summaryrefslogtreecommitdiff
path: root/asinh.c
blob: f5cf98d8b4d259ad3eabc1b47b389af51884d986 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
/* mpfr_asinh -- inverse hyperbolic sine

Copyright 2001, 2002 Free Software Foundation.

This file is part of the MPFR Library.

The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.

The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */

#include "gmp.h"
#include "gmp-impl.h"
#include "mpfr.h"
#include "mpfr-impl.h"

 /* The computation of asinh is done by

    asinh = ln(x + sqrt(x^2 + 1))
 */
int
mpfr_asinh (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode)
{
  int inexact;
  int neg = 0;
  mp_prec_t Nx, Ny, Nt;
  mpfr_t t, te, ti; /* auxiliary variables */
  long int err;

  if (MPFR_IS_NAN(x))
    {  
      MPFR_SET_NAN(y); 
      MPFR_RET_NAN;
    }

  MPFR_CLEAR_NAN(y);

  if (MPFR_IS_INF(x))
    { 
      MPFR_SET_INF(y);
      MPFR_SET_SAME_SIGN(y, x);
      MPFR_RET(0);
    }

  MPFR_CLEAR_INF(y);

  if (MPFR_IS_ZERO(x))
    {
      MPFR_SET_ZERO(y);   /* asinh(0) = 0 */
      MPFR_SET_SAME_SIGN(y, x);
      MPFR_RET(0);
    }

  Nx = MPFR_PREC(x);   /* Precision of input variable */
  Ny = MPFR_PREC(y);   /* Precision of output variable */

  neg = MPFR_SIGN(x) < 0;

  /* General case */
    
  /* compute the precision of intermediary variable */
  Nt = MAX(Nx, Ny);

  /* the optimal number of bits : see algorithms.ps */
  Nt = Nt + 4 + _mpfr_ceil_log2 (Nt);

  /* initialize intermediary variables */
  mpfr_init2 (t, 2);
  mpfr_init2 (te, 2);
  mpfr_init2 (ti, 2);

  mpfr_save_emin_emax ();

  /* First computation of asinh */
  do {

    /* reactualisation of the precision */
    mpfr_set_prec (t, Nt);
    mpfr_set_prec (te, Nt);
    mpfr_set_prec (ti, Nt);

    /* compute asinh */
    mpfr_mul (te, x, x, GMP_RNDD);                     /* x^2 */
    mpfr_add_ui (ti, te, 1, GMP_RNDD);                 /* x^2+1 */
    mpfr_sqrt (t, ti, GMP_RNDN);                       /* sqrt(x^2+1) */
    ((neg) ? mpfr_sub : mpfr_add) (t, t, x, GMP_RNDN); /* sqrt(x^2+1)+x */
    mpfr_log (t, t, GMP_RNDN);                         /* ln(sqrt(x^2+1)+x)*/

    /* estimation of the error -- see algorithms.ps */
    err = Nt - (MAX(3 - MPFR_EXP(t), 0) + 1);

    /* actualisation of the precision */
    Nt += 10;

  } while ((err < 0) || (!mpfr_can_round (t, err, GMP_RNDN, rnd_mode, Ny) || (MPFR_IS_ZERO(t))));

  mpfr_restore_emin_emax ();
  
  if (neg)
    MPFR_CHANGE_SIGN(t);

  inexact = mpfr_set (y, t, rnd_mode);

  mpfr_clear (t);
  mpfr_clear (ti);
  mpfr_clear (te);

  return mpfr_check_range (y, inexact, rnd_mode);
}