1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
|
/* gcm.h
*
* Galois counter mode, specified by NIST,
* http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
*
* See also the gcm paper at
* http://www.cryptobarn.com/papers/gcm-spec.pdf.
*/
/* NOTE: Tentative interface, subject to change. No effort will be
made to avoid incompatible changes. */
/* nettle, low-level cryptographics library
*
* Copyright (C) 2011 Niels Möller
* Copyright (C) 2011 Katholieke Universiteit Leuven
*
* Contributed by Nikos Mavrogiannopoulos
*
* The nettle library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* The nettle library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the nettle library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02111-1301, USA.
*/
#if HAVE_CONFIG_H
# include "config.h"
#endif
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "gcm.h"
#include "memxor.h"
#include "nettle-internal.h"
#include "macros.h"
#define GHASH_POLYNOMIAL 0xE1UL
static void
gcm_gf_add (union gcm_block *r, const union gcm_block *x, const union gcm_block *y)
{
r->w[0] = x->w[0] ^ y->w[0];
r->w[1] = x->w[1] ^ y->w[1];
#if SIZEOF_LONG == 4
r->w[2] = x->w[2] ^ y->w[2];
r->w[3] = x->w[3] ^ y->w[3];
#endif
}
/* Multiplication by 010...0; a big-endian shift right. If the bit
shifted out is one, the defining polynomial is added to cancel it
out. r == x is allowed. */
static void
gcm_gf_shift (union gcm_block *r, const union gcm_block *x)
{
long mask;
/* Shift uses big-endian representation. */
#if WORDS_BIGENDIAN
# if SIZEOF_LONG == 4
mask = - (x->w[3] & 1);
r->w[3] = (x->w[3] >> 1) | ((x->w[2] & 1) << 31);
r->w[2] = (x->w[2] >> 1) | ((x->w[1] & 1) << 31);
r->w[1] = (x->w[1] >> 1) | ((x->w[0] & 1) << 31);
r->w[0] = (x->w[0] >> 1) ^ (mask & (GHASH_POLYNOMIAL << 24));
# elif SIZEOF_LONG == 8
mask = - (x->w[1] & 1);
r->w[1] = (x->w[1] >> 1) | ((x->w[0] & 1) << 63);
r->w[0] = (x->w[0] >> 1) ^ (mask & (GHASH_POLYNOMIAL << 56));
# else
# error Unsupported word size. */
#endif
#else /* ! WORDS_BIGENDIAN */
# if SIZEOF_LONG == 4
#define RSHIFT_WORD(x) \
((((x) & 0xfefefefeUL) >> 1) \
| (((x) & 0x00010101) << 15))
mask = - ((x->w[3] >> 24) & 1);
r->w[3] = RSHIFT_WORD(x->w[3]) | ((x->w[2] >> 17) & 0x80);
r->w[2] = RSHIFT_WORD(x->w[2]) | ((x->w[1] >> 17) & 0x80);
r->w[1] = RSHIFT_WORD(x->w[1]) | ((x->w[0] >> 17) & 0x80);
r->w[0] = RSHIFT_WORD(x->w[0]) ^ (mask & GHASH_POLYNOMIAL);
# elif SIZEOF_LONG == 8
#define RSHIFT_WORD(x) \
((((x) & 0xfefefefefefefefeUL) >> 1) \
| (((x) & 0x0001010101010101UL) << 15))
mask = - ((x->w[1] >> 56) & 1);
r->w[1] = RSHIFT_WORD(x->w[1]) | ((x->w[0] >> 49) & 0x80);
r->w[0] = RSHIFT_WORD(x->w[0]) ^ (mask & GHASH_POLYNOMIAL);
# else
# error Unsupported word size. */
# endif
# undef RSHIFT_WORD
#endif /* ! WORDS_BIGENDIAN */
}
#if GCM_TABLE_BITS == 0
/* Sets x <- x * y mod r, using the plain bitwise algorithm from the
specification. y may be shorter than a full block, missing bytes
are assumed zero. */
static void
gcm_gf_mul (union gcm_block *x, const union gcm_block *y)
{
union gcm_block V;
union gcm_block Z;
unsigned i;
memcpy(V.b, x, sizeof(V));
memset(Z.b, 0, sizeof(Z));
for (i = 0; i < GCM_BLOCK_SIZE; i++)
{
uint8_t b = y->b[i];
unsigned j;
for (j = 0; j < 8; j++, b <<= 1)
{
if (b & 0x80)
gcm_gf_add(&Z, &Z, &V);
gcm_gf_shift(&V, &V);
}
}
memcpy (x->b, Z.b, sizeof(Z));
}
#else /* GCM_TABLE_BITS != 0 */
# if WORDS_BIGENDIAN
# define W(left,right) (0x##left##right)
# else
# define W(left,right) (0x##right##left)
# endif
# if GCM_TABLE_BITS == 4
static const uint16_t
shift_table[0x10] = {
W(00,00),W(1c,20),W(38,40),W(24,60),W(70,80),W(6c,a0),W(48,c0),W(54,e0),
W(e1,00),W(fd,20),W(d9,40),W(c5,60),W(91,80),W(8d,a0),W(a9,c0),W(b5,e0),
};
static void
gcm_gf_shift_4(union gcm_block *x)
{
unsigned long *w = x->w;
unsigned long reduce;
/* Shift uses big-endian representation. */
#if WORDS_BIGENDIAN
# if SIZEOF_LONG == 4
reduce = shift_table[w[3] & 0xf];
w[3] = (w[3] >> 4) | ((w[2] & 0xf) << 28);
w[2] = (w[2] >> 4) | ((w[1] & 0xf) << 28);
w[1] = (w[1] >> 4) | ((w[0] & 0xf) << 28);
w[0] = (w[0] >> 4) ^ (reduce << 16);
# elif SIZEOF_LONG == 8
reduce = shift_table[w[1] & 0xf];
w[1] = (w[1] >> 4) | ((w[0] & 0xf) << 60);
w[0] = (w[0] >> 4) ^ (reduce << 48);
# else
# error Unsupported word size. */
#endif
#else /* ! WORDS_BIGENDIAN */
# if SIZEOF_LONG == 4
#define RSHIFT_WORD(x) \
((((x) & 0xf0f0f0f0UL) >> 4) \
| (((x) & 0x000f0f0f) << 12))
reduce = shift_table[(w[3] >> 24) & 0xf];
w[3] = RSHIFT_WORD(w[3]) | ((w[2] >> 20) & 0xf0);
w[2] = RSHIFT_WORD(w[2]) | ((w[1] >> 20) & 0xf0);
w[1] = RSHIFT_WORD(w[1]) | ((w[0] >> 20) & 0xf0);
w[0] = RSHIFT_WORD(w[0]) ^ reduce;
# elif SIZEOF_LONG == 8
#define RSHIFT_WORD(x) \
((((x) & 0xf0f0f0f0f0f0f0f0UL) >> 4) \
| (((x) & 0x000f0f0f0f0f0f0fUL) << 12))
reduce = shift_table[(w[1] >> 56) & 0xf];
w[1] = RSHIFT_WORD(w[1]) | ((w[0] >> 52) & 0xf0);
w[0] = RSHIFT_WORD(w[0]) ^ reduce;
# else
# error Unsupported word size. */
# endif
# undef RSHIFT_WORD
#endif /* ! WORDS_BIGENDIAN */
}
static void
gcm_gf_mul (union gcm_block *x, const union gcm_block *table)
{
union gcm_block Z;
unsigned i;
memset(Z.b, 0, sizeof(Z));
for (i = GCM_BLOCK_SIZE; i-- > 0;)
{
uint8_t b = x->b[i];
gcm_gf_shift_4(&Z);
gcm_gf_add(&Z, &Z, &table[b & 0xf]);
gcm_gf_shift_4(&Z);
gcm_gf_add(&Z, &Z, &table[b >> 4]);
}
memcpy (x->b, Z.b, sizeof(Z));
}
# elif GCM_TABLE_BITS == 8
static const uint16_t
shift_table[0x100] = {
W(00,00),W(01,c2),W(03,84),W(02,46),W(07,08),W(06,ca),W(04,8c),W(05,4e),
W(0e,10),W(0f,d2),W(0d,94),W(0c,56),W(09,18),W(08,da),W(0a,9c),W(0b,5e),
W(1c,20),W(1d,e2),W(1f,a4),W(1e,66),W(1b,28),W(1a,ea),W(18,ac),W(19,6e),
W(12,30),W(13,f2),W(11,b4),W(10,76),W(15,38),W(14,fa),W(16,bc),W(17,7e),
W(38,40),W(39,82),W(3b,c4),W(3a,06),W(3f,48),W(3e,8a),W(3c,cc),W(3d,0e),
W(36,50),W(37,92),W(35,d4),W(34,16),W(31,58),W(30,9a),W(32,dc),W(33,1e),
W(24,60),W(25,a2),W(27,e4),W(26,26),W(23,68),W(22,aa),W(20,ec),W(21,2e),
W(2a,70),W(2b,b2),W(29,f4),W(28,36),W(2d,78),W(2c,ba),W(2e,fc),W(2f,3e),
W(70,80),W(71,42),W(73,04),W(72,c6),W(77,88),W(76,4a),W(74,0c),W(75,ce),
W(7e,90),W(7f,52),W(7d,14),W(7c,d6),W(79,98),W(78,5a),W(7a,1c),W(7b,de),
W(6c,a0),W(6d,62),W(6f,24),W(6e,e6),W(6b,a8),W(6a,6a),W(68,2c),W(69,ee),
W(62,b0),W(63,72),W(61,34),W(60,f6),W(65,b8),W(64,7a),W(66,3c),W(67,fe),
W(48,c0),W(49,02),W(4b,44),W(4a,86),W(4f,c8),W(4e,0a),W(4c,4c),W(4d,8e),
W(46,d0),W(47,12),W(45,54),W(44,96),W(41,d8),W(40,1a),W(42,5c),W(43,9e),
W(54,e0),W(55,22),W(57,64),W(56,a6),W(53,e8),W(52,2a),W(50,6c),W(51,ae),
W(5a,f0),W(5b,32),W(59,74),W(58,b6),W(5d,f8),W(5c,3a),W(5e,7c),W(5f,be),
W(e1,00),W(e0,c2),W(e2,84),W(e3,46),W(e6,08),W(e7,ca),W(e5,8c),W(e4,4e),
W(ef,10),W(ee,d2),W(ec,94),W(ed,56),W(e8,18),W(e9,da),W(eb,9c),W(ea,5e),
W(fd,20),W(fc,e2),W(fe,a4),W(ff,66),W(fa,28),W(fb,ea),W(f9,ac),W(f8,6e),
W(f3,30),W(f2,f2),W(f0,b4),W(f1,76),W(f4,38),W(f5,fa),W(f7,bc),W(f6,7e),
W(d9,40),W(d8,82),W(da,c4),W(db,06),W(de,48),W(df,8a),W(dd,cc),W(dc,0e),
W(d7,50),W(d6,92),W(d4,d4),W(d5,16),W(d0,58),W(d1,9a),W(d3,dc),W(d2,1e),
W(c5,60),W(c4,a2),W(c6,e4),W(c7,26),W(c2,68),W(c3,aa),W(c1,ec),W(c0,2e),
W(cb,70),W(ca,b2),W(c8,f4),W(c9,36),W(cc,78),W(cd,ba),W(cf,fc),W(ce,3e),
W(91,80),W(90,42),W(92,04),W(93,c6),W(96,88),W(97,4a),W(95,0c),W(94,ce),
W(9f,90),W(9e,52),W(9c,14),W(9d,d6),W(98,98),W(99,5a),W(9b,1c),W(9a,de),
W(8d,a0),W(8c,62),W(8e,24),W(8f,e6),W(8a,a8),W(8b,6a),W(89,2c),W(88,ee),
W(83,b0),W(82,72),W(80,34),W(81,f6),W(84,b8),W(85,7a),W(87,3c),W(86,fe),
W(a9,c0),W(a8,02),W(aa,44),W(ab,86),W(ae,c8),W(af,0a),W(ad,4c),W(ac,8e),
W(a7,d0),W(a6,12),W(a4,54),W(a5,96),W(a0,d8),W(a1,1a),W(a3,5c),W(a2,9e),
W(b5,e0),W(b4,22),W(b6,64),W(b7,a6),W(b2,e8),W(b3,2a),W(b1,6c),W(b0,ae),
W(bb,f0),W(ba,32),W(b8,74),W(b9,b6),W(bc,f8),W(bd,3a),W(bf,7c),W(be,be),
};
static void
gcm_gf_shift_8(union gcm_block *x)
{
unsigned long *w = x->w;
unsigned long reduce;
/* Shift uses big-endian representation. */
#if WORDS_BIGENDIAN
# if SIZEOF_LONG == 4
reduce = shift_table[w[3] & 0xff];
w[3] = (w[3] >> 8) | ((w[2] & 0xff) << 24);
w[2] = (w[2] >> 8) | ((w[1] & 0xff) << 24);
w[1] = (w[1] >> 8) | ((w[0] & 0xff) << 24);
w[0] = (w[0] >> 8) ^ (reduce << 16);
# elif SIZEOF_LONG == 8
reduce = shift_table[w[1] & 0xff];
w[1] = (w[1] >> 8) | ((w[0] & 0xff) << 56);
w[0] = (w[0] >> 8) ^ (reduce << 48);
# else
# error Unsupported word size. */
#endif
#else /* ! WORDS_BIGENDIAN */
# if SIZEOF_LONG == 4
reduce = shift_table[(w[3] >> 24) & 0xff];
w[3] = (w[3] << 8) | (w[2] >> 24);
w[2] = (w[2] << 8) | (w[1] >> 24);
w[1] = (w[1] << 8) | (w[0] >> 24);
w[0] = (w[0] << 8) ^ reduce;
# elif SIZEOF_LONG == 8
reduce = shift_table[(w[1] >> 56) & 0xff];
w[1] = (w[1] << 8) | (w[0] >> 56);
w[0] = (w[0] << 8) ^ reduce;
# else
# error Unsupported word size. */
# endif
#endif /* ! WORDS_BIGENDIAN */
}
static void
gcm_gf_mul (union gcm_block *x, const union gcm_block *table)
{
union gcm_block Z;
unsigned i;
memcpy(Z.b, table[x->b[GCM_BLOCK_SIZE-1]].b, GCM_BLOCK_SIZE);
for (i = GCM_BLOCK_SIZE-2; i > 0; i--)
{
gcm_gf_shift_8(&Z);
gcm_gf_add(&Z, &Z, &table[x->b[i]]);
}
gcm_gf_shift_8(&Z);
gcm_gf_add(x, &Z, &table[x->b[0]]);
}
# else /* GCM_TABLE_BITS != 8 */
# error Unsupported table size.
# endif /* GCM_TABLE_BITS != 8 */
#undef W
#endif /* GCM_TABLE_BITS */
/* Increment the rightmost 32 bits. */
#define INC32(block) INCREMENT(4, (block.b) + GCM_BLOCK_SIZE - 4)
/* Initialization of GCM.
* @ctx: The context of GCM
* @cipher: The context of the underlying block cipher
* @f: The underlying cipher encryption function
*/
void
gcm_set_key(struct gcm_key *key,
void *cipher, nettle_crypt_func *f)
{
/* Middle element if GCM_TABLE_BITS > 0, otherwise the first
element */
unsigned i = (1<<GCM_TABLE_BITS)/2;
/* H */
memset(key->h[0].b, 0, GCM_BLOCK_SIZE);
f (cipher, GCM_BLOCK_SIZE, key->h[i].b, key->h[0].b);
#if GCM_TABLE_BITS
/* Algorithm 3 from the gcm paper. First do powers of two, then do
the rest by adding. */
while (i /= 2)
gcm_gf_shift(&key->h[i], &key->h[2*i]);
for (i = 2; i < 1<<GCM_TABLE_BITS; i *= 2)
{
unsigned j;
for (j = 1; j < i; j++)
gcm_gf_add(&key->h[i+j], &key->h[i],&key->h[j]);
}
#endif
}
static void
gcm_hash(const struct gcm_key *key, union gcm_block *x,
unsigned length, const uint8_t *data)
{
for (; length >= GCM_BLOCK_SIZE;
length -= GCM_BLOCK_SIZE, data += GCM_BLOCK_SIZE)
{
memxor (x->b, data, GCM_BLOCK_SIZE);
gcm_gf_mul (x, key->h);
}
if (length > 0)
{
memxor (x->b, data, length);
gcm_gf_mul (x, key->h);
}
}
static void
gcm_hash_sizes(const struct gcm_key *key, union gcm_block *x,
uint64_t auth_size, uint64_t data_size)
{
uint8_t buffer[GCM_BLOCK_SIZE];
data_size *= 8;
auth_size *= 8;
WRITE_UINT64 (buffer, auth_size);
WRITE_UINT64 (buffer + 8, data_size);
gcm_hash(key, x, GCM_BLOCK_SIZE, buffer);
}
/*
* @length: The size of the iv (fixed for now to GCM_NONCE_SIZE)
* @iv: The iv
*/
void
gcm_set_iv(struct gcm_ctx *ctx, const struct gcm_key *key,
size_t length, const uint8_t *iv)
{
if (length == GCM_IV_SIZE)
{
memcpy (ctx->iv.b, iv, GCM_BLOCK_SIZE - 4);
ctx->iv.b[GCM_BLOCK_SIZE - 4] = 0;
ctx->iv.b[GCM_BLOCK_SIZE - 3] = 0;
ctx->iv.b[GCM_BLOCK_SIZE - 2] = 0;
ctx->iv.b[GCM_BLOCK_SIZE - 1] = 1;
}
else
{
memset(ctx->iv.b, 0, GCM_BLOCK_SIZE);
gcm_hash(key, &ctx->iv, length, iv);
gcm_hash_sizes(key, &ctx->iv, 0, length);
}
memcpy (ctx->ctr.b, ctx->iv.b, GCM_BLOCK_SIZE);
INC32 (ctx->ctr);
/* Reset the rest of the message-dependent state. */
memset(ctx->x.b, 0, sizeof(ctx->x));
ctx->auth_size = ctx->data_size = 0;
}
void
gcm_update(struct gcm_ctx *ctx, const struct gcm_key *key,
unsigned length, const uint8_t *data)
{
assert(ctx->auth_size % GCM_BLOCK_SIZE == 0);
assert(ctx->data_size == 0);
gcm_hash(key, &ctx->x, length, data);
ctx->auth_size += length;
}
static void
gcm_crypt(struct gcm_ctx *ctx, void *cipher, nettle_crypt_func *f,
size_t length, uint8_t *dst, const uint8_t *src)
{
uint8_t buffer[GCM_BLOCK_SIZE];
if (src != dst)
{
for (; length >= GCM_BLOCK_SIZE;
(length -= GCM_BLOCK_SIZE,
src += GCM_BLOCK_SIZE, dst += GCM_BLOCK_SIZE))
{
f (cipher, GCM_BLOCK_SIZE, dst, ctx->ctr.b);
memxor (dst, src, GCM_BLOCK_SIZE);
INC32 (ctx->ctr);
}
}
else
{
for (; length >= GCM_BLOCK_SIZE;
(length -= GCM_BLOCK_SIZE,
src += GCM_BLOCK_SIZE, dst += GCM_BLOCK_SIZE))
{
f (cipher, GCM_BLOCK_SIZE, buffer, ctx->ctr.b);
memxor3 (dst, src, buffer, GCM_BLOCK_SIZE);
INC32 (ctx->ctr);
}
}
if (length > 0)
{
/* A final partial block */
f (cipher, GCM_BLOCK_SIZE, buffer, ctx->ctr.b);
memxor3 (dst, src, buffer, length);
INC32 (ctx->ctr);
}
}
void
gcm_encrypt (struct gcm_ctx *ctx, const struct gcm_key *key,
void *cipher, nettle_crypt_func *f,
size_t length, uint8_t *dst, const uint8_t *src)
{
assert(ctx->data_size % GCM_BLOCK_SIZE == 0);
gcm_crypt(ctx, cipher, f, length, dst, src);
gcm_hash(key, &ctx->x, length, dst);
ctx->data_size += length;
}
void
gcm_decrypt(struct gcm_ctx *ctx, const struct gcm_key *key,
void *cipher, nettle_crypt_func *f,
size_t length, uint8_t *dst, const uint8_t *src)
{
assert(ctx->data_size % GCM_BLOCK_SIZE == 0);
gcm_hash(key, &ctx->x, length, src);
gcm_crypt(ctx, cipher, f, length, dst, src);
ctx->data_size += length;
}
void
gcm_digest(struct gcm_ctx *ctx, const struct gcm_key *key,
void *cipher, nettle_crypt_func *f,
unsigned length, uint8_t *digest)
{
uint8_t buffer[GCM_BLOCK_SIZE];
assert (length <= GCM_BLOCK_SIZE);
gcm_hash_sizes(key, &ctx->x, ctx->auth_size, ctx->data_size);
f (cipher, GCM_BLOCK_SIZE, buffer, ctx->iv.b);
memxor3 (digest, ctx->x.b, buffer, length);
return;
}
|