1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
|
/*
Copyright (c) 2014 Google Inc.
Copyright (c) 2014, 2015 MariaDB Corporation
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include <my_global.h>
#include <my_crypt.h>
#ifdef HAVE_YASSL
#include "aes.hpp"
typedef TaoCrypt::CipherDir Dir;
static const Dir CRYPT_ENCRYPT = TaoCrypt::ENCRYPTION;
static const Dir CRYPT_DECRYPT = TaoCrypt::DECRYPTION;
typedef TaoCrypt::Mode CipherMode;
static inline CipherMode aes_ecb(uint) { return TaoCrypt::ECB; }
static inline CipherMode aes_cbc(uint) { return TaoCrypt::CBC; }
typedef TaoCrypt::byte KeyByte;
#else
#include <openssl/evp.h>
#include <openssl/aes.h>
#include <openssl/err.h>
typedef int Dir;
static const Dir CRYPT_ENCRYPT = 1;
static const Dir CRYPT_DECRYPT = 0;
typedef const EVP_CIPHER *CipherMode;
#define make_aes_dispatcher(mode) \
static inline CipherMode aes_ ## mode(uint key_length) \
{ \
switch (key_length) { \
case 16: return EVP_aes_128_ ## mode(); \
case 24: return EVP_aes_192_ ## mode(); \
case 32: return EVP_aes_256_ ## mode(); \
default: return 0; \
} \
}
make_aes_dispatcher(ecb)
make_aes_dispatcher(cbc)
typedef uchar KeyByte;
struct MyCTX : EVP_CIPHER_CTX {
MyCTX() { EVP_CIPHER_CTX_init(this); }
~MyCTX() { EVP_CIPHER_CTX_cleanup(this); ERR_remove_state(0); }
};
#endif
static int block_crypt(CipherMode cipher, Dir dir,
const uchar* source, uint source_length,
uchar* dest, uint* dest_length,
const KeyByte *key, uint key_length,
const KeyByte *iv, uint iv_length, int no_padding)
{
int tail= source_length % MY_AES_BLOCK_SIZE;
if (likely(source_length >= MY_AES_BLOCK_SIZE || !no_padding))
{
#ifdef HAVE_YASSL
TaoCrypt::AES ctx(dir, cipher);
if (unlikely(key_length != 16 && key_length != 24 && key_length != 32))
return MY_AES_BAD_KEYSIZE;
ctx.SetKey(key, key_length);
if (iv)
{
ctx.SetIV(iv);
DBUG_ASSERT(TaoCrypt::AES::BLOCK_SIZE <= iv_length);
}
DBUG_ASSERT(TaoCrypt::AES::BLOCK_SIZE == MY_AES_BLOCK_SIZE);
ctx.Process(dest, source, source_length - tail);
*dest_length= source_length - tail;
/* unlike OpenSSL, YaSSL doesn't support PKCS#7 padding */
if (!no_padding)
{
if (dir == CRYPT_ENCRYPT)
{
uchar buf[MY_AES_BLOCK_SIZE];
memcpy(buf, source + source_length - tail, tail);
memset(buf + tail, MY_AES_BLOCK_SIZE - tail, MY_AES_BLOCK_SIZE - tail);
ctx.Process(dest + *dest_length, buf, MY_AES_BLOCK_SIZE);
*dest_length+= MY_AES_BLOCK_SIZE;
}
else
{
int n= source_length ? dest[source_length - 1] : 0;
if (tail || n == 0 || n > MY_AES_BLOCK_SIZE)
return MY_AES_BAD_DATA;
*dest_length-= n;
}
}
#else // HAVE_OPENSSL
int fin;
struct MyCTX ctx;
if (unlikely(!cipher))
return MY_AES_BAD_KEYSIZE;
if (!EVP_CipherInit_ex(&ctx, cipher, NULL, key, iv, dir))
return MY_AES_OPENSSL_ERROR;
EVP_CIPHER_CTX_set_padding(&ctx, !no_padding);
DBUG_ASSERT(EVP_CIPHER_CTX_key_length(&ctx) == (int)key_length);
DBUG_ASSERT(EVP_CIPHER_CTX_iv_length(&ctx) <= (int)iv_length);
DBUG_ASSERT(EVP_CIPHER_CTX_block_size(&ctx) == MY_AES_BLOCK_SIZE);
/* use built-in OpenSSL padding, if possible */
if (!EVP_CipherUpdate(&ctx, dest, (int*)dest_length,
source, source_length - (no_padding ? tail : 0)))
return MY_AES_OPENSSL_ERROR;
if (!EVP_CipherFinal_ex(&ctx, dest + *dest_length, &fin))
return MY_AES_BAD_DATA;
*dest_length += fin;
#endif
}
if (no_padding)
{
if (tail)
{
/*
Not much we can do, block ciphers cannot encrypt data that aren't
a multiple of the block length. At least not without padding.
Let's do something CTR-like for the last partial block.
*/
uchar mask[MY_AES_BLOCK_SIZE];
uint mlen;
DBUG_ASSERT(iv_length >= sizeof(mask));
my_aes_encrypt_ecb(iv, sizeof(mask), mask, &mlen,
key, key_length, 0, 0, 1);
DBUG_ASSERT(mlen == sizeof(mask));
const uchar *s= source + source_length - tail;
const uchar *e= source + source_length;
uchar *d= dest + source_length - tail;
const uchar *m= mask;
while (s < e)
*d++ = *s++ ^ *m++;
}
*dest_length= source_length;
}
return MY_AES_OK;
}
C_MODE_START
#ifdef HAVE_EncryptAes128Ctr
make_aes_dispatcher(ctr)
/*
special simplified implementation for CTR, because it's a stream cipher
(doesn't need padding, always encrypts the specified number of bytes), and
because encrypting and decrypting code is exactly the same (courtesy of XOR)
*/
int my_aes_encrypt_ctr(const uchar* source, uint source_length,
uchar* dest, uint* dest_length,
const uchar* key, uint key_length,
const uchar* iv, uint iv_length)
{
CipherMode cipher= aes_ctr(key_length);
struct MyCTX ctx;
int fin __attribute__((unused));
if (unlikely(!cipher))
return MY_AES_BAD_KEYSIZE;
if (!EVP_CipherInit_ex(&ctx, cipher, NULL, key, iv, CRYPT_ENCRYPT))
return MY_AES_OPENSSL_ERROR;
DBUG_ASSERT(EVP_CIPHER_CTX_key_length(&ctx) == (int)key_length);
DBUG_ASSERT(EVP_CIPHER_CTX_iv_length(&ctx) <= (int)iv_length);
DBUG_ASSERT(EVP_CIPHER_CTX_block_size(&ctx) == 1);
if (!EVP_CipherUpdate(&ctx, dest, (int*)dest_length, source, source_length))
return MY_AES_OPENSSL_ERROR;
DBUG_ASSERT(EVP_CipherFinal_ex(&ctx, dest + *dest_length, &fin));
DBUG_ASSERT(fin == 0);
return MY_AES_OK;
}
#endif /* HAVE_EncryptAes128Ctr */
#ifdef HAVE_EncryptAes128Gcm
make_aes_dispatcher(gcm)
/*
special implementation for GCM; to fit OpenSSL AES-GCM into the
existing my_aes_* API it does the following:
- IV tail (over 12 bytes) goes to AAD
- the tag is appended to the ciphertext
*/
int do_gcm(const uchar* source, uint source_length,
uchar* dest, uint* dest_length,
const uchar* key, uint key_length,
const uchar* iv, uint iv_length, Dir dir)
{
CipherMode cipher= aes_gcm(key_length);
struct MyCTX ctx;
int fin;
uint real_iv_length;
if (unlikely(!cipher))
return MY_AES_BAD_KEYSIZE;
if (!EVP_CipherInit_ex(&ctx, cipher, NULL, key, iv, dir))
return MY_AES_OPENSSL_ERROR;
real_iv_length= EVP_CIPHER_CTX_iv_length(&ctx);
DBUG_ASSERT(EVP_CIPHER_CTX_key_length(&ctx) == (int)key_length);
DBUG_ASSERT(real_iv_length <= iv_length);
DBUG_ASSERT(EVP_CIPHER_CTX_block_size(&ctx) == 1);
if (dir == CRYPT_DECRYPT)
{
source_length-= MY_AES_BLOCK_SIZE;
if(!EVP_CIPHER_CTX_ctrl(&ctx, EVP_CTRL_GCM_SET_TAG, MY_AES_BLOCK_SIZE,
(void*)(source + source_length)))
return MY_AES_OPENSSL_ERROR;
}
if (real_iv_length < iv_length)
{
if (!EVP_CipherUpdate(&ctx, NULL, &fin,
iv + real_iv_length, iv_length - real_iv_length))
return MY_AES_OPENSSL_ERROR;
}
if (!EVP_CipherUpdate(&ctx, dest, (int*)dest_length, source, source_length))
return MY_AES_OPENSSL_ERROR;
if (!EVP_CipherFinal_ex(&ctx, dest + *dest_length, &fin))
return MY_AES_BAD_DATA;
DBUG_ASSERT(fin == 0);
if (dir == CRYPT_ENCRYPT)
{
if(!EVP_CIPHER_CTX_ctrl(&ctx, EVP_CTRL_GCM_GET_TAG, MY_AES_BLOCK_SIZE,
dest + *dest_length))
return MY_AES_OPENSSL_ERROR;
*dest_length+= MY_AES_BLOCK_SIZE;
}
return MY_AES_OK;
}
int my_aes_encrypt_gcm(const uchar* source, uint source_length,
uchar* dest, uint* dest_length,
const uchar* key, uint key_length,
const uchar* iv, uint iv_length)
{
return do_gcm(source, source_length, dest, dest_length,
key, key_length, iv, iv_length, CRYPT_ENCRYPT);
}
int my_aes_decrypt_gcm(const uchar* source, uint source_length,
uchar* dest, uint* dest_length,
const uchar* key, uint key_length,
const uchar* iv, uint iv_length)
{
return do_gcm(source, source_length, dest, dest_length,
key, key_length, iv, iv_length, CRYPT_DECRYPT);
}
#endif
int my_aes_encrypt_ecb(const uchar* source, uint source_length,
uchar* dest, uint* dest_length,
const uchar* key, uint key_length,
const uchar* iv, uint iv_length,
int no_padding)
{
return block_crypt(aes_ecb(key_length), CRYPT_ENCRYPT, source, source_length,
dest, dest_length, key, key_length, iv, iv_length, no_padding);
}
int my_aes_decrypt_ecb(const uchar* source, uint source_length,
uchar* dest, uint* dest_length,
const uchar* key, uint key_length,
const uchar* iv, uint iv_length,
int no_padding)
{
return block_crypt(aes_ecb(key_length), CRYPT_DECRYPT, source, source_length,
dest, dest_length, key, key_length, iv, iv_length, no_padding);
}
int my_aes_encrypt_cbc(const uchar* source, uint source_length,
uchar* dest, uint* dest_length,
const uchar* key, uint key_length,
const uchar* iv, uint iv_length,
int no_padding)
{
return block_crypt(aes_cbc(key_length), CRYPT_ENCRYPT, source, source_length,
dest, dest_length, key, key_length, iv, iv_length, no_padding);
}
int my_aes_decrypt_cbc(const uchar* source, uint source_length,
uchar* dest, uint* dest_length,
const uchar* key, uint key_length,
const uchar* iv, uint iv_length,
int no_padding)
{
return block_crypt(aes_cbc(key_length), CRYPT_DECRYPT, source, source_length,
dest, dest_length, key, key_length, iv, iv_length, no_padding);
}
C_MODE_END
#if defined(HAVE_YASSL)
#include <random.hpp>
C_MODE_START
int my_random_bytes(uchar* buf, int num)
{
TaoCrypt::RandomNumberGenerator rand;
rand.GenerateBlock((TaoCrypt::byte*) buf, num);
return MY_AES_OK;
}
C_MODE_END
#else /* OpenSSL */
#include <openssl/rand.h>
C_MODE_START
int my_random_bytes(uchar* buf, int num)
{
/*
Unfortunately RAND_bytes manual page does not provide any guarantees
in relation to blocking behavior. Here we explicitly use SSLeay random
instead of whatever random engine is currently set in OpenSSL. That way
we are guaranteed to have a non-blocking random.
*/
RAND_METHOD* rand = RAND_SSLeay();
if (rand == NULL || rand->bytes(buf, num) != 1)
return MY_AES_OPENSSL_ERROR;
return MY_AES_OK;
}
C_MODE_END
#endif /* HAVE_YASSL */
/**
Get size of buffer which will be large enough for encrypted data
The buffer should be sufficiently large to fit encrypted data
independently from the encryption algorithm and mode. With padding up to
MY_AES_BLOCK_SIZE bytes can be added. With GCM, exactly MY_AES_BLOCK_SIZE
bytes are added.
The actual length of the encrypted data is returned from the encryption
function (e.g. from my_aes_encrypt_cbc).
@return required buffer size
*/
uint my_aes_get_size(uint source_length)
{
return source_length + MY_AES_BLOCK_SIZE;
}
|