summaryrefslogtreecommitdiff
path: root/deps/v8/src/mips/macro-assembler-mips.h
diff options
context:
space:
mode:
authorRyan Dahl <ry@tinyclouds.org>2011-07-08 16:40:11 -0700
committerRyan Dahl <ry@tinyclouds.org>2011-07-08 16:40:11 -0700
commite5564a3f29e0a818832a97c7c3b28d7c8b3b0460 (patch)
tree4b48a6577080d5e44da4d2cbebb7fe7951660de8 /deps/v8/src/mips/macro-assembler-mips.h
parent0df2f74d364826053641395b01c2fcb1345057a9 (diff)
downloadnode-e5564a3f29e0a818832a97c7c3b28d7c8b3b0460.tar.gz
Upgrade V8 to 3.4.10
Diffstat (limited to 'deps/v8/src/mips/macro-assembler-mips.h')
-rw-r--r--deps/v8/src/mips/macro-assembler-mips.h1112
1 files changed, 952 insertions, 160 deletions
diff --git a/deps/v8/src/mips/macro-assembler-mips.h b/deps/v8/src/mips/macro-assembler-mips.h
index 0f0365b7c..985ef0c83 100644
--- a/deps/v8/src/mips/macro-assembler-mips.h
+++ b/deps/v8/src/mips/macro-assembler-mips.h
@@ -1,4 +1,4 @@
-// Copyright 2010 the V8 project authors. All rights reserved.
+// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
@@ -30,6 +30,7 @@
#include "assembler.h"
#include "mips/assembler-mips.h"
+#include "v8globals.h"
namespace v8 {
namespace internal {
@@ -37,76 +38,205 @@ namespace internal {
// Forward declaration.
class JumpTarget;
-// Register at is used for instruction generation. So it is not safe to use it
-// unless we know exactly what we do.
+// Reserved Register Usage Summary.
+//
+// Registers t8, t9, and at are reserved for use by the MacroAssembler.
+//
+// The programmer should know that the MacroAssembler may clobber these three,
+// but won't touch other registers except in special cases.
+//
+// Per the MIPS ABI, register t9 must be used for indirect function call
+// via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
+// trying to update gp register for position-independent-code. Whenever
+// MIPS generated code calls C code, it must be via t9 register.
// Registers aliases
// cp is assumed to be a callee saved register.
-const Register cp = s7; // JavaScript context pointer
-const Register fp = s8_fp; // Alias fp
+const Register roots = s6; // Roots array pointer.
+const Register cp = s7; // JavaScript context pointer.
+const Register fp = s8_fp; // Alias for fp.
+// Registers used for condition evaluation.
+const Register condReg1 = s4;
+const Register condReg2 = s5;
+
+
+// Flags used for the AllocateInNewSpace functions.
+enum AllocationFlags {
+ // No special flags.
+ NO_ALLOCATION_FLAGS = 0,
+ // Return the pointer to the allocated already tagged as a heap object.
+ TAG_OBJECT = 1 << 0,
+ // The content of the result register already contains the allocation top in
+ // new space.
+ RESULT_CONTAINS_TOP = 1 << 1,
+ // Specify that the requested size of the space to allocate is specified in
+ // words instead of bytes.
+ SIZE_IN_WORDS = 1 << 2
+};
+
+// Flags used for the ObjectToDoubleFPURegister function.
+enum ObjectToDoubleFlags {
+ // No special flags.
+ NO_OBJECT_TO_DOUBLE_FLAGS = 0,
+ // Object is known to be a non smi.
+ OBJECT_NOT_SMI = 1 << 0,
+ // Don't load NaNs or infinities, branch to the non number case instead.
+ AVOID_NANS_AND_INFINITIES = 1 << 1
+};
-enum InvokeJSFlags {
- CALL_JS,
- JUMP_JS
+// Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
+enum BranchDelaySlot {
+ USE_DELAY_SLOT,
+ PROTECT
};
// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler: public Assembler {
public:
- MacroAssembler(void* buffer, int size);
+ // The isolate parameter can be NULL if the macro assembler should
+ // not use isolate-dependent functionality. In this case, it's the
+ // responsibility of the caller to never invoke such function on the
+ // macro assembler.
+ MacroAssembler(Isolate* isolate, void* buffer, int size);
+
+// Arguments macros.
+#define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
+#define COND_ARGS cond, r1, r2
+
+// Prototypes.
+
+// Prototypes for functions with no target (eg Ret()).
+#define DECLARE_NOTARGET_PROTOTYPE(Name) \
+ void Name(BranchDelaySlot bd = PROTECT); \
+ void Name(COND_TYPED_ARGS, BranchDelaySlot bd = PROTECT); \
+ inline void Name(BranchDelaySlot bd, COND_TYPED_ARGS) { \
+ Name(COND_ARGS, bd); \
+ }
- // Jump, Call, and Ret pseudo instructions implementing inter-working.
- void Jump(const Operand& target,
- Condition cond = cc_always,
- Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
- void Call(const Operand& target,
- Condition cond = cc_always,
- Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
- void Jump(Register target,
- Condition cond = cc_always,
- Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
- void Jump(byte* target, RelocInfo::Mode rmode,
- Condition cond = cc_always,
- Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
- void Jump(Handle<Code> code, RelocInfo::Mode rmode,
- Condition cond = cc_always,
- Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
- void Call(Register target,
- Condition cond = cc_always,
- Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
- void Call(byte* target, RelocInfo::Mode rmode,
- Condition cond = cc_always,
- Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
- void Call(Handle<Code> code, RelocInfo::Mode rmode,
- Condition cond = cc_always,
- Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
- void Ret(Condition cond = cc_always,
- Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
- void Branch(Condition cond, int16_t offset, Register rs = zero_reg,
- const Operand& rt = Operand(zero_reg), Register scratch = at);
- void Branch(Condition cond, Label* L, Register rs = zero_reg,
- const Operand& rt = Operand(zero_reg), Register scratch = at);
- // conditionnal branch and link
- void BranchAndLink(Condition cond, int16_t offset, Register rs = zero_reg,
- const Operand& rt = Operand(zero_reg),
- Register scratch = at);
- void BranchAndLink(Condition cond, Label* L, Register rs = zero_reg,
- const Operand& rt = Operand(zero_reg),
- Register scratch = at);
+// Prototypes for functions with a target.
+
+// Cases when relocation may be needed.
+#define DECLARE_RELOC_PROTOTYPE(Name, target_type) \
+ void Name(target_type target, \
+ RelocInfo::Mode rmode, \
+ BranchDelaySlot bd = PROTECT); \
+ inline void Name(BranchDelaySlot bd, \
+ target_type target, \
+ RelocInfo::Mode rmode) { \
+ Name(target, rmode, bd); \
+ } \
+ void Name(target_type target, \
+ RelocInfo::Mode rmode, \
+ COND_TYPED_ARGS, \
+ BranchDelaySlot bd = PROTECT); \
+ inline void Name(BranchDelaySlot bd, \
+ target_type target, \
+ RelocInfo::Mode rmode, \
+ COND_TYPED_ARGS) { \
+ Name(target, rmode, COND_ARGS, bd); \
+ }
+
+// Cases when relocation is not needed.
+#define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
+ void Name(target_type target, BranchDelaySlot bd = PROTECT); \
+ inline void Name(BranchDelaySlot bd, target_type target) { \
+ Name(target, bd); \
+ } \
+ void Name(target_type target, \
+ COND_TYPED_ARGS, \
+ BranchDelaySlot bd = PROTECT); \
+ inline void Name(BranchDelaySlot bd, \
+ target_type target, \
+ COND_TYPED_ARGS) { \
+ Name(target, COND_ARGS, bd); \
+ }
+
+// Target prototypes.
+
+#define DECLARE_JUMP_CALL_PROTOTYPES(Name) \
+ DECLARE_NORELOC_PROTOTYPE(Name, Register) \
+ DECLARE_NORELOC_PROTOTYPE(Name, const Operand&) \
+ DECLARE_RELOC_PROTOTYPE(Name, byte*) \
+ DECLARE_RELOC_PROTOTYPE(Name, Handle<Code>)
+
+#define DECLARE_BRANCH_PROTOTYPES(Name) \
+ DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
+ DECLARE_NORELOC_PROTOTYPE(Name, int16_t)
+
+
+DECLARE_JUMP_CALL_PROTOTYPES(Jump)
+DECLARE_JUMP_CALL_PROTOTYPES(Call)
+
+DECLARE_BRANCH_PROTOTYPES(Branch)
+DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
+
+DECLARE_NOTARGET_PROTOTYPE(Ret)
+
+#undef COND_TYPED_ARGS
+#undef COND_ARGS
+#undef DECLARE_NOTARGET_PROTOTYPE
+#undef DECLARE_NORELOC_PROTOTYPE
+#undef DECLARE_RELOC_PROTOTYPE
+#undef DECLARE_JUMP_CALL_PROTOTYPES
+#undef DECLARE_BRANCH_PROTOTYPES
+
+ void CallWithAstId(Handle<Code> code,
+ RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
+ unsigned ast_id = kNoASTId,
+ Condition cond = al,
+ Register r1 = zero_reg,
+ const Operand& r2 = Operand(zero_reg));
+
+ int CallSize(Register reg);
+ int CallSize(Handle<Code> code, RelocInfo::Mode rmode);
// Emit code to discard a non-negative number of pointer-sized elements
// from the stack, clobbering only the sp register.
- void Drop(int count, Condition cond = cc_always);
+ void Drop(int count,
+ Condition cond = cc_always,
+ Register reg = no_reg,
+ const Operand& op = Operand(no_reg));
+
+ void DropAndRet(int drop = 0,
+ Condition cond = cc_always,
+ Register reg = no_reg,
+ const Operand& op = Operand(no_reg));
+
+ // Swap two registers. If the scratch register is omitted then a slightly
+ // less efficient form using xor instead of mov is emitted.
+ void Swap(Register reg1, Register reg2, Register scratch = no_reg);
void Call(Label* target);
+ inline void Move(Register dst, Register src) {
+ if (!dst.is(src)) {
+ mov(dst, src);
+ }
+ }
+
+ inline void Move(FPURegister dst, FPURegister src) {
+ if (!dst.is(src)) {
+ mov_d(dst, src);
+ }
+ }
+
+ inline void Move(Register dst_low, Register dst_high, FPURegister src) {
+ mfc1(dst_low, src);
+ mfc1(dst_high, FPURegister::from_code(src.code() + 1));
+ }
+
+ inline void Move(FPURegister dst, Register src_low, Register src_high) {
+ mtc1(src_low, dst);
+ mtc1(src_high, FPURegister::from_code(dst.code() + 1));
+ }
+
// Jump unconditionally to given label.
// We NEED a nop in the branch delay slot, as it used by v8, for example in
// CodeGenerator::ProcessDeferred().
// Currently the branch delay slot is filled by the MacroAssembler.
// Use rather b(Label) for code generation.
void jmp(Label* L) {
- Branch(cc_always, L);
+ Branch(L);
}
// Load an object from the root table.
@@ -116,19 +246,164 @@ class MacroAssembler: public Assembler {
Heap::RootListIndex index,
Condition cond, Register src1, const Operand& src2);
- // Load an external reference.
- void LoadExternalReference(Register reg, ExternalReference ext) {
- li(reg, Operand(ext));
+ // Store an object to the root table.
+ void StoreRoot(Register source,
+ Heap::RootListIndex index);
+ void StoreRoot(Register source,
+ Heap::RootListIndex index,
+ Condition cond, Register src1, const Operand& src2);
+
+
+ // Check if object is in new space.
+ // scratch can be object itself, but it will be clobbered.
+ void InNewSpace(Register object,
+ Register scratch,
+ Condition cc, // eq for new space, ne otherwise.
+ Label* branch);
+
+
+ // For the page containing |object| mark the region covering [address]
+ // dirty. The object address must be in the first 8K of an allocated page.
+ void RecordWriteHelper(Register object,
+ Register address,
+ Register scratch);
+
+ // For the page containing |object| mark the region covering
+ // [object+offset] dirty. The object address must be in the first 8K
+ // of an allocated page. The 'scratch' registers are used in the
+ // implementation and all 3 registers are clobbered by the
+ // operation, as well as the 'at' register. RecordWrite updates the
+ // write barrier even when storing smis.
+ void RecordWrite(Register object,
+ Operand offset,
+ Register scratch0,
+ Register scratch1);
+
+ // For the page containing |object| mark the region covering
+ // [address] dirty. The object address must be in the first 8K of an
+ // allocated page. All 3 registers are clobbered by the operation,
+ // as well as the ip register. RecordWrite updates the write barrier
+ // even when storing smis.
+ void RecordWrite(Register object,
+ Register address,
+ Register scratch);
+
+
+ // ---------------------------------------------------------------------------
+ // Inline caching support.
+
+ // Generate code for checking access rights - used for security checks
+ // on access to global objects across environments. The holder register
+ // is left untouched, whereas both scratch registers are clobbered.
+ void CheckAccessGlobalProxy(Register holder_reg,
+ Register scratch,
+ Label* miss);
+
+ inline void MarkCode(NopMarkerTypes type) {
+ nop(type);
}
- // Sets the remembered set bit for [address+offset].
- void RecordWrite(Register object, Register offset, Register scratch);
+ // Check if the given instruction is a 'type' marker.
+ // ie. check if it is a sll zero_reg, zero_reg, <type> (referenced as
+ // nop(type)). These instructions are generated to mark special location in
+ // the code, like some special IC code.
+ static inline bool IsMarkedCode(Instr instr, int type) {
+ ASSERT((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
+ return IsNop(instr, type);
+ }
+ static inline int GetCodeMarker(Instr instr) {
+ uint32_t opcode = ((instr & kOpcodeMask));
+ uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
+ uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
+ uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
+
+ // Return <n> if we have a sll zero_reg, zero_reg, n
+ // else return -1.
+ bool sllzz = (opcode == SLL &&
+ rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
+ rs == static_cast<uint32_t>(ToNumber(zero_reg)));
+ int type =
+ (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
+ ASSERT((type == -1) ||
+ ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
+ return type;
+ }
+
+
+
+ // ---------------------------------------------------------------------------
+ // Allocation support.
+
+ // Allocate an object in new space. The object_size is specified
+ // either in bytes or in words if the allocation flag SIZE_IN_WORDS
+ // is passed. If the new space is exhausted control continues at the
+ // gc_required label. The allocated object is returned in result. If
+ // the flag tag_allocated_object is true the result is tagged as as
+ // a heap object. All registers are clobbered also when control
+ // continues at the gc_required label.
+ void AllocateInNewSpace(int object_size,
+ Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required,
+ AllocationFlags flags);
+ void AllocateInNewSpace(Register object_size,
+ Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required,
+ AllocationFlags flags);
+
+ // Undo allocation in new space. The object passed and objects allocated after
+ // it will no longer be allocated. The caller must make sure that no pointers
+ // are left to the object(s) no longer allocated as they would be invalid when
+ // allocation is undone.
+ void UndoAllocationInNewSpace(Register object, Register scratch);
+
+
+ void AllocateTwoByteString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* gc_required);
+ void AllocateAsciiString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* gc_required);
+ void AllocateTwoByteConsString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required);
+ void AllocateAsciiConsString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required);
+
+ // Allocates a heap number or jumps to the gc_required label if the young
+ // space is full and a scavenge is needed. All registers are clobbered also
+ // when control continues at the gc_required label.
+ void AllocateHeapNumber(Register result,
+ Register scratch1,
+ Register scratch2,
+ Register heap_number_map,
+ Label* gc_required);
+ void AllocateHeapNumberWithValue(Register result,
+ FPURegister value,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required);
+
// ---------------------------------------------------------------------------
- // Instruction macros
+ // Instruction macros.
-#define DEFINE_INSTRUCTION(instr) \
+#define DEFINE_INSTRUCTION(instr) \
void instr(Register rd, Register rs, const Operand& rt); \
void instr(Register rd, Register rs, Register rt) { \
instr(rd, rs, Operand(rt)); \
@@ -137,7 +412,7 @@ class MacroAssembler: public Assembler {
instr(rs, rt, Operand(j)); \
}
-#define DEFINE_INSTRUCTION2(instr) \
+#define DEFINE_INSTRUCTION2(instr) \
void instr(Register rs, const Operand& rt); \
void instr(Register rs, Register rt) { \
instr(rs, Operand(rt)); \
@@ -146,8 +421,8 @@ class MacroAssembler: public Assembler {
instr(rs, Operand(j)); \
}
- DEFINE_INSTRUCTION(Add);
DEFINE_INSTRUCTION(Addu);
+ DEFINE_INSTRUCTION(Subu);
DEFINE_INSTRUCTION(Mul);
DEFINE_INSTRUCTION2(Mult);
DEFINE_INSTRUCTION2(Multu);
@@ -158,46 +433,75 @@ class MacroAssembler: public Assembler {
DEFINE_INSTRUCTION(Or);
DEFINE_INSTRUCTION(Xor);
DEFINE_INSTRUCTION(Nor);
+ DEFINE_INSTRUCTION2(Neg);
DEFINE_INSTRUCTION(Slt);
DEFINE_INSTRUCTION(Sltu);
+ // MIPS32 R2 instruction macro.
+ DEFINE_INSTRUCTION(Ror);
+
#undef DEFINE_INSTRUCTION
#undef DEFINE_INSTRUCTION2
- //------------Pseudo-instructions-------------
+ // ---------------------------------------------------------------------------
+ // Pseudo-instructions.
void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
- // Move the logical ones complement of source to dest.
- void movn(Register rd, Register rt);
-
- // load int32 in the rd register
+ // Load int32 in the rd register.
void li(Register rd, Operand j, bool gen2instr = false);
inline void li(Register rd, int32_t j, bool gen2instr = false) {
li(rd, Operand(j), gen2instr);
}
-
- // Exception-generating instructions and debugging support
- void stop(const char* msg);
-
+ inline void li(Register dst, Handle<Object> value, bool gen2instr = false) {
+ li(dst, Operand(value), gen2instr);
+ }
// Push multiple registers on the stack.
// Registers are saved in numerical order, with higher numbered registers
- // saved in higher memory addresses
+ // saved in higher memory addresses.
void MultiPush(RegList regs);
void MultiPushReversed(RegList regs);
- void Push(Register src) {
+
+ // Lower case push() for compatibility with arch-independent code.
+ void push(Register src) {
Addu(sp, sp, Operand(-kPointerSize));
sw(src, MemOperand(sp, 0));
}
- inline void push(Register src) { Push(src); }
+
+ // Push a handle.
+ void Push(Handle<Object> handle);
+
+ // Push two registers. Pushes leftmost register first (to highest address).
+ void Push(Register src1, Register src2) {
+ Subu(sp, sp, Operand(2 * kPointerSize));
+ sw(src1, MemOperand(sp, 1 * kPointerSize));
+ sw(src2, MemOperand(sp, 0 * kPointerSize));
+ }
+
+ // Push three registers. Pushes leftmost register first (to highest address).
+ void Push(Register src1, Register src2, Register src3) {
+ Subu(sp, sp, Operand(3 * kPointerSize));
+ sw(src1, MemOperand(sp, 2 * kPointerSize));
+ sw(src2, MemOperand(sp, 1 * kPointerSize));
+ sw(src3, MemOperand(sp, 0 * kPointerSize));
+ }
+
+ // Push four registers. Pushes leftmost register first (to highest address).
+ void Push(Register src1, Register src2, Register src3, Register src4) {
+ Subu(sp, sp, Operand(4 * kPointerSize));
+ sw(src1, MemOperand(sp, 3 * kPointerSize));
+ sw(src2, MemOperand(sp, 2 * kPointerSize));
+ sw(src3, MemOperand(sp, 1 * kPointerSize));
+ sw(src4, MemOperand(sp, 0 * kPointerSize));
+ }
void Push(Register src, Condition cond, Register tst1, Register tst2) {
- // Since we don't have conditionnal execution we use a Branch.
- Branch(cond, 3, tst1, Operand(tst2));
- Addu(sp, sp, Operand(-kPointerSize));
+ // Since we don't have conditional execution we use a Branch.
+ Branch(3, cond, tst1, Operand(tst2));
+ Subu(sp, sp, Operand(kPointerSize));
sw(src, MemOperand(sp, 0));
}
@@ -205,137 +509,365 @@ class MacroAssembler: public Assembler {
// registers specified in regs. Pop order is the opposite as in MultiPush.
void MultiPop(RegList regs);
void MultiPopReversed(RegList regs);
- void Pop(Register dst) {
+
+ // Lower case pop() for compatibility with arch-independent code.
+ void pop(Register dst) {
lw(dst, MemOperand(sp, 0));
Addu(sp, sp, Operand(kPointerSize));
}
- void Pop() {
- Add(sp, sp, Operand(kPointerSize));
+
+ // Pop two registers. Pops rightmost register first (from lower address).
+ void Pop(Register src1, Register src2) {
+ ASSERT(!src1.is(src2));
+ lw(src2, MemOperand(sp, 0 * kPointerSize));
+ lw(src1, MemOperand(sp, 1 * kPointerSize));
+ Addu(sp, sp, 2 * kPointerSize);
}
+ void Pop(uint32_t count = 1) {
+ Addu(sp, sp, Operand(count * kPointerSize));
+ }
- // ---------------------------------------------------------------------------
- // Activation frames
+ // Push and pop the registers that can hold pointers, as defined by the
+ // RegList constant kSafepointSavedRegisters.
+ void PushSafepointRegisters();
+ void PopSafepointRegisters();
+ void PushSafepointRegistersAndDoubles();
+ void PopSafepointRegistersAndDoubles();
+ // Store value in register src in the safepoint stack slot for
+ // register dst.
+ void StoreToSafepointRegisterSlot(Register src, Register dst);
+ void StoreToSafepointRegistersAndDoublesSlot(Register src, Register dst);
+ // Load the value of the src register from its safepoint stack slot
+ // into register dst.
+ void LoadFromSafepointRegisterSlot(Register dst, Register src);
+
+ // MIPS32 R2 instruction macro.
+ void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
+ void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
+
+ // Convert unsigned word to double.
+ void Cvt_d_uw(FPURegister fd, FPURegister fs);
+ void Cvt_d_uw(FPURegister fd, Register rs);
+
+ // Convert double to unsigned word.
+ void Trunc_uw_d(FPURegister fd, FPURegister fs);
+ void Trunc_uw_d(FPURegister fd, Register rs);
+
+ // Convert the HeapNumber pointed to by source to a 32bits signed integer
+ // dest. If the HeapNumber does not fit into a 32bits signed integer branch
+ // to not_int32 label. If FPU is available double_scratch is used but not
+ // scratch2.
+ void ConvertToInt32(Register source,
+ Register dest,
+ Register scratch,
+ Register scratch2,
+ FPURegister double_scratch,
+ Label *not_int32);
+
+ // Helper for EmitECMATruncate.
+ // This will truncate a floating-point value outside of the singed 32bit
+ // integer range to a 32bit signed integer.
+ // Expects the double value loaded in input_high and input_low.
+ // Exits with the answer in 'result'.
+ // Note that this code does not work for values in the 32bit range!
+ void EmitOutOfInt32RangeTruncate(Register result,
+ Register input_high,
+ Register input_low,
+ Register scratch);
+
+ // Performs a truncating conversion of a floating point number as used by
+ // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
+ // Exits with 'result' holding the answer and all other registers clobbered.
+ void EmitECMATruncate(Register result,
+ FPURegister double_input,
+ FPURegister single_scratch,
+ Register scratch,
+ Register scratch2,
+ Register scratch3);
+
+ // -------------------------------------------------------------------------
+ // Activation frames.
void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); }
void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); }
- // Enter specific kind of exit frame; either EXIT or
- // EXIT_DEBUG. Expects the number of arguments in register a0 and
- // the builtin function to call in register a1.
- // On output hold_argc, hold_function, and hold_argv are setup.
- void EnterExitFrame(ExitFrame::Mode mode,
- Register hold_argc,
- Register hold_argv,
- Register hold_function);
+ void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); }
+ void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); }
- // Leave the current exit frame. Expects the return value in v0.
- void LeaveExitFrame(ExitFrame::Mode mode);
+ // Enter exit frame.
+ // argc - argument count to be dropped by LeaveExitFrame.
+ // save_doubles - saves FPU registers on stack, currently disabled.
+ // stack_space - extra stack space.
+ void EnterExitFrame(bool save_doubles,
+ int stack_space = 0);
- // Align the stack by optionally pushing a Smi zero.
- void AlignStack(int offset);
+ // Leave the current exit frame.
+ void LeaveExitFrame(bool save_doubles, Register arg_count);
- void SetupAlignedCall(Register scratch, int arg_count = 0);
- void ReturnFromAlignedCall();
+ // Get the actual activation frame alignment for target environment.
+ static int ActivationFrameAlignment();
+ // Make sure the stack is aligned. Only emits code in debug mode.
+ void AssertStackIsAligned();
- // ---------------------------------------------------------------------------
- // JavaScript invokes
+ void LoadContext(Register dst, int context_chain_length);
+
+ void LoadGlobalFunction(int index, Register function);
+
+ // Load the initial map from the global function. The registers
+ // function and map can be the same, function is then overwritten.
+ void LoadGlobalFunctionInitialMap(Register function,
+ Register map,
+ Register scratch);
+
+ // -------------------------------------------------------------------------
+ // JavaScript invokes.
+
+ // Setup call kind marking in t1. The method takes t1 as an
+ // explicit first parameter to make the code more readable at the
+ // call sites.
+ void SetCallKind(Register dst, CallKind kind);
// Invoke the JavaScript function code by either calling or jumping.
void InvokeCode(Register code,
const ParameterCount& expected,
const ParameterCount& actual,
- InvokeFlag flag);
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper,
+ CallKind call_kind);
void InvokeCode(Handle<Code> code,
const ParameterCount& expected,
const ParameterCount& actual,
RelocInfo::Mode rmode,
- InvokeFlag flag);
+ InvokeFlag flag,
+ CallKind call_kind);
// Invoke the JavaScript function in the given register. Changes the
// current context to the context in the function before invoking.
void InvokeFunction(Register function,
const ParameterCount& actual,
- InvokeFlag flag);
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper,
+ CallKind call_kind);
+
+ void InvokeFunction(JSFunction* function,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ CallKind call_kind);
+
+ void IsObjectJSObjectType(Register heap_object,
+ Register map,
+ Register scratch,
+ Label* fail);
+
+ void IsInstanceJSObjectType(Register map,
+ Register scratch,
+ Label* fail);
+
+ void IsObjectJSStringType(Register object,
+ Register scratch,
+ Label* fail);
#ifdef ENABLE_DEBUGGER_SUPPORT
- // ---------------------------------------------------------------------------
- // Debugger Support
-
- void SaveRegistersToMemory(RegList regs);
- void RestoreRegistersFromMemory(RegList regs);
- void CopyRegistersFromMemoryToStack(Register base, RegList regs);
- void CopyRegistersFromStackToMemory(Register base,
- Register scratch,
- RegList regs);
+ // -------------------------------------------------------------------------
+ // Debugger Support.
+
void DebugBreak();
#endif
- // ---------------------------------------------------------------------------
- // Exception handling
+ // -------------------------------------------------------------------------
+ // Exception handling.
// Push a new try handler and link into try handler chain.
// The return address must be passed in register ra.
+ // Clobber t0, t1, t2.
void PushTryHandler(CodeLocation try_location, HandlerType type);
// Unlink the stack handler on top of the stack from the try handler chain.
// Must preserve the result register.
void PopTryHandler();
+ // Passes thrown value (in v0) to the handler of top of the try handler chain.
+ void Throw(Register value);
- // ---------------------------------------------------------------------------
+ // Propagates an uncatchable exception to the top of the current JS stack's
+ // handler chain.
+ void ThrowUncatchable(UncatchableExceptionType type, Register value);
+
+ // Copies a fixed number of fields of heap objects from src to dst.
+ void CopyFields(Register dst, Register src, RegList temps, int field_count);
+
+ // Copies a number of bytes from src to dst. All registers are clobbered. On
+ // exit src and dst will point to the place just after where the last byte was
+ // read or written and length will be zero.
+ void CopyBytes(Register src,
+ Register dst,
+ Register length,
+ Register scratch);
+
+ // -------------------------------------------------------------------------
// Support functions.
+ // Try to get function prototype of a function and puts the value in
+ // the result register. Checks that the function really is a
+ // function and jumps to the miss label if the fast checks fail. The
+ // function register will be untouched; the other registers may be
+ // clobbered.
+ void TryGetFunctionPrototype(Register function,
+ Register result,
+ Register scratch,
+ Label* miss);
+
void GetObjectType(Register function,
Register map,
Register type_reg);
- inline void BranchOnSmi(Register value, Label* smi_label,
- Register scratch = at) {
- ASSERT_EQ(0, kSmiTag);
- andi(scratch, value, kSmiTagMask);
- Branch(eq, smi_label, scratch, Operand(zero_reg));
- }
+ // Check if a map for a JSObject indicates that the object has fast elements.
+ // Jump to the specified label if it does not.
+ void CheckFastElements(Register map,
+ Register scratch,
+ Label* fail);
+
+ // Check if the map of an object is equal to a specified map (either
+ // given directly or as an index into the root list) and branch to
+ // label if not. Skip the smi check if not required (object is known
+ // to be a heap object).
+ void CheckMap(Register obj,
+ Register scratch,
+ Handle<Map> map,
+ Label* fail,
+ SmiCheckType smi_check_type);
+
+ void CheckMap(Register obj,
+ Register scratch,
+ Heap::RootListIndex index,
+ Label* fail,
+ SmiCheckType smi_check_type);
+
+ // Check if the map of an object is equal to a specified map and branch to a
+ // specified target if equal. Skip the smi check if not required (object is
+ // known to be a heap object)
+ void DispatchMap(Register obj,
+ Register scratch,
+ Handle<Map> map,
+ Handle<Code> success,
+ SmiCheckType smi_check_type);
+ // Generates code for reporting that an illegal operation has
+ // occurred.
+ void IllegalOperation(int num_arguments);
- inline void BranchOnNotSmi(Register value, Label* not_smi_label,
- Register scratch = at) {
- ASSERT_EQ(0, kSmiTag);
- andi(scratch, value, kSmiTagMask);
- Branch(ne, not_smi_label, scratch, Operand(zero_reg));
+ // Picks out an array index from the hash field.
+ // Register use:
+ // hash - holds the index's hash. Clobbered.
+ // index - holds the overwritten index on exit.
+ void IndexFromHash(Register hash, Register index);
+
+ // Get the number of least significant bits from a register.
+ void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
+ void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
+
+ // Load the value of a number object into a FPU double register. If the
+ // object is not a number a jump to the label not_number is performed
+ // and the FPU double register is unchanged.
+ void ObjectToDoubleFPURegister(
+ Register object,
+ FPURegister value,
+ Register scratch1,
+ Register scratch2,
+ Register heap_number_map,
+ Label* not_number,
+ ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
+
+ // Load the value of a smi object into a FPU double register. The register
+ // scratch1 can be the same register as smi in which case smi will hold the
+ // untagged value afterwards.
+ void SmiToDoubleFPURegister(Register smi,
+ FPURegister value,
+ Register scratch1);
+
+ // -------------------------------------------------------------------------
+ // Overflow handling functions.
+ // Usage: first call the appropriate arithmetic function, then call one of the
+ // jump functions with the overflow_dst register as the second parameter.
+
+ void AdduAndCheckForOverflow(Register dst,
+ Register left,
+ Register right,
+ Register overflow_dst,
+ Register scratch = at);
+
+ void SubuAndCheckForOverflow(Register dst,
+ Register left,
+ Register right,
+ Register overflow_dst,
+ Register scratch = at);
+
+ void BranchOnOverflow(Label* label,
+ Register overflow_check,
+ BranchDelaySlot bd = PROTECT) {
+ Branch(label, lt, overflow_check, Operand(zero_reg), bd);
}
- void CallBuiltin(ExternalReference builtin_entry);
- void CallBuiltin(Register target);
- void JumpToBuiltin(ExternalReference builtin_entry);
- void JumpToBuiltin(Register target);
+ void BranchOnNoOverflow(Label* label,
+ Register overflow_check,
+ BranchDelaySlot bd = PROTECT) {
+ Branch(label, ge, overflow_check, Operand(zero_reg), bd);
+ }
- // Generates code for reporting that an illegal operation has
- // occurred.
- void IllegalOperation(int num_arguments);
+ void RetOnOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
+ Ret(lt, overflow_check, Operand(zero_reg), bd);
+ }
+ void RetOnNoOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
+ Ret(ge, overflow_check, Operand(zero_reg), bd);
+ }
- // ---------------------------------------------------------------------------
- // Runtime calls
+ // -------------------------------------------------------------------------
+ // Runtime calls.
// Call a code stub.
void CallStub(CodeStub* stub, Condition cond = cc_always,
Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
- void CallJSExitStub(CodeStub* stub);
- // Return from a code stub after popping its arguments.
- void StubReturn(int argc);
+ // Call a code stub and return the code object called. Try to generate
+ // the code if necessary. Do not perform a GC but instead return a retry
+ // after GC failure.
+ MUST_USE_RESULT MaybeObject* TryCallStub(CodeStub* stub,
+ Condition cond = cc_always,
+ Register r1 = zero_reg,
+ const Operand& r2 =
+ Operand(zero_reg));
+
+ // Tail call a code stub (jump).
+ void TailCallStub(CodeStub* stub);
+
+ // Tail call a code stub (jump) and return the code object called. Try to
+ // generate the code if necessary. Do not perform a GC but instead return
+ // a retry after GC failure.
+ MUST_USE_RESULT MaybeObject* TryTailCallStub(CodeStub* stub,
+ Condition cond = cc_always,
+ Register r1 = zero_reg,
+ const Operand& r2 =
+ Operand(zero_reg));
+
+ void CallJSExitStub(CodeStub* stub);
// Call a runtime routine.
- void CallRuntime(Runtime::Function* f, int num_arguments);
+ void CallRuntime(const Runtime::Function* f, int num_arguments);
+ void CallRuntimeSaveDoubles(Runtime::FunctionId id);
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid, int num_arguments);
+ // Convenience function: call an external reference.
+ void CallExternalReference(const ExternalReference& ext,
+ int num_arguments);
+
// Tail call of a runtime routine (jump).
// Like JumpToExternalReference, but also takes care of passing the number
// of parameters.
@@ -343,40 +875,85 @@ class MacroAssembler: public Assembler {
int num_arguments,
int result_size);
+ // Tail call of a runtime routine (jump). Try to generate the code if
+ // necessary. Do not perform a GC but instead return a retry after GC
+ // failure.
+ MUST_USE_RESULT MaybeObject* TryTailCallExternalReference(
+ const ExternalReference& ext, int num_arguments, int result_size);
+
// Convenience function: tail call a runtime routine (jump).
void TailCallRuntime(Runtime::FunctionId fid,
int num_arguments,
int result_size);
+ // Before calling a C-function from generated code, align arguments on stack
+ // and add space for the four mips argument slots.
+ // After aligning the frame, non-register arguments must be stored on the
+ // stack, after the argument-slots using helper: CFunctionArgumentOperand().
+ // The argument count assumes all arguments are word sized.
+ // Some compilers/platforms require the stack to be aligned when calling
+ // C++ code.
+ // Needs a scratch register to do some arithmetic. This register will be
+ // trashed.
+ void PrepareCallCFunction(int num_arguments, Register scratch);
+
+ // Arguments 1-4 are placed in registers a0 thru a3 respectively.
+ // Arguments 5..n are stored to stack using following:
+ // sw(t0, CFunctionArgumentOperand(5));
+
+ // Calls a C function and cleans up the space for arguments allocated
+ // by PrepareCallCFunction. The called function is not allowed to trigger a
+ // garbage collection, since that might move the code and invalidate the
+ // return address (unless this is somehow accounted for by the called
+ // function).
+ void CallCFunction(ExternalReference function, int num_arguments);
+ void CallCFunction(Register function, Register scratch, int num_arguments);
+ void GetCFunctionDoubleResult(const DoubleRegister dst);
+
+ // There are two ways of passing double arguments on MIPS, depending on
+ // whether soft or hard floating point ABI is used. These functions
+ // abstract parameter passing for the three different ways we call
+ // C functions from generated code.
+ void SetCallCDoubleArguments(DoubleRegister dreg);
+ void SetCallCDoubleArguments(DoubleRegister dreg1, DoubleRegister dreg2);
+ void SetCallCDoubleArguments(DoubleRegister dreg, Register reg);
+
+ // Calls an API function. Allocates HandleScope, extracts returned value
+ // from handle and propagates exceptions. Restores context.
+ MaybeObject* TryCallApiFunctionAndReturn(ExternalReference function,
+ int stack_space);
+
// Jump to the builtin routine.
void JumpToExternalReference(const ExternalReference& builtin);
+ MaybeObject* TryJumpToExternalReference(const ExternalReference& ext);
+
// Invoke specified builtin JavaScript function. Adds an entry to
// the unresolved list if the name does not resolve.
- void InvokeBuiltin(Builtins::JavaScript id, InvokeJSFlags flags);
+ void InvokeBuiltin(Builtins::JavaScript id,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper = NullCallWrapper());
// Store the code object for the given builtin in the target register and
- // setup the function in r1.
+ // setup the function in a1.
void GetBuiltinEntry(Register target, Builtins::JavaScript id);
+ // Store the function for the given builtin in the target register.
+ void GetBuiltinFunction(Register target, Builtins::JavaScript id);
+
struct Unresolved {
int pc;
- uint32_t flags; // see Bootstrapper::FixupFlags decoders/encoders.
+ uint32_t flags; // See Bootstrapper::FixupFlags decoders/encoders.
const char* name;
};
- List<Unresolved>* unresolved() { return &unresolved_; }
- Handle<Object> CodeObject() { return code_object_; }
-
-
- // ---------------------------------------------------------------------------
- // Stack limit support
-
- void StackLimitCheck(Label* on_stack_limit_hit);
+ Handle<Object> CodeObject() {
+ ASSERT(!code_object_.is_null());
+ return code_object_;
+ }
-
- // ---------------------------------------------------------------------------
- // StatsCounter support
+ // -------------------------------------------------------------------------
+ // StatsCounter support.
void SetCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2);
@@ -386,12 +963,14 @@ class MacroAssembler: public Assembler {
Register scratch1, Register scratch2);
- // ---------------------------------------------------------------------------
- // Debugging
+ // -------------------------------------------------------------------------
+ // Debugging.
// Calls Abort(msg) if the condition cc is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cc, const char* msg, Register rs, Operand rt);
+ void AssertRegisterIsRoot(Register reg, Heap::RootListIndex index);
+ void AssertFastElements(Register elements);
// Like Assert(), but always enabled.
void Check(Condition cc, const char* msg, Register rs, Operand rt);
@@ -405,17 +984,157 @@ class MacroAssembler: public Assembler {
void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; }
bool allow_stub_calls() { return allow_stub_calls_; }
- private:
- List<Unresolved> unresolved_;
- bool generating_stub_;
- bool allow_stub_calls_;
- // This handle will be patched with the code object on installation.
- Handle<Object> code_object_;
+ // ---------------------------------------------------------------------------
+ // Number utilities.
+
+ // Check whether the value of reg is a power of two and not zero. If not
+ // control continues at the label not_power_of_two. If reg is a power of two
+ // the register scratch contains the value of (reg - 1) when control falls
+ // through.
+ void JumpIfNotPowerOfTwoOrZero(Register reg,
+ Register scratch,
+ Label* not_power_of_two_or_zero);
+
+ // -------------------------------------------------------------------------
+ // Smi utilities.
+
+ // Try to convert int32 to smi. If the value is to large, preserve
+ // the original value and jump to not_a_smi. Destroys scratch and
+ // sets flags.
+ // This is only used by crankshaft atm so it is unimplemented on MIPS.
+ void TrySmiTag(Register reg, Label* not_a_smi, Register scratch) {
+ UNIMPLEMENTED_MIPS();
+ }
+
+ void SmiTag(Register reg) {
+ Addu(reg, reg, reg);
+ }
+ void SmiTag(Register dst, Register src) {
+ Addu(dst, src, src);
+ }
+
+ void SmiUntag(Register reg) {
+ sra(reg, reg, kSmiTagSize);
+ }
+
+ void SmiUntag(Register dst, Register src) {
+ sra(dst, src, kSmiTagSize);
+ }
+
+ // Jump the register contains a smi.
+ inline void JumpIfSmi(Register value, Label* smi_label,
+ Register scratch = at) {
+ ASSERT_EQ(0, kSmiTag);
+ andi(scratch, value, kSmiTagMask);
+ Branch(smi_label, eq, scratch, Operand(zero_reg));
+ }
+
+ // Jump if the register contains a non-smi.
+ inline void JumpIfNotSmi(Register value, Label* not_smi_label,
+ Register scratch = at) {
+ ASSERT_EQ(0, kSmiTag);
+ andi(scratch, value, kSmiTagMask);
+ Branch(not_smi_label, ne, scratch, Operand(zero_reg));
+ }
+
+ // Jump if either of the registers contain a non-smi.
+ void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
+ // Jump if either of the registers contain a smi.
+ void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
+
+ // Abort execution if argument is a smi. Used in debug code.
+ void AbortIfSmi(Register object);
+ void AbortIfNotSmi(Register object);
+
+ // Abort execution if argument is a string. Used in debug code.
+ void AbortIfNotString(Register object);
+
+ // Abort execution if argument is not the root value with the given index.
+ void AbortIfNotRootValue(Register src,
+ Heap::RootListIndex root_value_index,
+ const char* message);
+
+ // ---------------------------------------------------------------------------
+ // HeapNumber utilities.
+
+ void JumpIfNotHeapNumber(Register object,
+ Register heap_number_map,
+ Register scratch,
+ Label* on_not_heap_number);
+
+ // -------------------------------------------------------------------------
+ // String utilities.
+
+ // Checks if both instance types are sequential ASCII strings and jumps to
+ // label if either is not.
+ void JumpIfBothInstanceTypesAreNotSequentialAscii(
+ Register first_object_instance_type,
+ Register second_object_instance_type,
+ Register scratch1,
+ Register scratch2,
+ Label* failure);
+
+ // Check if instance type is sequential ASCII string and jump to label if
+ // it is not.
+ void JumpIfInstanceTypeIsNotSequentialAscii(Register type,
+ Register scratch,
+ Label* failure);
+
+ // Test that both first and second are sequential ASCII strings.
+ // Assume that they are non-smis.
+ void JumpIfNonSmisNotBothSequentialAsciiStrings(Register first,
+ Register second,
+ Register scratch1,
+ Register scratch2,
+ Label* failure);
+
+ // Test that both first and second are sequential ASCII strings.
+ // Check that they are non-smis.
+ void JumpIfNotBothSequentialAsciiStrings(Register first,
+ Register second,
+ Register scratch1,
+ Register scratch2,
+ Label* failure);
+
+ void LoadInstanceDescriptors(Register map, Register descriptors);
+
+ private:
+ void CallCFunctionHelper(Register function,
+ ExternalReference function_reference,
+ Register scratch,
+ int num_arguments);
+
+ void BranchShort(int16_t offset, BranchDelaySlot bdslot = PROTECT);
+ void BranchShort(int16_t offset, Condition cond, Register rs,
+ const Operand& rt,
+ BranchDelaySlot bdslot = PROTECT);
+ void BranchShort(Label* L, BranchDelaySlot bdslot = PROTECT);
+ void BranchShort(Label* L, Condition cond, Register rs,
+ const Operand& rt,
+ BranchDelaySlot bdslot = PROTECT);
+ void BranchAndLinkShort(int16_t offset, BranchDelaySlot bdslot = PROTECT);
+ void BranchAndLinkShort(int16_t offset, Condition cond, Register rs,
+ const Operand& rt,
+ BranchDelaySlot bdslot = PROTECT);
+ void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
+ void BranchAndLinkShort(Label* L, Condition cond, Register rs,
+ const Operand& rt,
+ BranchDelaySlot bdslot = PROTECT);
+ void J(Label* L, BranchDelaySlot bdslot);
+ void Jr(Label* L, BranchDelaySlot bdslot);
+ void Jalr(Label* L, BranchDelaySlot bdslot);
+
+ void Jump(intptr_t target, RelocInfo::Mode rmode,
+ BranchDelaySlot bd = PROTECT);
void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = cc_always,
- Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
+ Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg),
+ BranchDelaySlot bd = PROTECT);
+ void Call(intptr_t target, RelocInfo::Mode rmode,
+ BranchDelaySlot bd = PROTECT);
void Call(intptr_t target, RelocInfo::Mode rmode, Condition cond = cc_always,
- Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
+ Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg),
+ BranchDelaySlot bd = PROTECT);
// Helper functions for generating invokes.
void InvokePrologue(const ParameterCount& expected,
@@ -423,28 +1142,102 @@ class MacroAssembler: public Assembler {
Handle<Code> code_constant,
Register code_reg,
Label* done,
- InvokeFlag flag);
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper,
+ CallKind call_kind);
// Get the code for the given builtin. Returns if able to resolve
// the function in the 'resolved' flag.
Handle<Code> ResolveBuiltin(Builtins::JavaScript id, bool* resolved);
// Activation support.
- // EnterFrame clobbers t0 and t1.
void EnterFrame(StackFrame::Type type);
void LeaveFrame(StackFrame::Type type);
+
+ void InitializeNewString(Register string,
+ Register length,
+ Heap::RootListIndex map_index,
+ Register scratch1,
+ Register scratch2);
+
+ // Compute memory operands for safepoint stack slots.
+ static int SafepointRegisterStackIndex(int reg_code);
+ MemOperand SafepointRegisterSlot(Register reg);
+ MemOperand SafepointRegistersAndDoublesSlot(Register reg);
+
+ bool UseAbsoluteCodePointers();
+
+ bool generating_stub_;
+ bool allow_stub_calls_;
+ // This handle will be patched with the code object on installation.
+ Handle<Object> code_object_;
+
+ // Needs access to SafepointRegisterStackIndex for optimized frame
+ // traversal.
+ friend class OptimizedFrame;
+};
+
+
+// The code patcher is used to patch (typically) small parts of code e.g. for
+// debugging and other types of instrumentation. When using the code patcher
+// the exact number of bytes specified must be emitted. It is not legal to emit
+// relocation information. If any of these constraints are violated it causes
+// an assertion to fail.
+class CodePatcher {
+ public:
+ CodePatcher(byte* address, int instructions);
+ virtual ~CodePatcher();
+
+ // Macro assembler to emit code.
+ MacroAssembler* masm() { return &masm_; }
+
+ // Emit an instruction directly.
+ void Emit(Instr instr);
+
+ // Emit an address directly.
+ void Emit(Address addr);
+
+ // Change the condition part of an instruction leaving the rest of the current
+ // instruction unchanged.
+ void ChangeBranchCondition(Condition cond);
+
+ private:
+ byte* address_; // The address of the code being patched.
+ int instructions_; // Number of instructions of the expected patch size.
+ int size_; // Number of bytes of the expected patch size.
+ MacroAssembler masm_; // Macro assembler used to generate the code.
};
// -----------------------------------------------------------------------------
// Static helper functions.
+static MemOperand ContextOperand(Register context, int index) {
+ return MemOperand(context, Context::SlotOffset(index));
+}
+
+
+static inline MemOperand GlobalObjectOperand() {
+ return ContextOperand(cp, Context::GLOBAL_INDEX);
+}
+
+
// Generate a MemOperand for loading a field from an object.
static inline MemOperand FieldMemOperand(Register object, int offset) {
return MemOperand(object, offset - kHeapObjectTag);
}
+// Generate a MemOperand for storing arguments 5..N on the stack
+// when calling CallCFunction().
+static inline MemOperand CFunctionArgumentOperand(int index) {
+ ASSERT(index > StandardFrameConstants::kCArgSlotCount);
+ // Argument 5 takes the slot just past the four Arg-slots.
+ int offset =
+ (index - 5) * kPointerSize + StandardFrameConstants::kCArgsSlotsSize;
+ return MemOperand(sp, offset);
+}
+
#ifdef GENERATED_CODE_COVERAGE
#define CODE_COVERAGE_STRINGIFY(x) #x
@@ -458,4 +1251,3 @@ static inline MemOperand FieldMemOperand(Register object, int offset) {
} } // namespace v8::internal
#endif // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
-