| Commit message (Collapse) | Author | Age | Files | Lines |
|\ |
|
| |\ |
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
as well as
MDEV-19500 Update with join stopped worked if there is a call to a procedure in a trigger
MDEV-19521 Update Table Fails with Trigger and Stored Function
MDEV-19497 Replication stops because table not found
MDEV-19527 UPDATE + JOIN + TRIGGERS = table doesn't exists error
Reimplement the fix for (5d510fdbf00)
MDEV-18507 can't update temporary table when joined with table with triggers on read-only
instead of calling open_tables() twice, put multi-update
prepare code inside open_tables() loop.
Add a test for a MDL backoff-and-retry loop inside open_tables()
across multi-update prepare code.
|
| | | |
|
|\ \ \
| |/ / |
|
| |\ \
| | |/ |
|
| | |
| | |
| | |
| | | |
* Update wrong zip-code
|
|\ \ \
| |/ / |
|
| |\ \
| | |/ |
|
| | | |
|
|\ \ \
| |/ / |
|
| |\ \ |
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
ha_innobase::delete_table and log semaphore wait upon concurrent DDL with foreign keys
ALTER TABLE locks the table with TL_READ_NO_INSERT, to prevent the
source table modifications while it's being copied. But there's an
indirect way of modifying a table, via cascade FK actions.
After previous commits, an attempt to modify an FK parent table
will cause FK children to be prelocked, so the table-being-altered
cannot be modified by a cascade FK action, because ALTER holds a
lock and prelocking will wait.
But if a new FK is being added by this very ALTER, then the target
table is not locked yet (it's a temporary table). So, we have to
lock FK parents explicitly.
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
LOCK TABLES <view>.
Check if the argument of the FLUSH TABLE is a VIEW and handle it
accordingly.
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
as a separate source for data
Actually MDEV-15867 and MDEV-16192 are same, Slave adds "or replace" to create
table stmt. So create table t1 is create or replace on slave. So this bug
is not because of replication, We can get this bug on general server if we
manually add or replace to create query.
Problem:- So if we try to create table t1 (same name as of temp table t1 ) via
CREATE or replace TABLE t AS SELECT * FROM t;
Since in this query we are creating table from select * from t1 , we call
unique_table function to see whether if source and destination table are same.
But there is one issue unique_table does not account if source table is tmp table
in this case source and destination table can be same.
Solution:- We will change find_dup_table to not to look for temp table if
CHECK_DUP_SKIP_TEMP_TABLE flag is on.
|
|\ \ \ \
| |/ / / |
|
| |\ \ \
| | |/ / |
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
references t1
Fixed by extending unique_table() with a flag to not allow usage of
the replaced table.
I also cleaned up find_dup_table() to not use goto next.
I also added more comments to the code in find_dup_table()
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Bounds_checked_array<Element_type>::operator
In this issue we hit the assert because we are adding addition fields to the field JOIN::all_fields list. This
is done because HEAP tables can't index BIT fields so we need to use an additional hidden field for grouping because later it will be
converted to a LONG field. Original field will remain of the BIT type and will be returned. This happens when we convert DISTINCT to
GROUP BY.
The solution is to take into account the number of such hidden fields that would be added to the field
JOIN::all_fields list while calculating the size of the ref_pointer_array.
|
|\ \ \ \
| |/ / / |
|
| |\ \ \
| | |/ / |
|
| | |\ \
| | | |/ |
|
| | | |\ |
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
PREBUILT->TABLE->N_MYSQL_HANDLES_OPENED == 1
ANALYSIS:
=========
Adding unique index to a InnoDB table which is locked as
mutliple instances may trigger an InnoDB assert.
When we add a primary key or an unique index, we need to
drop the original table and rebuild all indexes. InnoDB
expects that only the instance of the table that is being
rebuilt, is open during the process. In the current
scenario we have opened multiple instances of the table.
This triggers an assert during table rebuild.
'Locked_tables_list' encapsulates a list of all
instances of tables locked by LOCK TABLES statement.
FIX:
===
We are now temporarily closing all the instances of the
table except the one which is being altered and later
reopen them via Locked_tables_list::reopen_tables().
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
STATUS OF ROLLBACKED TRANSACTION" and bug #17054007 - "TRANSACTION
IS NOT FULLY ROLLED BACK IN CASE OF INNODB DEADLOCK".
The problem in the first bug report was that although deadlock involving
metadata locks was reported using the same error code and message as InnoDB
deadlock it didn't rollback transaction like the latter. This caused
confusion to users as in some cases after ER_LOCK_DEADLOCK transaction
could have been restarted immediately and in some cases rollback was
required.
The problem in the second bug report was that although InnoDB deadlock
caused transaction rollback in all storage engines it didn't cause release
of metadata locks. So concurrent DDL on the tables used in transaction was
blocked until implicit or explicit COMMIT or ROLLBACK was issued in the
connection which got InnoDB deadlock.
The former issue has stemmed from the fact that when support for detection
and reporting metadata locks deadlocks was added we erroneously assumed
that InnoDB doesn't rollback transaction on deadlock but only last statement
(while this is what happens on InnoDB lock timeout actually) and so didn't
implement rollback of transactions on MDL deadlocks.
The latter issue was caused by the fact that rollback of transaction due
to deadlock is carried out by setting THD::transaction_rollback_request
flag at the point where deadlock is detected and performing rollback
inside of trans_rollback_stmt() call when this flag is set. And
trans_rollback_stmt() is not aware of MDL locks, so no MDL locks are
released.
This patch solves these two problems in the following way:
- In case when MDL deadlock is detect transaction rollback is requested
by setting THD::transaction_rollback_request flag.
- Code performing rollback of transaction if THD::transaction_rollback_request
is moved out from trans_rollback_stmt(). Now we handle rollback request
on the same level as we call trans_rollback_stmt() and release statement/
transaction MDL locks.
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
ROBUST AGAINST BUGS IN CALLERS".
Both MDL subsystems and Table Definition Cache code assume
that callers ensure that names of objects passed to them are
not longer than NAME_LEN bytes. Unfortunately due to bugs in
callers this assumption might be broken in some cases. As
result we get nasty bugs causing buffer overruns when we
construct MDL key or TDC key from object names.
This patch makes MDL and TDC code more robust against such
bugs by ensuring that we always checking size of result
buffer when constructing MDL and TDC keys. This doesn't
free its callers from ensuring that both db and table names
are shorter than NAME_LEN bytes. But at least these steps
prevents buffer overruns in case of bug in caller, replacing
them with less harmful behavior.
This is 5.5-only version of patch.
Changed code of MDL_key::mdl_key_init() to take into account
size of buffer for the key.
Introduced new version of create_table_def_key() helper function
which constructs TDC key without risk of result buffer overrun.
Places in code that construct TDC keys were changed to use this
function.
Also changed rm_temporary_table() and open_new_frm() functions
to avoid use of "unsafe" strmov() and strxmov() functions and
use safer strnxmov() instead.
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
FLUSH TABLES under FLUSH TABLES <list> WITH READ LOCK leads
to assert failure.
This assert was triggered if a statement tried up upgrade a metadata
lock with an active FLUSH TABLE <list> WITH READ LOCK. The assert
checks that the connection already holds a global intention exclusive
metadata lock. However, FLUSH TABLE <list> WITH READ LOCK does not
acquire this lock in order to be compatible with FLUSH TABLES WITH
READ LOCK. Therefore any metadata lock upgrade caused the assert to
be triggered.
This patch fixes the problem by preventing metadata lock upgrade
if the connection has an active FLUSH TABLE <list> WITH READ LOCK.
ER_TABLE_NOT_LOCKED_FOR_WRITE will instead be reported to the client.
Test case added to flush.test.
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
bug #57006 "Deadlock between HANDLER and FLUSH TABLES WITH READ
LOCK" and bug #54673 "It takes too long to get readlock for
'FLUSH TABLES WITH READ LOCK'".
The first bug manifested itself as a deadlock which occurred
when a connection, which had some table open through HANDLER
statement, tried to update some data through DML statement
while another connection tried to execute FLUSH TABLES WITH
READ LOCK concurrently.
What happened was that FTWRL in the second connection managed
to perform first step of GRL acquisition and thus blocked all
upcoming DML. After that it started to wait for table open
through HANDLER statement to be flushed. When the first connection
tried to execute DML it has started to wait for GRL/the second
connection creating deadlock.
The second bug manifested itself as starvation of FLUSH TABLES
WITH READ LOCK statements in cases when there was a constant
stream of concurrent DML statements (in two or more
connections).
This has happened because requests for protection against GRL
which were acquired by DML statements were ignoring presence of
pending GRL and thus the latter was starved.
This patch solves both these problems by re-implementing GRL
using metadata locks.
Similar to the old implementation acquisition of GRL in new
implementation is two-step. During the first step we block
all concurrent DML and DDL statements by acquiring global S
metadata lock (each DML and DDL statement acquires global IX
lock for its duration). During the second step we block commits
by acquiring global S lock in COMMIT namespace (commit code
acquires global IX lock in this namespace).
Note that unlike in old implementation acquisition of
protection against GRL in DML and DDL is semi-automatic.
We assume that any statement which should be blocked by GRL
will either open and acquires write-lock on tables or acquires
metadata locks on objects it is going to modify. For any such
statement global IX metadata lock is automatically acquired
for its duration.
The first problem is solved because waits for GRL become
visible to deadlock detector in metadata locking subsystem
and thus deadlocks like one in the first bug become impossible.
The second problem is solved because global S locks which
are used for GRL implementation are given preference over
IX locks which are acquired by concurrent DML (and we can
switch to fair scheduling in future if needed).
Important change:
FTWRL/GRL no longer blocks DML and DDL on temporary tables.
Before this patch behavior was not consistent in this respect:
in some cases DML/DDL statements on temporary tables were
blocked while in others they were not. Since the main use cases
for FTWRL are various forms of backups and temporary tables are
not preserved during backups we have opted for consistently
allowing DML/DDL on temporary tables during FTWRL/GRL.
Important change:
This patch changes thread state names which are used when
DML/DDL of FTWRL is waiting for global read lock. It is now
either "Waiting for global read lock" or "Waiting for commit
lock" depending on the stage on which FTWRL is.
Incompatible change:
To solve deadlock in events code which was exposed by this
patch we have to replace LOCK_event_metadata mutex with
metadata locks on events. As result we have to prohibit
DDL on events under LOCK TABLES.
This patch also adds extensive test coverage for interaction
of DML/DDL and FTWRL.
Performance of new and old global read lock implementations
in sysbench tests were compared. There were no significant
difference between new and old implementations.
|
| | | | | |
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
in the MDL deadlock detector".
It is no longer needed as a better fix for this bug has
been pushed.
|
| | | | |\ |
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
MDL deadlock detector".
Deadlock could have occurred when workload containing mix
of DML, DDL and FLUSH TABLES statements affecting same
set of tables was executed in heavily concurrent environment.
This deadlock occurred when several connections tried to
perform deadlock detection in metadata locking subsystem.
The first connection started traversing wait-for graph,
encountered sub-graph representing wait for flush, acquired
LOCK_open and dived into sub-graph inspection. When it has
encounterd sub-graph corresponding to wait for metadata lock
and blocked while trying to acquire rd-lock on
MDL_lock::m_rwlock (*) protecting this subgraph, since some
other thread had wr-lock on it. When this wr-lock was released
it could have happened (if there was other pending wr-lock
against this rwlock) that rd-lock from the first connection
was left unsatisfied but at the same time new rd-lock request
from the second connection sneaked in and was satisfied (for
this to be possible second rd- request should come exactly
after wr-lock is released but before pending wr-lock manages
to grab rwlock, which is possible both on Linux and in our
own rwlock implementation). If this second connection
continued traversing wait-for graph and encountered sub-graph
representing wait for flush it tried to acquire LOCK_open
and thus deadlock was created.
This patch tries to workaround this problem but not allowing
deadlock detector to lock LOCK_open mutex if some other thread
doing deadlock detection already owns it and current search
depth is greater than 0. Instead deadlock is reported.
Other possible solutions are either known to have negative
effects on performance or require much more time for proper
implementation and testing.
No test case is provided as this bug is very hard to repeat
in MTR environment but is repeatable with the help of RQG
tests.
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
tables".
Attempting to issue an INSERT DELAYED statement for a MERGE
table might have caused a deadlock if it happened as part of
a transaction or under LOCK TABLES, and there was a concurrent
DDL or LOCK TABLES ... WRITE statement which tried to lock one
of its underlying tables.
The problem occurred when a delayed insert handler thread tried
to open a MERGE table and discovered that to do this it had also
to open all underlying tables and hence acquire metadata
locks on them. Since metadata locks on the underlying tables were
not pre-acquired by the connection thread executing INSERT DELAYED,
attempts to do so might lead to waiting. In this case the
connection thread had to wait for the delayed insert thread.
If the thread which was preventing the lock on the underlying table
from being acquired had to wait for the connection thread (due to
this or other metadata locks), a deadlock occurred.
This deadlock was not detected by the MDL deadlock detector since
waiting for the handler thread by the connection thread is not
represented in the wait-for graph.
This patch solves the problem by ensuring that the delayed
insert handler thread never tries to open underlying tables
of a MERGE table. Instead open_tables() is aborted right after
the parent table is opened and a ER_DELAYED_NOT_SUPPORTED
error is emitted (which is passed to the connection thread and
ultimately to the user).
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
table causes assert failure".
Attempting to use FLUSH TABLE table_list WITH READ LOCK
statement for a MERGE table led to an assertion failure if
one of its children was not present in the list of tables
to be flushed. The problem was not visible in non-debug builds.
The assertion failure was caused by the fact that in such
situations FLUSH TABLES table_list WITH READ LOCK implementation
tried to use (e.g. lock) such child tables without acquiring
metadata lock on them. This happened because when opening tables
we assumed metadata locks on all tables were already acquired
earlier during statement execution and a such assumption was
false for MERGE children.
This patch fixes the problem by ensuring at open_tables() time
that we try to acquire metadata locks on all tables to be opened.
For normal tables such requests are satisfied instantly since
locks are already acquired for them. For MERGE children metadata
locks are acquired in normal fashion.
Note that FLUSH TABLES merge_table WITH READ LOCK will lock for
read both the MERGE table and its children but will flush only
the MERGE table. To flush children one has to mention them in table
list explicitly. This is expected behavior and it is consistent with
usage patterns for this statement (e.g. in mysqlhotcopy script).
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
to allow temp table operations) -- prerequisite patch #3.
Rename open_temporary_table() to open_table_uncached().
open_temporary_table() will be introduced in following patches
to open temporary tables for a statement.
|
| | | | | |
| | | | | |
| | | | | | |
It was added by mistake during backport from 6.0.
|
| | | | |/
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
to allow temp table operations) -- prerequisite patch #2.
Introduce a new form of find_temporary_table() function:
find_temporary_table() by a table key. It will be used
in further patches.
Replace find_temporary_table(table_list->db, table_list->name)
by more appropiate find_temporary_table(table_list) across
the codebase.
|
| | | | |\ |
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
check_if_table_exists()
This assert was triggered when the server tried to load plugins
while running in embedded server mode. In embedded server mode,
check_if_table_exists() was used to check if mysql.plugin existed
so that ER_NO_SUCH_TABLE could be silently ignored.
The problem was that this check was done without acquiring a metadata
lock on mysql.plugin first. This triggered the assert.
This patch fixes the problem by removing the call to
check_if_table_exists() from plugin_load(). Instead an error handler
which traps ER_NO_SUCH_TABLE is installed before trying to open
mysql.plugin when running in embedded server mode.
No test coverage added since this assert was triggered by
existing tests running in embedded server mode.
|
| | | | | |\ |
|
| | | | | | |
| | | | | | |
| | | | | | | |
into an own implementation file.
|
| | | | | | | |
|
| | | | | |\ \
| | | | | | | |
| | | | | | | |
| | | | | | | | |
Merge his patch for Bug#52044 into 5.5, and apply
review comments.
|
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
TABLES <list> WITH READ LOCK are incompatible".
The problem was that FLUSH TABLES <list> WITH READ LOCK
which was issued when other connection has acquired global
read lock using FLUSH TABLES WITH READ LOCK was blocked
and has to wait until global read lock is released.
This issue stemmed from the fact that FLUSH TABLES <list>
WITH READ LOCK implementation has acquired X metadata locks
on tables to be flushed. Since these locks required acquiring
of global IX lock this statement was incompatible with global
read lock.
This patch addresses problem by using SNW metadata type of
lock for tables to be flushed by FLUSH TABLES <list> WITH
READ LOCK. It is OK to acquire them without global IX lock
as long as we won't try to upgrade those locks. Since SNW
locks allow concurrent statements using same table FLUSH
TABLE <list> WITH READ LOCK now has to wait until old
versions of tables to be flushed go away after acquiring
metadata locks. Since such waiting can lead to deadlock
MDL deadlock detector was extended to take into account
waits for flush and resolve such deadlocks.
As a bonus code in open_tables() which was responsible for
waiting old versions of tables to go away was refactored.
Now when we encounter old version of table in open_table()
we don't back-off and wait for all old version to go away,
but instead wait for this particular table to be flushed.
Such approach supported by deadlock detection should reduce
number of scenarios in which FLUSH TABLES aborts concurrent
multi-statement transactions.
Note that active FLUSH TABLES <list> WITH READ LOCK still
blocks concurrent FLUSH TABLES WITH READ LOCK statement
as the former keeps tables open and thus prevents the
latter statement from doing flush.
|
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
Remove acquisition of LOCK_open around file system operations,
since such operations are now protected by metadata locks.
Rework table discovery algorithm to not require LOCK_open.
No new tests added since all MDL locking operations are covered
in lock.test and mdl_sync.test, and as long as these tests
pass despite the increased concurrency, consistency must be
unaffected.
|
| | | | | | | | |
|
| | | | | |_|/
| | | | |/| |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
temp table
This patch introduces two key changes in the replication's behavior.
Firstly, it reverts part of BUG#51894 which puts any update to temporary tables
into the trx-cache. Now, updates to temporary tables are handled according to
the type of their engines as a regular table.
Secondly, an unsafe mixed statement, (i.e. a statement that access transactional
table as well non-transactional or temporary table, and writes to any of them),
are written into the trx-cache in order to minimize errors in the execution when
the statement logging format is in use.
Such changes has a direct impact on which statements are classified as unsafe
statements and thus part of BUG#53259 is reverted.
|
| | | | |/ /
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
corruption on ADD PARTITION and LOCK TABLE
Bug#53770: Server crash at handler.cc:2076 on
LOAD DATA after timed out COALESCE PARTITION
5.5 fix for:
Bug#51042: REORGANIZE PARTITION can leave table in an
inconsistent state in case of crash
Needs to be back-ported to 5.1
5.5 fix for:
Bug#50418: DROP PARTITION does not interact with
transactions
Main problem was non-persistent operations done
before meta-data lock was taken (53770+53676).
And 53676 needed to keep the table/partitions opened and locked
while copying the data to the new partitions.
Also added thorough tests to spot some additional bugs
in the ddl_log code, which could result in bad state
between the .frm and partitions.
Collapsed patch, includes all fixes required from the reviewers.
|
| | | | |\ \
| | | | | |/
| | | | |/| |
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
sporadically
There are two problems:
1. When closing temporary tables, during the THD clean up - and
after the session connection was already closed, there is a
chance we can push an error into the THD diagnostics area, if
the writing of the implicit DROP event to the binary log fails
for some reason. As a consequence an assertion can be
triggered, because at that point the diagnostics area is
already set.
2. Using push_warning with MYSQL_ERROR::WARN_LEVEL_ERROR is a
bug.
Given that close_temporary_tables is mostly called from
THD::cleanup - ie, with the session already closed, we fix
problem #1 by allowing the diagnostics area to be
overwritten. There is one other place in the code that calls
close_temporary_tables - while applying Start_log_event_v3. To
cover that case, we make close_temporary_tables to return the
error, thus, propagating upwards in the stack.
To fix problem #2, we replace push_warning with sql_print_error.
|