1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
/*
* $Id$
*
* md5.c : Implementation of the MD5 hash function
*
* Part of the Python Cryptography Toolkit, version 1.0.1
* Colin Plumb's original code modified by A.M. Kuchling
*
* Further hacked and adapted to pike by Niels Möller
*/
#include "crypto_types.h"
#include "md5.h"
#include <string.h>
void md5_copy(struct md5_ctx *dest, struct md5_ctx *src)
{
int i;
dest->count_l=src->count_l;
dest->count_h=src->count_h;
for(i=0; i<MD5_DIGESTLEN; i++)
dest->digest[i]=src->digest[i];
for(i=0; i < src->index; i++)
dest->block[i] = src->block[i];
dest->index = src->index;
}
void md5_init(struct md5_ctx *ctx)
{
ctx->digest[0] = 0x67452301;
ctx->digest[1] = 0xefcdab89;
ctx->digest[2] = 0x98badcfe;
ctx->digest[3] = 0x10325476;
ctx->count_l = ctx->count_h = 0;
ctx->index = 0;
}
/* MD5 functions */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
#define ROUND(f, w, x, y, z, data, s) \
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
/* Perform the MD5 transformation on one full block of 16 32-bit words. */
static void md5_transform(struct md5_ctx *ctx, UINT32 *data)
{
UINT32 a, b, c, d;
a = ctx->digest[0];
b = ctx->digest[1];
c = ctx->digest[2];
d = ctx->digest[3];
ROUND(F1, a, b, c, d, data[ 0] + 0xd76aa478, 7);
ROUND(F1, d, a, b, c, data[ 1] + 0xe8c7b756, 12);
ROUND(F1, c, d, a, b, data[ 2] + 0x242070db, 17);
ROUND(F1, b, c, d, a, data[ 3] + 0xc1bdceee, 22);
ROUND(F1, a, b, c, d, data[ 4] + 0xf57c0faf, 7);
ROUND(F1, d, a, b, c, data[ 5] + 0x4787c62a, 12);
ROUND(F1, c, d, a, b, data[ 6] + 0xa8304613, 17);
ROUND(F1, b, c, d, a, data[ 7] + 0xfd469501, 22);
ROUND(F1, a, b, c, d, data[ 8] + 0x698098d8, 7);
ROUND(F1, d, a, b, c, data[ 9] + 0x8b44f7af, 12);
ROUND(F1, c, d, a, b, data[10] + 0xffff5bb1, 17);
ROUND(F1, b, c, d, a, data[11] + 0x895cd7be, 22);
ROUND(F1, a, b, c, d, data[12] + 0x6b901122, 7);
ROUND(F1, d, a, b, c, data[13] + 0xfd987193, 12);
ROUND(F1, c, d, a, b, data[14] + 0xa679438e, 17);
ROUND(F1, b, c, d, a, data[15] + 0x49b40821, 22);
ROUND(F2, a, b, c, d, data[ 1] + 0xf61e2562, 5);
ROUND(F2, d, a, b, c, data[ 6] + 0xc040b340, 9);
ROUND(F2, c, d, a, b, data[11] + 0x265e5a51, 14);
ROUND(F2, b, c, d, a, data[ 0] + 0xe9b6c7aa, 20);
ROUND(F2, a, b, c, d, data[ 5] + 0xd62f105d, 5);
ROUND(F2, d, a, b, c, data[10] + 0x02441453, 9);
ROUND(F2, c, d, a, b, data[15] + 0xd8a1e681, 14);
ROUND(F2, b, c, d, a, data[ 4] + 0xe7d3fbc8, 20);
ROUND(F2, a, b, c, d, data[ 9] + 0x21e1cde6, 5);
ROUND(F2, d, a, b, c, data[14] + 0xc33707d6, 9);
ROUND(F2, c, d, a, b, data[ 3] + 0xf4d50d87, 14);
ROUND(F2, b, c, d, a, data[ 8] + 0x455a14ed, 20);
ROUND(F2, a, b, c, d, data[13] + 0xa9e3e905, 5);
ROUND(F2, d, a, b, c, data[ 2] + 0xfcefa3f8, 9);
ROUND(F2, c, d, a, b, data[ 7] + 0x676f02d9, 14);
ROUND(F2, b, c, d, a, data[12] + 0x8d2a4c8a, 20);
ROUND(F3, a, b, c, d, data[ 5] + 0xfffa3942, 4);
ROUND(F3, d, a, b, c, data[ 8] + 0x8771f681, 11);
ROUND(F3, c, d, a, b, data[11] + 0x6d9d6122, 16);
ROUND(F3, b, c, d, a, data[14] + 0xfde5380c, 23);
ROUND(F3, a, b, c, d, data[ 1] + 0xa4beea44, 4);
ROUND(F3, d, a, b, c, data[ 4] + 0x4bdecfa9, 11);
ROUND(F3, c, d, a, b, data[ 7] + 0xf6bb4b60, 16);
ROUND(F3, b, c, d, a, data[10] + 0xbebfbc70, 23);
ROUND(F3, a, b, c, d, data[13] + 0x289b7ec6, 4);
ROUND(F3, d, a, b, c, data[ 0] + 0xeaa127fa, 11);
ROUND(F3, c, d, a, b, data[ 3] + 0xd4ef3085, 16);
ROUND(F3, b, c, d, a, data[ 6] + 0x04881d05, 23);
ROUND(F3, a, b, c, d, data[ 9] + 0xd9d4d039, 4);
ROUND(F3, d, a, b, c, data[12] + 0xe6db99e5, 11);
ROUND(F3, c, d, a, b, data[15] + 0x1fa27cf8, 16);
ROUND(F3, b, c, d, a, data[ 2] + 0xc4ac5665, 23);
ROUND(F4, a, b, c, d, data[ 0] + 0xf4292244, 6);
ROUND(F4, d, a, b, c, data[ 7] + 0x432aff97, 10);
ROUND(F4, c, d, a, b, data[14] + 0xab9423a7, 15);
ROUND(F4, b, c, d, a, data[ 5] + 0xfc93a039, 21);
ROUND(F4, a, b, c, d, data[12] + 0x655b59c3, 6);
ROUND(F4, d, a, b, c, data[ 3] + 0x8f0ccc92, 10);
ROUND(F4, c, d, a, b, data[10] + 0xffeff47d, 15);
ROUND(F4, b, c, d, a, data[ 1] + 0x85845dd1, 21);
ROUND(F4, a, b, c, d, data[ 8] + 0x6fa87e4f, 6);
ROUND(F4, d, a, b, c, data[15] + 0xfe2ce6e0, 10);
ROUND(F4, c, d, a, b, data[ 6] + 0xa3014314, 15);
ROUND(F4, b, c, d, a, data[13] + 0x4e0811a1, 21);
ROUND(F4, a, b, c, d, data[ 4] + 0xf7537e82, 6);
ROUND(F4, d, a, b, c, data[11] + 0xbd3af235, 10);
ROUND(F4, c, d, a, b, data[ 2] + 0x2ad7d2bb, 15);
ROUND(F4, b, c, d, a, data[ 9] + 0xeb86d391, 21);
ctx->digest[0] += a;
ctx->digest[1] += b;
ctx->digest[2] += c;
ctx->digest[3] += d;
}
#ifndef EXTRACT_UCHAR
#define EXTRACT_UCHAR(p) (*(unsigned char *)(p))
#endif
/* Note that MD5 uses little endian byteorder */
#define STRING2INT(s) ((((((EXTRACT_UCHAR(s+3) << 8) \
| EXTRACT_UCHAR(s+2)) << 8) \
| EXTRACT_UCHAR(s+1)) << 8) \
| EXTRACT_UCHAR(s))
static void
md5_block(struct md5_ctx *ctx, const UINT8 *block)
{
UINT32 data[MD5_DATALEN];
int i;
/* Update block count */
if (!++ctx->count_l)
++ctx->count_h;
/* Endian independent conversion */
for (i = 0; i<16; i++, block += 4)
data[i] = STRING2INT(block);
md5_transform(ctx, data);
}
void
md5_update(struct md5_ctx *ctx,
const UINT8 *buffer,
UINT32 len)
{
if (ctx->index)
{ /* Try to fill partial block */
unsigned left = MD5_DATASIZE - ctx->index;
if (len < left)
{
memcpy(ctx->block + ctx->index, buffer, len);
ctx->index += len;
return; /* Finished */
}
else
{
memcpy(ctx->block + ctx->index, buffer, left);
md5_block(ctx, ctx->block);
buffer += left;
len -= left;
}
}
while (len >= MD5_DATASIZE)
{
md5_block(ctx, buffer);
buffer += MD5_DATASIZE;
len -= MD5_DATASIZE;
}
if ((ctx->index = len)) /* This assignment is intended */
/* Buffer leftovers */
memcpy(ctx->block, buffer, len);
}
/* Final wrapup - pad to MD5_DATASIZE-byte boundary with the bit pattern
1 0* (64-bit count of bits processed, LSB-first) */
void md5_final(struct md5_ctx *ctx)
{
UINT32 data[MD5_DATALEN];
int i;
int words;
i = ctx->index;
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
ctx->block[i++] = 0x80;
/* Fill rest of word */
for( ; i & 3; i++)
ctx->block[i] = 0;
/* i is now a multiple of the word size 4 */
words = i >> 2;
for (i = 0; i < words; i++)
data[i] = STRING2INT(ctx->block + 4*i);
if (words > (MD5_DATALEN-2))
{ /* No room for length in this block. Process it and
* pad with another one */
for (i = words ; i < MD5_DATALEN; i++)
data[i] = 0;
md5_transform(ctx, data);
for (i = 0; i < (MD5_DATALEN-2); i++)
data[i] = 0;
}
else
for (i = words ; i < MD5_DATALEN - 2; i++)
data[i] = 0;
/* Theres 512 = 2^9 bits in one block
* Little-endian order => Least significant word first */
data[MD5_DATALEN-1] = (ctx->count_h << 9) | (ctx->count_l >> 23);
data[MD5_DATALEN-2] = (ctx->count_l << 9) | (ctx->index << 3);
md5_transform(ctx, data);
}
void
md5_digest(struct md5_ctx *ctx, UINT8 *s)
{
int i;
/* Little endian order */
for (i = 0; i < MD5_DIGESTLEN; i++)
{
*s++ = 0xff & ctx->digest[i];
*s++ = 0xff & (ctx->digest[i] >> 8);
*s++ = 0xff & (ctx->digest[i] >> 16);
*s++ = ctx->digest[i] >> 24;
}
}
|