1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
|
/* ecc-mod.c
Copyright (C) 2013 Niels Möller
This file is part of GNU Nettle.
GNU Nettle is free software: you can redistribute it and/or
modify it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your
option) any later version.
or both in parallel, as here.
GNU Nettle is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received copies of the GNU General Public License and
the GNU Lesser General Public License along with this program. If
not, see http://www.gnu.org/licenses/.
*/
/* Development of Nettle's ECC support was funded by the .SE Internet Fund. */
#if HAVE_CONFIG_H
# include "config.h"
#endif
#include <assert.h>
#include "ecc-internal.h"
/* Computes r mod m, input 2*m->size, output m->size. */
void
ecc_mod (const struct ecc_modulo *m, mp_limb_t *rp)
{
mp_limb_t hi;
mp_size_t mn = m->size;
mp_size_t bn = m->B_size;
mp_size_t sn = mn - bn;
mp_size_t rn = 2*mn;
mp_size_t i;
unsigned shift;
assert (sn > 0);
/* FIXME: Could use mpn_addmul_2. */
/* Eliminate sn limbs at a time */
if (m->B[bn-1] < ((mp_limb_t) 1 << (GMP_NUMB_BITS - 1)))
{
/* Multiply sn + 1 limbs at a time, so we get a mn+1 limb
product. Then we can absorb the carry in the high limb */
while (rn > 2 * mn - bn)
{
rn -= sn;
for (i = 0; i <= sn; i++)
rp[rn+i-1] = mpn_addmul_1 (rp + rn - mn - 1 + i, m->B, bn, rp[rn+i-1]);
rp[rn-1] = rp[rn+sn-1]
+ mpn_add_n (rp + rn - sn - 1, rp + rn - sn - 1, rp + rn - 1, sn);
}
goto final_limbs;
}
else
{
while (rn >= 2 * mn - bn)
{
rn -= sn;
for (i = 0; i < sn; i++)
rp[rn+i] = mpn_addmul_1 (rp + rn - mn + i, m->B, bn, rp[rn+i]);
hi = mpn_add_n (rp + rn - sn, rp + rn - sn, rp + rn, sn);
hi = cnd_add_n (hi, rp + rn - mn, m->B, mn);
assert (hi == 0);
}
}
if (rn > mn)
{
final_limbs:
sn = rn - mn;
for (i = 0; i < sn; i++)
rp[mn+i] = mpn_addmul_1 (rp + i, m->B, bn, rp[mn+i]);
hi = mpn_add_n (rp + bn, rp + bn, rp + mn, sn);
hi = sec_add_1 (rp + bn + sn, rp + bn + sn, mn - bn - sn, hi);
}
shift = m->size * GMP_NUMB_BITS - m->bit_size;
if (shift > 0)
{
/* Combine hi with top bits, add in */
hi = (hi << shift) | (rp[mn-1] >> (GMP_NUMB_BITS - shift));
rp[mn-1] = (rp[mn-1] & (((mp_limb_t) 1 << (GMP_NUMB_BITS - shift)) - 1))
+ mpn_addmul_1 (rp, m->B_shifted, mn-1, hi);
}
else
{
hi = cnd_add_n (hi, rp, m->B_shifted, mn);
assert (hi == 0);
}
}
|