1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
|
/* ----------------------------------------------------------------------- *
*
* Copyright 1996-2009 The NASM Authors - All Rights Reserved
* See the file AUTHORS included with the NASM distribution for
* the specific copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following
* conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ----------------------------------------------------------------------- */
/*
* float.c floating-point constant support for the Netwide Assembler
*/
#include "compiler.h"
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include "nasm.h"
#include "float.h"
/*
* -----------------
* local variables
* -----------------
*/
static efunc error;
static bool daz = false; /* denormals as zero */
static enum float_round rc = FLOAT_RC_NEAR; /* rounding control */
/*
* -----------
* constants
* -----------
*/
/* "A limb is like a digit but bigger */
typedef uint32_t fp_limb;
typedef uint64_t fp_2limb;
#define LIMB_BITS 32
#define LIMB_BYTES (LIMB_BITS/8)
#define LIMB_TOP_BIT ((fp_limb)1 << (LIMB_BITS-1))
#define LIMB_MASK ((fp_limb)(~0))
#define LIMB_ALL_BYTES ((fp_limb)0x01010101)
#define LIMB_BYTE(x) ((x)*LIMB_ALL_BYTES)
/* 112 bits + 64 bits for accuracy + 16 bits for rounding */
#define MANT_LIMBS 6
/* 52 digits fit in 176 bits because 10^53 > 2^176 > 10^52 */
#define MANT_DIGITS 52
/* the format and the argument list depend on MANT_LIMBS */
#define MANT_FMT "%08x_%08x_%08x_%08x_%08x_%08x"
#define MANT_ARG SOME_ARG(mant, 0)
#define SOME_ARG(a,i) (a)[(i)+0], (a)[(i)+1], (a)[(i)+2], (a)[(i)+3], \
(a)[(i)+4], (a)[(i)+5]
/*
* ---------------------------------------------------------------------------
* emit a printf()-like debug message... but only if DEBUG_FLOAT was defined
* ---------------------------------------------------------------------------
*/
#ifdef DEBUG_FLOAT
#define dprintf(x) printf x
#else /* */
#define dprintf(x) do { } while (0)
#endif /* */
/*
* ---------------------------------------------------------------------------
* multiply
* ---------------------------------------------------------------------------
*/
static int float_multiply(fp_limb *to, fp_limb *from)
{
fp_2limb temp[MANT_LIMBS * 2];
int i, j;
/*
* guaranteed that top bit of 'from' is set -- so we only have
* to worry about _one_ bit shift to the left
*/
dprintf(("%s=" MANT_FMT "\n", "mul1", SOME_ARG(to, 0)));
dprintf(("%s=" MANT_FMT "\n", "mul2", SOME_ARG(from, 0)));
memset(temp, 0, sizeof temp);
for (i = 0; i < MANT_LIMBS; i++) {
for (j = 0; j < MANT_LIMBS; j++) {
fp_2limb n;
n = (fp_2limb) to[i] * (fp_2limb) from[j];
temp[i + j] += n >> LIMB_BITS;
temp[i + j + 1] += (fp_limb)n;
}
}
for (i = MANT_LIMBS * 2; --i;) {
temp[i - 1] += temp[i] >> LIMB_BITS;
temp[i] &= LIMB_MASK;
}
dprintf(("%s=" MANT_FMT "_" MANT_FMT "\n", "temp", SOME_ARG(temp, 0),
SOME_ARG(temp, MANT_LIMBS)));
if (temp[0] & LIMB_TOP_BIT) {
for (i = 0; i < MANT_LIMBS; i++) {
to[i] = temp[i] & LIMB_MASK;
}
dprintf(("%s=" MANT_FMT " (%i)\n", "prod", SOME_ARG(to, 0), 0));
return 0;
} else {
for (i = 0; i < MANT_LIMBS; i++) {
to[i] = (temp[i] << 1) + !!(temp[i + 1] & LIMB_TOP_BIT);
}
dprintf(("%s=" MANT_FMT " (%i)\n", "prod", SOME_ARG(to, 0), -1));
return -1;
}
}
/*
* ---------------------------------------------------------------------------
* read an exponent; returns INT32_MAX on error
* ---------------------------------------------------------------------------
*/
static int32_t read_exponent(const char *string, int32_t max)
{
int32_t i = 0;
bool neg = false;
if (*string == '+') {
string++;
} else if (*string == '-') {
neg = true;
string++;
}
while (*string) {
if (*string >= '0' && *string <= '9') {
i = (i * 10) + (*string - '0');
/*
* To ensure that underflows and overflows are
* handled properly we must avoid wraparounds of
* the signed integer value that is used to hold
* the exponent. Therefore we cap the exponent at
* +/-5000, which is slightly more/less than
* what's required for normal and denormal numbers
* in single, double, and extended precision, but
* sufficient to avoid signed integer wraparound.
*/
if (i > max)
i = max;
} else if (*string == '_') {
/* do nothing */
} else {
error(ERR_NONFATAL|ERR_PASS1,
"invalid character in floating-point constant %s: '%c'",
"exponent", *string);
return INT32_MAX;
}
string++;
}
return neg ? -i : i;
}
/*
* ---------------------------------------------------------------------------
* convert
* ---------------------------------------------------------------------------
*/
static bool ieee_flconvert(const char *string, fp_limb *mant,
int32_t * exponent)
{
char digits[MANT_DIGITS];
char *p, *q, *r;
fp_limb mult[MANT_LIMBS], bit;
fp_limb *m;
int32_t tenpwr, twopwr;
int32_t extratwos;
bool started, seendot, warned;
warned = false;
p = digits;
tenpwr = 0;
started = seendot = false;
while (*string && *string != 'E' && *string != 'e') {
if (*string == '.') {
if (!seendot) {
seendot = true;
} else {
error(ERR_NONFATAL|ERR_PASS1,
"too many periods in floating-point constant");
return false;
}
} else if (*string >= '0' && *string <= '9') {
if (*string == '0' && !started) {
if (seendot) {
tenpwr--;
}
} else {
started = true;
if (p < digits + sizeof(digits)) {
*p++ = *string - '0';
} else {
if (!warned) {
error(ERR_WARNING|ERR_WARN_FL_TOOLONG|ERR_PASS1,
"floating-point constant significand contains "
"more than %i digits", MANT_DIGITS);
warned = true;
}
}
if (!seendot) {
tenpwr++;
}
}
} else if (*string == '_') {
/* do nothing */
} else {
error(ERR_NONFATAL|ERR_PASS1,
"invalid character in floating-point constant %s: '%c'",
"significand", *string);
return false;
}
string++;
}
if (*string) {
int32_t e;
string++; /* eat the E */
e = read_exponent(string, 5000);
if (e == INT32_MAX)
return false;
tenpwr += e;
}
/*
* At this point, the memory interval [digits,p) contains a
* series of decimal digits zzzzzzz, such that our number X
* satisfies X = 0.zzzzzzz * 10^tenpwr.
*/
q = digits;
dprintf(("X = 0."));
while (q < p) {
dprintf(("%c", *q + '0'));
q++;
}
dprintf((" * 10^%i\n", tenpwr));
/*
* Now convert [digits,p) to our internal representation.
*/
bit = LIMB_TOP_BIT;
for (m = mant; m < mant + MANT_LIMBS; m++) {
*m = 0;
}
m = mant;
q = digits;
started = false;
twopwr = 0;
while (m < mant + MANT_LIMBS) {
fp_limb carry = 0;
while (p > q && !p[-1]) {
p--;
}
if (p <= q) {
break;
}
for (r = p; r-- > q;) {
int32_t i;
i = 2 * *r + carry;
if (i >= 10) {
carry = 1;
i -= 10;
} else {
carry = 0;
}
*r = i;
}
if (carry) {
*m |= bit;
started = true;
}
if (started) {
if (bit == 1) {
bit = LIMB_TOP_BIT;
m++;
} else {
bit >>= 1;
}
} else {
twopwr--;
}
}
twopwr += tenpwr;
/*
* At this point, the 'mant' array contains the first frac-
* tional places of a base-2^16 real number which when mul-
* tiplied by 2^twopwr and 5^tenpwr gives X.
*/
dprintf(("X = " MANT_FMT " * 2^%i * 5^%i\n", MANT_ARG, twopwr,
tenpwr));
/*
* Now multiply 'mant' by 5^tenpwr.
*/
if (tenpwr < 0) { /* mult = 5^-1 = 0.2 */
for (m = mult; m < mult + MANT_LIMBS - 1; m++) {
*m = LIMB_BYTE(0xcc);
}
mult[MANT_LIMBS - 1] = LIMB_BYTE(0xcc)+1;
extratwos = -2;
tenpwr = -tenpwr;
/*
* If tenpwr was 1000...000b, then it becomes 1000...000b. See
* the "ANSI C" comment below for more details on that case.
*
* Because we already truncated tenpwr to +5000...-5000 inside
* the exponent parsing code, this shouldn't happen though.
*/
} else if (tenpwr > 0) { /* mult = 5^+1 = 5.0 */
mult[0] = (fp_limb)5 << (LIMB_BITS-3); /* 0xA000... */
for (m = mult + 1; m < mult + MANT_LIMBS; m++) {
*m = 0;
}
extratwos = 3;
} else {
extratwos = 0;
}
while (tenpwr) {
dprintf(("loop=" MANT_FMT " * 2^%i * 5^%i (%i)\n", MANT_ARG,
twopwr, tenpwr, extratwos));
if (tenpwr & 1) {
dprintf(("mant*mult\n"));
twopwr += extratwos + float_multiply(mant, mult);
}
dprintf(("mult*mult\n"));
extratwos = extratwos * 2 + float_multiply(mult, mult);
tenpwr >>= 1;
/*
* In ANSI C, the result of right-shifting a signed integer is
* considered implementation-specific. To ensure that the loop
* terminates even if tenpwr was 1000...000b to begin with, we
* manually clear the MSB, in case a 1 was shifted in.
*
* Because we already truncated tenpwr to +5000...-5000 inside
* the exponent parsing code, this shouldn't matter; neverthe-
* less it is the right thing to do here.
*/
tenpwr &= (uint32_t) - 1 >> 1;
}
/*
* At this point, the 'mant' array contains the first frac-
* tional places of a base-2^16 real number in [0.5,1) that
* when multiplied by 2^twopwr gives X. Or it contains zero
* of course. We are done.
*/
*exponent = twopwr;
return true;
}
/*
* ---------------------------------------------------------------------------
* operations of specific bits
* ---------------------------------------------------------------------------
*/
/* Set a bit, using *bigendian* bit numbering (0 = MSB) */
static void set_bit(fp_limb *mant, int bit)
{
mant[bit/LIMB_BITS] |= LIMB_TOP_BIT >> (bit & (LIMB_BITS-1));
}
/* Test a single bit */
static int test_bit(const fp_limb *mant, int bit)
{
return (mant[bit/LIMB_BITS] >> (~bit & (LIMB_BITS-1))) & 1;
}
/* Report if the mantissa value is all zero */
static bool is_zero(const fp_limb *mant)
{
int i;
for (i = 0; i < MANT_LIMBS; i++)
if (mant[i])
return false;
return true;
}
/*
* ---------------------------------------------------------------------------
* round a mantissa off after i words
* ---------------------------------------------------------------------------
*/
#define ROUND_COLLECT_BITS \
do { \
m = mant[i] & (2*bit-1); \
for (j = i+1; j < MANT_LIMBS; j++) \
m = m | mant[j]; \
} while (0)
#define ROUND_ABS_DOWN \
do { \
mant[i] &= ~(bit-1); \
for (j = i+1; j < MANT_LIMBS; j++) \
mant[j] = 0; \
return false; \
} while (0)
#define ROUND_ABS_UP \
do { \
mant[i] = (mant[i] & ~(bit-1)) + bit; \
for (j = i+1; j < MANT_LIMBS; j++) \
mant[j] = 0; \
while (i > 0 && !mant[i]) \
++mant[--i]; \
return !mant[0]; \
} while (0)
static bool ieee_round(bool minus, fp_limb *mant, int bits)
{
fp_limb m = 0;
int32_t j;
int i = bits / LIMB_BITS;
int p = bits % LIMB_BITS;
fp_limb bit = LIMB_TOP_BIT >> p;
if (rc == FLOAT_RC_NEAR) {
if (mant[i] & bit) {
mant[i] &= ~bit;
ROUND_COLLECT_BITS;
mant[i] |= bit;
if (m) {
ROUND_ABS_UP;
} else {
if (test_bit(mant, bits-1)) {
ROUND_ABS_UP;
} else {
ROUND_ABS_DOWN;
}
}
} else {
ROUND_ABS_DOWN;
}
} else if (rc == FLOAT_RC_ZERO ||
rc == (minus ? FLOAT_RC_UP : FLOAT_RC_DOWN)) {
ROUND_ABS_DOWN;
} else {
/* rc == (minus ? FLOAT_RC_DOWN : FLOAT_RC_UP) */
/* Round toward +/- infinity */
ROUND_COLLECT_BITS;
if (m) {
ROUND_ABS_UP;
} else {
ROUND_ABS_DOWN;
}
}
return false;
}
/* Returns a value >= 16 if not a valid hex digit */
static unsigned int hexval(char c)
{
unsigned int v = (unsigned char) c;
if (v >= '0' && v <= '9')
return v - '0';
else
return (v|0x20) - 'a' + 10;
}
/* Handle floating-point numbers with radix 2^bits and binary exponent */
static bool ieee_flconvert_bin(const char *string, int bits,
fp_limb *mant, int32_t *exponent)
{
static const int log2tbl[16] =
{ -1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3 };
fp_limb mult[MANT_LIMBS + 1], *mp;
int ms;
int32_t twopwr;
bool seendot, seendigit;
unsigned char c;
const int radix = 1 << bits;
fp_limb v;
twopwr = 0;
seendot = seendigit = false;
ms = 0;
mp = NULL;
memset(mult, 0, sizeof mult);
while ((c = *string++) != '\0') {
if (c == '.') {
if (!seendot)
seendot = true;
else {
error(ERR_NONFATAL|ERR_PASS1,
"too many periods in floating-point constant");
return false;
}
} else if ((v = hexval(c)) < (unsigned int)radix) {
if (!seendigit && v) {
int l = log2tbl[v];
seendigit = true;
mp = mult;
ms = (LIMB_BITS-1)-l;
twopwr = seendot ? twopwr-bits+l : l+1-bits;
}
if (seendigit) {
if (ms <= 0) {
*mp |= v >> -ms;
mp++;
if (mp > &mult[MANT_LIMBS])
mp = &mult[MANT_LIMBS]; /* Guard slot */
ms += LIMB_BITS;
}
*mp |= v << ms;
ms -= bits;
if (!seendot)
twopwr += bits;
} else {
if (seendot)
twopwr -= bits;
}
} else if (c == 'p' || c == 'P') {
int32_t e;
e = read_exponent(string, 20000);
if (e == INT32_MAX)
return false;
twopwr += e;
break;
} else if (c == '_') {
/* ignore */
} else {
error(ERR_NONFATAL|ERR_PASS1,
"floating-point constant: `%c' is invalid character", c);
return false;
}
}
if (!seendigit) {
memset(mant, 0, MANT_LIMBS*sizeof(fp_limb)); /* Zero */
*exponent = 0;
} else {
memcpy(mant, mult, MANT_LIMBS*sizeof(fp_limb));
*exponent = twopwr;
}
return true;
}
/*
* Shift a mantissa to the right by i bits.
*/
static void ieee_shr(fp_limb *mant, int i)
{
fp_limb n, m;
int j = 0;
int sr, sl, offs;
sr = i % LIMB_BITS; sl = LIMB_BITS-sr;
offs = i/LIMB_BITS;
if (sr == 0) {
if (offs)
for (j = MANT_LIMBS-1; j >= offs; j--)
mant[j] = mant[j-offs];
} else {
n = mant[MANT_LIMBS-1-offs] >> sr;
for (j = MANT_LIMBS-1; j > offs; j--) {
m = mant[j-offs-1];
mant[j] = (m << sl) | n;
n = m >> sr;
}
mant[j--] = n;
}
while (j >= 0)
mant[j--] = 0;
}
/* Produce standard IEEE formats, with implicit or explicit integer
bit; this makes the following assumptions:
- the sign bit is the MSB, followed by the exponent,
followed by the integer bit if present.
- the sign bit plus exponent fit in 16 bits.
- the exponent bias is 2^(n-1)-1 for an n-bit exponent */
struct ieee_format {
int bytes;
int mantissa; /* Fractional bits in the mantissa */
int explicit; /* Explicit integer */
int exponent; /* Bits in the exponent */
};
/*
* The 16- and 128-bit formats are expected to be in IEEE 754r.
* AMD SSE5 uses the 16-bit format.
*
* The 32- and 64-bit formats are the original IEEE 754 formats.
*
* The 80-bit format is x87-specific, but widely used.
*
* The 8-bit format appears to be the consensus 8-bit floating-point
* format. It is apparently used in graphics applications.
*/
static const struct ieee_format ieee_8 = { 1, 3, 0, 4 };
static const struct ieee_format ieee_16 = { 2, 10, 0, 5 };
static const struct ieee_format ieee_32 = { 4, 23, 0, 8 };
static const struct ieee_format ieee_64 = { 8, 52, 0, 11 };
static const struct ieee_format ieee_80 = { 10, 63, 1, 15 };
static const struct ieee_format ieee_128 = { 16, 112, 0, 15 };
/* Types of values we can generate */
enum floats {
FL_ZERO,
FL_DENORMAL,
FL_NORMAL,
FL_INFINITY,
FL_QNAN,
FL_SNAN
};
static int to_packed_bcd(const char *str, const char *p,
int s, uint8_t *result,
const struct ieee_format *fmt)
{
int n = 0;
char c;
int tv = -1;
if (fmt != &ieee_80) {
error(ERR_NONFATAL|ERR_PASS1,
"packed BCD requires an 80-bit format");
return 0;
}
while (p >= str) {
c = *p--;
if (c >= '0' && c <= '9') {
if (tv < 0) {
if (n == 9) {
error(ERR_WARNING|ERR_PASS1,
"packed BCD truncated to 18 digits");
}
tv = c-'0';
} else {
if (n < 9)
*result++ = tv + ((c-'0') << 4);
n++;
tv = -1;
}
} else if (c == '_') {
/* do nothing */
} else {
error(ERR_NONFATAL|ERR_PASS1,
"invalid character `%c' in packed BCD constant", c);
return 0;
}
}
if (tv >= 0) {
if (n < 9)
*result++ = tv;
n++;
}
while (n < 9) {
*result++ = 0;
n++;
}
*result = (s < 0) ? 0x80 : 0;
return 1; /* success */
}
static int to_float(const char *str, int s, uint8_t *result,
const struct ieee_format *fmt)
{
fp_limb mant[MANT_LIMBS];
int32_t exponent = 0;
const int32_t expmax = 1 << (fmt->exponent - 1);
fp_limb one_mask = LIMB_TOP_BIT >>
((fmt->exponent+fmt->explicit) % LIMB_BITS);
const int one_pos = (fmt->exponent+fmt->explicit)/LIMB_BITS;
int i;
int shift;
enum floats type;
bool ok;
const bool minus = s < 0;
const int bits = fmt->bytes * 8;
const char *strend;
if (!str[0]) {
error(ERR_PANIC,
"internal errror: empty string passed to float_const");
return 0;
}
strend = strchr(str, '\0');
if (strend[-1] == 'P' || strend[-1] == 'p')
return to_packed_bcd(str, strend-2, s, result, fmt);
if (str[0] == '_') {
/* Special tokens */
switch (str[2]) {
case 'n': /* __nan__ */
case 'N':
case 'q': /* __qnan__ */
case 'Q':
type = FL_QNAN;
break;
case 's': /* __snan__ */
case 'S':
type = FL_SNAN;
break;
case 'i': /* __infinity__ */
case 'I':
type = FL_INFINITY;
break;
default:
error(ERR_NONFATAL|ERR_PASS1,
"internal error: unknown FP constant token `%s'\n", str);
type = FL_QNAN;
break;
}
} else {
if (str[0] == '0') {
switch (str[1]) {
case 'x': case 'X':
case 'h': case 'H':
ok = ieee_flconvert_bin(str+2, 4, mant, &exponent);
break;
case 'o': case 'O':
case 'q': case 'Q':
ok = ieee_flconvert_bin(str+2, 3, mant, &exponent);
break;
case 'b': case 'B':
case 'y': case 'Y':
ok = ieee_flconvert_bin(str+2, 1, mant, &exponent);
break;
case 'd': case 'D':
case 't': case 'T':
ok = ieee_flconvert(str+2, mant, &exponent);
break;
case 'p': case 'P':
return to_packed_bcd(str+2, strend-1, s, result, fmt);
default:
/* Leading zero was just a zero? */
ok = ieee_flconvert(str, mant, &exponent);
break;
}
} else if (str[0] == '$') {
ok = ieee_flconvert_bin(str+1, 4, mant, &exponent);
} else {
ok = ieee_flconvert(str, mant, &exponent);
}
if (!ok) {
type = FL_QNAN;
} else if (mant[0] & LIMB_TOP_BIT) {
/*
* Non-zero.
*/
exponent--;
if (exponent >= 2 - expmax && exponent <= expmax) {
type = FL_NORMAL;
} else if (exponent > 0) {
if (pass0 == 1)
error(ERR_WARNING|ERR_WARN_FL_OVERFLOW|ERR_PASS1,
"overflow in floating-point constant");
type = FL_INFINITY;
} else {
/* underflow or denormal; the denormal code handles
actual underflow. */
type = FL_DENORMAL;
}
} else {
/* Zero */
type = FL_ZERO;
}
}
switch (type) {
case FL_ZERO:
zero:
memset(mant, 0, sizeof mant);
break;
case FL_DENORMAL:
{
shift = -(exponent + expmax - 2 - fmt->exponent)
+ fmt->explicit;
ieee_shr(mant, shift);
ieee_round(minus, mant, bits);
if (mant[one_pos] & one_mask) {
/* One's position is set, we rounded up into normal range */
exponent = 1;
if (!fmt->explicit)
mant[one_pos] &= ~one_mask; /* remove explicit one */
mant[0] |= exponent << (LIMB_BITS-1 - fmt->exponent);
} else {
if (daz || is_zero(mant)) {
/* Flush denormals to zero */
error(ERR_WARNING|ERR_WARN_FL_UNDERFLOW|ERR_PASS1,
"underflow in floating-point constant");
goto zero;
} else {
error(ERR_WARNING|ERR_WARN_FL_DENORM|ERR_PASS1,
"denormal floating-point constant");
}
}
break;
}
case FL_NORMAL:
exponent += expmax - 1;
ieee_shr(mant, fmt->exponent+fmt->explicit);
ieee_round(minus, mant, bits);
/* did we scale up by one? */
if (test_bit(mant, fmt->exponent+fmt->explicit-1)) {
ieee_shr(mant, 1);
exponent++;
if (exponent >= (expmax << 1)-1) {
error(ERR_WARNING|ERR_WARN_FL_OVERFLOW|ERR_PASS1,
"overflow in floating-point constant");
type = FL_INFINITY;
goto overflow;
}
}
if (!fmt->explicit)
mant[one_pos] &= ~one_mask; /* remove explicit one */
mant[0] |= exponent << (LIMB_BITS-1 - fmt->exponent);
break;
case FL_INFINITY:
case FL_QNAN:
case FL_SNAN:
overflow:
memset(mant, 0, sizeof mant);
mant[0] = (((fp_limb)1 << fmt->exponent)-1)
<< (LIMB_BITS-1 - fmt->exponent);
if (fmt->explicit)
mant[one_pos] |= one_mask;
if (type == FL_QNAN)
set_bit(mant, fmt->exponent+fmt->explicit+1);
else if (type == FL_SNAN)
set_bit(mant, fmt->exponent+fmt->explicit+fmt->mantissa);
break;
}
mant[0] |= minus ? LIMB_TOP_BIT : 0;
for (i = fmt->bytes - 1; i >= 0; i--)
*result++ = mant[i/LIMB_BYTES] >> (((LIMB_BYTES-1)-(i%LIMB_BYTES))*8);
return 1; /* success */
}
int float_const(const char *number, int sign, uint8_t *result,
int bytes, efunc err)
{
error = err;
switch (bytes) {
case 1:
return to_float(number, sign, result, &ieee_8);
case 2:
return to_float(number, sign, result, &ieee_16);
case 4:
return to_float(number, sign, result, &ieee_32);
case 8:
return to_float(number, sign, result, &ieee_64);
case 10:
return to_float(number, sign, result, &ieee_80);
case 16:
return to_float(number, sign, result, &ieee_128);
default:
error(ERR_PANIC, "strange value %d passed to float_const", bytes);
return 0;
}
}
/* Set floating-point options */
int float_option(const char *option)
{
if (!nasm_stricmp(option, "daz")) {
daz = true;
return 0;
} else if (!nasm_stricmp(option, "nodaz")) {
daz = false;
return 0;
} else if (!nasm_stricmp(option, "near")) {
rc = FLOAT_RC_NEAR;
return 0;
} else if (!nasm_stricmp(option, "down")) {
rc = FLOAT_RC_DOWN;
return 0;
} else if (!nasm_stricmp(option, "up")) {
rc = FLOAT_RC_UP;
return 0;
} else if (!nasm_stricmp(option, "zero")) {
rc = FLOAT_RC_ZERO;
return 0;
} else if (!nasm_stricmp(option, "default")) {
rc = FLOAT_RC_NEAR;
daz = false;
return 0;
} else {
return -1; /* Unknown option */
}
}
|