diff options
author | Niels Möller <nisse@lysator.liu.se> | 2002-01-14 03:01:17 +0100 |
---|---|---|
committer | Niels Möller <nisse@lysator.liu.se> | 2002-01-14 03:01:17 +0100 |
commit | 17c7e2368644a495dd9f1cf4291a1e88d9f428ee (patch) | |
tree | c0373f4089951ec4bc53f55aeddbee667aec1d57 /rsa.c | |
parent | 010df2886c2197c0a8f311a3fdb05a00e1c73471 (diff) | |
download | nettle-17c7e2368644a495dd9f1cf4291a1e88d9f428ee.tar.gz |
(rsa_check_size): New function, for computing and checking
the size of the modulo in octets.
(rsa_prepare_public_key): Usa rsa_check_size.
(rsa_init_private_key): Removed code handling n, e and d.
(rsa_clear_private_key): Likewise.
(rsa_compute_root): Always use CRT.
Rev: src/nettle/rsa.c:1.4
Diffstat (limited to 'rsa.c')
-rw-r--r-- | rsa.c | 177 |
1 files changed, 88 insertions, 89 deletions
@@ -55,10 +55,14 @@ rsa_clear_public_key(struct rsa_public_key *key) mpz_clear(key->e); } -int -rsa_prepare_public_key(struct rsa_public_key *key) +/* Computes the size, in octets, of a size BITS modulo. + * Returns 0 if the modulo is too small to be useful. */ + +static unsigned +rsa_check_size(unsigned bits) { - unsigned size = (mpz_sizeinbase(key->n, 2) + 7) / 8; + /* Round upwards */ + unsigned size = (bits + 7) / 8; /* For PKCS#1 to make sense, the size of the modulo, in octets, must * be at least 11 + the length of the DER-encoded Digest Info. @@ -67,39 +71,43 @@ rsa_prepare_public_key(struct rsa_public_key *key) * 46 octets is 368 bits. */ if (size < 46) - { - /* Make sure the signing and verification functions doesn't - * try to use this key. */ - key->size = 0; - - return 0; - } - else - { - key->size = size; - return 1; - } + return 0; + + return size; +} + +int +rsa_prepare_public_key(struct rsa_public_key *key) +{ + /* FIXME: Add further sanity checks, like 0 < e < n. */ +#if 0 + if ( (mpz_sgn(key->e) <= 0) + || mpz_cmp(key->e, key->n) >= 0) + return 0; +#endif + + key->size = rsa_check_size(mpz_sizeinbase(key->n, 2)); + + return (key->size > 0); } void rsa_init_private_key(struct rsa_private_key *key) { - rsa_init_public_key(&key->pub); - - mpz_init(key->d); mpz_init(key->p); mpz_init(key->q); mpz_init(key->a); mpz_init(key->b); mpz_init(key->c); + + /* Not really necessary, but it seems cleaner to initialize all the + * storage. */ + key->size = 0; } void rsa_clear_private_key(struct rsa_private_key *key) { - rsa_clear_public_key(&key->pub); - - mpz_clear(key->d); mpz_clear(key->p); mpz_clear(key->q); mpz_clear(key->a); @@ -110,80 +118,71 @@ rsa_clear_private_key(struct rsa_private_key *key) int rsa_prepare_private_key(struct rsa_private_key *key) { - return rsa_prepare_public_key(&key->pub); -} + /* FIXME: Add further sanity checks. */ + /* The size of the product is the sum of the sizes of the factors. */ + key->size = rsa_check_size(mpz_sizeinbase(key->p, 2) + + mpz_sizeinbase(key->p, 2)); -#ifndef RSA_CRT -#define RSA_CRT 1 -#endif - -/* Computing an rsa root. - * - * NOTE: We don't really need n not e, so we could drop the public - * key info from struct rsa_private_key. */ + return (key->size > 0); +} +/* Computing an rsa root. */ void rsa_compute_root(struct rsa_private_key *key, mpz_t x, const mpz_t m) { -#if RSA_CRT - { - mpz_t xp; /* modulo p */ - mpz_t xq; /* modulo q */ - - mpz_init(xp); mpz_init(xq); - - /* Compute xq = m^d % q = (m%q)^b % q */ - mpz_fdiv_r(xq, m, key->q); - mpz_powm(xq, xq, key->b, key->q); - - /* Compute xp = m^d % p = (m%p)^a % p */ - mpz_fdiv_r(xp, m, key->p); - mpz_powm(xp, xp, key->a, key->p); - - /* Set xp' = (xp - xq) c % p. */ - mpz_sub(xp, xp, xq); - mpz_mul(xp, xp, key->c); - mpz_fdiv_r(xp, xp, key->p); - - /* Finally, compute x = xq + q xp' - * - * To prove that this works, note that - * - * xp = x + i p, - * xq = x + j q, - * c q = 1 + k p - * - * for some integers i, j and k. Now, for some integer l, - * - * xp' = (xp - xq) c + l p - * = (x + i p - (x + j q)) c + l p - * = (i p - j q) c + l p - * = (i c + l) p - j (c q) - * = (i c + l) p - j (1 + kp) - * = (i c + l - j k) p - j - * - * which shows that xp' = -j (mod p). We get - * - * xq + q xp' = x + j q + (i c + l - j k) p q - j q - * = x + (i c + l - j k) p q - * - * so that - * - * xq + q xp' = x (mod pq) - * - * We also get 0 <= xq + q xp' < p q, because - * - * 0 <= xq < q and 0 <= xp' < p. - */ - mpz_mul(x, key->q, xp); - mpz_add(x, x, xq); - - mpz_clear(xp); mpz_clear(xq); - } -#else /* !RSA_CRT */ - mpz_powm(x, m, key->d, key->pub->n); -#endif /* !RSA_CRT */ + mpz_t xp; /* modulo p */ + mpz_t xq; /* modulo q */ + + mpz_init(xp); mpz_init(xq); + + /* Compute xq = m^d % q = (m%q)^b % q */ + mpz_fdiv_r(xq, m, key->q); + mpz_powm(xq, xq, key->b, key->q); + + /* Compute xp = m^d % p = (m%p)^a % p */ + mpz_fdiv_r(xp, m, key->p); + mpz_powm(xp, xp, key->a, key->p); + + /* Set xp' = (xp - xq) c % p. */ + mpz_sub(xp, xp, xq); + mpz_mul(xp, xp, key->c); + mpz_fdiv_r(xp, xp, key->p); + + /* Finally, compute x = xq + q xp' + * + * To prove that this works, note that + * + * xp = x + i p, + * xq = x + j q, + * c q = 1 + k p + * + * for some integers i, j and k. Now, for some integer l, + * + * xp' = (xp - xq) c + l p + * = (x + i p - (x + j q)) c + l p + * = (i p - j q) c + l p + * = (i c + l) p - j (c q) + * = (i c + l) p - j (1 + kp) + * = (i c + l - j k) p - j + * + * which shows that xp' = -j (mod p). We get + * + * xq + q xp' = x + j q + (i c + l - j k) p q - j q + * = x + (i c + l - j k) p q + * + * so that + * + * xq + q xp' = x (mod pq) + * + * We also get 0 <= xq + q xp' < p q, because + * + * 0 <= xq < q and 0 <= xp' < p. + */ + mpz_mul(x, key->q, xp); + mpz_add(x, x, xq); + + mpz_clear(xp); mpz_clear(xq); } #endif /* HAVE_LIBGMP */ |