1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
/* umac64.c
Copyright (C) 2013 Niels Möller
This file is part of GNU Nettle.
GNU Nettle is free software: you can redistribute it and/or
modify it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your
option) any later version.
or both in parallel, as here.
GNU Nettle is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received copies of the GNU General Public License and
the GNU Lesser General Public License along with this program. If
not, see http://www.gnu.org/licenses/.
*/
#if HAVE_CONFIG_H
# include "config.h"
#endif
#include <assert.h>
#include <string.h>
#include "umac.h"
#include "macros.h"
void
umac64_set_key (struct umac64_ctx *ctx, const uint8_t *key)
{
_umac_set_key (ctx->l1_key, ctx->l2_key, ctx->l3_key1, ctx->l3_key2,
&ctx->pdf_key, key, 2);
/* Clear nonce */
memset (ctx->nonce, 0, sizeof(ctx->nonce));
ctx->nonce_low = 0;
ctx->nonce_length = sizeof(ctx->nonce);
/* Initialize buffer */
ctx->count = ctx->index = 0;
}
void
umac64_set_nonce (struct umac64_ctx *ctx,
size_t nonce_length, const uint8_t *nonce)
{
assert (nonce_length > 0);
assert (nonce_length <= AES_BLOCK_SIZE);
memcpy (ctx->nonce, nonce, nonce_length);
memset (ctx->nonce + nonce_length, 0, AES_BLOCK_SIZE - nonce_length);
ctx->nonce_low = ctx->nonce[nonce_length - 1] & 1;
ctx->nonce[nonce_length - 1] &= ~1;
ctx->nonce_length = nonce_length;
}
#define UMAC64_BLOCK(ctx, block) do { \
uint64_t __umac64_y[2]; \
_umac_nh_n (__umac64_y, 2, ctx->l1_key, UMAC_BLOCK_SIZE, block); \
__umac64_y[0] += 8*UMAC_BLOCK_SIZE; \
__umac64_y[1] += 8*UMAC_BLOCK_SIZE; \
_umac_l2 (ctx->l2_key, ctx->l2_state, 2, ctx->count++, __umac64_y); \
} while (0)
void
umac64_update (struct umac64_ctx *ctx,
size_t length, const uint8_t *data)
{
MD_UPDATE (ctx, length, data, UMAC64_BLOCK, (void)0);
}
void
umac64_digest (struct umac64_ctx *ctx,
size_t length, uint8_t *digest)
{
uint32_t tag[2];
uint32_t *pad;
assert (length > 0);
assert (length <= 8);
if (ctx->index > 0 || ctx->count == 0)
{
/* Zero pad to multiple of 32 */
uint64_t y[2];
unsigned pad = (ctx->index > 0) ? 31 & - ctx->index : 32;
memset (ctx->block + ctx->index, 0, pad);
_umac_nh_n (y, 2, ctx->l1_key, ctx->index + pad, ctx->block);
y[0] += 8 * ctx->index;
y[1] += 8 * ctx->index;
_umac_l2 (ctx->l2_key, ctx->l2_state, 2, ctx->count++, y);
}
assert (ctx->count > 0);
if ( !(ctx->nonce_low & _UMAC_NONCE_CACHED))
{
aes128_encrypt (&ctx->pdf_key, AES_BLOCK_SIZE,
(uint8_t *) ctx->pad_cache, ctx->nonce);
ctx->nonce_low |= _UMAC_NONCE_CACHED;
}
pad = ctx->pad_cache + 2*(ctx->nonce_low & 1);
/* Increment nonce */
ctx->nonce_low++;
if ( !(ctx->nonce_low & 1))
{
unsigned i = ctx->nonce_length - 1;
ctx->nonce_low = 0;
ctx->nonce[i] += 2;
if (ctx->nonce[i] == 0 && i > 0)
INCREMENT (i, ctx->nonce);
}
_umac_l2_final (ctx->l2_key, ctx->l2_state, 2, ctx->count);
tag[0] = pad[0] ^ ctx->l3_key2[0] ^ _umac_l3 (ctx->l3_key1,
ctx->l2_state);
tag[1] = pad[1] ^ ctx->l3_key2[1] ^ _umac_l3 (ctx->l3_key1 + 8,
ctx->l2_state + 2);
memcpy (digest, tag, length);
/* Reinitialize */
ctx->count = ctx->index = 0;
}
|