1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
/* desdata.c
*
* Generate tables used by des.c and desCode.h.
*
* $Id$ */
/*
* des - fast & portable DES encryption & decryption.
* Copyright (C) 1992 Dana L. How
* Please see the file `descore.README' for the complete copyright notice.
*
*/
#include "desinfo.h"
#include "desCode.h"
#if __GNUC__
# define UNUSED __attribute__ ((__unused__))
#else
# define UNUSED
#endif
/* list of weak and semi-weak keys
+0 +1 +2 +3 +4 +5 +6 +7
0x01 0x01 0x01 0x01 0x01 0x01 0x01 0x01
0x01 0x1f 0x01 0x1f 0x01 0x0e 0x01 0x0e
0x01 0xe0 0x01 0xe0 0x01 0xf1 0x01 0xf1
0x01 0xfe 0x01 0xfe 0x01 0xfe 0x01 0xfe
0x1f 0x01 0x1f 0x01 0x0e 0x01 0x0e 0x01
0x1f 0x1f 0x1f 0x1f 0x0e 0x0e 0x0e 0x0e
0x1f 0xe0 0x1f 0xe0 0x0e 0xf1 0x0e 0xf1
0x1f 0xfe 0x1f 0xfe 0x0e 0xfe 0x0e 0xfe
0xe0 0x01 0xe0 0x01 0xf1 0x01 0xf1 0x01
0xe0 0x1f 0xe0 0x1f 0xf1 0x0e 0xf1 0x0e
0xe0 0xe0 0xe0 0xe0 0xf1 0xf1 0xf1 0xf1
0xe0 0xfe 0xe0 0xfe 0xf1 0xfe 0xf1 0xfe
0xfe 0x01 0xfe 0x01 0xfe 0x01 0xfe 0x01
0xfe 0x1f 0xfe 0x1f 0xfe 0x0e 0xfe 0x0e
0xfe 0xe0 0xfe 0xe0 0xfe 0xf1 0xfe 0xf1
0xfe 0xfe 0xfe 0xfe 0xfe 0xfe 0xfe 0xfe
*/
/* key bit order in each method pair: bits 31->00 of 1st, bits 31->00 of 2nd */
/* this does not reflect the rotate of the 2nd word */
#define S(box,bit) (box*6+bit)
int korder[] = {
S(7, 5), S(7, 4), S(7, 3), S(7, 2), S(7, 1), S(7, 0),
S(5, 5), S(5, 4), S(5, 3), S(5, 2), S(5, 1), S(5, 0),
S(3, 5), S(3, 4), S(3, 3), S(3, 2), S(3, 1), S(3, 0),
S(1, 5), S(1, 4), S(1, 3), S(1, 2), S(1, 1), S(1, 0),
S(6, 5), S(6, 4), S(6, 3), S(6, 2), S(6, 1), S(6, 0),
S(4, 5), S(4, 4), S(4, 3), S(4, 2), S(4, 1), S(4, 0),
S(2, 5), S(2, 4), S(2, 3), S(2, 2), S(2, 1), S(2, 0),
S(0, 5), S(0, 4), S(0, 3), S(0, 2), S(0, 1), S(0, 0),
};
/* the order in which the algorithm accesses the s boxes */
int sorder[] = {
7, 5, 3, 1, 6, 4, 2, 0,
};
int printf(const char *, ...);
int
main(int argc UNUSED, char **argv UNUSED)
{
uint32_t d, i, j, k, l, m, n, s;
char b[256], ksr[56];
switch ( argv[1][0] ) {
/*
* <<< make the key parity table >>>
*/
case 'p':
(void)printf(
"/* automagically produced - do not fuss with this information */\n\n");
/* store parity information */
for ( i = 0; i < 256; i++ ) {
j = i;
j ^= j >> 4; /* bits 3-0 have pairs */
j ^= j << 2; /* bits 3-2 have quads */
j ^= j << 1; /* bit 3 has the entire eight (no cox) */
b[i] = 8 & ~j; /* 0 is okay and 8 is bad parity */
}
/* only these characters can appear in a weak key */
b[0x01] = 1;
b[0x0e] = 2;
b[0x1f] = 3;
b[0xe0] = 4;
b[0xf1] = 5;
b[0xfe] = 6;
/* print it out */
for ( i = 0; i < 256; i++ ) {
(void)printf("%d,", b[i]);
if ( (i & 31) == 31 )
(void)printf("\n");
}
break;
/*
* <<< make the key usage table >>>
*/
case 'r':
(void)printf("/* automagically made - do not fuss with this */\n\n");
/* KL specifies the initial key bit positions */
for (i = 0; i < 56; i++)
ksr[i] = (KL[i] - 1) ^ 7;
for (i = 0; i < 16; i++) {
/* apply the appropriate number of left shifts */
for (j = 0; j < KS[i]; j++) {
m = ksr[ 0];
n = ksr[28];
for (k = 0; k < 27; k++)
ksr[k ] = ksr[k + 1],
ksr[k + 28] = ksr[k + 29];
ksr[27] = m;
ksr[55] = n;
}
/* output the key bit numbers */
for (j = 0; j < 48; j++) {
m = ksr[KC[korder[j]] - 1];
m = (m / 8) * 7 + (m % 8) - 1;
m = 55 - m;
(void)printf(" %2ld,", (long) m);
if ((j % 12) == 11)
(void)printf("\n");
}
(void)printf("\n");
}
break;
/*
* <<< make the keymap table >>>
*/
case 'k':
(void)printf("/* automagically made - do not fuss with this */\n\n");
for ( i = 0; i <= 7 ; i++ ) {
s = sorder[i];
for ( d = 0; d <= 63; d++ ) {
/* flip bits */
k = ((d << 5) & 32) |
((d << 3) & 16) |
((d << 1) & 8) |
((d >> 1) & 4) |
((d >> 3) & 2) |
((d >> 5) & 1) ;
/* more bit twiddling */
l = ((k << 0) & 32) | /* overlap bit */
((k << 4) & 16) | /* overlap bit */
((k >> 1) & 15) ; /* unique bits */
/* look up s box value */
m = SB[s][l];
/* flip bits */
n = ((m << 3) & 8) |
((m << 1) & 4) |
((m >> 1) & 2) |
((m >> 3) & 1) ;
/* put in correct nybble */
n <<= (s << 2);
/* perform p permutation */
for ( m = j = 0; j < 32; j++ )
if ( n & (1 << (SP[j] - 1)) )
m |= (1 << j);
/* rotate right (alg keeps everything rotated by 1) */
ROR(m, 1, 31);
/* print it out */
(void)printf(" 0x%08lx,", (long) m);
if ( ( d & 3 ) == 3 )
(void)printf("\n");
}
(void)printf("\n");
}
break;
}
return 0;
}
|