summaryrefslogtreecommitdiff
path: root/src/os/unix/ngx_freebsd_rfork_thread.c
blob: 530ec4a53bb821fc68b13b518ef12ed125caa95e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756

/*
 * Copyright (C) Igor Sysoev
 * Copyright (C) Nginx, Inc.
 */


#include <ngx_config.h>
#include <ngx_core.h>

/*
 * The threads implementation uses the rfork(RFPROC|RFTHREAD|RFMEM) syscall
 * to create threads.  All threads use the stacks of the same size mmap()ed
 * below the main stack.  Thus the current thread id is determined via
 * the stack pointer value.
 *
 * The mutex implementation uses the ngx_atomic_cmp_set() operation
 * to acquire a mutex and the SysV semaphore to wait on a mutex and to wake up
 * the waiting threads.  The light mutex does not use semaphore, so after
 * spinning in the lock the thread calls sched_yield().  However the light
 * mutexes are intended to be used with the "trylock" operation only.
 * The SysV semop() is a cheap syscall, particularly if it has little sembuf's
 * and does not use SEM_UNDO.
 *
 * The condition variable implementation uses the signal #64.
 * The signal handler is SIG_IGN so the kill() is a cheap syscall.
 * The thread waits a signal in kevent().  The use of the EVFILT_SIGNAL
 * is safe since FreeBSD 4.10-STABLE.
 *
 * This threads implementation currently works on i386 (486+) and amd64
 * platforms only.
 */


char                 *ngx_freebsd_kern_usrstack;
size_t                ngx_thread_stack_size;


static size_t         rz_size;
static size_t         usable_stack_size;
static char          *last_stack;

static ngx_uint_t     nthreads;
static ngx_uint_t     max_threads;

static ngx_uint_t     nkeys;
static ngx_tid_t     *tids;      /* the threads tids array */
void                **ngx_tls;   /* the threads tls's array */

/* the thread-safe libc errno */

static int   errno0;   /* the main thread's errno */
static int  *errnos;   /* the threads errno's array */

int *
__error()
{
    int  tid;

    tid = ngx_gettid();

    return tid ? &errnos[tid - 1] : &errno0;
}


/*
 * __isthreaded enables the spinlocks in some libc functions, i.e. in malloc()
 * and some other places.  Nevertheless we protect our malloc()/free() calls
 * by own mutex that is more efficient than the spinlock.
 *
 * _spinlock() is a weak referenced stub in src/lib/libc/gen/_spinlock_stub.c
 * that does nothing.
 */

extern int  __isthreaded;

void
_spinlock(ngx_atomic_t *lock)
{
    ngx_int_t  tries;

    tries = 0;

    for ( ;; ) {

        if (*lock) {
            if (ngx_ncpu > 1 && tries++ < 1000) {
                continue;
            }

            sched_yield();
            tries = 0;

        } else {
            if (ngx_atomic_cmp_set(lock, 0, 1)) {
                return;
            }
        }
    }
}


/*
 * Before FreeBSD 5.1 _spinunlock() is a simple #define in
 * src/lib/libc/include/spinlock.h that zeroes lock.
 *
 * Since FreeBSD 5.1 _spinunlock() is a weak referenced stub in
 * src/lib/libc/gen/_spinlock_stub.c that does nothing.
 */

#ifndef _spinunlock

void
_spinunlock(ngx_atomic_t *lock)
{
    *lock = 0;
}

#endif


ngx_err_t
ngx_create_thread(ngx_tid_t *tid, ngx_thread_value_t (*func)(void *arg),
    void *arg, ngx_log_t *log)
{
    ngx_pid_t   id;
    ngx_err_t   err;
    char       *stack, *stack_top;

    if (nthreads >= max_threads) {
        ngx_log_error(NGX_LOG_CRIT, log, 0,
                      "no more than %ui threads can be created", max_threads);
        return NGX_ERROR;
    }

    last_stack -= ngx_thread_stack_size;

    stack = mmap(last_stack, usable_stack_size, PROT_READ|PROT_WRITE,
                 MAP_STACK, -1, 0);

    if (stack == MAP_FAILED) {
        ngx_log_error(NGX_LOG_ALERT, log, ngx_errno,
                      "mmap(%p:%uz, MAP_STACK) thread stack failed",
                      last_stack, usable_stack_size);
        return NGX_ERROR;
    }

    if (stack != last_stack) {
        ngx_log_error(NGX_LOG_ALERT, log, 0,
                      "stack %p address was changed to %p", last_stack, stack);
        return NGX_ERROR;
    }

    stack_top = stack + usable_stack_size;

    ngx_log_debug2(NGX_LOG_DEBUG_CORE, log, 0,
                   "thread stack: %p-%p", stack, stack_top);

    ngx_set_errno(0);

    id = rfork_thread(RFPROC|RFTHREAD|RFMEM, stack_top,
                      (ngx_rfork_thread_func_pt) func, arg);

    err = ngx_errno;

    if (id == -1) {
        ngx_log_error(NGX_LOG_ALERT, log, err, "rfork() failed");

    } else {
        *tid = id;
        nthreads = (ngx_freebsd_kern_usrstack - stack_top)
                                                       / ngx_thread_stack_size;
        tids[nthreads] = id;

        ngx_log_debug1(NGX_LOG_DEBUG_CORE, log, 0, "rfork()ed thread: %P", id);
    }

    return err;
}


ngx_int_t
ngx_init_threads(int n, size_t size, ngx_cycle_t *cycle)
{
    char              *red_zone, *zone;
    size_t             len;
    ngx_int_t          i;
    struct sigaction   sa;

    max_threads = n + 1;

    for (i = 0; i < n; i++) {
        ngx_memzero(&sa, sizeof(struct sigaction));
        sa.sa_handler = SIG_IGN;
        sigemptyset(&sa.sa_mask);
        if (sigaction(NGX_CV_SIGNAL, &sa, NULL) == -1) {
            ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                          "sigaction(%d, SIG_IGN) failed", NGX_CV_SIGNAL);
            return NGX_ERROR;
        }
    }

    len = sizeof(ngx_freebsd_kern_usrstack);
    if (sysctlbyname("kern.usrstack", &ngx_freebsd_kern_usrstack, &len,
                                                                NULL, 0) == -1)
    {
        ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                      "sysctlbyname(kern.usrstack) failed");
        return NGX_ERROR;
    }

    /* the main thread stack red zone */
    rz_size = ngx_pagesize;
    red_zone = ngx_freebsd_kern_usrstack - (size + rz_size);

    ngx_log_debug2(NGX_LOG_DEBUG_CORE, cycle->log, 0,
                   "usrstack: %p red zone: %p",
                   ngx_freebsd_kern_usrstack, red_zone);

    zone = mmap(red_zone, rz_size, PROT_NONE, MAP_ANON, -1, 0);
    if (zone == MAP_FAILED) {
        ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                      "mmap(%p:%uz, PROT_NONE, MAP_ANON) red zone failed",
                      red_zone, rz_size);
        return NGX_ERROR;
    }

    if (zone != red_zone) {
        ngx_log_error(NGX_LOG_ALERT, cycle->log, 0,
                      "red zone %p address was changed to %p", red_zone, zone);
        return NGX_ERROR;
    }

    /* create the thread errno' array */

    errnos = ngx_calloc(n * sizeof(int), cycle->log);
    if (errnos == NULL) {
        return NGX_ERROR;
    }

    /* create the thread tids array */

    tids = ngx_calloc((n + 1) * sizeof(ngx_tid_t), cycle->log);
    if (tids == NULL) {
        return NGX_ERROR;
    }

    tids[0] = ngx_pid;

    /* create the thread tls' array */

    ngx_tls = ngx_calloc(NGX_THREAD_KEYS_MAX * (n + 1) * sizeof(void *),
                         cycle->log);
    if (ngx_tls == NULL) {
        return NGX_ERROR;
    }

    nthreads = 1;

    last_stack = zone + rz_size;
    usable_stack_size = size;
    ngx_thread_stack_size = size + rz_size;

    /* allow the spinlock in libc malloc() */
    __isthreaded = 1;

    ngx_threaded = 1;

    return NGX_OK;
}


ngx_tid_t
ngx_thread_self()
{
    ngx_int_t  tid;

    tid = ngx_gettid();

    if (tids == NULL) {
        return ngx_pid;
    }

    return tids[tid];
}


ngx_err_t
ngx_thread_key_create(ngx_tls_key_t *key)
{
    if (nkeys >= NGX_THREAD_KEYS_MAX) {
        return NGX_ENOMEM;
    }

    *key = nkeys++;

    return 0;
}


ngx_err_t
ngx_thread_set_tls(ngx_tls_key_t key, void *value)
{
    if (key >= NGX_THREAD_KEYS_MAX) {
        return NGX_EINVAL;
    }

    ngx_tls[key * NGX_THREAD_KEYS_MAX + ngx_gettid()] = value;
    return 0;
}


ngx_mutex_t *
ngx_mutex_init(ngx_log_t *log, ngx_uint_t flags)
{
    ngx_mutex_t  *m;
    union semun   op;

    m = ngx_alloc(sizeof(ngx_mutex_t), log);
    if (m == NULL) {
        return NULL;
    }

    m->lock = 0;
    m->log = log;

    if (flags & NGX_MUTEX_LIGHT) {
        m->semid = -1;
        return m;
    }

    m->semid = semget(IPC_PRIVATE, 1, SEM_R|SEM_A);
    if (m->semid == -1) {
        ngx_log_error(NGX_LOG_ALERT, log, ngx_errno, "semget() failed");
        return NULL;
    }

    op.val = 0;

    if (semctl(m->semid, 0, SETVAL, op) == -1) {
        ngx_log_error(NGX_LOG_ALERT, log, ngx_errno, "semctl(SETVAL) failed");

        if (semctl(m->semid, 0, IPC_RMID) == -1) {
            ngx_log_error(NGX_LOG_ALERT, log, ngx_errno,
                          "semctl(IPC_RMID) failed");
        }

        return NULL;
    }

    return m;
}


void
ngx_mutex_destroy(ngx_mutex_t *m)
{
    if (semctl(m->semid, 0, IPC_RMID) == -1) {
        ngx_log_error(NGX_LOG_ALERT, m->log, ngx_errno,
                      "semctl(IPC_RMID) failed");
    }

    ngx_free((void *) m);
}


ngx_int_t
ngx_mutex_dolock(ngx_mutex_t *m, ngx_int_t try)
{
    uint32_t       lock, old;
    ngx_uint_t     tries;
    struct sembuf  op;

    if (!ngx_threaded) {
        return NGX_OK;
    }

#if (NGX_DEBUG)
    if (try) {
        ngx_log_debug2(NGX_LOG_DEBUG_MUTEX, m->log, 0,
                       "try lock mutex %p lock:%XD", m, m->lock);
    } else {
        ngx_log_debug2(NGX_LOG_DEBUG_MUTEX, m->log, 0,
                       "lock mutex %p lock:%XD", m, m->lock);
    }
#endif

    old = m->lock;
    tries = 0;

    for ( ;; ) {
        if (old & NGX_MUTEX_LOCK_BUSY) {

            if (try) {
                return NGX_AGAIN;
            }

            if (ngx_ncpu > 1 && tries++ < 1000) {

                /* the spinlock is used only on the SMP system */

                old = m->lock;
                continue;
            }

            if (m->semid == -1) {
                sched_yield();

                tries = 0;
                old = m->lock;
                continue;
            }

            ngx_log_debug2(NGX_LOG_DEBUG_MUTEX, m->log, 0,
                           "mutex %p lock:%XD", m, m->lock);

            /*
             * The mutex is locked so we increase a number
             * of the threads that are waiting on the mutex
             */

            lock = old + 1;

            if ((lock & ~NGX_MUTEX_LOCK_BUSY) > nthreads) {
                ngx_log_error(NGX_LOG_ALERT, m->log, ngx_errno,
                              "%D threads wait for mutex %p, "
                              "while only %ui threads are available",
                              lock & ~NGX_MUTEX_LOCK_BUSY, m, nthreads);
                ngx_abort();
            }

            if (ngx_atomic_cmp_set(&m->lock, old, lock)) {

                ngx_log_debug2(NGX_LOG_DEBUG_MUTEX, m->log, 0,
                               "wait mutex %p lock:%XD", m, m->lock);

                /*
                 * The number of the waiting threads has been increased
                 * and we would wait on the SysV semaphore.
                 * A semaphore should wake up us more efficiently than
                 * a simple sched_yield() or usleep().
                 */

                op.sem_num = 0;
                op.sem_op = -1;
                op.sem_flg = 0;

                if (semop(m->semid, &op, 1) == -1) {
                    ngx_log_error(NGX_LOG_ALERT, m->log, ngx_errno,
                                 "semop() failed while waiting on mutex %p", m);
                    ngx_abort();
                }

                ngx_log_debug2(NGX_LOG_DEBUG_MUTEX, m->log, 0,
                               "mutex waked up %p lock:%XD", m, m->lock);

                tries = 0;
                old = m->lock;
                continue;
            }

            old = m->lock;

        } else {
            lock = old | NGX_MUTEX_LOCK_BUSY;

            if (ngx_atomic_cmp_set(&m->lock, old, lock)) {

                /* we locked the mutex */

                break;
            }

            old = m->lock;
        }

        if (tries++ > 1000) {

            ngx_log_debug1(NGX_LOG_DEBUG_MUTEX, m->log, 0,
                           "mutex %p is contested", m);

            /* the mutex is probably contested so we are giving up now */

            sched_yield();

            tries = 0;
            old = m->lock;
        }
    }

    ngx_log_debug2(NGX_LOG_DEBUG_MUTEX, m->log, 0,
                   "mutex %p is locked, lock:%XD", m, m->lock);

    return NGX_OK;
}


void
ngx_mutex_unlock(ngx_mutex_t *m)
{
    uint32_t       lock, old;
    struct sembuf  op;

    if (!ngx_threaded) {
        return;
    }

    old = m->lock;

    if (!(old & NGX_MUTEX_LOCK_BUSY)) {
        ngx_log_error(NGX_LOG_ALERT, m->log, 0,
                      "trying to unlock the free mutex %p", m);
        ngx_abort();
    }

    /* free the mutex */

#if 0
    ngx_log_debug2(NGX_LOG_DEBUG_MUTEX, m->log, 0,
                   "unlock mutex %p lock:%XD", m, old);
#endif

    for ( ;; ) {
        lock = old & ~NGX_MUTEX_LOCK_BUSY;

        if (ngx_atomic_cmp_set(&m->lock, old, lock)) {
            break;
        }

        old = m->lock;
    }

    if (m->semid == -1) {
        ngx_log_debug1(NGX_LOG_DEBUG_MUTEX, m->log, 0,
                       "mutex %p is unlocked", m);

        return;
    }

    /* check whether we need to wake up a waiting thread */

    old = m->lock;

    for ( ;; ) {
        if (old & NGX_MUTEX_LOCK_BUSY) {

            /* the mutex is just locked by another thread */

            break;
        }

        if (old == 0) {
            break;
        }

        /* there are the waiting threads */

        lock = old - 1;

        if (ngx_atomic_cmp_set(&m->lock, old, lock)) {

            /* wake up the thread that waits on semaphore */

            ngx_log_debug1(NGX_LOG_DEBUG_MUTEX, m->log, 0,
                           "wake up mutex %p", m);

            op.sem_num = 0;
            op.sem_op = 1;
            op.sem_flg = 0;

            if (semop(m->semid, &op, 1) == -1) {
                ngx_log_error(NGX_LOG_ALERT, m->log, ngx_errno,
                              "semop() failed while waking up on mutex %p", m);
                ngx_abort();
            }

            break;
        }

        old = m->lock;
    }

    ngx_log_debug1(NGX_LOG_DEBUG_MUTEX, m->log, 0,
                   "mutex %p is unlocked", m);

    return;
}


ngx_cond_t *
ngx_cond_init(ngx_log_t *log)
{
    ngx_cond_t  *cv;

    cv = ngx_alloc(sizeof(ngx_cond_t), log);
    if (cv == NULL) {
        return NULL;
    }

    cv->signo = NGX_CV_SIGNAL;
    cv->tid = -1;
    cv->log = log;
    cv->kq = -1;

    return cv;
}


void
ngx_cond_destroy(ngx_cond_t *cv)
{
    if (close(cv->kq) == -1) {
        ngx_log_error(NGX_LOG_ALERT, cv->log, ngx_errno,
                      "kqueue close() failed");
    }

    ngx_free(cv);
}


ngx_int_t
ngx_cond_wait(ngx_cond_t *cv, ngx_mutex_t *m)
{
    int              n;
    ngx_err_t        err;
    struct kevent    kev;
    struct timespec  ts;

    if (cv->kq == -1) {

        /*
         * We have to add the EVFILT_SIGNAL filter in the rfork()ed thread.
         * Otherwise the thread would not get a signal event.
         *
         * However, we have not to open the kqueue in the thread,
         * it is simply handy do it together.
         */

        cv->kq = kqueue();
        if (cv->kq == -1) {
            ngx_log_error(NGX_LOG_ALERT, cv->log, ngx_errno, "kqueue() failed");
            return NGX_ERROR;
        }

        ngx_log_debug2(NGX_LOG_DEBUG_CORE, cv->log, 0,
                       "cv kq:%d signo:%d", cv->kq, cv->signo);

        kev.ident = cv->signo;
        kev.filter = EVFILT_SIGNAL;
        kev.flags = EV_ADD;
        kev.fflags = 0;
        kev.data = 0;
        kev.udata = NULL;

        ts.tv_sec = 0;
        ts.tv_nsec = 0;

        if (kevent(cv->kq, &kev, 1, NULL, 0, &ts) == -1) {
            ngx_log_error(NGX_LOG_ALERT, cv->log, ngx_errno, "kevent() failed");
            return NGX_ERROR;
        }

        cv->tid = ngx_thread_self();
    }

    ngx_mutex_unlock(m);

    ngx_log_debug3(NGX_LOG_DEBUG_CORE, cv->log, 0,
                   "cv %p wait, kq:%d, signo:%d", cv, cv->kq, cv->signo);

    for ( ;; ) {
        n = kevent(cv->kq, NULL, 0, &kev, 1, NULL);

        ngx_log_debug2(NGX_LOG_DEBUG_CORE, cv->log, 0,
                       "cv %p kevent: %d", cv, n);

        if (n == -1) {
            err = ngx_errno;
            ngx_log_error((err == NGX_EINTR) ? NGX_LOG_INFO : NGX_LOG_ALERT,
                          cv->log, ngx_errno,
                          "kevent() failed while waiting condition variable %p",
                          cv);

            if (err == NGX_EINTR) {
                break;
            }

            return NGX_ERROR;
        }

        if (n == 0) {
            ngx_log_error(NGX_LOG_ALERT, cv->log, 0,
                          "kevent() returned no events "
                          "while waiting condition variable %p",
                          cv);
            continue;
        }

        if (kev.filter != EVFILT_SIGNAL) {
            ngx_log_error(NGX_LOG_ALERT, cv->log, 0,
                          "kevent() returned unexpected events: %d "
                          "while waiting condition variable %p",
                          kev.filter, cv);
            continue;
        }

        if (kev.ident != (uintptr_t) cv->signo) {
            ngx_log_error(NGX_LOG_ALERT, cv->log, 0,
                          "kevent() returned unexpected signal: %d ",
                          "while waiting condition variable %p",
                          kev.ident, cv);
            continue;
        }

        break;
    }

    ngx_log_debug1(NGX_LOG_DEBUG_CORE, cv->log, 0, "cv %p is waked up", cv);

    ngx_mutex_lock(m);

    return NGX_OK;
}


ngx_int_t
ngx_cond_signal(ngx_cond_t *cv)
{
    ngx_err_t  err;

    ngx_log_debug3(NGX_LOG_DEBUG_CORE, cv->log, 0,
                   "cv %p to signal %P %d",
                   cv, cv->tid, cv->signo);

    if (cv->tid == -1) {
        return NGX_OK;
    }

    if (kill(cv->tid, cv->signo) == -1) {

        err = ngx_errno;

        ngx_log_error(NGX_LOG_ALERT, cv->log, err,
                     "kill() failed while signaling condition variable %p", cv);

        if (err == NGX_ESRCH) {
            cv->tid = -1;
        }

        return NGX_ERROR;
    }

    ngx_log_debug1(NGX_LOG_DEBUG_CORE, cv->log, 0, "cv %p is signaled", cv);

    return NGX_OK;
}