summaryrefslogtreecommitdiff
path: root/deps/v8/src/mips64/macro-assembler-mips64.h
diff options
context:
space:
mode:
authorRefael Ackermann <refack@gmail.com>2014-09-29 13:20:04 +0400
committerFedor Indutny <fedor@indutny.com>2014-10-08 15:35:57 +0400
commit939278ac059b44439d41aab12bf552c8ae3c52d0 (patch)
tree86c586915a96d308b1b04de679a8ae293caf3e41 /deps/v8/src/mips64/macro-assembler-mips64.h
parent4412a71d76a0fa002f627ec21d2337e089da6764 (diff)
downloadnode-new-939278ac059b44439d41aab12bf552c8ae3c52d0.tar.gz
deps: update v8 to 3.28.73
Reviewed-By: Fedor Indutny <fedor@indutny.com> PR-URL: https://github.com/joyent/node/pull/8476
Diffstat (limited to 'deps/v8/src/mips64/macro-assembler-mips64.h')
-rw-r--r--deps/v8/src/mips64/macro-assembler-mips64.h1793
1 files changed, 1793 insertions, 0 deletions
diff --git a/deps/v8/src/mips64/macro-assembler-mips64.h b/deps/v8/src/mips64/macro-assembler-mips64.h
new file mode 100644
index 0000000000..89ae1e50fd
--- /dev/null
+++ b/deps/v8/src/mips64/macro-assembler-mips64.h
@@ -0,0 +1,1793 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
+#define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
+
+#include "src/assembler.h"
+#include "src/globals.h"
+#include "src/mips64/assembler-mips64.h"
+
+namespace v8 {
+namespace internal {
+
+// Forward declaration.
+class JumpTarget;
+
+// Reserved Register Usage Summary.
+//
+// Registers t8, t9, and at are reserved for use by the MacroAssembler.
+//
+// The programmer should know that the MacroAssembler may clobber these three,
+// but won't touch other registers except in special cases.
+//
+// Per the MIPS ABI, register t9 must be used for indirect function call
+// via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
+// trying to update gp register for position-independent-code. Whenever
+// MIPS generated code calls C code, it must be via t9 register.
+
+
+// Flags used for LeaveExitFrame function.
+enum LeaveExitFrameMode {
+ EMIT_RETURN = true,
+ NO_EMIT_RETURN = false
+};
+
+// Flags used for AllocateHeapNumber
+enum TaggingMode {
+ // Tag the result.
+ TAG_RESULT,
+ // Don't tag
+ DONT_TAG_RESULT
+};
+
+// Flags used for the ObjectToDoubleFPURegister function.
+enum ObjectToDoubleFlags {
+ // No special flags.
+ NO_OBJECT_TO_DOUBLE_FLAGS = 0,
+ // Object is known to be a non smi.
+ OBJECT_NOT_SMI = 1 << 0,
+ // Don't load NaNs or infinities, branch to the non number case instead.
+ AVOID_NANS_AND_INFINITIES = 1 << 1
+};
+
+// Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
+enum BranchDelaySlot {
+ USE_DELAY_SLOT,
+ PROTECT
+};
+
+// Flags used for the li macro-assembler function.
+enum LiFlags {
+ // If the constant value can be represented in just 16 bits, then
+ // optimize the li to use a single instruction, rather than lui/ori/dsll
+ // sequence.
+ OPTIMIZE_SIZE = 0,
+ // Always use 6 instructions (lui/ori/dsll sequence), even if the constant
+ // could be loaded with just one, so that this value is patchable later.
+ CONSTANT_SIZE = 1,
+ // For address loads only 4 instruction are required. Used to mark
+ // constant load that will be used as address without relocation
+ // information. It ensures predictable code size, so specific sites
+ // in code are patchable.
+ ADDRESS_LOAD = 2
+};
+
+
+enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
+enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
+enum PointersToHereCheck {
+ kPointersToHereMaybeInteresting,
+ kPointersToHereAreAlwaysInteresting
+};
+enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
+
+Register GetRegisterThatIsNotOneOf(Register reg1,
+ Register reg2 = no_reg,
+ Register reg3 = no_reg,
+ Register reg4 = no_reg,
+ Register reg5 = no_reg,
+ Register reg6 = no_reg);
+
+bool AreAliased(Register reg1,
+ Register reg2,
+ Register reg3 = no_reg,
+ Register reg4 = no_reg,
+ Register reg5 = no_reg,
+ Register reg6 = no_reg,
+ Register reg7 = no_reg,
+ Register reg8 = no_reg);
+
+
+// -----------------------------------------------------------------------------
+// Static helper functions.
+
+inline MemOperand ContextOperand(Register context, int index) {
+ return MemOperand(context, Context::SlotOffset(index));
+}
+
+
+inline MemOperand GlobalObjectOperand() {
+ return ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX);
+}
+
+
+// Generate a MemOperand for loading a field from an object.
+inline MemOperand FieldMemOperand(Register object, int offset) {
+ return MemOperand(object, offset - kHeapObjectTag);
+}
+
+
+inline MemOperand UntagSmiMemOperand(Register rm, int offset) {
+ // Assumes that Smis are shifted by 32 bits and little endianness.
+ STATIC_ASSERT(kSmiShift == 32);
+ return MemOperand(rm, offset + (kSmiShift / kBitsPerByte));
+}
+
+
+inline MemOperand UntagSmiFieldMemOperand(Register rm, int offset) {
+ return UntagSmiMemOperand(rm, offset - kHeapObjectTag);
+}
+
+
+// Generate a MemOperand for storing arguments 5..N on the stack
+// when calling CallCFunction().
+// TODO(plind): Currently ONLY used for O32. Should be fixed for
+// n64, and used in RegExp code, and other places
+// with more than 8 arguments.
+inline MemOperand CFunctionArgumentOperand(int index) {
+ DCHECK(index > kCArgSlotCount);
+ // Argument 5 takes the slot just past the four Arg-slots.
+ int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
+ return MemOperand(sp, offset);
+}
+
+
+// MacroAssembler implements a collection of frequently used macros.
+class MacroAssembler: public Assembler {
+ public:
+ // The isolate parameter can be NULL if the macro assembler should
+ // not use isolate-dependent functionality. In this case, it's the
+ // responsibility of the caller to never invoke such function on the
+ // macro assembler.
+ MacroAssembler(Isolate* isolate, void* buffer, int size);
+
+ // Arguments macros.
+#define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
+#define COND_ARGS cond, r1, r2
+
+ // Cases when relocation is not needed.
+#define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
+ void Name(target_type target, BranchDelaySlot bd = PROTECT); \
+ inline void Name(BranchDelaySlot bd, target_type target) { \
+ Name(target, bd); \
+ } \
+ void Name(target_type target, \
+ COND_TYPED_ARGS, \
+ BranchDelaySlot bd = PROTECT); \
+ inline void Name(BranchDelaySlot bd, \
+ target_type target, \
+ COND_TYPED_ARGS) { \
+ Name(target, COND_ARGS, bd); \
+ }
+
+#define DECLARE_BRANCH_PROTOTYPES(Name) \
+ DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
+ DECLARE_NORELOC_PROTOTYPE(Name, int16_t)
+
+ DECLARE_BRANCH_PROTOTYPES(Branch)
+ DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
+ DECLARE_BRANCH_PROTOTYPES(BranchShort)
+
+#undef DECLARE_BRANCH_PROTOTYPES
+#undef COND_TYPED_ARGS
+#undef COND_ARGS
+
+
+ // Jump, Call, and Ret pseudo instructions implementing inter-working.
+#define COND_ARGS Condition cond = al, Register rs = zero_reg, \
+ const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
+
+ void Jump(Register target, COND_ARGS);
+ void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
+ void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
+ void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
+ static int CallSize(Register target, COND_ARGS);
+ void Call(Register target, COND_ARGS);
+ static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS);
+ void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
+ int CallSize(Handle<Code> code,
+ RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
+ TypeFeedbackId ast_id = TypeFeedbackId::None(),
+ COND_ARGS);
+ void Call(Handle<Code> code,
+ RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
+ TypeFeedbackId ast_id = TypeFeedbackId::None(),
+ COND_ARGS);
+ void Ret(COND_ARGS);
+ inline void Ret(BranchDelaySlot bd, Condition cond = al,
+ Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
+ Ret(cond, rs, rt, bd);
+ }
+
+ void Branch(Label* L,
+ Condition cond,
+ Register rs,
+ Heap::RootListIndex index,
+ BranchDelaySlot bdslot = PROTECT);
+
+#undef COND_ARGS
+
+ // Emit code to discard a non-negative number of pointer-sized elements
+ // from the stack, clobbering only the sp register.
+ void Drop(int count,
+ Condition cond = cc_always,
+ Register reg = no_reg,
+ const Operand& op = Operand(no_reg));
+
+ // Trivial case of DropAndRet that utilizes the delay slot and only emits
+ // 2 instructions.
+ void DropAndRet(int drop);
+
+ void DropAndRet(int drop,
+ Condition cond,
+ Register reg,
+ const Operand& op);
+
+ // Swap two registers. If the scratch register is omitted then a slightly
+ // less efficient form using xor instead of mov is emitted.
+ void Swap(Register reg1, Register reg2, Register scratch = no_reg);
+
+ void Call(Label* target);
+
+ inline void Move(Register dst, Register src) {
+ if (!dst.is(src)) {
+ mov(dst, src);
+ }
+ }
+
+ inline void Move(FPURegister dst, FPURegister src) {
+ if (!dst.is(src)) {
+ mov_d(dst, src);
+ }
+ }
+
+ inline void Move(Register dst_low, Register dst_high, FPURegister src) {
+ mfc1(dst_low, src);
+ mfhc1(dst_high, src);
+ }
+
+ inline void FmoveHigh(Register dst_high, FPURegister src) {
+ mfhc1(dst_high, src);
+ }
+
+ inline void FmoveLow(Register dst_low, FPURegister src) {
+ mfc1(dst_low, src);
+ }
+
+ inline void Move(FPURegister dst, Register src_low, Register src_high) {
+ mtc1(src_low, dst);
+ mthc1(src_high, dst);
+ }
+
+ // Conditional move.
+ void Move(FPURegister dst, double imm);
+ void Movz(Register rd, Register rs, Register rt);
+ void Movn(Register rd, Register rs, Register rt);
+ void Movt(Register rd, Register rs, uint16_t cc = 0);
+ void Movf(Register rd, Register rs, uint16_t cc = 0);
+
+ void Clz(Register rd, Register rs);
+
+ // Jump unconditionally to given label.
+ // We NEED a nop in the branch delay slot, as it used by v8, for example in
+ // CodeGenerator::ProcessDeferred().
+ // Currently the branch delay slot is filled by the MacroAssembler.
+ // Use rather b(Label) for code generation.
+ void jmp(Label* L) {
+ Branch(L);
+ }
+
+ void Load(Register dst, const MemOperand& src, Representation r);
+ void Store(Register src, const MemOperand& dst, Representation r);
+
+ // Load an object from the root table.
+ void LoadRoot(Register destination,
+ Heap::RootListIndex index);
+ void LoadRoot(Register destination,
+ Heap::RootListIndex index,
+ Condition cond, Register src1, const Operand& src2);
+
+ // Store an object to the root table.
+ void StoreRoot(Register source,
+ Heap::RootListIndex index);
+ void StoreRoot(Register source,
+ Heap::RootListIndex index,
+ Condition cond, Register src1, const Operand& src2);
+
+ // ---------------------------------------------------------------------------
+ // GC Support
+
+ void IncrementalMarkingRecordWriteHelper(Register object,
+ Register value,
+ Register address);
+
+ enum RememberedSetFinalAction {
+ kReturnAtEnd,
+ kFallThroughAtEnd
+ };
+
+
+ // Record in the remembered set the fact that we have a pointer to new space
+ // at the address pointed to by the addr register. Only works if addr is not
+ // in new space.
+ void RememberedSetHelper(Register object, // Used for debug code.
+ Register addr,
+ Register scratch,
+ SaveFPRegsMode save_fp,
+ RememberedSetFinalAction and_then);
+
+ void CheckPageFlag(Register object,
+ Register scratch,
+ int mask,
+ Condition cc,
+ Label* condition_met);
+
+ void CheckMapDeprecated(Handle<Map> map,
+ Register scratch,
+ Label* if_deprecated);
+
+ // Check if object is in new space. Jumps if the object is not in new space.
+ // The register scratch can be object itself, but it will be clobbered.
+ void JumpIfNotInNewSpace(Register object,
+ Register scratch,
+ Label* branch) {
+ InNewSpace(object, scratch, ne, branch);
+ }
+
+ // Check if object is in new space. Jumps if the object is in new space.
+ // The register scratch can be object itself, but scratch will be clobbered.
+ void JumpIfInNewSpace(Register object,
+ Register scratch,
+ Label* branch) {
+ InNewSpace(object, scratch, eq, branch);
+ }
+
+ // Check if an object has a given incremental marking color.
+ void HasColor(Register object,
+ Register scratch0,
+ Register scratch1,
+ Label* has_color,
+ int first_bit,
+ int second_bit);
+
+ void JumpIfBlack(Register object,
+ Register scratch0,
+ Register scratch1,
+ Label* on_black);
+
+ // Checks the color of an object. If the object is already grey or black
+ // then we just fall through, since it is already live. If it is white and
+ // we can determine that it doesn't need to be scanned, then we just mark it
+ // black and fall through. For the rest we jump to the label so the
+ // incremental marker can fix its assumptions.
+ void EnsureNotWhite(Register object,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* object_is_white_and_not_data);
+
+ // Detects conservatively whether an object is data-only, i.e. it does need to
+ // be scanned by the garbage collector.
+ void JumpIfDataObject(Register value,
+ Register scratch,
+ Label* not_data_object);
+
+ // Notify the garbage collector that we wrote a pointer into an object.
+ // |object| is the object being stored into, |value| is the object being
+ // stored. value and scratch registers are clobbered by the operation.
+ // The offset is the offset from the start of the object, not the offset from
+ // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
+ void RecordWriteField(
+ Register object,
+ int offset,
+ Register value,
+ Register scratch,
+ RAStatus ra_status,
+ SaveFPRegsMode save_fp,
+ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+ SmiCheck smi_check = INLINE_SMI_CHECK,
+ PointersToHereCheck pointers_to_here_check_for_value =
+ kPointersToHereMaybeInteresting);
+
+ // As above, but the offset has the tag presubtracted. For use with
+ // MemOperand(reg, off).
+ inline void RecordWriteContextSlot(
+ Register context,
+ int offset,
+ Register value,
+ Register scratch,
+ RAStatus ra_status,
+ SaveFPRegsMode save_fp,
+ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+ SmiCheck smi_check = INLINE_SMI_CHECK,
+ PointersToHereCheck pointers_to_here_check_for_value =
+ kPointersToHereMaybeInteresting) {
+ RecordWriteField(context,
+ offset + kHeapObjectTag,
+ value,
+ scratch,
+ ra_status,
+ save_fp,
+ remembered_set_action,
+ smi_check,
+ pointers_to_here_check_for_value);
+ }
+
+ void RecordWriteForMap(
+ Register object,
+ Register map,
+ Register dst,
+ RAStatus ra_status,
+ SaveFPRegsMode save_fp);
+
+ // For a given |object| notify the garbage collector that the slot |address|
+ // has been written. |value| is the object being stored. The value and
+ // address registers are clobbered by the operation.
+ void RecordWrite(
+ Register object,
+ Register address,
+ Register value,
+ RAStatus ra_status,
+ SaveFPRegsMode save_fp,
+ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+ SmiCheck smi_check = INLINE_SMI_CHECK,
+ PointersToHereCheck pointers_to_here_check_for_value =
+ kPointersToHereMaybeInteresting);
+
+
+ // ---------------------------------------------------------------------------
+ // Inline caching support.
+
+ // Generate code for checking access rights - used for security checks
+ // on access to global objects across environments. The holder register
+ // is left untouched, whereas both scratch registers are clobbered.
+ void CheckAccessGlobalProxy(Register holder_reg,
+ Register scratch,
+ Label* miss);
+
+ void GetNumberHash(Register reg0, Register scratch);
+
+ void LoadFromNumberDictionary(Label* miss,
+ Register elements,
+ Register key,
+ Register result,
+ Register reg0,
+ Register reg1,
+ Register reg2);
+
+
+ inline void MarkCode(NopMarkerTypes type) {
+ nop(type);
+ }
+
+ // Check if the given instruction is a 'type' marker.
+ // i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as
+ // nop(type)). These instructions are generated to mark special location in
+ // the code, like some special IC code.
+ static inline bool IsMarkedCode(Instr instr, int type) {
+ DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
+ return IsNop(instr, type);
+ }
+
+
+ static inline int GetCodeMarker(Instr instr) {
+ uint32_t opcode = ((instr & kOpcodeMask));
+ uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
+ uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
+ uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
+
+ // Return <n> if we have a sll zero_reg, zero_reg, n
+ // else return -1.
+ bool sllzz = (opcode == SLL &&
+ rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
+ rs == static_cast<uint32_t>(ToNumber(zero_reg)));
+ int type =
+ (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
+ DCHECK((type == -1) ||
+ ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
+ return type;
+ }
+
+
+
+ // ---------------------------------------------------------------------------
+ // Allocation support.
+
+ // Allocate an object in new space or old pointer space. The object_size is
+ // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
+ // is passed. If the space is exhausted control continues at the gc_required
+ // label. The allocated object is returned in result. If the flag
+ // tag_allocated_object is true the result is tagged as as a heap object.
+ // All registers are clobbered also when control continues at the gc_required
+ // label.
+ void Allocate(int object_size,
+ Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required,
+ AllocationFlags flags);
+
+ void Allocate(Register object_size,
+ Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required,
+ AllocationFlags flags);
+
+ // Undo allocation in new space. The object passed and objects allocated after
+ // it will no longer be allocated. The caller must make sure that no pointers
+ // are left to the object(s) no longer allocated as they would be invalid when
+ // allocation is undone.
+ void UndoAllocationInNewSpace(Register object, Register scratch);
+
+
+ void AllocateTwoByteString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* gc_required);
+ void AllocateAsciiString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* gc_required);
+ void AllocateTwoByteConsString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required);
+ void AllocateAsciiConsString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required);
+ void AllocateTwoByteSlicedString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required);
+ void AllocateAsciiSlicedString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required);
+
+ // Allocates a heap number or jumps to the gc_required label if the young
+ // space is full and a scavenge is needed. All registers are clobbered also
+ // when control continues at the gc_required label.
+ void AllocateHeapNumber(Register result,
+ Register scratch1,
+ Register scratch2,
+ Register heap_number_map,
+ Label* gc_required,
+ TaggingMode tagging_mode = TAG_RESULT,
+ MutableMode mode = IMMUTABLE);
+
+ void AllocateHeapNumberWithValue(Register result,
+ FPURegister value,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required);
+
+ // ---------------------------------------------------------------------------
+ // Instruction macros.
+
+#define DEFINE_INSTRUCTION(instr) \
+ void instr(Register rd, Register rs, const Operand& rt); \
+ void instr(Register rd, Register rs, Register rt) { \
+ instr(rd, rs, Operand(rt)); \
+ } \
+ void instr(Register rs, Register rt, int32_t j) { \
+ instr(rs, rt, Operand(j)); \
+ }
+
+#define DEFINE_INSTRUCTION2(instr) \
+ void instr(Register rs, const Operand& rt); \
+ void instr(Register rs, Register rt) { \
+ instr(rs, Operand(rt)); \
+ } \
+ void instr(Register rs, int32_t j) { \
+ instr(rs, Operand(j)); \
+ }
+
+ DEFINE_INSTRUCTION(Addu);
+ DEFINE_INSTRUCTION(Daddu);
+ DEFINE_INSTRUCTION(Ddiv);
+ DEFINE_INSTRUCTION(Subu);
+ DEFINE_INSTRUCTION(Dsubu);
+ DEFINE_INSTRUCTION(Dmod);
+ DEFINE_INSTRUCTION(Mul);
+ DEFINE_INSTRUCTION(Mulh);
+ DEFINE_INSTRUCTION(Dmul);
+ DEFINE_INSTRUCTION(Dmulh);
+ DEFINE_INSTRUCTION2(Mult);
+ DEFINE_INSTRUCTION2(Dmult);
+ DEFINE_INSTRUCTION2(Multu);
+ DEFINE_INSTRUCTION2(Dmultu);
+ DEFINE_INSTRUCTION2(Div);
+ DEFINE_INSTRUCTION2(Ddiv);
+ DEFINE_INSTRUCTION2(Divu);
+ DEFINE_INSTRUCTION2(Ddivu);
+
+ DEFINE_INSTRUCTION(And);
+ DEFINE_INSTRUCTION(Or);
+ DEFINE_INSTRUCTION(Xor);
+ DEFINE_INSTRUCTION(Nor);
+ DEFINE_INSTRUCTION2(Neg);
+
+ DEFINE_INSTRUCTION(Slt);
+ DEFINE_INSTRUCTION(Sltu);
+
+ // MIPS32 R2 instruction macro.
+ DEFINE_INSTRUCTION(Ror);
+ DEFINE_INSTRUCTION(Dror);
+
+#undef DEFINE_INSTRUCTION
+#undef DEFINE_INSTRUCTION2
+
+ void Pref(int32_t hint, const MemOperand& rs);
+
+
+ // ---------------------------------------------------------------------------
+ // Pseudo-instructions.
+
+ void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
+
+ void Ulw(Register rd, const MemOperand& rs);
+ void Usw(Register rd, const MemOperand& rs);
+ void Uld(Register rd, const MemOperand& rs, Register scratch = at);
+ void Usd(Register rd, const MemOperand& rs, Register scratch = at);
+
+ // Load int32 in the rd register.
+ void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
+ inline void li(Register rd, int64_t j, LiFlags mode = OPTIMIZE_SIZE) {
+ li(rd, Operand(j), mode);
+ }
+ void li(Register dst, Handle<Object> value, LiFlags mode = OPTIMIZE_SIZE);
+
+ // Push multiple registers on the stack.
+ // Registers are saved in numerical order, with higher numbered registers
+ // saved in higher memory addresses.
+ void MultiPush(RegList regs);
+ void MultiPushReversed(RegList regs);
+
+ void MultiPushFPU(RegList regs);
+ void MultiPushReversedFPU(RegList regs);
+
+ void push(Register src) {
+ Daddu(sp, sp, Operand(-kPointerSize));
+ sd(src, MemOperand(sp, 0));
+ }
+ void Push(Register src) { push(src); }
+
+ // Push a handle.
+ void Push(Handle<Object> handle);
+ void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
+
+ // Push two registers. Pushes leftmost register first (to highest address).
+ void Push(Register src1, Register src2) {
+ Dsubu(sp, sp, Operand(2 * kPointerSize));
+ sd(src1, MemOperand(sp, 1 * kPointerSize));
+ sd(src2, MemOperand(sp, 0 * kPointerSize));
+ }
+
+ // Push three registers. Pushes leftmost register first (to highest address).
+ void Push(Register src1, Register src2, Register src3) {
+ Dsubu(sp, sp, Operand(3 * kPointerSize));
+ sd(src1, MemOperand(sp, 2 * kPointerSize));
+ sd(src2, MemOperand(sp, 1 * kPointerSize));
+ sd(src3, MemOperand(sp, 0 * kPointerSize));
+ }
+
+ // Push four registers. Pushes leftmost register first (to highest address).
+ void Push(Register src1, Register src2, Register src3, Register src4) {
+ Dsubu(sp, sp, Operand(4 * kPointerSize));
+ sd(src1, MemOperand(sp, 3 * kPointerSize));
+ sd(src2, MemOperand(sp, 2 * kPointerSize));
+ sd(src3, MemOperand(sp, 1 * kPointerSize));
+ sd(src4, MemOperand(sp, 0 * kPointerSize));
+ }
+
+ void Push(Register src, Condition cond, Register tst1, Register tst2) {
+ // Since we don't have conditional execution we use a Branch.
+ Branch(3, cond, tst1, Operand(tst2));
+ Dsubu(sp, sp, Operand(kPointerSize));
+ sd(src, MemOperand(sp, 0));
+ }
+
+ void PushRegisterAsTwoSmis(Register src, Register scratch = at);
+ void PopRegisterAsTwoSmis(Register dst, Register scratch = at);
+
+ // Pops multiple values from the stack and load them in the
+ // registers specified in regs. Pop order is the opposite as in MultiPush.
+ void MultiPop(RegList regs);
+ void MultiPopReversed(RegList regs);
+
+ void MultiPopFPU(RegList regs);
+ void MultiPopReversedFPU(RegList regs);
+
+ void pop(Register dst) {
+ ld(dst, MemOperand(sp, 0));
+ Daddu(sp, sp, Operand(kPointerSize));
+ }
+ void Pop(Register dst) { pop(dst); }
+
+ // Pop two registers. Pops rightmost register first (from lower address).
+ void Pop(Register src1, Register src2) {
+ DCHECK(!src1.is(src2));
+ ld(src2, MemOperand(sp, 0 * kPointerSize));
+ ld(src1, MemOperand(sp, 1 * kPointerSize));
+ Daddu(sp, sp, 2 * kPointerSize);
+ }
+
+ // Pop three registers. Pops rightmost register first (from lower address).
+ void Pop(Register src1, Register src2, Register src3) {
+ ld(src3, MemOperand(sp, 0 * kPointerSize));
+ ld(src2, MemOperand(sp, 1 * kPointerSize));
+ ld(src1, MemOperand(sp, 2 * kPointerSize));
+ Daddu(sp, sp, 3 * kPointerSize);
+ }
+
+ void Pop(uint32_t count = 1) {
+ Daddu(sp, sp, Operand(count * kPointerSize));
+ }
+
+ // Push and pop the registers that can hold pointers, as defined by the
+ // RegList constant kSafepointSavedRegisters.
+ void PushSafepointRegisters();
+ void PopSafepointRegisters();
+ // Store value in register src in the safepoint stack slot for
+ // register dst.
+ void StoreToSafepointRegisterSlot(Register src, Register dst);
+ // Load the value of the src register from its safepoint stack slot
+ // into register dst.
+ void LoadFromSafepointRegisterSlot(Register dst, Register src);
+
+ // Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
+ // from C.
+ // Does not handle errors.
+ void FlushICache(Register address, unsigned instructions);
+
+ // MIPS64 R2 instruction macro.
+ void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
+ void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
+
+ // ---------------------------------------------------------------------------
+ // FPU macros. These do not handle special cases like NaN or +- inf.
+
+ // Convert unsigned word to double.
+ void Cvt_d_uw(FPURegister fd, FPURegister fs, FPURegister scratch);
+ void Cvt_d_uw(FPURegister fd, Register rs, FPURegister scratch);
+
+ // Convert double to unsigned long.
+ void Trunc_l_ud(FPURegister fd, FPURegister fs, FPURegister scratch);
+
+ void Trunc_l_d(FPURegister fd, FPURegister fs);
+ void Round_l_d(FPURegister fd, FPURegister fs);
+ void Floor_l_d(FPURegister fd, FPURegister fs);
+ void Ceil_l_d(FPURegister fd, FPURegister fs);
+
+ // Convert double to unsigned word.
+ void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
+ void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch);
+
+ void Trunc_w_d(FPURegister fd, FPURegister fs);
+ void Round_w_d(FPURegister fd, FPURegister fs);
+ void Floor_w_d(FPURegister fd, FPURegister fs);
+ void Ceil_w_d(FPURegister fd, FPURegister fs);
+
+ void Madd_d(FPURegister fd,
+ FPURegister fr,
+ FPURegister fs,
+ FPURegister ft,
+ FPURegister scratch);
+
+ // Wrapper function for the different cmp/branch types.
+ void BranchF(Label* target,
+ Label* nan,
+ Condition cc,
+ FPURegister cmp1,
+ FPURegister cmp2,
+ BranchDelaySlot bd = PROTECT);
+
+ // Alternate (inline) version for better readability with USE_DELAY_SLOT.
+ inline void BranchF(BranchDelaySlot bd,
+ Label* target,
+ Label* nan,
+ Condition cc,
+ FPURegister cmp1,
+ FPURegister cmp2) {
+ BranchF(target, nan, cc, cmp1, cmp2, bd);
+ }
+
+ // Truncates a double using a specific rounding mode, and writes the value
+ // to the result register.
+ // The except_flag will contain any exceptions caused by the instruction.
+ // If check_inexact is kDontCheckForInexactConversion, then the inexact
+ // exception is masked.
+ void EmitFPUTruncate(FPURoundingMode rounding_mode,
+ Register result,
+ DoubleRegister double_input,
+ Register scratch,
+ DoubleRegister double_scratch,
+ Register except_flag,
+ CheckForInexactConversion check_inexact
+ = kDontCheckForInexactConversion);
+
+ // Performs a truncating conversion of a floating point number as used by
+ // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
+ // succeeds, otherwise falls through if result is saturated. On return
+ // 'result' either holds answer, or is clobbered on fall through.
+ //
+ // Only public for the test code in test-code-stubs-arm.cc.
+ void TryInlineTruncateDoubleToI(Register result,
+ DoubleRegister input,
+ Label* done);
+
+ // Performs a truncating conversion of a floating point number as used by
+ // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
+ // Exits with 'result' holding the answer.
+ void TruncateDoubleToI(Register result, DoubleRegister double_input);
+
+ // Performs a truncating conversion of a heap number as used by
+ // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
+ // must be different registers. Exits with 'result' holding the answer.
+ void TruncateHeapNumberToI(Register result, Register object);
+
+ // Converts the smi or heap number in object to an int32 using the rules
+ // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
+ // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
+ // different registers.
+ void TruncateNumberToI(Register object,
+ Register result,
+ Register heap_number_map,
+ Register scratch,
+ Label* not_int32);
+
+ // Loads the number from object into dst register.
+ // If |object| is neither smi nor heap number, |not_number| is jumped to
+ // with |object| still intact.
+ void LoadNumber(Register object,
+ FPURegister dst,
+ Register heap_number_map,
+ Register scratch,
+ Label* not_number);
+
+ // Loads the number from object into double_dst in the double format.
+ // Control will jump to not_int32 if the value cannot be exactly represented
+ // by a 32-bit integer.
+ // Floating point value in the 32-bit integer range that are not exact integer
+ // won't be loaded.
+ void LoadNumberAsInt32Double(Register object,
+ DoubleRegister double_dst,
+ Register heap_number_map,
+ Register scratch1,
+ Register scratch2,
+ FPURegister double_scratch,
+ Label* not_int32);
+
+ // Loads the number from object into dst as a 32-bit integer.
+ // Control will jump to not_int32 if the object cannot be exactly represented
+ // by a 32-bit integer.
+ // Floating point value in the 32-bit integer range that are not exact integer
+ // won't be converted.
+ void LoadNumberAsInt32(Register object,
+ Register dst,
+ Register heap_number_map,
+ Register scratch1,
+ Register scratch2,
+ FPURegister double_scratch0,
+ FPURegister double_scratch1,
+ Label* not_int32);
+
+ // Enter exit frame.
+ // argc - argument count to be dropped by LeaveExitFrame.
+ // save_doubles - saves FPU registers on stack, currently disabled.
+ // stack_space - extra stack space.
+ void EnterExitFrame(bool save_doubles,
+ int stack_space = 0);
+
+ // Leave the current exit frame.
+ void LeaveExitFrame(bool save_doubles,
+ Register arg_count,
+ bool restore_context,
+ bool do_return = NO_EMIT_RETURN);
+
+ // Get the actual activation frame alignment for target environment.
+ static int ActivationFrameAlignment();
+
+ // Make sure the stack is aligned. Only emits code in debug mode.
+ void AssertStackIsAligned();
+
+ void LoadContext(Register dst, int context_chain_length);
+
+ // Conditionally load the cached Array transitioned map of type
+ // transitioned_kind from the native context if the map in register
+ // map_in_out is the cached Array map in the native context of
+ // expected_kind.
+ void LoadTransitionedArrayMapConditional(
+ ElementsKind expected_kind,
+ ElementsKind transitioned_kind,
+ Register map_in_out,
+ Register scratch,
+ Label* no_map_match);
+
+ void LoadGlobalFunction(int index, Register function);
+
+ // Load the initial map from the global function. The registers
+ // function and map can be the same, function is then overwritten.
+ void LoadGlobalFunctionInitialMap(Register function,
+ Register map,
+ Register scratch);
+
+ void InitializeRootRegister() {
+ ExternalReference roots_array_start =
+ ExternalReference::roots_array_start(isolate());
+ li(kRootRegister, Operand(roots_array_start));
+ }
+
+ // -------------------------------------------------------------------------
+ // JavaScript invokes.
+
+ // Invoke the JavaScript function code by either calling or jumping.
+ void InvokeCode(Register code,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper);
+
+ // Invoke the JavaScript function in the given register. Changes the
+ // current context to the context in the function before invoking.
+ void InvokeFunction(Register function,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper);
+
+ void InvokeFunction(Register function,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper);
+
+ void InvokeFunction(Handle<JSFunction> function,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper);
+
+
+ void IsObjectJSObjectType(Register heap_object,
+ Register map,
+ Register scratch,
+ Label* fail);
+
+ void IsInstanceJSObjectType(Register map,
+ Register scratch,
+ Label* fail);
+
+ void IsObjectJSStringType(Register object,
+ Register scratch,
+ Label* fail);
+
+ void IsObjectNameType(Register object,
+ Register scratch,
+ Label* fail);
+
+ // -------------------------------------------------------------------------
+ // Debugger Support.
+
+ void DebugBreak();
+
+ // -------------------------------------------------------------------------
+ // Exception handling.
+
+ // Push a new try handler and link into try handler chain.
+ void PushTryHandler(StackHandler::Kind kind, int handler_index);
+
+ // Unlink the stack handler on top of the stack from the try handler chain.
+ // Must preserve the result register.
+ void PopTryHandler();
+
+ // Passes thrown value to the handler of top of the try handler chain.
+ void Throw(Register value);
+
+ // Propagates an uncatchable exception to the top of the current JS stack's
+ // handler chain.
+ void ThrowUncatchable(Register value);
+
+ // Copies a fixed number of fields of heap objects from src to dst.
+ void CopyFields(Register dst, Register src, RegList temps, int field_count);
+
+ // Copies a number of bytes from src to dst. All registers are clobbered. On
+ // exit src and dst will point to the place just after where the last byte was
+ // read or written and length will be zero.
+ void CopyBytes(Register src,
+ Register dst,
+ Register length,
+ Register scratch);
+
+ // Initialize fields with filler values. Fields starting at |start_offset|
+ // not including end_offset are overwritten with the value in |filler|. At
+ // the end the loop, |start_offset| takes the value of |end_offset|.
+ void InitializeFieldsWithFiller(Register start_offset,
+ Register end_offset,
+ Register filler);
+
+ // -------------------------------------------------------------------------
+ // Support functions.
+
+ // Try to get function prototype of a function and puts the value in
+ // the result register. Checks that the function really is a
+ // function and jumps to the miss label if the fast checks fail. The
+ // function register will be untouched; the other registers may be
+ // clobbered.
+ void TryGetFunctionPrototype(Register function,
+ Register result,
+ Register scratch,
+ Label* miss,
+ bool miss_on_bound_function = false);
+
+ void GetObjectType(Register function,
+ Register map,
+ Register type_reg);
+
+ // Check if a map for a JSObject indicates that the object has fast elements.
+ // Jump to the specified label if it does not.
+ void CheckFastElements(Register map,
+ Register scratch,
+ Label* fail);
+
+ // Check if a map for a JSObject indicates that the object can have both smi
+ // and HeapObject elements. Jump to the specified label if it does not.
+ void CheckFastObjectElements(Register map,
+ Register scratch,
+ Label* fail);
+
+ // Check if a map for a JSObject indicates that the object has fast smi only
+ // elements. Jump to the specified label if it does not.
+ void CheckFastSmiElements(Register map,
+ Register scratch,
+ Label* fail);
+
+ // Check to see if maybe_number can be stored as a double in
+ // FastDoubleElements. If it can, store it at the index specified by key in
+ // the FastDoubleElements array elements. Otherwise jump to fail.
+ void StoreNumberToDoubleElements(Register value_reg,
+ Register key_reg,
+ Register elements_reg,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* fail,
+ int elements_offset = 0);
+
+ // Compare an object's map with the specified map and its transitioned
+ // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to
+ // "branch_to" if the result of the comparison is "cond". If multiple map
+ // compares are required, the compare sequences branches to early_success.
+ void CompareMapAndBranch(Register obj,
+ Register scratch,
+ Handle<Map> map,
+ Label* early_success,
+ Condition cond,
+ Label* branch_to);
+
+ // As above, but the map of the object is already loaded into the register
+ // which is preserved by the code generated.
+ void CompareMapAndBranch(Register obj_map,
+ Handle<Map> map,
+ Label* early_success,
+ Condition cond,
+ Label* branch_to);
+
+ // Check if the map of an object is equal to a specified map and branch to
+ // label if not. Skip the smi check if not required (object is known to be a
+ // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
+ // against maps that are ElementsKind transition maps of the specificed map.
+ void CheckMap(Register obj,
+ Register scratch,
+ Handle<Map> map,
+ Label* fail,
+ SmiCheckType smi_check_type);
+
+
+ void CheckMap(Register obj,
+ Register scratch,
+ Heap::RootListIndex index,
+ Label* fail,
+ SmiCheckType smi_check_type);
+
+ // Check if the map of an object is equal to a specified map and branch to a
+ // specified target if equal. Skip the smi check if not required (object is
+ // known to be a heap object)
+ void DispatchMap(Register obj,
+ Register scratch,
+ Handle<Map> map,
+ Handle<Code> success,
+ SmiCheckType smi_check_type);
+
+
+ // Load and check the instance type of an object for being a string.
+ // Loads the type into the second argument register.
+ // Returns a condition that will be enabled if the object was a string.
+ Condition IsObjectStringType(Register obj,
+ Register type,
+ Register result) {
+ ld(type, FieldMemOperand(obj, HeapObject::kMapOffset));
+ lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
+ And(type, type, Operand(kIsNotStringMask));
+ DCHECK_EQ(0, kStringTag);
+ return eq;
+ }
+
+
+ // Picks out an array index from the hash field.
+ // Register use:
+ // hash - holds the index's hash. Clobbered.
+ // index - holds the overwritten index on exit.
+ void IndexFromHash(Register hash, Register index);
+
+ // Get the number of least significant bits from a register.
+ void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
+ void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
+
+ // Load the value of a number object into a FPU double register. If the
+ // object is not a number a jump to the label not_number is performed
+ // and the FPU double register is unchanged.
+ void ObjectToDoubleFPURegister(
+ Register object,
+ FPURegister value,
+ Register scratch1,
+ Register scratch2,
+ Register heap_number_map,
+ Label* not_number,
+ ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
+
+ // Load the value of a smi object into a FPU double register. The register
+ // scratch1 can be the same register as smi in which case smi will hold the
+ // untagged value afterwards.
+ void SmiToDoubleFPURegister(Register smi,
+ FPURegister value,
+ Register scratch1);
+
+ // -------------------------------------------------------------------------
+ // Overflow handling functions.
+ // Usage: first call the appropriate arithmetic function, then call one of the
+ // jump functions with the overflow_dst register as the second parameter.
+
+ void AdduAndCheckForOverflow(Register dst,
+ Register left,
+ Register right,
+ Register overflow_dst,
+ Register scratch = at);
+
+ void SubuAndCheckForOverflow(Register dst,
+ Register left,
+ Register right,
+ Register overflow_dst,
+ Register scratch = at);
+
+ void BranchOnOverflow(Label* label,
+ Register overflow_check,
+ BranchDelaySlot bd = PROTECT) {
+ Branch(label, lt, overflow_check, Operand(zero_reg), bd);
+ }
+
+ void BranchOnNoOverflow(Label* label,
+ Register overflow_check,
+ BranchDelaySlot bd = PROTECT) {
+ Branch(label, ge, overflow_check, Operand(zero_reg), bd);
+ }
+
+ void RetOnOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
+ Ret(lt, overflow_check, Operand(zero_reg), bd);
+ }
+
+ void RetOnNoOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
+ Ret(ge, overflow_check, Operand(zero_reg), bd);
+ }
+
+ // -------------------------------------------------------------------------
+ // Runtime calls.
+
+ // See comments at the beginning of CEntryStub::Generate.
+ inline void PrepareCEntryArgs(int num_args) {
+ li(s0, num_args);
+ li(s1, (num_args - 1) * kPointerSize);
+ }
+
+ inline void PrepareCEntryFunction(const ExternalReference& ref) {
+ li(s2, Operand(ref));
+ }
+
+#define COND_ARGS Condition cond = al, Register rs = zero_reg, \
+const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
+
+ // Call a code stub.
+ void CallStub(CodeStub* stub,
+ TypeFeedbackId ast_id = TypeFeedbackId::None(),
+ COND_ARGS);
+
+ // Tail call a code stub (jump).
+ void TailCallStub(CodeStub* stub, COND_ARGS);
+
+#undef COND_ARGS
+
+ void CallJSExitStub(CodeStub* stub);
+
+ // Call a runtime routine.
+ void CallRuntime(const Runtime::Function* f,
+ int num_arguments,
+ SaveFPRegsMode save_doubles = kDontSaveFPRegs);
+ void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
+ const Runtime::Function* function = Runtime::FunctionForId(id);
+ CallRuntime(function, function->nargs, kSaveFPRegs);
+ }
+
+ // Convenience function: Same as above, but takes the fid instead.
+ void CallRuntime(Runtime::FunctionId id,
+ int num_arguments,
+ SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
+ CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
+ }
+
+ // Convenience function: call an external reference.
+ void CallExternalReference(const ExternalReference& ext,
+ int num_arguments,
+ BranchDelaySlot bd = PROTECT);
+
+ // Tail call of a runtime routine (jump).
+ // Like JumpToExternalReference, but also takes care of passing the number
+ // of parameters.
+ void TailCallExternalReference(const ExternalReference& ext,
+ int num_arguments,
+ int result_size);
+
+ // Convenience function: tail call a runtime routine (jump).
+ void TailCallRuntime(Runtime::FunctionId fid,
+ int num_arguments,
+ int result_size);
+
+ int CalculateStackPassedWords(int num_reg_arguments,
+ int num_double_arguments);
+
+ // Before calling a C-function from generated code, align arguments on stack
+ // and add space for the four mips argument slots.
+ // After aligning the frame, non-register arguments must be stored on the
+ // stack, after the argument-slots using helper: CFunctionArgumentOperand().
+ // The argument count assumes all arguments are word sized.
+ // Some compilers/platforms require the stack to be aligned when calling
+ // C++ code.
+ // Needs a scratch register to do some arithmetic. This register will be
+ // trashed.
+ void PrepareCallCFunction(int num_reg_arguments,
+ int num_double_registers,
+ Register scratch);
+ void PrepareCallCFunction(int num_reg_arguments,
+ Register scratch);
+
+ // Arguments 1-4 are placed in registers a0 thru a3 respectively.
+ // Arguments 5..n are stored to stack using following:
+ // sw(a4, CFunctionArgumentOperand(5));
+
+ // Calls a C function and cleans up the space for arguments allocated
+ // by PrepareCallCFunction. The called function is not allowed to trigger a
+ // garbage collection, since that might move the code and invalidate the
+ // return address (unless this is somehow accounted for by the called
+ // function).
+ void CallCFunction(ExternalReference function, int num_arguments);
+ void CallCFunction(Register function, int num_arguments);
+ void CallCFunction(ExternalReference function,
+ int num_reg_arguments,
+ int num_double_arguments);
+ void CallCFunction(Register function,
+ int num_reg_arguments,
+ int num_double_arguments);
+ void MovFromFloatResult(DoubleRegister dst);
+ void MovFromFloatParameter(DoubleRegister dst);
+
+ // There are two ways of passing double arguments on MIPS, depending on
+ // whether soft or hard floating point ABI is used. These functions
+ // abstract parameter passing for the three different ways we call
+ // C functions from generated code.
+ void MovToFloatParameter(DoubleRegister src);
+ void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
+ void MovToFloatResult(DoubleRegister src);
+
+ // Calls an API function. Allocates HandleScope, extracts returned value
+ // from handle and propagates exceptions. Restores context. stack_space
+ // - space to be unwound on exit (includes the call JS arguments space and
+ // the additional space allocated for the fast call).
+ void CallApiFunctionAndReturn(Register function_address,
+ ExternalReference thunk_ref,
+ int stack_space,
+ MemOperand return_value_operand,
+ MemOperand* context_restore_operand);
+
+ // Jump to the builtin routine.
+ void JumpToExternalReference(const ExternalReference& builtin,
+ BranchDelaySlot bd = PROTECT);
+
+ // Invoke specified builtin JavaScript function. Adds an entry to
+ // the unresolved list if the name does not resolve.
+ void InvokeBuiltin(Builtins::JavaScript id,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper = NullCallWrapper());
+
+ // Store the code object for the given builtin in the target register and
+ // setup the function in a1.
+ void GetBuiltinEntry(Register target, Builtins::JavaScript id);
+
+ // Store the function for the given builtin in the target register.
+ void GetBuiltinFunction(Register target, Builtins::JavaScript id);
+
+ struct Unresolved {
+ int pc;
+ uint32_t flags; // See Bootstrapper::FixupFlags decoders/encoders.
+ const char* name;
+ };
+
+ Handle<Object> CodeObject() {
+ DCHECK(!code_object_.is_null());
+ return code_object_;
+ }
+
+ // Emit code for a truncating division by a constant. The dividend register is
+ // unchanged and at gets clobbered. Dividend and result must be different.
+ void TruncatingDiv(Register result, Register dividend, int32_t divisor);
+
+ // -------------------------------------------------------------------------
+ // StatsCounter support.
+
+ void SetCounter(StatsCounter* counter, int value,
+ Register scratch1, Register scratch2);
+ void IncrementCounter(StatsCounter* counter, int value,
+ Register scratch1, Register scratch2);
+ void DecrementCounter(StatsCounter* counter, int value,
+ Register scratch1, Register scratch2);
+
+
+ // -------------------------------------------------------------------------
+ // Debugging.
+
+ // Calls Abort(msg) if the condition cc is not satisfied.
+ // Use --debug_code to enable.
+ void Assert(Condition cc, BailoutReason reason, Register rs, Operand rt);
+ void AssertFastElements(Register elements);
+
+ // Like Assert(), but always enabled.
+ void Check(Condition cc, BailoutReason reason, Register rs, Operand rt);
+
+ // Print a message to stdout and abort execution.
+ void Abort(BailoutReason msg);
+
+ // Verify restrictions about code generated in stubs.
+ void set_generating_stub(bool value) { generating_stub_ = value; }
+ bool generating_stub() { return generating_stub_; }
+ void set_has_frame(bool value) { has_frame_ = value; }
+ bool has_frame() { return has_frame_; }
+ inline bool AllowThisStubCall(CodeStub* stub);
+
+ // ---------------------------------------------------------------------------
+ // Number utilities.
+
+ // Check whether the value of reg is a power of two and not zero. If not
+ // control continues at the label not_power_of_two. If reg is a power of two
+ // the register scratch contains the value of (reg - 1) when control falls
+ // through.
+ void JumpIfNotPowerOfTwoOrZero(Register reg,
+ Register scratch,
+ Label* not_power_of_two_or_zero);
+
+ // -------------------------------------------------------------------------
+ // Smi utilities.
+
+ // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
+ void SmiTagCheckOverflow(Register reg, Register overflow);
+ void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
+
+ void SmiTag(Register dst, Register src) {
+ STATIC_ASSERT(kSmiTag == 0);
+ if (SmiValuesAre32Bits()) {
+ STATIC_ASSERT(kSmiShift == 32);
+ dsll32(dst, src, 0);
+ } else {
+ Addu(dst, src, src);
+ }
+ }
+
+ void SmiTag(Register reg) {
+ SmiTag(reg, reg);
+ }
+
+ // Try to convert int32 to smi. If the value is to large, preserve
+ // the original value and jump to not_a_smi. Destroys scratch and
+ // sets flags.
+ void TrySmiTag(Register reg, Register scratch, Label* not_a_smi) {
+ TrySmiTag(reg, reg, scratch, not_a_smi);
+ }
+
+ void TrySmiTag(Register dst,
+ Register src,
+ Register scratch,
+ Label* not_a_smi) {
+ if (SmiValuesAre32Bits()) {
+ SmiTag(dst, src);
+ } else {
+ SmiTagCheckOverflow(at, src, scratch);
+ BranchOnOverflow(not_a_smi, scratch);
+ mov(dst, at);
+ }
+ }
+
+ void SmiUntag(Register dst, Register src) {
+ if (SmiValuesAre32Bits()) {
+ STATIC_ASSERT(kSmiShift == 32);
+ dsra32(dst, src, 0);
+ } else {
+ sra(dst, src, kSmiTagSize);
+ }
+ }
+
+ void SmiUntag(Register reg) {
+ SmiUntag(reg, reg);
+ }
+
+ // Left-shifted from int32 equivalent of Smi.
+ void SmiScale(Register dst, Register src, int scale) {
+ if (SmiValuesAre32Bits()) {
+ // The int portion is upper 32-bits of 64-bit word.
+ dsra(dst, src, kSmiShift - scale);
+ } else {
+ DCHECK(scale >= kSmiTagSize);
+ sll(dst, src, scale - kSmiTagSize);
+ }
+ }
+
+ // Combine load with untagging or scaling.
+ void SmiLoadUntag(Register dst, MemOperand src);
+
+ void SmiLoadScale(Register dst, MemOperand src, int scale);
+
+ // Returns 2 values: the Smi and a scaled version of the int within the Smi.
+ void SmiLoadWithScale(Register d_smi,
+ Register d_scaled,
+ MemOperand src,
+ int scale);
+
+ // Returns 2 values: the untagged Smi (int32) and scaled version of that int.
+ void SmiLoadUntagWithScale(Register d_int,
+ Register d_scaled,
+ MemOperand src,
+ int scale);
+
+
+ // Test if the register contains a smi.
+ inline void SmiTst(Register value, Register scratch) {
+ And(scratch, value, Operand(kSmiTagMask));
+ }
+ inline void NonNegativeSmiTst(Register value, Register scratch) {
+ And(scratch, value, Operand(kSmiTagMask | kSmiSignMask));
+ }
+
+ // Untag the source value into destination and jump if source is a smi.
+ // Source and destination can be the same register.
+ void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
+
+ // Untag the source value into destination and jump if source is not a smi.
+ // Source and destination can be the same register.
+ void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
+
+ // Jump the register contains a smi.
+ void JumpIfSmi(Register value,
+ Label* smi_label,
+ Register scratch = at,
+ BranchDelaySlot bd = PROTECT);
+
+ // Jump if the register contains a non-smi.
+ void JumpIfNotSmi(Register value,
+ Label* not_smi_label,
+ Register scratch = at,
+ BranchDelaySlot bd = PROTECT);
+
+ // Jump if either of the registers contain a non-smi.
+ void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
+ // Jump if either of the registers contain a smi.
+ void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
+
+ // Abort execution if argument is a smi, enabled via --debug-code.
+ void AssertNotSmi(Register object);
+ void AssertSmi(Register object);
+
+ // Abort execution if argument is not a string, enabled via --debug-code.
+ void AssertString(Register object);
+
+ // Abort execution if argument is not a name, enabled via --debug-code.
+ void AssertName(Register object);
+
+ // Abort execution if argument is not undefined or an AllocationSite, enabled
+ // via --debug-code.
+ void AssertUndefinedOrAllocationSite(Register object, Register scratch);
+
+ // Abort execution if reg is not the root value with the given index,
+ // enabled via --debug-code.
+ void AssertIsRoot(Register reg, Heap::RootListIndex index);
+
+ // ---------------------------------------------------------------------------
+ // HeapNumber utilities.
+
+ void JumpIfNotHeapNumber(Register object,
+ Register heap_number_map,
+ Register scratch,
+ Label* on_not_heap_number);
+
+ // -------------------------------------------------------------------------
+ // String utilities.
+
+ // Generate code to do a lookup in the number string cache. If the number in
+ // the register object is found in the cache the generated code falls through
+ // with the result in the result register. The object and the result register
+ // can be the same. If the number is not found in the cache the code jumps to
+ // the label not_found with only the content of register object unchanged.
+ void LookupNumberStringCache(Register object,
+ Register result,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* not_found);
+
+ // Checks if both instance types are sequential ASCII strings and jumps to
+ // label if either is not.
+ void JumpIfBothInstanceTypesAreNotSequentialAscii(
+ Register first_object_instance_type,
+ Register second_object_instance_type,
+ Register scratch1,
+ Register scratch2,
+ Label* failure);
+
+ // Check if instance type is sequential ASCII string and jump to label if
+ // it is not.
+ void JumpIfInstanceTypeIsNotSequentialAscii(Register type,
+ Register scratch,
+ Label* failure);
+
+ void JumpIfNotUniqueName(Register reg, Label* not_unique_name);
+
+ void EmitSeqStringSetCharCheck(Register string,
+ Register index,
+ Register value,
+ Register scratch,
+ uint32_t encoding_mask);
+
+ // Test that both first and second are sequential ASCII strings.
+ // Assume that they are non-smis.
+ void JumpIfNonSmisNotBothSequentialAsciiStrings(Register first,
+ Register second,
+ Register scratch1,
+ Register scratch2,
+ Label* failure);
+
+ // Test that both first and second are sequential ASCII strings.
+ // Check that they are non-smis.
+ void JumpIfNotBothSequentialAsciiStrings(Register first,
+ Register second,
+ Register scratch1,
+ Register scratch2,
+ Label* failure);
+
+ void ClampUint8(Register output_reg, Register input_reg);
+
+ void ClampDoubleToUint8(Register result_reg,
+ DoubleRegister input_reg,
+ DoubleRegister temp_double_reg);
+
+
+ void LoadInstanceDescriptors(Register map, Register descriptors);
+ void EnumLength(Register dst, Register map);
+ void NumberOfOwnDescriptors(Register dst, Register map);
+
+ template<typename Field>
+ void DecodeField(Register dst, Register src) {
+ Ext(dst, src, Field::kShift, Field::kSize);
+ }
+
+ template<typename Field>
+ void DecodeField(Register reg) {
+ DecodeField<Field>(reg, reg);
+ }
+
+ template<typename Field>
+ void DecodeFieldToSmi(Register dst, Register src) {
+ static const int shift = Field::kShift;
+ static const int mask = Field::kMask >> shift;
+ dsrl(dst, src, shift);
+ And(dst, dst, Operand(mask));
+ dsll32(dst, dst, 0);
+ }
+
+ template<typename Field>
+ void DecodeFieldToSmi(Register reg) {
+ DecodeField<Field>(reg, reg);
+ }
+ // Generates function and stub prologue code.
+ void StubPrologue();
+ void Prologue(bool code_pre_aging);
+
+ // Activation support.
+ void EnterFrame(StackFrame::Type type);
+ void LeaveFrame(StackFrame::Type type);
+
+ // Patch the relocated value (lui/ori pair).
+ void PatchRelocatedValue(Register li_location,
+ Register scratch,
+ Register new_value);
+ // Get the relocatad value (loaded data) from the lui/ori pair.
+ void GetRelocatedValue(Register li_location,
+ Register value,
+ Register scratch);
+
+ // Expects object in a0 and returns map with validated enum cache
+ // in a0. Assumes that any other register can be used as a scratch.
+ void CheckEnumCache(Register null_value, Label* call_runtime);
+
+ // AllocationMemento support. Arrays may have an associated
+ // AllocationMemento object that can be checked for in order to pretransition
+ // to another type.
+ // On entry, receiver_reg should point to the array object.
+ // scratch_reg gets clobbered.
+ // If allocation info is present, jump to allocation_memento_present.
+ void TestJSArrayForAllocationMemento(
+ Register receiver_reg,
+ Register scratch_reg,
+ Label* no_memento_found,
+ Condition cond = al,
+ Label* allocation_memento_present = NULL);
+
+ void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
+ Register scratch_reg,
+ Label* memento_found) {
+ Label no_memento_found;
+ TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
+ &no_memento_found, eq, memento_found);
+ bind(&no_memento_found);
+ }
+
+ // Jumps to found label if a prototype map has dictionary elements.
+ void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
+ Register scratch1, Label* found);
+
+ private:
+ void CallCFunctionHelper(Register function,
+ int num_reg_arguments,
+ int num_double_arguments);
+
+ void BranchAndLinkShort(int16_t offset, BranchDelaySlot bdslot = PROTECT);
+ void BranchAndLinkShort(int16_t offset, Condition cond, Register rs,
+ const Operand& rt,
+ BranchDelaySlot bdslot = PROTECT);
+ void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
+ void BranchAndLinkShort(Label* L, Condition cond, Register rs,
+ const Operand& rt,
+ BranchDelaySlot bdslot = PROTECT);
+ void J(Label* L, BranchDelaySlot bdslot);
+ void Jr(Label* L, BranchDelaySlot bdslot);
+ void Jalr(Label* L, BranchDelaySlot bdslot);
+
+ // Helper functions for generating invokes.
+ void InvokePrologue(const ParameterCount& expected,
+ const ParameterCount& actual,
+ Handle<Code> code_constant,
+ Register code_reg,
+ Label* done,
+ bool* definitely_mismatches,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper);
+
+ // Get the code for the given builtin. Returns if able to resolve
+ // the function in the 'resolved' flag.
+ Handle<Code> ResolveBuiltin(Builtins::JavaScript id, bool* resolved);
+
+ void InitializeNewString(Register string,
+ Register length,
+ Heap::RootListIndex map_index,
+ Register scratch1,
+ Register scratch2);
+
+ // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
+ void InNewSpace(Register object,
+ Register scratch,
+ Condition cond, // eq for new space, ne otherwise.
+ Label* branch);
+
+ // Helper for finding the mark bits for an address. Afterwards, the
+ // bitmap register points at the word with the mark bits and the mask
+ // the position of the first bit. Leaves addr_reg unchanged.
+ inline void GetMarkBits(Register addr_reg,
+ Register bitmap_reg,
+ Register mask_reg);
+
+ // Helper for throwing exceptions. Compute a handler address and jump to
+ // it. See the implementation for register usage.
+ void JumpToHandlerEntry();
+
+ // Compute memory operands for safepoint stack slots.
+ static int SafepointRegisterStackIndex(int reg_code);
+ MemOperand SafepointRegisterSlot(Register reg);
+ MemOperand SafepointRegistersAndDoublesSlot(Register reg);
+
+ bool generating_stub_;
+ bool has_frame_;
+ // This handle will be patched with the code object on installation.
+ Handle<Object> code_object_;
+
+ // Needs access to SafepointRegisterStackIndex for compiled frame
+ // traversal.
+ friend class StandardFrame;
+};
+
+
+// The code patcher is used to patch (typically) small parts of code e.g. for
+// debugging and other types of instrumentation. When using the code patcher
+// the exact number of bytes specified must be emitted. It is not legal to emit
+// relocation information. If any of these constraints are violated it causes
+// an assertion to fail.
+class CodePatcher {
+ public:
+ enum FlushICache {
+ FLUSH,
+ DONT_FLUSH
+ };
+
+ CodePatcher(byte* address,
+ int instructions,
+ FlushICache flush_cache = FLUSH);
+ virtual ~CodePatcher();
+
+ // Macro assembler to emit code.
+ MacroAssembler* masm() { return &masm_; }
+
+ // Emit an instruction directly.
+ void Emit(Instr instr);
+
+ // Emit an address directly.
+ void Emit(Address addr);
+
+ // Change the condition part of an instruction leaving the rest of the current
+ // instruction unchanged.
+ void ChangeBranchCondition(Condition cond);
+
+ private:
+ byte* address_; // The address of the code being patched.
+ int size_; // Number of bytes of the expected patch size.
+ MacroAssembler masm_; // Macro assembler used to generate the code.
+ FlushICache flush_cache_; // Whether to flush the I cache after patching.
+};
+
+
+
+#ifdef GENERATED_CODE_COVERAGE
+#define CODE_COVERAGE_STRINGIFY(x) #x
+#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
+#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
+#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
+#else
+#define ACCESS_MASM(masm) masm->
+#endif
+
+} } // namespace v8::internal
+
+#endif // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_