1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
|
/* Copyright (C) 2000 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
Analog of DYNAMIC_ARRAY that never reallocs
(so no pointer into the array may ever become invalid).
Memory is allocated in non-contiguous chunks.
This data structure is not space efficient for sparce arrays.
The number of elements is limited to 2^16
Every element is aligned to sizeof(element) boundary
(to avoid false sharing if element is big enough).
Actually, it's wait-free, not lock-free ;-)
*/
#undef DBUG_OFF
#include <my_global.h>
#include <strings.h>
#include <my_sys.h>
#include <lf.h>
void lf_dynarray_init(LF_DYNARRAY *array, uint element_size)
{
bzero(array, sizeof(*array));
array->size_of_element=element_size;
my_atomic_rwlock_init(&array->lock);
}
static void recursive_free(void **alloc, int level)
{
if (!alloc) return;
if (level)
{
int i;
for (i=0; i < LF_DYNARRAY_LEVEL_LENGTH; i++)
recursive_free(alloc[i], level-1);
my_free((void *)alloc, MYF(0));
}
else
my_free(alloc[-1], MYF(0));
}
void lf_dynarray_end(LF_DYNARRAY *array)
{
int i;
for (i=0; i < LF_DYNARRAY_LEVELS; i++)
recursive_free(array->level[i], i);
my_atomic_rwlock_destroy(&array->lock);
bzero(array, sizeof(*array));
}
static const int dynarray_idxes_in_level[LF_DYNARRAY_LEVELS]=
{
0, /* +1 here to to avoid -1's below */
LF_DYNARRAY_LEVEL_LENGTH,
LF_DYNARRAY_LEVEL_LENGTH * LF_DYNARRAY_LEVEL_LENGTH,
LF_DYNARRAY_LEVEL_LENGTH * LF_DYNARRAY_LEVEL_LENGTH *
LF_DYNARRAY_LEVEL_LENGTH
};
void *_lf_dynarray_lvalue(LF_DYNARRAY *array, uint idx)
{
void * ptr, * volatile * ptr_ptr=0;
int i;
for (i=3; i > 0; i--)
{
if (ptr_ptr || idx >= dynarray_idxes_in_level[i])
{
if (!ptr_ptr)
{
ptr_ptr=&array->level[i];
idx-= dynarray_idxes_in_level[i];
}
ptr=*ptr_ptr;
if (!ptr)
{
void *alloc=my_malloc(LF_DYNARRAY_LEVEL_LENGTH * sizeof(void *),
MYF(MY_WME|MY_ZEROFILL));
if (!alloc)
return(NULL);
if (my_atomic_casptr(ptr_ptr, &ptr, alloc))
ptr= alloc;
else
my_free(alloc, MYF(0));
}
ptr_ptr=((void **)ptr) + idx / dynarray_idxes_in_level[i];
idx%= dynarray_idxes_in_level[i];
}
}
if (!ptr_ptr)
ptr_ptr=&array->level[0];
ptr=*ptr_ptr;
if (!ptr)
{
void *alloc, *data;
alloc=my_malloc(LF_DYNARRAY_LEVEL_LENGTH * array->size_of_element +
max(array->size_of_element, sizeof(void *)),
MYF(MY_WME|MY_ZEROFILL));
if (!alloc)
return(NULL);
/* reserve the space for free() address */
data= alloc + sizeof(void *);
{ /* alignment */
intptr mod= ((intptr)data) % array->size_of_element;
if (mod)
data+= array->size_of_element - mod;
}
((void **)data)[-1]=alloc; /* free() will need the original pointer */
if (my_atomic_casptr(ptr_ptr, &ptr, data))
ptr= data;
else
my_free(alloc, MYF(0));
}
return ptr + array->size_of_element * idx;
}
void *_lf_dynarray_value(LF_DYNARRAY *array, uint idx)
{
void * ptr, * volatile * ptr_ptr=0;
int i;
for (i=3; i > 0; i--)
{
if (ptr_ptr || idx >= dynarray_idxes_in_level[i])
{
if (!ptr_ptr)
{
ptr_ptr=&array->level[i];
idx-= dynarray_idxes_in_level[i];
}
ptr=*ptr_ptr;
if (!ptr)
return(NULL);
ptr_ptr=((void **)ptr) + idx / dynarray_idxes_in_level[i];
idx %= dynarray_idxes_in_level[i];
}
}
if (!ptr_ptr)
ptr_ptr=&array->level[0];
ptr=*ptr_ptr;
if (!ptr)
return(NULL);
return ptr + array->size_of_element * idx;
}
static int recursive_iterate(LF_DYNARRAY *array, void *ptr, int level,
lf_dynarray_func func, void *arg)
{
int res, i;
if (!ptr)
return 0;
if (!level)
return func(ptr, arg);
for (i=0; i < LF_DYNARRAY_LEVEL_LENGTH; i++)
if ((res=recursive_iterate(array, ((void **)ptr)[i], level-1, func, arg)))
return res;
return 0;
}
int _lf_dynarray_iterate(LF_DYNARRAY *array, lf_dynarray_func func, void *arg)
{
int i, res;
for (i=0; i < LF_DYNARRAY_LEVELS; i++)
if ((res=recursive_iterate(array, array->level[i], i, func, arg)))
return res;
return 0;
}
|