1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
|
/* yarrow256.c
*
* The yarrow pseudo-randomness generator.
*/
/* nettle, low-level cryptographics library
*
* Copyright (C) 2001 Niels Möller
*
* The nettle library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* The nettle library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the nettle library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
* MA 02111-1307, USA.
*/
#if HAVE_CONFIG_H
# include "config.h"
#endif
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "yarrow.h"
#include "macros.h"
#ifndef YARROW_DEBUG
#define YARROW_DEBUG 0
#endif
#if YARROW_DEBUG
#include <stdio.h>
#endif
/* Parameters */
/* An upper limit on the entropy (in bits) in one octet of sample
* data. */
#define YARROW_MULTIPLIER 4
/* Entropy threshold for reseeding from the fast pool */
#define YARROW_FAST_THRESHOLD 100
/* Entropy threshold for reseeding from the fast pool */
#define YARROW_SLOW_THRESHOLD 160
/* Number of sources that must exceed the threshold for slow reseed */
#define YARROW_SLOW_K 2
/* The number of iterations when reseeding, P_t in the yarrow paper.
* Should be chosen so that reseeding takes on the order of 0.1-1
* seconds. */
#define YARROW_RESEED_ITERATIONS 1500
/* Entropy estimates sticks to this value, it is treated as infinity
* in calculations. It should fit comfortably in an uint32_t, to avoid
* overflows. */
#define YARROW_MAX_ENTROPY 0x100000
/* Forward declarations */
static void
yarrow_gate(struct yarrow256_ctx *ctx);
void
yarrow256_init(struct yarrow256_ctx *ctx,
unsigned n,
struct yarrow_source *s)
{
unsigned i;
sha256_init(&ctx->pools[0]);
sha256_init(&ctx->pools[1]);
ctx->seeded = 0;
/* Not strictly necessary, but it makes it easier to see if the
* values are sane. */
memset(ctx->counter, 0, sizeof(ctx->counter));
ctx->nsources = n;
ctx->sources = s;
for (i = 0; i<n; i++)
{
ctx->sources[i].estimate[YARROW_FAST] = 0;
ctx->sources[i].estimate[YARROW_SLOW] = 0;
ctx->sources[i].next = YARROW_FAST;
}
}
void
yarrow256_seed(struct yarrow256_ctx *ctx,
unsigned length,
const uint8_t *seed_file)
{
assert(length > 0);
sha256_update(&ctx->pools[YARROW_FAST], length, seed_file);
yarrow256_fast_reseed(ctx);
}
/* FIXME: Generalize so that it generates a few more blocks at a
* time. */
static void
yarrow_generate_block(struct yarrow256_ctx *ctx,
uint8_t *block)
{
unsigned i;
aes_encrypt(&ctx->key, sizeof(ctx->counter), block, ctx->counter);
/* Increment counter, treating it as a big-endian number. This is
* machine independent, and follows appendix B of the NIST
* specification of cipher modes of operation.
*
* We could keep a representation of the counter as 4 32-bit values,
* and write entire words (in big-endian byteorder) into the counter
* block, whenever they change. */
for (i = sizeof(ctx->counter); i--; )
{
if (++ctx->counter[i])
break;
}
}
static void
yarrow_iterate(uint8_t *digest)
{
uint8_t v0[SHA256_DIGEST_SIZE];
unsigned i;
memcpy(v0, digest, SHA256_DIGEST_SIZE);
/* When hashed inside the loop, i should run from 1 to
* YARROW_RESEED_ITERATIONS */
for (i = 0; ++i < YARROW_RESEED_ITERATIONS; )
{
uint8_t count[4];
struct sha256_ctx hash;
sha256_init(&hash);
/* Hash v_i | v_0 | i */
WRITE_UINT32(count, i);
sha256_update(&hash, SHA256_DIGEST_SIZE, digest);
sha256_update(&hash, sizeof(v0), v0);
sha256_update(&hash, sizeof(count), count);
sha256_digest(&hash, SHA256_DIGEST_SIZE, digest);
}
}
/* NOTE: The SHA-256 digest size equals the AES key size, so we need
* no "size adaptor". */
void
yarrow256_fast_reseed(struct yarrow256_ctx *ctx)
{
uint8_t digest[SHA256_DIGEST_SIZE];
unsigned i;
#if YARROW_DEBUG
fprintf(stderr, "yarrow256_fast_reseed\n");
#endif
/* We feed two block of output using the current key into the pool
* before emptying it. */
if (ctx->seeded)
{
uint8_t blocks[AES_BLOCK_SIZE * 2];
yarrow_generate_block(ctx, blocks);
yarrow_generate_block(ctx, blocks + AES_BLOCK_SIZE);
sha256_update(&ctx->pools[YARROW_FAST], sizeof(blocks), blocks);
}
sha256_digest(&ctx->pools[YARROW_FAST], sizeof(digest), digest);
/* Iterate */
yarrow_iterate(digest);
aes_set_encrypt_key(&ctx->key, sizeof(digest), digest);
ctx->seeded = 1;
/* Derive new counter value */
memset(ctx->counter, 0, sizeof(ctx->counter));
aes_encrypt(&ctx->key, sizeof(ctx->counter), ctx->counter, ctx->counter);
/* Reset estimates. */
for (i = 0; i<ctx->nsources; i++)
ctx->sources[i].estimate[YARROW_FAST] = 0;
}
void
yarrow256_slow_reseed(struct yarrow256_ctx *ctx)
{
uint8_t digest[SHA256_DIGEST_SIZE];
unsigned i;
#if YARROW_DEBUG
fprintf(stderr, "yarrow256_slow_reseed\n");
#endif
/* Get digest of the slow pool*/
sha256_digest(&ctx->pools[YARROW_SLOW], sizeof(digest), digest);
/* Feed it into the fast pool */
sha256_update(&ctx->pools[YARROW_FAST], sizeof(digest), digest);
yarrow256_fast_reseed(ctx);
/* Reset estimates. */
for (i = 0; i<ctx->nsources; i++)
ctx->sources[i].estimate[YARROW_SLOW] = 0;
}
int
yarrow256_update(struct yarrow256_ctx *ctx,
unsigned source_index, unsigned entropy,
unsigned length, const uint8_t *data)
{
enum yarrow_pool_id current;
struct yarrow_source *source;
assert(source_index < ctx->nsources);
if (!length)
/* Nothing happens */
return 0;
source = &ctx->sources[source_index];
if (!ctx->seeded)
/* While seeding, use the slow pool */
current = YARROW_SLOW;
else
{
current = source->next;
source->next = !source->next;
}
sha256_update(&ctx->pools[current], length, data);
/* NOTE: We should be careful to avoid overflows in the estimates. */
if (source->estimate[current] < YARROW_MAX_ENTROPY)
{
if (entropy > YARROW_MAX_ENTROPY)
entropy = YARROW_MAX_ENTROPY;
if ( (length < (YARROW_MAX_ENTROPY / YARROW_MULTIPLIER))
&& (entropy > YARROW_MULTIPLIER * length) )
entropy = YARROW_MULTIPLIER * length;
entropy += source->estimate[current];
if (entropy > YARROW_MAX_ENTROPY)
entropy = YARROW_MAX_ENTROPY;
source->estimate[current] = entropy;
}
/* Check for seed/reseed */
switch(current)
{
case YARROW_FAST:
#if YARROW_DEBUG
fprintf(stderr,
"yarrow256_update: source_index = %d,\n"
" fast pool estimate = %d\n",
source_index, source->estimate[YARROW_FAST]);
#endif
if (source->estimate[YARROW_FAST] >= YARROW_FAST_THRESHOLD)
{
yarrow256_fast_reseed(ctx);
return 1;
}
else
return 0;
case YARROW_SLOW:
{
if (!yarrow256_needed_sources(ctx))
{
yarrow256_slow_reseed(ctx);
return 1;
}
else
return 0;
}
default:
abort();
}
}
static void
yarrow_gate(struct yarrow256_ctx *ctx)
{
uint8_t key[AES_MAX_KEY_SIZE];
unsigned i;
for (i = 0; i < sizeof(key); i+= AES_BLOCK_SIZE)
yarrow_generate_block(ctx, key + i);
aes_set_encrypt_key(&ctx->key, sizeof(key), key);
}
void
yarrow256_random(struct yarrow256_ctx *ctx, unsigned length, uint8_t *dst)
{
assert(ctx->seeded);
while (length >= AES_BLOCK_SIZE)
{
yarrow_generate_block(ctx, dst);
dst += AES_BLOCK_SIZE;
length -= AES_BLOCK_SIZE;
}
if (length)
{
uint8_t buffer[AES_BLOCK_SIZE];
assert(length < AES_BLOCK_SIZE);
yarrow_generate_block(ctx, buffer);
memcpy(dst, buffer, length);
}
yarrow_gate(ctx);
}
int
yarrow256_is_seeded(struct yarrow256_ctx *ctx)
{
return ctx->seeded;
}
unsigned
yarrow256_needed_sources(struct yarrow256_ctx *ctx)
{
/* FIXME: This is somewhat inefficient. It would be better to
* either maintain the count, or do this loop only if the
* current source just crossed the threshold. */
unsigned k, i;
for (i = k = 0; i < ctx->nsources; i++)
if (ctx->sources[i].estimate[YARROW_SLOW] >= YARROW_SLOW_THRESHOLD)
k++;
#if YARROW_DEBUG
fprintf(stderr,
"yarrow256_needed_sources: source_index = %d,\n"
" slow pool estimate = %d,\n"
" number of sources above threshold = %d\n",
source_index, source->estimate[YARROW_SLOW], k);
#endif
return (k < YARROW_SLOW_K) ? (YARROW_SLOW_K - k) : 0;
}
|