+ EnumLength(a3, a1);
+ Branch(
+ call_runtime, eq, a3, Operand(Smi::FromInt(kInvalidEnumCacheSentinel)));
+
+ jmp(&start);
+
+ bind(&next);
+ ld(a1, FieldMemOperand(a2, HeapObject::kMapOffset));
+
+ // For all objects but the receiver, check that the cache is empty.
+ EnumLength(a3, a1);
+ Branch(call_runtime, ne, a3, Operand(Smi::FromInt(0)));
+
+ bind(&start);
+
+ // Check that there are no elements. Register a2 contains the current JS
+ // object we've reached through the prototype chain.
+ Label no_elements;
+ ld(a2, FieldMemOperand(a2, JSObject::kElementsOffset));
+ Branch(&no_elements, eq, a2, Operand(empty_fixed_array_value));
+
+ // Second chance, the object may be using the empty slow element dictionary.
+ LoadRoot(at, Heap::kEmptySlowElementDictionaryRootIndex);
+ Branch(call_runtime, ne, a2, Operand(at));
+
+ bind(&no_elements);
+ ld(a2, FieldMemOperand(a1, Map::kPrototypeOffset));
+ Branch(&next, ne, a2, Operand(null_value));
+}
+
+
+void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) {
+ DCHECK(!output_reg.is(input_reg));
+ Label done;
+ li(output_reg, Operand(255));
+ // Normal branch: nop in delay slot.
+ Branch(&done, gt, input_reg, Operand(output_reg));
+ // Use delay slot in this branch.
+ Branch(USE_DELAY_SLOT, &done, lt, input_reg, Operand(zero_reg));
+ mov(output_reg, zero_reg); // In delay slot.
+ mov(output_reg, input_reg); // Value is in range 0..255.
+ bind(&done);
+}
+
+
+void MacroAssembler::ClampDoubleToUint8(Register result_reg,
+ DoubleRegister input_reg,
+ DoubleRegister temp_double_reg) {
+ Label above_zero;
+ Label done;
+ Label in_bounds;
+
+ Move(temp_double_reg, 0.0);
+ BranchF(&above_zero, NULL, gt, input_reg, temp_double_reg);
+
+ // Double value is less than zero, NaN or Inf, return 0.
+ mov(result_reg, zero_reg);
+ Branch(&done);
+
+ // Double value is >= 255, return 255.
+ bind(&above_zero);
+ Move(temp_double_reg, 255.0);
+ BranchF(&in_bounds, NULL, le, input_reg, temp_double_reg);
+ li(result_reg, Operand(255));
+ Branch(&done);
+
+ // In 0-255 range, round and truncate.
+ bind(&in_bounds);
+ cvt_w_d(temp_double_reg, input_reg);
+ mfc1(result_reg, temp_double_reg);
+ bind(&done);
+}
+
+
+void MacroAssembler::TestJSArrayForAllocationMemento(
+ Register receiver_reg,
+ Register scratch_reg,
+ Label* no_memento_found,
+ Condition cond,
+ Label* allocation_memento_present) {
+ ExternalReference new_space_start =
+ ExternalReference::new_space_start(isolate());
+ ExternalReference new_space_allocation_top =
+ ExternalReference::new_space_allocation_top_address(isolate());
+ Daddu(scratch_reg, receiver_reg,
+ Operand(JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag));
+ Branch(no_memento_found, lt, scratch_reg, Operand(new_space_start));
+ li(at, Operand(new_space_allocation_top));
+ ld(at, MemOperand(at));
+ Branch(no_memento_found, gt, scratch_reg, Operand(at));
+ ld(scratch_reg, MemOperand(scratch_reg, -AllocationMemento::kSize));
+ if (allocation_memento_present) {
+ Branch(allocation_memento_present, cond, scratch_reg,
+ Operand(isolate()->factory()->allocation_memento_map()));
+ }
+}
+
+
+Register GetRegisterThatIsNotOneOf(Register reg1,
+ Register reg2,
+ Register reg3,
+ Register reg4,
+ Register reg5,
+ Register reg6) {
+ RegList regs = 0;
+ if (reg1.is_valid()) regs |= reg1.bit();
+ if (reg2.is_valid()) regs |= reg2.bit();
+ if (reg3.is_valid()) regs |= reg3.bit();
+ if (reg4.is_valid()) regs |= reg4.bit();
+ if (reg5.is_valid()) regs |= reg5.bit();
+ if (reg6.is_valid()) regs |= reg6.bit();
+
+ for (int i = 0; i < Register::NumAllocatableRegisters(); i++) {
+ Register candidate = Register::FromAllocationIndex(i);
+ if (regs & candidate.bit()) continue;
+ return candidate;
+ }
+ UNREACHABLE();
+ return no_reg;
+}
+
+
+void MacroAssembler::JumpIfDictionaryInPrototypeChain(
+ Register object,
+ Register scratch0,
+ Register scratch1,
+ Label* found) {
+ DCHECK(!scratch1.is(scratch0));
+ Factory* factory = isolate()->factory();
+ Register current = scratch0;
+ Label loop_again;
+
+ // Scratch contained elements pointer.
+ Move(current, object);
+
+ // Loop based on the map going up the prototype chain.
+ bind(&loop_again);
+ ld(current, FieldMemOperand(current, HeapObject::kMapOffset));
+ lb(scratch1, FieldMemOperand(current, Map::kBitField2Offset));
+ DecodeField<Map::ElementsKindBits>(scratch1);
+ Branch(found, eq, scratch1, Operand(DICTIONARY_ELEMENTS));
+ ld(current, FieldMemOperand(current, Map::kPrototypeOffset));
+ Branch(&loop_again, ne, current, Operand(factory->null_value()));
+}
+
+
+bool AreAliased(Register reg1,
+ Register reg2,
+ Register reg3,
+ Register reg4,
+ Register reg5,
+ Register reg6,
+ Register reg7,
+ Register reg8) {
+ int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() +
+ reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() +
+ reg7.is_valid() + reg8.is_valid();
+
+ RegList regs = 0;
+ if (reg1.is_valid()) regs |= reg1.bit();
+ if (reg2.is_valid()) regs |= reg2.bit();
+ if (reg3.is_valid()) regs |= reg3.bit();
+ if (reg4.is_valid()) regs |= reg4.bit();
+ if (reg5.is_valid()) regs |= reg5.bit();
+ if (reg6.is_valid()) regs |= reg6.bit();
+ if (reg7.is_valid()) regs |= reg7.bit();
+ if (reg8.is_valid()) regs |= reg8.bit();
+ int n_of_non_aliasing_regs = NumRegs(regs);
+
+ return n_of_valid_regs != n_of_non_aliasing_regs;
+}
+
+
+CodePatcher::CodePatcher(byte* address,
+ int instructions,
+ FlushICache flush_cache)
+ : address_(address),
+ size_(instructions * Assembler::kInstrSize),
+ masm_(NULL, address, size_ + Assembler::kGap),
+ flush_cache_(flush_cache) {
+ // Create a new macro assembler pointing to the address of the code to patch.
+ // The size is adjusted with kGap on order for the assembler to generate size
+ // bytes of instructions without failing with buffer size constraints.
+ DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
+}
+
+
+CodePatcher::~CodePatcher() {
+ // Indicate that code has changed.
+ if (flush_cache_ == FLUSH) {
+ CpuFeatures::FlushICache(address_, size_);
+ }
+ // Check that the code was patched as expected.
+ DCHECK(masm_.pc_ == address_ + size_);
+ DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
+}
+
+
+void CodePatcher::Emit(Instr instr) {
+ masm()->emit(instr);
+}
+
+
+void CodePatcher::Emit(Address addr) {
+ // masm()->emit(reinterpret_cast<Instr>(addr));
+}
+
+
+void CodePatcher::ChangeBranchCondition(Condition cond) {
+ Instr instr = Assembler::instr_at(masm_.pc_);
+ DCHECK(Assembler::IsBranch(instr));
+ uint32_t opcode = Assembler::GetOpcodeField(instr);
+ // Currently only the 'eq' and 'ne' cond values are supported and the simple
+ // branch instructions (with opcode being the branch type).
+ // There are some special cases (see Assembler::IsBranch()) so extending this
+ // would be tricky.
+ DCHECK(opcode == BEQ ||
+ opcode == BNE ||
+ opcode == BLEZ ||
+ opcode == BGTZ ||
+ opcode == BEQL ||
+ opcode == BNEL ||
+ opcode == BLEZL ||
+ opcode == BGTZL);
+ opcode = (cond == eq) ? BEQ : BNE;
+ instr = (instr & ~kOpcodeMask) | opcode;
+ masm_.emit(instr);
+}
+
+
+void MacroAssembler::TruncatingDiv(Register result,
+ Register dividend,
+ int32_t divisor) {
+ DCHECK(!dividend.is(result));
+ DCHECK(!dividend.is(at));
+ DCHECK(!result.is(at));
+ MultiplierAndShift ms(divisor);
+ li(at, Operand(ms.multiplier()));
+ Mulh(result, dividend, Operand(at));
+ if (divisor > 0 && ms.multiplier() < 0) {
+ Addu(result, result, Operand(dividend));
+ }
+ if (divisor < 0 && ms.multiplier() > 0) {
+ Subu(result, result, Operand(dividend));
+ }
+ if (ms.shift() > 0) sra(result, result, ms.shift());
+ srl(at, dividend, 31);
+ Addu(result, result, Operand(at));
+}
+
+
+} } // namespace v8::internal
+
+#endif // V8_TARGET_ARCH_MIPS64