diff options
author | Niels Möller <nisse@lysator.liu.se> | 2014-08-28 16:21:36 +0200 |
---|---|---|
committer | Niels Möller <nisse@lysator.liu.se> | 2014-08-28 16:21:36 +0200 |
commit | 2a1ac1dcc00b4183d8994a223443b9c865eb7f20 (patch) | |
tree | d24360fa8dfe766ff1ab5148b5e7e53f794bea0e /misc | |
parent | 4e20f76200dee944cf1896144932047b19e8f8bf (diff) | |
download | nettle-2a1ac1dcc00b4183d8994a223443b9c865eb7f20.tar.gz |
Sign corrections and formulas for EdDSA.
Diffstat (limited to 'misc')
-rw-r--r-- | misc/ecc-formulas.tex | 34 |
1 files changed, 31 insertions, 3 deletions
diff --git a/misc/ecc-formulas.tex b/misc/ecc-formulas.tex index 46740d1c..eb69c7c7 100644 --- a/misc/ecc-formulas.tex +++ b/misc/ecc-formulas.tex @@ -110,17 +110,25 @@ This works also for doubling, but a more efficient variant is The EdDSA paper (\url{http://ed25519.cr.yp.to/ed25519-20110926.pdf}) suggests using the twisted Edwards curve, \begin{equation*} - -x^2 + y^2 = 1 + d x^2 y^2 \pmod{p} + -x^2 + y^2 = 1 + d' x^2 y^2 \pmod{p} \end{equation*} +(For this we use the same $d' = -d = (121665/121666) \bmod p$). Assuming -1 has a square root modulo $p$, a point $(x, y)$ lies on this curve if and only if $(\sqrt{-1} x, p)$ lies of the non-twisted -Edwards curve. The point additin formulas for the twisted Edwards +Edwards curve. The point addition formulas for the twisted Edwards curve are \begin{align*} - t &= d x_1 x_2 y_1 y_2 \\ + t &= d' x_1 x_2 y_1 y_2 \\ x_3 &= (1 + t)^{-1} (x_1 y_2 + y_1 x_2) \\ y_3 &= (1 - t)^{-1} (y_1 y_2 + x_1 x_2) \end{align*} +or in terms of $d$ rather than $d'$, signs are switched as +\begin{align*} + t &= d x_1 x_2 y_1 y_2 \\ + x_3 &= (1 - t)^{-1} (x_1 y_2 + y_1 x_2) \\ + y_3 &= (1 + t)^{-1} (y_1 y_2 + x_1 x_2) +\end{align*} + For the other formulas, it should be fine to just switch the sign of terms involving $x_1 x_2$ or $x_1^2$. The paper suggests further optimizations: For precomputed points, use the representation $(x-y, @@ -128,6 +136,26 @@ x+y, dxy)$. And for temporary points, maintain an additional redundant coordinate $T$, with $Z T = X Y$ (see \url{http://eprint.iacr.org/2008/522.pdf}). +According to djb, the formulas in Section 3.1 are the once to use, +because they are complete. See +\url{http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#addition-add-2008-hwcd}, +\begin{align*} + A &= x_1 x_2 \\ + B &= y_1 y_2 \\ + C &= t_1 d' t_2 \\ + D &= z_1 z_2 \\ + E &= (x_1+y_1) (x_2+y_2)-A-B \\ + F &= D-C \\ + G &= D+C \\ + H &= B-a A \\ + x_3 &= E*F \\ + y_3 &= G*H \\ + t_3 &= E*H \\ + z_3 &= F*G +\end{align*} + +In our notation $a = -1$, and the $d'$ above is $-d$. + \section{Curve25519} Curve25519 is defined as the Montgomery curve |