1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
/* der2rsa.c
*
* Decoding of keys in PKCS#1 format.
*/
/* nettle, low-level cryptographics library
*
* Copyright (C) 2005 Niels Möller
*
* The nettle library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* The nettle library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the nettle library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02111-1301, USA.
*/
#if HAVE_CONFIG_H
# include "config.h"
#endif
#include "rsa.h"
#include "bignum.h"
#include "asn1.h"
#define GET(i, x, l) \
(asn1_der_iterator_next((i)) == ASN1_ITERATOR_PRIMITIVE \
&& (i)->type == ASN1_INTEGER \
&& asn1_der_get_bignum((i), (x), (l)) \
&& mpz_sgn((x)) > 0)
int
rsa_public_key_from_der_iterator(struct rsa_public_key *pub,
unsigned limit,
struct asn1_der_iterator *i)
{
/* RSAPublicKey ::= SEQUENCE {
modulus INTEGER, -- n
publicExponent INTEGER -- e
}
*/
return (i->type == ASN1_SEQUENCE
&& asn1_der_decode_constructed_last(i) == ASN1_ITERATOR_PRIMITIVE
&& asn1_der_get_bignum(i, pub->n, limit)
&& mpz_sgn(pub->n) > 0
&& GET(i, pub->e, limit)
&& asn1_der_iterator_next(i) == ASN1_ITERATOR_END
&& rsa_public_key_prepare(pub));
}
int
rsa_private_key_from_der_iterator(struct rsa_public_key *pub,
struct rsa_private_key *priv,
unsigned limit,
struct asn1_der_iterator *i)
{
/* RSAPrivateKey ::= SEQUENCE {
version Version,
modulus INTEGER, -- n
publicExponent INTEGER, -- e
privateExponent INTEGER, -- d
prime1 INTEGER, -- p
prime2 INTEGER, -- q
exponent1 INTEGER, -- d mod (p-1)
exponent2 INTEGER, -- d mod (q-1)
coefficient INTEGER, -- (inverse of q) mod p
otherPrimeInfos OtherPrimeInfos OPTIONAL
}
*/
uint32_t version;
if (i->type != ASN1_SEQUENCE)
return 0;
if (asn1_der_decode_constructed_last(i) == ASN1_ITERATOR_PRIMITIVE
&& i->type == ASN1_INTEGER
&& asn1_der_get_uint32(i, &version)
&& version <= 1
&& GET(i, pub->n, limit)
&& GET(i, pub->e, limit)
&& rsa_public_key_prepare(pub)
&& GET(i, priv->d, limit)
&& GET(i, priv->p, limit)
&& GET(i, priv->q, limit)
&& GET(i, priv->a, limit)
&& GET(i, priv->b, limit)
&& GET(i, priv->c, limit)
&& rsa_private_key_prepare(priv))
{
if (version == 1)
{
/* otherPrimeInfos must be present. We ignore the contents */
if (!(asn1_der_iterator_next(i) == ASN1_ITERATOR_CONSTRUCTED
&& i->type == ASN1_SEQUENCE))
return 0;
}
return (asn1_der_iterator_next(i) == ASN1_ITERATOR_END);
}
return 0;
}
int
rsa_keypair_from_der(struct rsa_public_key *pub,
struct rsa_private_key *priv,
unsigned limit,
unsigned length, const uint8_t *data)
{
struct asn1_der_iterator i;
enum asn1_iterator_result res;
res = asn1_der_iterator_first(&i, length, data);
if (res != ASN1_ITERATOR_CONSTRUCTED)
return 0;
if (priv)
return rsa_private_key_from_der_iterator(pub, priv, limit, &i);
else
return rsa_public_key_from_der_iterator(pub, limit, &i);
}
|