summaryrefslogtreecommitdiff
path: root/float.c
blob: 7d7b7813c6e50ce50f4ff2f4e6a04d3b4c24da3f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
/* float.c     floating-point constant support for the Netwide Assembler
 *
 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
 * Julian Hall. All rights reserved. The software is
 * redistributable under the licence given in the file "Licence"
 * distributed in the NASM archive.
 *
 * initial version 13/ix/96 by Simon Tatham
 */

#include "compiler.h"

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>

#include "nasm.h"

#define MANT_WORDS  10          /* 112 bits + 48 for accuracy == 160 */
#define MANT_DIGITS 49          /* 50 digits don't fit in 160 bits */

/*
 * guaranteed top bit of from is set
 * => we only have to worry about _one_ bit shift to the left
 */

static int ieee_multiply(uint16_t *to, uint16_t *from)
{
    uint32_t temp[MANT_WORDS * 2];
    int i, j;

    for (i = 0; i < MANT_WORDS * 2; i++)
        temp[i] = 0;

    for (i = 0; i < MANT_WORDS; i++)
        for (j = 0; j < MANT_WORDS; j++) {
            uint32_t n;
            n = (uint32_t)to[i] * (uint32_t)from[j];
            temp[i + j] += n >> 16;
            temp[i + j + 1] += n & 0xFFFF;
        }

    for (i = MANT_WORDS * 2; --i;) {
        temp[i - 1] += temp[i] >> 16;
        temp[i] &= 0xFFFF;
    }
    if (temp[0] & 0x8000) {
	memcpy(to, temp, 2*MANT_WORDS);
	return 0;
    } else {
        for (i = 0; i < MANT_WORDS; i++)
            to[i] = (temp[i] << 1) + !!(temp[i + 1] & 0x8000);
        return -1;
    }
}

static int hexval(char c)
{
    if (c >= '0' && c <= '9')
	return c-'0';
    else if (c >= 'a' && c <= 'f')
	return c-'a'+10;
    else
	return c-'A'+10;
}

static void ieee_flconvert_hex(char *string, uint16_t *mant,
			       int32_t *exponent, efunc error)
{
    static const int log2tbl[16] =
	{ -1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3 };
    uint16_t mult[MANT_WORDS+1], *mp;
    int ms;
    int32_t twopwr;
    int seendot, seendigit;
    unsigned char c;

    twopwr = 0;
    seendot = seendigit = 0;
    ms = 0;
    mp = NULL;

    memset(mult, 0, sizeof mult);

    while ((c = *string++) != '\0') {
	if (c == '.') {
            if (!seendot)
                seendot = true;
            else {
                error(ERR_NONFATAL,
                      "too many periods in floating-point constant");
                return;
            }
	} else if (isxdigit(c)) {
	    int v = hexval(c);

	    if (!seendigit && v) {
		int l = log2tbl[v];

		seendigit = 1;
		mp = mult;
		ms = 15-l;

		twopwr = seendot ? twopwr-4+l : l-3;
	    }

	    if (seendigit) {
		if (ms <= 0) {
		    *mp |= v >> -ms;
		    mp++;
		    if (mp > &mult[MANT_WORDS])
			mp = &mult[MANT_WORDS]; /* Guard slot */
		    ms += 16;
		}
		*mp |= v << ms;
		ms -= 4;

		if (!seendot)
		    twopwr += 4;
	    } else {
		if (seendot)
		    twopwr -= 4;
	    }
	} else if (c == 'p' || c == 'P') {
	    twopwr += atoi(string);
	    break;
	} else {
            error(ERR_NONFATAL,
                  "floating-point constant: `%c' is invalid character",
                  c);
            return;
        }
    }

    if (!seendigit) {
	memset(mant, 0, 2*MANT_WORDS); /* Zero */
	*exponent = 0;
    } else {
	memcpy(mant, mult, 2*MANT_WORDS);
	*exponent = twopwr;
    }
}

static void ieee_flconvert(char *string, uint16_t *mant,
                           int32_t *exponent, efunc error)
{
    char digits[MANT_DIGITS];
    char *p, *q, *r;
    uint16_t mult[MANT_WORDS], bit;
    uint16_t *m;
    int32_t tenpwr, twopwr;
    int extratwos, started, seendot;

    if (string[0] == '0' && (string[1] == 'x' || string[1] == 'X')) {
	ieee_flconvert_hex(string+2, mant, exponent, error);
	return;
    }

    p = digits;
    tenpwr = 0;
    started = seendot = false;
    while (*string && *string != 'E' && *string != 'e') {
        if (*string == '.') {
            if (!seendot)
                seendot = true;
            else {
                error(ERR_NONFATAL,
                      "too many periods in floating-point constant");
                return;
            }
        } else if (*string >= '0' && *string <= '9') {
            if (*string == '0' && !started) {
                if (seendot)
                    tenpwr--;
            } else {
                started = true;
                if (p < digits + sizeof(digits))
                    *p++ = *string - '0';
                if (!seendot)
                    tenpwr++;
            }
        } else {
            error(ERR_NONFATAL,
                  "floating-point constant: `%c' is invalid character",
                  *string);
            return;
        }
        string++;
    }
    if (*string) {
        string++;               /* eat the E */
        tenpwr += atoi(string);
    }

    /*
     * At this point, the memory interval [digits,p) contains a
     * series of decimal digits zzzzzzz such that our number X
     * satisfies
     *
     * X = 0.zzzzzzz * 10^tenpwr
     */

    bit = 0x8000;
    for (m = mant; m < mant + MANT_WORDS; m++)
        *m = 0;
    m = mant;
    q = digits;
    started = false;
    twopwr = 0;
    while (m < mant + MANT_WORDS) {
        uint16_t carry = 0;
        while (p > q && !p[-1])
            p--;
        if (p <= q)
            break;
        for (r = p; r-- > q;) {
            int i;

            i = 2 * *r + carry;
            if (i >= 10)
                carry = 1, i -= 10;
            else
                carry = 0;
            *r = i;
        }
        if (carry)
            *m |= bit, started = true;
        if (started) {
            if (bit == 1)
                bit = 0x8000, m++;
            else
                bit >>= 1;
        } else
            twopwr--;
    }
    twopwr += tenpwr;

    /*
     * At this point the `mant' array contains the first six
     * fractional places of a base-2^16 real number, which when
     * multiplied by 2^twopwr and 5^tenpwr gives X. So now we
     * really do multiply by 5^tenpwr.
     */

    if (tenpwr < 0) {
        for (m = mult; m < mult + MANT_WORDS; m++)
            *m = 0xCCCC;
        extratwos = -2;
        tenpwr = -tenpwr;
    } else if (tenpwr > 0) {
        mult[0] = 0xA000;
        for (m = mult + 1; m < mult + MANT_WORDS; m++)
            *m = 0;
        extratwos = 3;
    } else
        extratwos = 0;
    while (tenpwr) {
        if (tenpwr & 1)
            twopwr += extratwos + ieee_multiply(mant, mult);
        extratwos = extratwos * 2 + ieee_multiply(mult, mult);
        tenpwr >>= 1;
    }

    /*
     * Conversion is done. The elements of `mant' contain the first
     * fractional places of a base-2^16 real number in [0.5,1)
     * which we can multiply by 2^twopwr to get X. Or, of course,
     * it contains zero.
     */
    *exponent = twopwr;
}

/*
 * Shift a mantissa to the right by i (i < 16) bits.
 */
static void ieee_shr(uint16_t *mant, int i)
{
    uint16_t n = 0, m;
    int j;

    for (j = 0; j < MANT_WORDS; j++) {
        m = (mant[j] << (16 - i)) & 0xFFFF;
        mant[j] = (mant[j] >> i) | n;
        n = m;
    }
}

/*
 * Round a mantissa off after i words.
 */
static int ieee_round(uint16_t *mant, int i)
{
    if (mant[i] & 0x8000) {
        do {
            ++mant[--i];
            mant[i] &= 0xFFFF;
        } while (i > 0 && !mant[i]);
        return !i && !mant[i];
    }
    return 0;
}

#define put(a,b) ( (*(a)=(b)), ((a)[1]=(b)>>8) )

/* Set a bit, using *bigendian* bit numbering (0 = MSB) */
static void set_bit(uint16_t *mant, int bit)
{
    mant[bit >> 4] |= 1 << (~bit & 15);
}

/* Produce standard IEEE formats, with implicit "1" bit; this makes
   the following assumptions:

   - the sign bit is the MSB, followed by the exponent.
   - the sign bit plus exponent fit in 16 bits.
   - the exponent bias is 2^(n-1)-1 for an n-bit exponent */

struct ieee_format {
    int words;
    int mantissa;		/* Bits in the mantissa */
    int exponent;		/* Bits in the exponent */
};

static const struct ieee_format ieee_16  = { 1,  10,  5 };
static const struct ieee_format ieee_32  = { 2,  23,  8 };
static const struct ieee_format ieee_64  = { 4,  52, 11 };
static const struct ieee_format ieee_128 = { 8, 112, 15 };

/* Produce all the standard IEEE formats: 16, 32, 64, and 128 bits */
static int to_float(char *str, int32_t sign, uint8_t *result,
		    const struct ieee_format *fmt, efunc error)
{
    uint16_t mant[MANT_WORDS], *mp;
    int32_t exponent;
    int32_t expmax = 1 << (fmt->exponent-1);
    uint16_t implicit_one = 0x8000 >> fmt->exponent;
    int i;

    sign = (sign < 0 ? 0x8000L : 0L);

    if (str[0] == '_') {
	/* NaN or Infinity */
	int32_t expmask = (1 << fmt->exponent)-1;

	memset(mant, 0, sizeof mant);
	mant[0] = expmask << (15-fmt->exponent); /* Exponent: all bits one */

	switch (str[2]) {
	case 'n':		/* __nan__ */
	case 'N':
	case 'q':		/* __qnan__ */
	case 'Q':
	    set_bit(mant, fmt->exponent+1); /* Highest bit in mantissa */
	    break;
	case 's':		/* __snan__ */
	case 'S':
	    set_bit(mant, fmt->exponent+fmt->mantissa);	/* Last bit */
	    break;
	case 'i':		/* __infinity__ */
	case 'I':
	    break;
	}
    } else {
	ieee_flconvert(str, mant, &exponent, error);
	if (mant[0] & 0x8000) {
	    /*
	     * Non-zero.
	     */
	    exponent--;
	    if (exponent >= 2-expmax && exponent <= expmax) {
		/*
		 * Normalised.
		 */
		exponent += expmax-1;
		ieee_shr(mant, fmt->exponent);
		ieee_round(mant, fmt->words);
		/* did we scale up by one? */
		if (mant[0] & (implicit_one << 1)) {
		    ieee_shr(mant, 1);
		    exponent++;
		}
		
		mant[0] &= (implicit_one-1);     /* remove leading one */
		mant[0] |= exponent << (15 - fmt->exponent);
	    } else if (exponent < 2-expmax &&
		       exponent >= 2-expmax-fmt->mantissa) {
		/*
		 * Denormal.
		 */
		int shift = -(exponent + expmax-2-fmt->exponent);
		int sh = shift % 16, wds = shift / 16;
		ieee_shr(mant, sh);
		if (ieee_round(mant, fmt->words - wds)
		    || (sh > 0 && (mant[0] & (0x8000 >> (sh - 1))))) {
		    ieee_shr(mant, 1);
		    if (sh == 0)
			mant[0] |= 0x8000;
		    exponent++;
		}
		
		if (wds) {
		    for (i = fmt->words-1; i >= wds; i--)
			mant[i] = mant[i-wds];
		    for (; i >= 0; i--)
			mant[i] = 0;
		}
	    } else {
		if (exponent > 0) {
		    error(ERR_NONFATAL, "overflow in floating-point constant");
		    return 0;
		} else {
		    memset(mant, 0, 2*fmt->words);
		}
	    }
	} else {
	    /* Zero */
	    memset(mant, 0, 2*fmt->words);
	}
    }

    mant[0] |= sign;

    for (mp = &mant[fmt->words], i = 0; i < fmt->words; i++) {
	uint16_t m = *--mp;
	put(result, m);
	result += 2;
    }

    return 1;                   /* success */
}

/* 80-bit format with 64-bit mantissa *including an explicit integer 1*
   and 15-bit exponent. */
static int to_ldoub(char *str, int32_t sign, uint8_t *result,
                    efunc error)
{
    uint16_t mant[MANT_WORDS];
    int32_t exponent;

    sign = (sign < 0 ? 0x8000L : 0L);

    if (str[0] == '_') {
	uint16_t is_snan = 0, is_qnan = 0x8000;
	switch (str[2]) {
	case 'n':
	case 'N':
	case 'q':
	case 'Q':
	    is_qnan = 0xc000;
	    break;
	case 's':
	case 'S':
	    is_snan = 1;
	    break;
	case 'i':
	case 'I':
	    break;
	}
	put(result + 0, is_snan);
	put(result + 2, 0);
	put(result + 4, 0);
	put(result + 6, is_qnan);
	put(result + 8, 0x7fff|sign);
	return 1;
    }

    ieee_flconvert(str, mant, &exponent, error);
    if (mant[0] & 0x8000) {
        /*
         * Non-zero.
         */
        exponent--;
        if (exponent >= -16383 && exponent <= 16384) {
            /*
             * Normalised.
             */
            exponent += 16383;
            if (ieee_round(mant, 4))    /* did we scale up by one? */
                ieee_shr(mant, 1), mant[0] |= 0x8000, exponent++;
            put(result + 0, mant[3]);
            put(result + 2, mant[2]);
            put(result + 4, mant[1]);
            put(result + 6, mant[0]);
            put(result + 8, exponent | sign);
        } else if (exponent < -16383 && exponent >= -16446) {
            /*
             * Denormal.
             */
            int shift = -(exponent + 16383);
            int sh = shift % 16, wds = shift / 16;
            ieee_shr(mant, sh);
            if (ieee_round(mant, 4 - wds)
                || (sh > 0 && (mant[0] & (0x8000 >> (sh - 1))))) {
                ieee_shr(mant, 1);
                if (sh == 0)
                    mant[0] |= 0x8000;
                exponent++;
            }
            put(result + 0, (wds <= 3 ? mant[3 - wds] : 0));
            put(result + 2, (wds <= 2 ? mant[2 - wds] : 0));
            put(result + 4, (wds <= 1 ? mant[1 - wds] : 0));
            put(result + 6, (wds == 0 ? mant[0] : 0));
            put(result + 8, sign);
        } else {
            if (exponent > 0) {
                error(ERR_NONFATAL, "overflow in floating-point constant");
                return 0;
            } else {
		goto zero;
	    }
        }
    } else {
        /*
         * Zero.
         */
    zero:
	put(result + 0, 0);
	put(result + 2, 0);
	put(result + 4, 0);
	put(result + 6, 0);
	put(result + 8, sign);
    }
    return 1;
}

int float_const(char *number, int32_t sign, uint8_t *result, int bytes,
                efunc error)
{
    switch (bytes) {
    case 2:
	return to_float(number, sign, result, &ieee_16, error);
    case 4:
        return to_float(number, sign, result, &ieee_32, error);
    case 8:
        return to_float(number, sign, result, &ieee_64, error);
    case 10:
        return to_ldoub(number, sign, result, error);
    case 16:
        return to_float(number, sign, result, &ieee_128, error);
    default:
        error(ERR_PANIC, "strange value %d passed to float_const", bytes);
        return 0;
    }
}