1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
|
#include "sql_parse.h"
#include "sql_select.h"
/****************************************************************************
* Default MRR implementation (MRR to non-MRR converter)
***************************************************************************/
/**
Get cost and other information about MRR scan over a known list of ranges
Calculate estimated cost and other information about an MRR scan for given
sequence of ranges.
@param keyno Index number
@param seq Range sequence to be traversed
@param seq_init_param First parameter for seq->init()
@param n_ranges_arg Number of ranges in the sequence, or 0 if the caller
can't efficiently determine it
@param bufsz INOUT IN: Size of the buffer available for use
OUT: Size of the buffer that is expected to be actually
used, or 0 if buffer is not needed.
@param flags INOUT A combination of HA_MRR_* flags
@param cost OUT Estimated cost of MRR access
@note
This method (or an overriding one in a derived class) must check for
thd->killed and return HA_POS_ERROR if it is not zero. This is required
for a user to be able to interrupt the calculation by killing the
connection/query.
@retval
HA_POS_ERROR Error or the engine is unable to perform the requested
scan. Values of OUT parameters are undefined.
@retval
other OK, *cost contains cost of the scan, *bufsz and *flags
contain scan parameters.
*/
ha_rows
handler::multi_range_read_info_const(uint keyno, RANGE_SEQ_IF *seq,
void *seq_init_param, uint n_ranges_arg,
uint *bufsz, uint *flags, COST_VECT *cost)
{
KEY_MULTI_RANGE range;
range_seq_t seq_it;
ha_rows rows, total_rows= 0;
uint n_ranges=0;
THD *thd= current_thd;
/* Default MRR implementation doesn't need buffer */
*bufsz= 0;
seq_it= seq->init(seq_init_param, n_ranges, *flags);
while (!seq->next(seq_it, &range))
{
if (unlikely(thd->killed != 0))
return HA_POS_ERROR;
n_ranges++;
key_range *min_endp, *max_endp;
if (range.range_flag & GEOM_FLAG)
{
/* In this case tmp_min_flag contains the handler-read-function */
range.start_key.flag= (ha_rkey_function) (range.range_flag ^ GEOM_FLAG);
min_endp= &range.start_key;
max_endp= NULL;
}
else
{
min_endp= range.start_key.length? &range.start_key : NULL;
max_endp= range.end_key.length? &range.end_key : NULL;
}
if ((range.range_flag & UNIQUE_RANGE) && !(range.range_flag & NULL_RANGE))
rows= 1; /* there can be at most one row */
else
{
if (HA_POS_ERROR == (rows= this->records_in_range(keyno, min_endp,
max_endp)))
{
/* Can't scan one range => can't do MRR scan at all */
total_rows= HA_POS_ERROR;
break;
}
}
total_rows += rows;
}
if (total_rows != HA_POS_ERROR)
{
/* The following calculation is the same as in multi_range_read_info(): */
*flags |= HA_MRR_USE_DEFAULT_IMPL;
cost->zero();
cost->avg_io_cost= 1; /* assume random seeks */
if ((*flags & HA_MRR_INDEX_ONLY) && total_rows > 2)
cost->io_count= keyread_time(keyno, n_ranges, (uint)total_rows);
else
cost->io_count= read_time(keyno, n_ranges, total_rows);
cost->cpu_cost= (double) total_rows / TIME_FOR_COMPARE + 0.01;
}
return total_rows;
}
/**
Get cost and other information about MRR scan over some sequence of ranges
Calculate estimated cost and other information about an MRR scan for some
sequence of ranges.
The ranges themselves will be known only at execution phase. When this
function is called we only know number of ranges and a (rough) E(#records)
within those ranges.
Currently this function is only called for "n-keypart singlepoint" ranges,
i.e. each range is "keypart1=someconst1 AND ... AND keypartN=someconstN"
The flags parameter is a combination of those flags: HA_MRR_SORTED,
HA_MRR_INDEX_ONLY, HA_MRR_NO_ASSOCIATION, HA_MRR_LIMITS.
@param keyno Index number
@param n_ranges Estimated number of ranges (i.e. intervals) in the
range sequence.
@param n_rows Estimated total number of records contained within all
of the ranges
@param bufsz INOUT IN: Size of the buffer available for use
OUT: Size of the buffer that will be actually used, or
0 if buffer is not needed.
@param flags INOUT A combination of HA_MRR_* flags
@param cost OUT Estimated cost of MRR access
@retval
0 OK, *cost contains cost of the scan, *bufsz and *flags contain scan
parameters.
@retval
other Error or can't perform the requested scan
*/
ha_rows handler::multi_range_read_info(uint keyno, uint n_ranges, uint n_rows,
uint *bufsz, uint *flags, COST_VECT *cost)
{
*bufsz= 0; /* Default implementation doesn't need a buffer */
*flags |= HA_MRR_USE_DEFAULT_IMPL;
cost->zero();
cost->avg_io_cost= 1; /* assume random seeks */
/* Produce the same cost as non-MRR code does */
if (*flags & HA_MRR_INDEX_ONLY)
cost->io_count= keyread_time(keyno, n_ranges, n_rows);
else
cost->io_count= read_time(keyno, n_ranges, n_rows);
return 0;
}
/**
Initialize the MRR scan
Initialize the MRR scan. This function may do heavyweight scan
initialization like row prefetching/sorting/etc (NOTE: but better not do
it here as we may not need it, e.g. if we never satisfy WHERE clause on
previous tables. For many implementations it would be natural to do such
initializations in the first multi_read_range_next() call)
mode is a combination of the following flags: HA_MRR_SORTED,
HA_MRR_INDEX_ONLY, HA_MRR_NO_ASSOCIATION
@param seq Range sequence to be traversed
@param seq_init_param First parameter for seq->init()
@param n_ranges Number of ranges in the sequence
@param mode Flags, see the description section for the details
@param buf INOUT: memory buffer to be used
@note
One must have called index_init() before calling this function. Several
multi_range_read_init() calls may be made in course of one query.
Until WL#2623 is done (see its text, section 3.2), the following will
also hold:
The caller will guarantee that if "seq->init == mrr_ranges_array_init"
then seq_init_param is an array of n_ranges KEY_MULTI_RANGE structures.
This property will only be used by NDB handler until WL#2623 is done.
Buffer memory management is done according to the following scenario:
The caller allocates the buffer and provides it to the callee by filling
the members of HANDLER_BUFFER structure.
The callee consumes all or some fraction of the provided buffer space, and
sets the HANDLER_BUFFER members accordingly.
The callee may use the buffer memory until the next multi_range_read_init()
call is made, all records have been read, or until index_end() call is
made, whichever comes first.
@retval 0 OK
@retval 1 Error
*/
int
handler::multi_range_read_init(RANGE_SEQ_IF *seq_funcs, void *seq_init_param,
uint n_ranges, uint mode, HANDLER_BUFFER *buf)
{
DBUG_ENTER("handler::multi_range_read_init");
mrr_iter= seq_funcs->init(seq_init_param, n_ranges, mode);
mrr_funcs= *seq_funcs;
mrr_is_output_sorted= test(mode & HA_MRR_SORTED);
mrr_have_range= FALSE;
DBUG_RETURN(0);
}
/**
Get next record in MRR scan
Default MRR implementation: read the next record
@param range_info OUT Undefined if HA_MRR_NO_ASSOCIATION flag is in effect
Otherwise, the opaque value associated with the range
that contains the returned record.
@retval 0 OK
@retval other Error code
*/
int handler::multi_range_read_next(char **range_info)
{
int UNINIT_VAR(result);
int range_res;
DBUG_ENTER("handler::multi_range_read_next");
if (!mrr_have_range)
{
mrr_have_range= TRUE;
goto start;
}
do
{
/* Save a call if there can be only one row in range. */
if (mrr_cur_range.range_flag != (UNIQUE_RANGE | EQ_RANGE))
{
result= read_range_next();
/* On success or non-EOF errors jump to the end. */
if (result != HA_ERR_END_OF_FILE)
break;
}
else
{
if (was_semi_consistent_read())
goto scan_it_again;
/*
We need to set this for the last range only, but checking this
condition is more expensive than just setting the result code.
*/
result= HA_ERR_END_OF_FILE;
}
start:
/* Try the next range(s) until one matches a record. */
while (!(range_res= mrr_funcs.next(mrr_iter, &mrr_cur_range)))
{
scan_it_again:
result= read_range_first(mrr_cur_range.start_key.keypart_map ?
&mrr_cur_range.start_key : 0,
mrr_cur_range.end_key.keypart_map ?
&mrr_cur_range.end_key : 0,
test(mrr_cur_range.range_flag & EQ_RANGE),
mrr_is_output_sorted);
if (result != HA_ERR_END_OF_FILE)
break;
}
}
while ((result == HA_ERR_END_OF_FILE) && !range_res);
*range_info= mrr_cur_range.ptr;
DBUG_PRINT("exit",("handler::multi_range_read_next result %d", result));
DBUG_RETURN(result);
}
/****************************************************************************
* DS-MRR implementation
***************************************************************************/
/**
DS-MRR: Initialize and start MRR scan
Initialize and start the MRR scan. Depending on the mode parameter, this
may use default or DS-MRR implementation.
@param h Table handler to be used
@param key Index to be used
@param seq_funcs Interval sequence enumeration functions
@param seq_init_param Interval sequence enumeration parameter
@param n_ranges Number of ranges in the sequence.
@param mode HA_MRR_* modes to use
@param buf INOUT Buffer to use
@retval 0 Ok, Scan started.
@retval other Error
*/
int DsMrr_impl::dsmrr_init(handler *h_arg, RANGE_SEQ_IF *seq_funcs,
void *seq_init_param, uint n_ranges, uint mode,
HANDLER_BUFFER *buf)
{
uint elem_size;
Item *pushed_cond= NULL;
handler *new_h2= 0;
DBUG_ENTER("DsMrr_impl::dsmrr_init");
/*
index_merge may invoke a scan on an object for which dsmrr_info[_const]
has not been called, so set the owner handler here as well.
*/
h= h_arg;
if (mode & HA_MRR_USE_DEFAULT_IMPL || mode & HA_MRR_SORTED)
{
use_default_impl= TRUE;
const int retval=
h->handler::multi_range_read_init(seq_funcs, seq_init_param,
n_ranges, mode, buf);
DBUG_RETURN(retval);
}
rowids_buf= buf->buffer;
is_mrr_assoc= !test(mode & HA_MRR_NO_ASSOCIATION);
if (is_mrr_assoc)
status_var_increment(table->in_use->status_var.ha_multi_range_read_init_count);
rowids_buf_end= buf->buffer_end;
elem_size= h->ref_length + (int)is_mrr_assoc * sizeof(void*);
rowids_buf_last= rowids_buf +
((rowids_buf_end - rowids_buf)/ elem_size)*
elem_size;
rowids_buf_end= rowids_buf_last;
/*
There can be two cases:
- This is the first call since index_init(), h2==NULL
Need to setup h2 then.
- This is not the first call, h2 is initalized and set up appropriately.
The caller might have called h->index_init(), need to switch h to
rnd_pos calls.
*/
if (!h2)
{
/* Create a separate handler object to do rndpos() calls. */
THD *thd= current_thd;
/*
::clone() takes up a lot of stack, especially on 64 bit platforms.
The constant 5 is an empiric result.
*/
if (check_stack_overrun(thd, 5*STACK_MIN_SIZE, (uchar*) &new_h2))
DBUG_RETURN(1);
DBUG_ASSERT(h->active_index != MAX_KEY);
uint mrr_keyno= h->active_index;
/* Create a separate handler object to do rndpos() calls. */
if (!(new_h2= h->clone(thd->mem_root)) ||
new_h2->ha_external_lock(thd, F_RDLCK))
{
delete new_h2;
DBUG_RETURN(1);
}
if (mrr_keyno == h->pushed_idx_cond_keyno)
pushed_cond= h->pushed_idx_cond;
/*
Caution: this call will invoke this->dsmrr_close(). Do not put the
created secondary table handler into this->h2 or it will delete it.
*/
if (h->ha_index_end())
{
h2=new_h2;
goto error;
}
h2= new_h2; /* Ok, now can put it into h2 */
table->prepare_for_position();
h2->extra(HA_EXTRA_KEYREAD);
if (h2->ha_index_init(mrr_keyno, FALSE))
goto error;
use_default_impl= FALSE;
if (pushed_cond)
h2->idx_cond_push(mrr_keyno, pushed_cond);
}
else
{
/*
We get here when the access alternates betwen MRR scan(s) and non-MRR
scans.
Calling h->index_end() will invoke dsmrr_close() for this object,
which will delete h2. We need to keep it, so save put it away and dont
let it be deleted:
*/
handler *save_h2= h2;
h2= NULL;
int res= (h->inited == handler::INDEX && h->ha_index_end());
h2= save_h2;
use_default_impl= FALSE;
if (res)
goto error;
}
if (h2->handler::multi_range_read_init(seq_funcs, seq_init_param, n_ranges,
mode, buf) ||
dsmrr_fill_buffer())
{
goto error;
}
/*
If the above call has scanned through all intervals in *seq, then
adjust *buf to indicate that the remaining buffer space will not be used.
*/
if (dsmrr_eof)
buf->end_of_used_area= rowids_buf_last;
/*
h->inited == INDEX may occur when 'range checked for each record' is
used.
*/
if ((h->inited != handler::RND) &&
((h->inited==handler::INDEX? h->ha_index_end(): FALSE) ||
(h->ha_rnd_init(FALSE))))
goto error;
use_default_impl= FALSE;
h->mrr_funcs= *seq_funcs;
DBUG_RETURN(0);
error:
h2->ha_index_or_rnd_end();
h2->ha_external_lock(current_thd, F_UNLCK);
h2->close();
delete h2;
h2= NULL;
DBUG_RETURN(1);
}
void DsMrr_impl::dsmrr_close()
{
DBUG_ENTER("DsMrr_impl::dsmrr_close");
if (h2)
{
h2->ha_index_or_rnd_end();
h2->ha_external_lock(current_thd, F_UNLCK);
h2->close();
delete h2;
h2= NULL;
}
use_default_impl= TRUE;
DBUG_VOID_RETURN;
}
static int rowid_cmp(void *h, uchar *a, uchar *b)
{
return ((handler*)h)->cmp_ref(a, b);
}
/**
DS-MRR: Fill the buffer with rowids and sort it by rowid
{This is an internal function of DiskSweep MRR implementation}
Scan the MRR ranges and collect ROWIDs (or {ROWID, range_id} pairs) into
buffer. When the buffer is full or scan is completed, sort the buffer by
rowid and return.
The function assumes that rowids buffer is empty when it is invoked.
@param h Table handler
@retval 0 OK, the next portion of rowids is in the buffer,
properly ordered
@retval other Error
*/
int DsMrr_impl::dsmrr_fill_buffer()
{
char *range_info;
int res;
DBUG_ENTER("DsMrr_impl::dsmrr_fill_buffer");
rowids_buf_cur= rowids_buf;
while ((rowids_buf_cur < rowids_buf_end) &&
!(res= h2->handler::multi_range_read_next(&range_info)))
{
KEY_MULTI_RANGE *curr_range= &h2->handler::mrr_cur_range;
if (h2->mrr_funcs.skip_index_tuple &&
h2->mrr_funcs.skip_index_tuple(h2->mrr_iter, curr_range->ptr))
continue;
/* Put rowid, or {rowid, range_id} pair into the buffer */
h2->position(table->record[0]);
memcpy(rowids_buf_cur, h2->ref, h2->ref_length);
rowids_buf_cur += h2->ref_length;
if (is_mrr_assoc)
{
memcpy(rowids_buf_cur, &range_info, sizeof(void*));
rowids_buf_cur += sizeof(void*);
}
}
if (res && res != HA_ERR_END_OF_FILE)
DBUG_RETURN(res);
dsmrr_eof= test(res == HA_ERR_END_OF_FILE);
/* Sort the buffer contents by rowid */
uint elem_size= h->ref_length + (int)is_mrr_assoc * sizeof(void*);
uint n_rowids= (rowids_buf_cur - rowids_buf) / elem_size;
my_qsort2(rowids_buf, n_rowids, elem_size, (qsort2_cmp)rowid_cmp,
(void*)h);
rowids_buf_last= rowids_buf_cur;
rowids_buf_cur= rowids_buf;
DBUG_RETURN(0);
}
/**
DS-MRR implementation: multi_range_read_next() function
*/
int DsMrr_impl::dsmrr_next(char **range_info)
{
int res;
uchar *cur_range_info= 0;
uchar *rowid;
if (use_default_impl)
return h->handler::multi_range_read_next(range_info);
do
{
if (rowids_buf_cur == rowids_buf_last)
{
if (dsmrr_eof)
{
res= HA_ERR_END_OF_FILE;
goto end;
}
res= dsmrr_fill_buffer();
if (res)
goto end;
}
/* return eof if there are no rowids in the buffer after re-fill attempt */
if (rowids_buf_cur == rowids_buf_last)
{
res= HA_ERR_END_OF_FILE;
goto end;
}
rowid= rowids_buf_cur;
if (is_mrr_assoc)
memcpy(&cur_range_info, rowids_buf_cur + h->ref_length, sizeof(uchar**));
rowids_buf_cur += h->ref_length + sizeof(void*) * test(is_mrr_assoc);
if (h2->mrr_funcs.skip_record &&
h2->mrr_funcs.skip_record(h2->mrr_iter, (char *) cur_range_info, rowid))
continue;
res= h->ha_rnd_pos(table->record[0], rowid);
break;
} while (true);
if (is_mrr_assoc)
{
memcpy(range_info, rowid + h->ref_length, sizeof(void*));
}
end:
return res;
}
/**
DS-MRR implementation: multi_range_read_info() function
*/
ha_rows DsMrr_impl::dsmrr_info(uint keyno, uint n_ranges, uint rows,
uint *bufsz, uint *flags, COST_VECT *cost)
{
ha_rows res;
uint def_flags= *flags;
uint def_bufsz= *bufsz;
/* Get cost/flags/mem_usage of default MRR implementation */
res= h->handler::multi_range_read_info(keyno, n_ranges, rows, &def_bufsz,
&def_flags, cost);
DBUG_ASSERT(!res);
if ((*flags & HA_MRR_USE_DEFAULT_IMPL) ||
choose_mrr_impl(keyno, rows, &def_flags, &def_bufsz, cost))
{
/* Default implementation is choosen */
DBUG_PRINT("info", ("Default MRR implementation choosen"));
*flags= def_flags;
*bufsz= def_bufsz;
}
else
{
/* *flags and *bufsz were set by choose_mrr_impl */
DBUG_PRINT("info", ("DS-MRR implementation choosen"));
}
return 0;
}
/**
DS-MRR Implementation: multi_range_read_info_const() function
*/
ha_rows DsMrr_impl::dsmrr_info_const(uint keyno, RANGE_SEQ_IF *seq,
void *seq_init_param, uint n_ranges,
uint *bufsz, uint *flags, COST_VECT *cost)
{
ha_rows rows;
uint def_flags= *flags;
uint def_bufsz= *bufsz;
/* Get cost/flags/mem_usage of default MRR implementation */
rows= h->handler::multi_range_read_info_const(keyno, seq, seq_init_param,
n_ranges, &def_bufsz,
&def_flags, cost);
if (rows == HA_POS_ERROR)
{
/* Default implementation can't perform MRR scan => we can't either */
return rows;
}
/*
If HA_MRR_USE_DEFAULT_IMPL has been passed to us, that is an order to
use the default MRR implementation (we need it for UPDATE/DELETE).
Otherwise, make a choice based on cost and @@optimizer_use_mrr.
*/
if ((*flags & HA_MRR_USE_DEFAULT_IMPL) ||
choose_mrr_impl(keyno, rows, flags, bufsz, cost))
{
DBUG_PRINT("info", ("Default MRR implementation choosen"));
*flags= def_flags;
*bufsz= def_bufsz;
}
else
{
/* *flags and *bufsz were set by choose_mrr_impl */
DBUG_PRINT("info", ("DS-MRR implementation choosen"));
}
return rows;
}
/**
Check if key has partially-covered columns
We can't use DS-MRR to perform range scans when the ranges are over
partially-covered keys, because we'll not have full key part values
(we'll have their prefixes from the index) and will not be able to check
if we've reached the end the range.
@param keyno Key to check
@todo
Allow use of DS-MRR in cases where the index has partially-covered
components but they are not used for scanning.
@retval TRUE Yes
@retval FALSE No
*/
bool key_uses_partial_cols(TABLE *table, uint keyno)
{
KEY_PART_INFO *kp= table->key_info[keyno].key_part;
KEY_PART_INFO *kp_end= kp + table->key_info[keyno].key_parts;
for (; kp != kp_end; kp++)
{
if (!kp->field->part_of_key.is_set(keyno))
return TRUE;
}
return FALSE;
}
/**
DS-MRR Internals: Choose between Default MRR implementation and DS-MRR
Make the choice between using Default MRR implementation and DS-MRR.
This function contains common functionality factored out of dsmrr_info()
and dsmrr_info_const(). The function assumes that the default MRR
implementation's applicability requirements are satisfied.
@param keyno Index number
@param rows E(full rows to be retrieved)
@param flags IN MRR flags provided by the MRR user
OUT If DS-MRR is choosen, flags of DS-MRR implementation
else the value is not modified
@param bufsz IN If DS-MRR is choosen, buffer use of DS-MRR implementation
else the value is not modified
@param cost IN Cost of default MRR implementation
OUT If DS-MRR is choosen, cost of DS-MRR scan
else the value is not modified
@retval TRUE Default MRR implementation should be used
@retval FALSE DS-MRR implementation should be used
*/
bool DsMrr_impl::choose_mrr_impl(uint keyno, ha_rows rows, uint *flags,
uint *bufsz, COST_VECT *cost)
{
COST_VECT dsmrr_cost;
bool res;
THD *thd= current_thd;
if (thd->variables.optimizer_use_mrr == 2 || *flags & HA_MRR_INDEX_ONLY ||
(keyno == table->s->primary_key && h->primary_key_is_clustered()) ||
key_uses_partial_cols(table, keyno))
{
/* Use the default implementation */
*flags |= HA_MRR_USE_DEFAULT_IMPL;
return TRUE;
}
uint add_len= table->key_info[keyno].key_length + h->ref_length;
*bufsz -= add_len;
if (get_disk_sweep_mrr_cost(keyno, rows, *flags, bufsz, &dsmrr_cost))
return TRUE;
*bufsz += add_len;
bool force_dsmrr;
/*
If @@optimizer_use_mrr==force, then set cost of DS-MRR to be minimum of
DS-MRR and Default implementations cost. This allows one to force use of
DS-MRR whenever it is applicable without affecting other cost-based
choices.
*/
if ((force_dsmrr= (thd->variables.optimizer_use_mrr == 1)) &&
dsmrr_cost.total_cost() > cost->total_cost())
dsmrr_cost= *cost;
if (force_dsmrr || dsmrr_cost.total_cost() <= cost->total_cost())
{
*flags &= ~HA_MRR_USE_DEFAULT_IMPL; /* Use the DS-MRR implementation */
*flags &= ~HA_MRR_SORTED; /* We will return unordered output */
*cost= dsmrr_cost;
res= FALSE;
}
else
{
/* Use the default MRR implementation */
res= TRUE;
}
return res;
}
static void get_sort_and_sweep_cost(TABLE *table, ha_rows nrows, COST_VECT *cost);
/**
Get cost of DS-MRR scan
@param keynr Index to be used
@param rows E(Number of rows to be scanned)
@param flags Scan parameters (HA_MRR_* flags)
@param buffer_size INOUT Buffer size
@param cost OUT The cost
@retval FALSE OK
@retval TRUE Error, DS-MRR cannot be used (the buffer is too small
for even 1 rowid)
*/
bool DsMrr_impl::get_disk_sweep_mrr_cost(uint keynr, ha_rows rows, uint flags,
uint *buffer_size, COST_VECT *cost)
{
ulong max_buff_entries, elem_size;
ha_rows rows_in_full_step, rows_in_last_step;
uint n_full_steps;
double index_read_cost;
elem_size= h->ref_length + sizeof(void*) * (!test(flags & HA_MRR_NO_ASSOCIATION));
max_buff_entries = *buffer_size / elem_size;
if (!max_buff_entries)
return TRUE; /* Buffer has not enough space for even 1 rowid */
/* Number of iterations we'll make with full buffer */
n_full_steps= (uint)floor(rows2double(rows) / max_buff_entries);
/*
Get numbers of rows we'll be processing in
- non-last sweep, with full buffer
- last iteration, with non-full buffer
*/
rows_in_full_step= max_buff_entries;
rows_in_last_step= rows % max_buff_entries;
/* Adjust buffer size if we expect to use only part of the buffer */
if (n_full_steps)
{
get_sort_and_sweep_cost(table, rows, cost);
cost->multiply(n_full_steps);
}
else
{
cost->zero();
*buffer_size= max(*buffer_size,
(size_t)(1.2*rows_in_last_step) * elem_size +
h->ref_length + table->key_info[keynr].key_length);
}
COST_VECT last_step_cost;
get_sort_and_sweep_cost(table, rows_in_last_step, &last_step_cost);
cost->add(&last_step_cost);
if (n_full_steps != 0)
cost->mem_cost= *buffer_size;
else
cost->mem_cost= (double)rows_in_last_step * elem_size;
/* Total cost of all index accesses */
index_read_cost= h->keyread_time(keynr, 1, (double)rows);
cost->add_io(index_read_cost, 1 /* Random seeks */);
return FALSE;
}
/*
Get cost of one sort-and-sweep step
SYNOPSIS
get_sort_and_sweep_cost()
table Table being accessed
nrows Number of rows to be sorted and retrieved
cost OUT The cost
DESCRIPTION
Get cost of these operations:
- sort an array of #nrows ROWIDs using qsort
- read #nrows records from table in a sweep.
*/
static
void get_sort_and_sweep_cost(TABLE *table, ha_rows nrows, COST_VECT *cost)
{
if (nrows)
{
get_sweep_read_cost(table, nrows, FALSE, cost);
/* Add cost of qsort call: n * log2(n) * cost(rowid_comparison) */
double cmp_op= rows2double(nrows) * (1.0 / TIME_FOR_COMPARE_ROWID);
if (cmp_op < 3)
cmp_op= 3;
cost->cpu_cost += cmp_op * log2(cmp_op);
}
else
cost->zero();
}
/**
Get cost of reading nrows table records in a "disk sweep"
A disk sweep read is a sequence of handler->rnd_pos(rowid) calls that made
for an ordered sequence of rowids.
We assume hard disk IO. The read is performed as follows:
1. The disk head is moved to the needed cylinder
2. The controller waits for the plate to rotate
3. The data is transferred
Time to do #3 is insignificant compared to #2+#1.
Time to move the disk head is proportional to head travel distance.
Time to wait for the plate to rotate depends on whether the disk head
was moved or not.
If disk head wasn't moved, the wait time is proportional to distance
between the previous block and the block we're reading.
If the head was moved, we don't know how much we'll need to wait for the
plate to rotate. We assume the wait time to be a variate with a mean of
0.5 of full rotation time.
Our cost units are "random disk seeks". The cost of random disk seek is
actually not a constant, it depends one range of cylinders we're going
to access. We make it constant by introducing a fuzzy concept of "typical
datafile length" (it's fuzzy as it's hard to tell whether it should
include index file, temp.tables etc). Then random seek cost is:
1 = half_rotation_cost + move_cost * 1/3 * typical_data_file_length
We define half_rotation_cost as DISK_SEEK_BASE_COST=0.9.
@param table Table to be accessed
@param nrows Number of rows to retrieve
@param interrupted TRUE <=> Assume that the disk sweep will be
interrupted by other disk IO. FALSE - otherwise.
@param cost OUT The cost.
*/
void get_sweep_read_cost(TABLE *table, ha_rows nrows, bool interrupted,
COST_VECT *cost)
{
DBUG_ENTER("get_sweep_read_cost");
cost->zero();
if (table->file->primary_key_is_clustered())
{
cost->io_count= table->file->read_time(table->s->primary_key,
(uint) nrows, nrows);
}
else
{
double n_blocks=
ceil(ulonglong2double(table->file->stats.data_file_length) / IO_SIZE);
double busy_blocks=
n_blocks * (1.0 - pow(1.0 - 1.0/n_blocks, rows2double(nrows)));
if (busy_blocks < 1.0)
busy_blocks= 1.0;
DBUG_PRINT("info",("sweep: nblocks=%g, busy_blocks=%g", n_blocks,
busy_blocks));
cost->io_count= busy_blocks;
if (!interrupted)
{
/* Assume reading is done in one 'sweep' */
cost->avg_io_cost= (DISK_SEEK_BASE_COST +
DISK_SEEK_PROP_COST*n_blocks/busy_blocks);
}
}
DBUG_PRINT("info",("returning cost=%g", cost->total_cost()));
DBUG_VOID_RETURN;
}
/* **************************************************************************
* DS-MRR implementation ends
***************************************************************************/
|