summaryrefslogtreecommitdiff
path: root/storage/bdb/db/db_cam.c
diff options
context:
space:
mode:
Diffstat (limited to 'storage/bdb/db/db_cam.c')
-rw-r--r--storage/bdb/db/db_cam.c2286
1 files changed, 2286 insertions, 0 deletions
diff --git a/storage/bdb/db/db_cam.c b/storage/bdb/db/db_cam.c
new file mode 100644
index 00000000000..4de3467d4aa
--- /dev/null
+++ b/storage/bdb/db/db_cam.c
@@ -0,0 +1,2286 @@
+/*-
+ * See the file LICENSE for redistribution information.
+ *
+ * Copyright (c) 2000-2002
+ * Sleepycat Software. All rights reserved.
+ */
+
+#include "db_config.h"
+
+#ifndef lint
+static const char revid[] = "$Id: db_cam.c,v 11.114 2002/09/03 15:44:46 krinsky Exp $";
+#endif /* not lint */
+
+#ifndef NO_SYSTEM_INCLUDES
+#include <sys/types.h>
+
+#include <string.h>
+#endif
+
+#include "db_int.h"
+#include "dbinc/db_page.h"
+#include "dbinc/db_shash.h"
+#include "dbinc/btree.h"
+#include "dbinc/hash.h"
+#include "dbinc/lock.h"
+#include "dbinc/log.h"
+#include "dbinc/qam.h"
+
+static int __db_buildpartial __P((DB *, DBT *, DBT *, DBT *));
+static int __db_c_cleanup __P((DBC *, DBC *, int));
+static int __db_c_del_secondary __P((DBC *));
+static int __db_c_pget_recno __P((DBC *, DBT *, DBT *, u_int32_t));
+static int __db_wrlock_err __P((DB_ENV *));
+
+#define CDB_LOCKING_INIT(dbp, dbc) \
+ /* \
+ * If we are running CDB, this had better be either a write \
+ * cursor or an immediate writer. If it's a regular writer, \
+ * that means we have an IWRITE lock and we need to upgrade \
+ * it to a write lock. \
+ */ \
+ if (CDB_LOCKING((dbp)->dbenv)) { \
+ if (!F_ISSET(dbc, DBC_WRITECURSOR | DBC_WRITER)) \
+ return (__db_wrlock_err(dbp->dbenv)); \
+ \
+ if (F_ISSET(dbc, DBC_WRITECURSOR) && \
+ (ret = (dbp)->dbenv->lock_get((dbp)->dbenv, \
+ (dbc)->locker, DB_LOCK_UPGRADE, &(dbc)->lock_dbt, \
+ DB_LOCK_WRITE, &(dbc)->mylock)) != 0) \
+ return (ret); \
+ }
+#define CDB_LOCKING_DONE(dbp, dbc) \
+ /* Release the upgraded lock. */ \
+ if (F_ISSET(dbc, DBC_WRITECURSOR)) \
+ (void)__lock_downgrade( \
+ (dbp)->dbenv, &(dbc)->mylock, DB_LOCK_IWRITE, 0);
+/*
+ * Copy the lock info from one cursor to another, so that locking
+ * in CDB can be done in the context of an internally-duplicated
+ * or off-page-duplicate cursor.
+ */
+#define CDB_LOCKING_COPY(dbp, dbc_o, dbc_n) \
+ if (CDB_LOCKING((dbp)->dbenv) && \
+ F_ISSET((dbc_o), DBC_WRITECURSOR | DBC_WRITEDUP)) { \
+ memcpy(&(dbc_n)->mylock, &(dbc_o)->mylock, \
+ sizeof((dbc_o)->mylock)); \
+ /* This lock isn't ours to put--just discard it on close. */ \
+ F_SET((dbc_n), DBC_WRITEDUP); \
+ }
+
+/*
+ * __db_c_close --
+ * Close the cursor.
+ *
+ * PUBLIC: int __db_c_close __P((DBC *));
+ */
+int
+__db_c_close(dbc)
+ DBC *dbc;
+{
+ DB *dbp;
+ DBC *opd;
+ DBC_INTERNAL *cp;
+ DB_ENV *dbenv;
+ int ret, t_ret;
+
+ dbp = dbc->dbp;
+ dbenv = dbp->dbenv;
+ ret = 0;
+
+ PANIC_CHECK(dbenv);
+
+ /*
+ * If the cursor is already closed we have a serious problem, and we
+ * assume that the cursor isn't on the active queue. Don't do any of
+ * the remaining cursor close processing.
+ */
+ if (!F_ISSET(dbc, DBC_ACTIVE)) {
+ if (dbp != NULL)
+ __db_err(dbenv, "Closing already-closed cursor");
+
+ DB_ASSERT(0);
+ return (EINVAL);
+ }
+
+ cp = dbc->internal;
+ opd = cp->opd;
+
+ /*
+ * Remove the cursor(s) from the active queue. We may be closing two
+ * cursors at once here, a top-level one and a lower-level, off-page
+ * duplicate one. The acess-method specific cursor close routine must
+ * close both of them in a single call.
+ *
+ * !!!
+ * Cursors must be removed from the active queue before calling the
+ * access specific cursor close routine, btree depends on having that
+ * order of operations.
+ */
+ MUTEX_THREAD_LOCK(dbenv, dbp->mutexp);
+
+ if (opd != NULL) {
+ F_CLR(opd, DBC_ACTIVE);
+ TAILQ_REMOVE(&dbp->active_queue, opd, links);
+ }
+ F_CLR(dbc, DBC_ACTIVE);
+ TAILQ_REMOVE(&dbp->active_queue, dbc, links);
+
+ MUTEX_THREAD_UNLOCK(dbenv, dbp->mutexp);
+
+ /* Call the access specific cursor close routine. */
+ if ((t_ret =
+ dbc->c_am_close(dbc, PGNO_INVALID, NULL)) != 0 && ret == 0)
+ ret = t_ret;
+
+ /*
+ * Release the lock after calling the access method specific close
+ * routine, a Btree cursor may have had pending deletes.
+ */
+ if (CDB_LOCKING(dbenv)) {
+ /*
+ * If DBC_WRITEDUP is set, the cursor is an internally
+ * duplicated write cursor and the lock isn't ours to put.
+ *
+ * Also, be sure not to free anything if mylock.off is
+ * INVALID; in some cases, such as idup'ed read cursors
+ * and secondary update cursors, a cursor in a CDB
+ * environment may not have a lock at all.
+ */
+ if (!F_ISSET(dbc, DBC_WRITEDUP) && LOCK_ISSET(dbc->mylock)) {
+ if ((t_ret = dbenv->lock_put(
+ dbenv, &dbc->mylock)) != 0 && ret == 0)
+ ret = t_ret;
+ }
+
+ /* For safety's sake, since this is going on the free queue. */
+ memset(&dbc->mylock, 0, sizeof(dbc->mylock));
+ F_CLR(dbc, DBC_WRITEDUP);
+ }
+
+ if (dbc->txn != NULL)
+ dbc->txn->cursors--;
+
+ /* Move the cursor(s) to the free queue. */
+ MUTEX_THREAD_LOCK(dbenv, dbp->mutexp);
+ if (opd != NULL) {
+ if (dbc->txn != NULL)
+ dbc->txn->cursors--;
+ TAILQ_INSERT_TAIL(&dbp->free_queue, opd, links);
+ opd = NULL;
+ }
+ TAILQ_INSERT_TAIL(&dbp->free_queue, dbc, links);
+ MUTEX_THREAD_UNLOCK(dbenv, dbp->mutexp);
+
+ return (ret);
+}
+
+/*
+ * __db_c_destroy --
+ * Destroy the cursor, called after DBC->c_close.
+ *
+ * PUBLIC: int __db_c_destroy __P((DBC *));
+ */
+int
+__db_c_destroy(dbc)
+ DBC *dbc;
+{
+ DB *dbp;
+ DB_ENV *dbenv;
+ int ret, t_ret;
+
+ dbp = dbc->dbp;
+ dbenv = dbp->dbenv;
+
+ /* Remove the cursor from the free queue. */
+ MUTEX_THREAD_LOCK(dbenv, dbp->mutexp);
+ TAILQ_REMOVE(&dbp->free_queue, dbc, links);
+ MUTEX_THREAD_UNLOCK(dbenv, dbp->mutexp);
+
+ /* Free up allocated memory. */
+ if (dbc->my_rskey.data != NULL)
+ __os_free(dbenv, dbc->my_rskey.data);
+ if (dbc->my_rkey.data != NULL)
+ __os_free(dbenv, dbc->my_rkey.data);
+ if (dbc->my_rdata.data != NULL)
+ __os_free(dbenv, dbc->my_rdata.data);
+
+ /* Call the access specific cursor destroy routine. */
+ ret = dbc->c_am_destroy == NULL ? 0 : dbc->c_am_destroy(dbc);
+
+ /*
+ * Release the lock id for this cursor.
+ */
+ if (LOCKING_ON(dbenv) &&
+ F_ISSET(dbc, DBC_OWN_LID) &&
+ (t_ret = dbenv->lock_id_free(dbenv, dbc->lid)) != 0 && ret == 0)
+ ret = t_ret;
+
+ __os_free(dbenv, dbc);
+
+ return (ret);
+}
+
+/*
+ * __db_c_count --
+ * Return a count of duplicate data items.
+ *
+ * PUBLIC: int __db_c_count __P((DBC *, db_recno_t *, u_int32_t));
+ */
+int
+__db_c_count(dbc, recnop, flags)
+ DBC *dbc;
+ db_recno_t *recnop;
+ u_int32_t flags;
+{
+ DB *dbp;
+ int ret;
+
+ /*
+ * Cursor Cleanup Note:
+ * All of the cursors passed to the underlying access methods by this
+ * routine are not duplicated and will not be cleaned up on return.
+ * So, pages/locks that the cursor references must be resolved by the
+ * underlying functions.
+ */
+ dbp = dbc->dbp;
+
+ PANIC_CHECK(dbp->dbenv);
+
+ /* Check for invalid flags. */
+ if ((ret = __db_ccountchk(dbp, flags, IS_INITIALIZED(dbc))) != 0)
+ return (ret);
+
+ switch (dbc->dbtype) {
+ case DB_QUEUE:
+ case DB_RECNO:
+ *recnop = 1;
+ break;
+ case DB_HASH:
+ if (dbc->internal->opd == NULL) {
+ if ((ret = __ham_c_count(dbc, recnop)) != 0)
+ return (ret);
+ break;
+ }
+ /* FALLTHROUGH */
+ case DB_BTREE:
+ if ((ret = __bam_c_count(dbc, recnop)) != 0)
+ return (ret);
+ break;
+ default:
+ return (__db_unknown_type(dbp->dbenv,
+ "__db_c_count", dbp->type));
+ }
+ return (0);
+}
+
+/*
+ * __db_c_del --
+ * Delete using a cursor.
+ *
+ * PUBLIC: int __db_c_del __P((DBC *, u_int32_t));
+ */
+int
+__db_c_del(dbc, flags)
+ DBC *dbc;
+ u_int32_t flags;
+{
+ DB *dbp;
+ DBC *opd;
+ int ret;
+
+ /*
+ * Cursor Cleanup Note:
+ * All of the cursors passed to the underlying access methods by this
+ * routine are not duplicated and will not be cleaned up on return.
+ * So, pages/locks that the cursor references must be resolved by the
+ * underlying functions.
+ */
+ dbp = dbc->dbp;
+
+ PANIC_CHECK(dbp->dbenv);
+
+ /* Check for invalid flags. */
+ if ((ret = __db_cdelchk(dbp, flags, IS_INITIALIZED(dbc))) != 0)
+ return (ret);
+
+ /* Check for consistent transaction usage. */
+ if ((ret = __db_check_txn(dbp, dbc->txn, dbc->locker, 0)) != 0)
+ return (ret);
+
+ DEBUG_LWRITE(dbc, dbc->txn, "db_c_del", NULL, NULL, flags);
+
+ CDB_LOCKING_INIT(dbp, dbc);
+
+ /*
+ * If we're a secondary index, and DB_UPDATE_SECONDARY isn't set
+ * (which it only is if we're being called from a primary update),
+ * then we need to call through to the primary and delete the item.
+ *
+ * Note that this will delete the current item; we don't need to
+ * delete it ourselves as well, so we can just goto done.
+ */
+ if (flags != DB_UPDATE_SECONDARY && F_ISSET(dbp, DB_AM_SECONDARY)) {
+ ret = __db_c_del_secondary(dbc);
+ goto done;
+ }
+
+ /*
+ * If we are a primary and have secondary indices, go through
+ * and delete any secondary keys that point at the current record.
+ */
+ if (LIST_FIRST(&dbp->s_secondaries) != NULL &&
+ (ret = __db_c_del_primary(dbc)) != 0)
+ goto done;
+
+ /*
+ * Off-page duplicate trees are locked in the primary tree, that is,
+ * we acquire a write lock in the primary tree and no locks in the
+ * off-page dup tree. If the del operation is done in an off-page
+ * duplicate tree, call the primary cursor's upgrade routine first.
+ */
+ opd = dbc->internal->opd;
+ if (opd == NULL)
+ ret = dbc->c_am_del(dbc);
+ else
+ if ((ret = dbc->c_am_writelock(dbc)) == 0)
+ ret = opd->c_am_del(opd);
+
+done: CDB_LOCKING_DONE(dbp, dbc);
+
+ return (ret);
+}
+
+/*
+ * __db_c_dup --
+ * Duplicate a cursor
+ *
+ * PUBLIC: int __db_c_dup __P((DBC *, DBC **, u_int32_t));
+ */
+int
+__db_c_dup(dbc_orig, dbcp, flags)
+ DBC *dbc_orig;
+ DBC **dbcp;
+ u_int32_t flags;
+{
+ DB_ENV *dbenv;
+ DB *dbp;
+ DBC *dbc_n, *dbc_nopd;
+ int ret;
+
+ dbp = dbc_orig->dbp;
+ dbenv = dbp->dbenv;
+ dbc_n = dbc_nopd = NULL;
+
+ PANIC_CHECK(dbp->dbenv);
+
+ /*
+ * We can never have two write cursors open in CDB, so do not
+ * allow duplication of a write cursor.
+ */
+ if (flags != DB_POSITIONI &&
+ F_ISSET(dbc_orig, DBC_WRITER | DBC_WRITECURSOR)) {
+ __db_err(dbenv, "Cannot duplicate writeable cursor");
+ return (EINVAL);
+ }
+
+ /* Allocate a new cursor and initialize it. */
+ if ((ret = __db_c_idup(dbc_orig, &dbc_n, flags)) != 0)
+ goto err;
+ *dbcp = dbc_n;
+
+ /*
+ * If we're in CDB, and this isn't an internal duplication (in which
+ * case we're explicitly overriding CDB locking), the duplicated
+ * cursor needs its own read lock. (We know it's not a write cursor
+ * because we wouldn't have made it this far; you can't dup them.)
+ */
+ if (CDB_LOCKING(dbenv) && flags != DB_POSITIONI) {
+ DB_ASSERT(!F_ISSET(dbc_orig, DBC_WRITER | DBC_WRITECURSOR));
+
+ if ((ret = dbenv->lock_get(dbenv, dbc_n->locker, 0,
+ &dbc_n->lock_dbt, DB_LOCK_READ, &dbc_n->mylock)) != 0) {
+ (void)__db_c_close(dbc_n);
+ return (ret);
+ }
+ }
+
+ /*
+ * If the cursor references an off-page duplicate tree, allocate a
+ * new cursor for that tree and initialize it.
+ */
+ if (dbc_orig->internal->opd != NULL) {
+ if ((ret =
+ __db_c_idup(dbc_orig->internal->opd, &dbc_nopd, flags)) != 0)
+ goto err;
+ dbc_n->internal->opd = dbc_nopd;
+ }
+
+ /* Copy the dirty read flag to the new cursor. */
+ F_SET(dbc_n, F_ISSET(dbc_orig, DBC_DIRTY_READ));
+ return (0);
+
+err: if (dbc_n != NULL)
+ (void)dbc_n->c_close(dbc_n);
+ if (dbc_nopd != NULL)
+ (void)dbc_nopd->c_close(dbc_nopd);
+
+ return (ret);
+}
+
+/*
+ * __db_c_idup --
+ * Internal version of __db_c_dup.
+ *
+ * PUBLIC: int __db_c_idup __P((DBC *, DBC **, u_int32_t));
+ */
+int
+__db_c_idup(dbc_orig, dbcp, flags)
+ DBC *dbc_orig, **dbcp;
+ u_int32_t flags;
+{
+ DB *dbp;
+ DBC *dbc_n;
+ DBC_INTERNAL *int_n, *int_orig;
+ int ret;
+
+ dbp = dbc_orig->dbp;
+ dbc_n = *dbcp;
+
+ if ((ret = __db_icursor(dbp, dbc_orig->txn, dbc_orig->dbtype,
+ dbc_orig->internal->root, F_ISSET(dbc_orig, DBC_OPD),
+ dbc_orig->locker, &dbc_n)) != 0)
+ return (ret);
+
+ /* If the user wants the cursor positioned, do it here. */
+ if (flags == DB_POSITION || flags == DB_POSITIONI) {
+ int_n = dbc_n->internal;
+ int_orig = dbc_orig->internal;
+
+ dbc_n->flags |= dbc_orig->flags & ~DBC_OWN_LID;
+
+ int_n->indx = int_orig->indx;
+ int_n->pgno = int_orig->pgno;
+ int_n->root = int_orig->root;
+ int_n->lock_mode = int_orig->lock_mode;
+
+ switch (dbc_orig->dbtype) {
+ case DB_QUEUE:
+ if ((ret = __qam_c_dup(dbc_orig, dbc_n)) != 0)
+ goto err;
+ break;
+ case DB_BTREE:
+ case DB_RECNO:
+ if ((ret = __bam_c_dup(dbc_orig, dbc_n)) != 0)
+ goto err;
+ break;
+ case DB_HASH:
+ if ((ret = __ham_c_dup(dbc_orig, dbc_n)) != 0)
+ goto err;
+ break;
+ default:
+ ret = __db_unknown_type(dbp->dbenv,
+ "__db_c_idup", dbc_orig->dbtype);
+ goto err;
+ }
+ }
+
+ /* Now take care of duping the CDB information. */
+ CDB_LOCKING_COPY(dbp, dbc_orig, dbc_n);
+
+ /* Copy the dirty read flag to the new cursor. */
+ F_SET(dbc_n, F_ISSET(dbc_orig, DBC_DIRTY_READ));
+
+ *dbcp = dbc_n;
+ return (0);
+
+err: (void)dbc_n->c_close(dbc_n);
+ return (ret);
+}
+
+/*
+ * __db_c_newopd --
+ * Create a new off-page duplicate cursor.
+ *
+ * PUBLIC: int __db_c_newopd __P((DBC *, db_pgno_t, DBC *, DBC **));
+ */
+int
+__db_c_newopd(dbc_parent, root, oldopd, dbcp)
+ DBC *dbc_parent;
+ db_pgno_t root;
+ DBC *oldopd;
+ DBC **dbcp;
+{
+ DB *dbp;
+ DBC *opd;
+ DBTYPE dbtype;
+ int ret;
+
+ dbp = dbc_parent->dbp;
+ dbtype = (dbp->dup_compare == NULL) ? DB_RECNO : DB_BTREE;
+
+ /*
+ * On failure, we want to default to returning the old off-page dup
+ * cursor, if any; our caller can't be left with a dangling pointer
+ * to a freed cursor. On error the only allowable behavior is to
+ * close the cursor (and the old OPD cursor it in turn points to), so
+ * this should be safe.
+ */
+ *dbcp = oldopd;
+
+ if ((ret = __db_icursor(dbp,
+ dbc_parent->txn, dbtype, root, 1, dbc_parent->locker, &opd)) != 0)
+ return (ret);
+
+ /* !!!
+ * If the parent is a DBC_WRITER, this won't copy anything. That's
+ * not actually a problem--we only need lock information in an
+ * off-page dup cursor in order to upgrade at cursor close time
+ * if we've done a delete, but WRITERs don't need to upgrade.
+ */
+ CDB_LOCKING_COPY(dbp, dbc_parent, opd);
+
+ *dbcp = opd;
+
+ /*
+ * Check to see if we already have an off-page dup cursor that we've
+ * passed in. If we do, close it. It'd be nice to use it again
+ * if it's a cursor belonging to the right tree, but if we're doing
+ * a cursor-relative operation this might not be safe, so for now
+ * we'll take the easy way out and always close and reopen.
+ *
+ * Note that under no circumstances do we want to close the old
+ * cursor without returning a valid new one; we don't want to
+ * leave the main cursor in our caller with a non-NULL pointer
+ * to a freed off-page dup cursor.
+ */
+ if (oldopd != NULL && (ret = oldopd->c_close(oldopd)) != 0)
+ return (ret);
+
+ return (0);
+}
+
+/*
+ * __db_c_get --
+ * Get using a cursor.
+ *
+ * PUBLIC: int __db_c_get __P((DBC *, DBT *, DBT *, u_int32_t));
+ */
+int
+__db_c_get(dbc_arg, key, data, flags)
+ DBC *dbc_arg;
+ DBT *key, *data;
+ u_int32_t flags;
+{
+ DB *dbp;
+ DBC *dbc, *dbc_n, *opd;
+ DBC_INTERNAL *cp, *cp_n;
+ DB_MPOOLFILE *mpf;
+ db_pgno_t pgno;
+ u_int32_t multi, tmp_dirty, tmp_flags, tmp_rmw;
+ u_int8_t type;
+ int ret, t_ret;
+
+ /*
+ * Cursor Cleanup Note:
+ * All of the cursors passed to the underlying access methods by this
+ * routine are duplicated cursors. On return, any referenced pages
+ * will be discarded, and, if the cursor is not intended to be used
+ * again, the close function will be called. So, pages/locks that
+ * the cursor references do not need to be resolved by the underlying
+ * functions.
+ */
+ dbp = dbc_arg->dbp;
+ mpf = dbp->mpf;
+ dbc_n = NULL;
+ opd = NULL;
+
+ PANIC_CHECK(dbp->dbenv);
+
+ /* Check for invalid flags. */
+ if ((ret =
+ __db_cgetchk(dbp, key, data, flags, IS_INITIALIZED(dbc_arg))) != 0)
+ return (ret);
+
+ /* Clear OR'd in additional bits so we can check for flag equality. */
+ tmp_rmw = LF_ISSET(DB_RMW);
+ LF_CLR(DB_RMW);
+
+ tmp_dirty = LF_ISSET(DB_DIRTY_READ);
+ LF_CLR(DB_DIRTY_READ);
+
+ multi = LF_ISSET(DB_MULTIPLE|DB_MULTIPLE_KEY);
+ LF_CLR(DB_MULTIPLE|DB_MULTIPLE_KEY);
+
+ DEBUG_LREAD(dbc_arg, dbc_arg->txn, "db_c_get",
+ flags == DB_SET || flags == DB_SET_RANGE ? key : NULL, NULL, flags);
+
+ /*
+ * Return a cursor's record number. It has nothing to do with the
+ * cursor get code except that it was put into the interface.
+ */
+ if (flags == DB_GET_RECNO) {
+ if (tmp_rmw)
+ F_SET(dbc_arg, DBC_RMW);
+ if (tmp_dirty)
+ F_SET(dbc_arg, DBC_DIRTY_READ);
+ ret = __bam_c_rget(dbc_arg, data);
+ if (tmp_rmw)
+ F_CLR(dbc_arg, DBC_RMW);
+ if (tmp_dirty)
+ F_CLR(dbc_arg, DBC_DIRTY_READ);
+ return (ret);
+ }
+
+ if (flags == DB_CONSUME || flags == DB_CONSUME_WAIT)
+ CDB_LOCKING_INIT(dbp, dbc_arg);
+
+ /*
+ * If we have an off-page duplicates cursor, and the operation applies
+ * to it, perform the operation. Duplicate the cursor and call the
+ * underlying function.
+ *
+ * Off-page duplicate trees are locked in the primary tree, that is,
+ * we acquire a write lock in the primary tree and no locks in the
+ * off-page dup tree. If the DB_RMW flag was specified and the get
+ * operation is done in an off-page duplicate tree, call the primary
+ * cursor's upgrade routine first.
+ */
+ cp = dbc_arg->internal;
+ if (cp->opd != NULL &&
+ (flags == DB_CURRENT || flags == DB_GET_BOTHC ||
+ flags == DB_NEXT || flags == DB_NEXT_DUP || flags == DB_PREV)) {
+ if (tmp_rmw && (ret = dbc_arg->c_am_writelock(dbc_arg)) != 0)
+ return (ret);
+ if ((ret = __db_c_idup(cp->opd, &opd, DB_POSITIONI)) != 0)
+ return (ret);
+
+ switch (ret =
+ opd->c_am_get(opd, key, data, flags, NULL)) {
+ case 0:
+ goto done;
+ case DB_NOTFOUND:
+ /*
+ * Translate DB_NOTFOUND failures for the DB_NEXT and
+ * DB_PREV operations into a subsequent operation on
+ * the parent cursor.
+ */
+ if (flags == DB_NEXT || flags == DB_PREV) {
+ if ((ret = opd->c_close(opd)) != 0)
+ goto err;
+ opd = NULL;
+ break;
+ }
+ goto err;
+ default:
+ goto err;
+ }
+ }
+
+ /*
+ * Perform an operation on the main cursor. Duplicate the cursor,
+ * upgrade the lock as required, and call the underlying function.
+ */
+ switch (flags) {
+ case DB_CURRENT:
+ case DB_GET_BOTHC:
+ case DB_NEXT:
+ case DB_NEXT_DUP:
+ case DB_NEXT_NODUP:
+ case DB_PREV:
+ case DB_PREV_NODUP:
+ tmp_flags = DB_POSITIONI;
+ break;
+ default:
+ tmp_flags = 0;
+ break;
+ }
+
+ if (tmp_dirty)
+ F_SET(dbc_arg, DBC_DIRTY_READ);
+
+ /*
+ * If this cursor is going to be closed immediately, we don't
+ * need to take precautions to clean it up on error.
+ */
+ if (F_ISSET(dbc_arg, DBC_TRANSIENT))
+ dbc_n = dbc_arg;
+ else {
+ ret = __db_c_idup(dbc_arg, &dbc_n, tmp_flags);
+ if (tmp_dirty)
+ F_CLR(dbc_arg, DBC_DIRTY_READ);
+
+ if (ret != 0)
+ goto err;
+ COPY_RET_MEM(dbc_arg, dbc_n);
+ }
+
+ if (tmp_rmw)
+ F_SET(dbc_n, DBC_RMW);
+
+ switch (multi) {
+ case DB_MULTIPLE:
+ F_SET(dbc_n, DBC_MULTIPLE);
+ break;
+ case DB_MULTIPLE_KEY:
+ F_SET(dbc_n, DBC_MULTIPLE_KEY);
+ break;
+ case DB_MULTIPLE | DB_MULTIPLE_KEY:
+ F_SET(dbc_n, DBC_MULTIPLE|DBC_MULTIPLE_KEY);
+ break;
+ case 0:
+ break;
+ }
+
+ pgno = PGNO_INVALID;
+ ret = dbc_n->c_am_get(dbc_n, key, data, flags, &pgno);
+ if (tmp_rmw)
+ F_CLR(dbc_n, DBC_RMW);
+ if (tmp_dirty)
+ F_CLR(dbc_arg, DBC_DIRTY_READ);
+ F_CLR(dbc_n, DBC_MULTIPLE|DBC_MULTIPLE_KEY);
+ if (ret != 0)
+ goto err;
+
+ cp_n = dbc_n->internal;
+
+ /*
+ * We may be referencing a new off-page duplicates tree. Acquire
+ * a new cursor and call the underlying function.
+ */
+ if (pgno != PGNO_INVALID) {
+ if ((ret = __db_c_newopd(dbc_arg,
+ pgno, cp_n->opd, &cp_n->opd)) != 0)
+ goto err;
+
+ switch (flags) {
+ case DB_FIRST:
+ case DB_NEXT:
+ case DB_NEXT_NODUP:
+ case DB_SET:
+ case DB_SET_RECNO:
+ case DB_SET_RANGE:
+ tmp_flags = DB_FIRST;
+ break;
+ case DB_LAST:
+ case DB_PREV:
+ case DB_PREV_NODUP:
+ tmp_flags = DB_LAST;
+ break;
+ case DB_GET_BOTH:
+ case DB_GET_BOTHC:
+ case DB_GET_BOTH_RANGE:
+ tmp_flags = flags;
+ break;
+ default:
+ ret =
+ __db_unknown_flag(dbp->dbenv, "__db_c_get", flags);
+ goto err;
+ }
+ if ((ret = cp_n->opd->c_am_get(
+ cp_n->opd, key, data, tmp_flags, NULL)) != 0)
+ goto err;
+ }
+
+done: /*
+ * Return a key/data item. The only exception is that we don't return
+ * a key if the user already gave us one, that is, if the DB_SET flag
+ * was set. The DB_SET flag is necessary. In a Btree, the user's key
+ * doesn't have to be the same as the key stored the tree, depending on
+ * the magic performed by the comparison function. As we may not have
+ * done any key-oriented operation here, the page reference may not be
+ * valid. Fill it in as necessary. We don't have to worry about any
+ * locks, the cursor must already be holding appropriate locks.
+ *
+ * XXX
+ * If not a Btree and DB_SET_RANGE is set, we shouldn't return a key
+ * either, should we?
+ */
+ cp_n = dbc_n == NULL ? dbc_arg->internal : dbc_n->internal;
+ if (!F_ISSET(key, DB_DBT_ISSET)) {
+ if (cp_n->page == NULL && (ret =
+ mpf->get(mpf, &cp_n->pgno, 0, &cp_n->page)) != 0)
+ goto err;
+
+ if ((ret = __db_ret(dbp, cp_n->page, cp_n->indx,
+ key, &dbc_arg->rkey->data, &dbc_arg->rkey->ulen)) != 0)
+ goto err;
+ }
+ if (multi != 0) {
+ /*
+ * Even if fetching from the OPD cursor we need a duplicate
+ * primary cursor if we are going after multiple keys.
+ */
+ if (dbc_n == NULL) {
+ /*
+ * Non-"_KEY" DB_MULTIPLE doesn't move the main cursor,
+ * so it's safe to just use dbc_arg, unless dbc_arg
+ * has an open OPD cursor whose state might need to
+ * be preserved.
+ */
+ if ((!(multi & DB_MULTIPLE_KEY) &&
+ dbc_arg->internal->opd == NULL) ||
+ F_ISSET(dbc_arg, DBC_TRANSIENT))
+ dbc_n = dbc_arg;
+ else {
+ if ((ret = __db_c_idup(dbc_arg,
+ &dbc_n, DB_POSITIONI)) != 0)
+ goto err;
+ if ((ret = dbc_n->c_am_get(dbc_n,
+ key, data, DB_CURRENT, &pgno)) != 0)
+ goto err;
+ }
+ cp_n = dbc_n->internal;
+ }
+
+ /*
+ * If opd is set then we dupped the opd that we came in with.
+ * When we return we may have a new opd if we went to another
+ * key.
+ */
+ if (opd != NULL) {
+ DB_ASSERT(cp_n->opd == NULL);
+ cp_n->opd = opd;
+ opd = NULL;
+ }
+
+ /*
+ * Bulk get doesn't use __db_retcopy, so data.size won't
+ * get set up unless there is an error. Assume success
+ * here. This is the only call to c_am_bulk, and it avoids
+ * setting it exactly the same everywhere. If we have an
+ * ENOMEM error, it'll get overwritten with the needed value.
+ */
+ data->size = data->ulen;
+ ret = dbc_n->c_am_bulk(dbc_n, data, flags | multi);
+ } else if (!F_ISSET(data, DB_DBT_ISSET)) {
+ dbc = opd != NULL ? opd : cp_n->opd != NULL ? cp_n->opd : dbc_n;
+ type = TYPE(dbc->internal->page);
+ ret = __db_ret(dbp, dbc->internal->page, dbc->internal->indx +
+ (type == P_LBTREE || type == P_HASH ? O_INDX : 0),
+ data, &dbc_arg->rdata->data, &dbc_arg->rdata->ulen);
+ }
+
+err: /* Don't pass DB_DBT_ISSET back to application level, error or no. */
+ F_CLR(key, DB_DBT_ISSET);
+ F_CLR(data, DB_DBT_ISSET);
+
+ /* Cleanup and cursor resolution. */
+ if (opd != NULL) {
+ if ((t_ret = __db_c_cleanup(
+ dbc_arg->internal->opd, opd, ret)) != 0 && ret == 0)
+ ret = t_ret;
+
+ }
+
+ if ((t_ret = __db_c_cleanup(dbc_arg, dbc_n, ret)) != 0 && ret == 0)
+ ret = t_ret;
+
+ if (flags == DB_CONSUME || flags == DB_CONSUME_WAIT)
+ CDB_LOCKING_DONE(dbp, dbc_arg);
+ return (ret);
+}
+
+/*
+ * __db_c_put --
+ * Put using a cursor.
+ *
+ * PUBLIC: int __db_c_put __P((DBC *, DBT *, DBT *, u_int32_t));
+ */
+int
+__db_c_put(dbc_arg, key, data, flags)
+ DBC *dbc_arg;
+ DBT *key, *data;
+ u_int32_t flags;
+{
+ DB *dbp, *sdbp;
+ DBC *dbc_n, *oldopd, *opd, *sdbc, *pdbc;
+ DBT olddata, oldpkey, oldskey, newdata, pkey, save_skey, skey, temp;
+ db_pgno_t pgno;
+ int cmp, have_oldrec, ispartial, nodel, re_pad, ret, rmw, t_ret;
+ u_int32_t re_len, size, tmp_flags;
+
+ /*
+ * Cursor Cleanup Note:
+ * All of the cursors passed to the underlying access methods by this
+ * routine are duplicated cursors. On return, any referenced pages
+ * will be discarded, and, if the cursor is not intended to be used
+ * again, the close function will be called. So, pages/locks that
+ * the cursor references do not need to be resolved by the underlying
+ * functions.
+ */
+ dbp = dbc_arg->dbp;
+ sdbp = NULL;
+ pdbc = dbc_n = NULL;
+ memset(&newdata, 0, sizeof(DBT));
+
+ PANIC_CHECK(dbp->dbenv);
+
+ /* Check for invalid flags. */
+ if ((ret = __db_cputchk(dbp,
+ key, data, flags, IS_INITIALIZED(dbc_arg))) != 0)
+ return (ret);
+
+ /* Check for consistent transaction usage. */
+ if ((ret = __db_check_txn(dbp, dbc_arg->txn, dbc_arg->locker, 0)) != 0)
+ return (ret);
+
+ /*
+ * Putting to secondary indices is forbidden; when we need
+ * to internally update one, we'll call this with a private
+ * synonym for DB_KEYLAST, DB_UPDATE_SECONDARY, which does
+ * the right thing but won't return an error from cputchk().
+ */
+ if (flags == DB_UPDATE_SECONDARY)
+ flags = DB_KEYLAST;
+
+ DEBUG_LWRITE(dbc_arg, dbc_arg->txn, "db_c_put",
+ flags == DB_KEYFIRST || flags == DB_KEYLAST ||
+ flags == DB_NODUPDATA ? key : NULL, data, flags);
+
+ CDB_LOCKING_INIT(dbp, dbc_arg);
+
+ /*
+ * Check to see if we are a primary and have secondary indices.
+ * If we are not, we save ourselves a good bit of trouble and
+ * just skip to the "normal" put.
+ */
+ if (LIST_FIRST(&dbp->s_secondaries) == NULL)
+ goto skip_s_update;
+
+ /*
+ * We have at least one secondary which we may need to update.
+ *
+ * There is a rather vile locking issue here. Secondary gets
+ * will always involve acquiring a read lock in the secondary,
+ * then acquiring a read lock in the primary. Ideally, we
+ * would likewise perform puts by updating all the secondaries
+ * first, then doing the actual put in the primary, to avoid
+ * deadlock (since having multiple threads doing secondary
+ * gets and puts simultaneously is probably a common case).
+ *
+ * However, if this put is a put-overwrite--and we have no way to
+ * tell in advance whether it will be--we may need to delete
+ * an outdated secondary key. In order to find that old
+ * secondary key, we need to get the record we're overwriting,
+ * before we overwrite it.
+ *
+ * (XXX: It would be nice to avoid this extra get, and have the
+ * underlying put routines somehow pass us the old record
+ * since they need to traverse the tree anyway. I'm saving
+ * this optimization for later, as it's a lot of work, and it
+ * would be hard to fit into this locking paradigm anyway.)
+ *
+ * The simple thing to do would be to go get the old record before
+ * we do anything else. Unfortunately, though, doing so would
+ * violate our "secondary, then primary" lock acquisition
+ * ordering--even in the common case where no old primary record
+ * exists, we'll still acquire and keep a lock on the page where
+ * we're about to do the primary insert.
+ *
+ * To get around this, we do the following gyrations, which
+ * hopefully solve this problem in the common case:
+ *
+ * 1) If this is a c_put(DB_CURRENT), go ahead and get the
+ * old record. We already hold the lock on this page in
+ * the primary, so no harm done, and we'll need the primary
+ * key (which we weren't passed in this case) to do any
+ * secondary puts anyway.
+ *
+ * 2) If we're doing a partial put, we need to perform the
+ * get on the primary key right away, since we don't have
+ * the whole datum that the secondary key is based on.
+ * We may also need to pad out the record if the primary
+ * has a fixed record length.
+ *
+ * 3) Loop through the secondary indices, putting into each a
+ * new secondary key that corresponds to the new record.
+ *
+ * 4) If we haven't done so in (1) or (2), get the old primary
+ * key/data pair. If one does not exist--the common case--we're
+ * done with secondary indices, and can go straight on to the
+ * primary put.
+ *
+ * 5) If we do have an old primary key/data pair, however, we need
+ * to loop through all the secondaries a second time and delete
+ * the old secondary in each.
+ */
+ memset(&pkey, 0, sizeof(DBT));
+ memset(&olddata, 0, sizeof(DBT));
+ have_oldrec = nodel = 0;
+
+ /*
+ * Primary indices can't have duplicates, so only DB_CURRENT,
+ * DB_KEYFIRST, and DB_KEYLAST make any sense. Other flags
+ * should have been caught by the checking routine, but
+ * add a sprinkling of paranoia.
+ */
+ DB_ASSERT(flags == DB_CURRENT ||
+ flags == DB_KEYFIRST || flags == DB_KEYLAST);
+
+ /*
+ * We'll want to use DB_RMW in a few places, but it's only legal
+ * when locking is on.
+ */
+ rmw = STD_LOCKING(dbc_arg) ? DB_RMW : 0;
+
+ if (flags == DB_CURRENT) { /* Step 1. */
+ /*
+ * This is safe to do on the cursor we already have;
+ * error or no, it won't move.
+ *
+ * We use DB_RMW for all of these gets because we'll be
+ * writing soon enough in the "normal" put code. In
+ * transactional databases we'll hold those write locks
+ * even if we close the cursor we're reading with.
+ */
+ ret = dbc_arg->c_get(dbc_arg,
+ &pkey, &olddata, rmw | DB_CURRENT);
+ if (ret == DB_KEYEMPTY) {
+ nodel = 1; /*
+ * We know we don't need a delete
+ * in the secondary.
+ */
+ have_oldrec = 1; /* We've looked for the old record. */
+ } else if (ret != 0)
+ goto err;
+ else
+ have_oldrec = 1;
+
+ } else {
+ /* So we can just use &pkey everywhere instead of key. */
+ pkey.data = key->data;
+ pkey.size = key->size;
+ }
+
+ /*
+ * Check for partial puts (step 2).
+ */
+ if (F_ISSET(data, DB_DBT_PARTIAL)) {
+ if (!have_oldrec && !nodel) {
+ /*
+ * We're going to have to search the tree for the
+ * specified key. Dup a cursor (so we have the same
+ * locking info) and do a c_get.
+ */
+ if ((ret = __db_c_idup(dbc_arg, &pdbc, 0)) != 0)
+ goto err;
+
+ /* We should have gotten DB_CURRENT in step 1. */
+ DB_ASSERT(flags != DB_CURRENT);
+
+ ret = pdbc->c_get(pdbc,
+ &pkey, &olddata, rmw | DB_SET);
+ if (ret == DB_KEYEMPTY || ret == DB_NOTFOUND) {
+ nodel = 1;
+ ret = 0;
+ }
+ if ((t_ret = pdbc->c_close(pdbc)) != 0)
+ ret = t_ret;
+ if (ret != 0)
+ goto err;
+
+ have_oldrec = 1;
+ }
+
+ /*
+ * Now build the new datum from olddata and the partial
+ * data we were given.
+ */
+ if ((ret =
+ __db_buildpartial(dbp, &olddata, data, &newdata)) != 0)
+ goto err;
+ ispartial = 1;
+ } else
+ ispartial = 0;
+
+ /*
+ * Handle fixed-length records. If the primary database has
+ * fixed-length records, we need to pad out the datum before
+ * we pass it into the callback function; we always index the
+ * "real" record.
+ */
+ if ((dbp->type == DB_RECNO && F_ISSET(dbp, DB_AM_FIXEDLEN)) ||
+ (dbp->type == DB_QUEUE)) {
+ if (dbp->type == DB_QUEUE) {
+ re_len = ((QUEUE *)dbp->q_internal)->re_len;
+ re_pad = ((QUEUE *)dbp->q_internal)->re_pad;
+ } else {
+ re_len = ((BTREE *)dbp->bt_internal)->re_len;
+ re_pad = ((BTREE *)dbp->bt_internal)->re_pad;
+ }
+
+ size = ispartial ? newdata.size : data->size;
+ if (size > re_len) {
+ __db_err(dbp->dbenv,
+ "Length improper for fixed length record %lu",
+ (u_long)size);
+ ret = EINVAL;
+ goto err;
+ } else if (size < re_len) {
+ /*
+ * If we're not doing a partial put, copy
+ * data->data into newdata.data, then pad out
+ * newdata.data.
+ *
+ * If we're doing a partial put, the data
+ * we want are already in newdata.data; we
+ * just need to pad.
+ *
+ * Either way, realloc is safe.
+ */
+ if ((ret = __os_realloc(dbp->dbenv, re_len,
+ &newdata.data)) != 0)
+ goto err;
+ if (!ispartial)
+ memcpy(newdata.data, data->data, size);
+ memset((u_int8_t *)newdata.data + size, re_pad,
+ re_len - size);
+ newdata.size = re_len;
+ ispartial = 1;
+ }
+ }
+
+ /*
+ * Loop through the secondaries. (Step 3.)
+ *
+ * Note that __db_s_first and __db_s_next will take care of
+ * thread-locking and refcounting issues.
+ */
+ for (sdbp = __db_s_first(dbp);
+ sdbp != NULL && ret == 0; ret = __db_s_next(&sdbp)) {
+ /*
+ * Call the callback for this secondary, to get the
+ * appropriate secondary key.
+ */
+ memset(&skey, 0, sizeof(DBT));
+ if ((ret = sdbp->s_callback(sdbp,
+ &pkey, ispartial ? &newdata : data, &skey)) != 0) {
+ if (ret == DB_DONOTINDEX)
+ /*
+ * The callback returned a null value--don't
+ * put this key in the secondary. Just
+ * move on to the next one--we'll handle
+ * any necessary deletes in step 5.
+ */
+ continue;
+ else
+ goto err;
+ }
+
+ /*
+ * Save the DBT we just got back from the callback function
+ * off; we want to pass its value into c_get functions
+ * that may stomp on a buffer the callback function
+ * allocated.
+ */
+ memset(&save_skey, 0, sizeof(DBT)); /* Paranoia. */
+ save_skey = skey;
+
+ /*
+ * Open a cursor in this secondary.
+ *
+ * Use the same locker ID as our primary cursor, so that
+ * we're guaranteed that the locks don't conflict (e.g. in CDB
+ * or if we're subdatabases that share and want to lock a
+ * metadata page).
+ */
+ if ((ret = __db_icursor(sdbp, dbc_arg->txn, sdbp->type,
+ PGNO_INVALID, 0, dbc_arg->locker, &sdbc)) != 0)
+ goto err;
+
+ /*
+ * If we're in CDB, updates will fail since the new cursor
+ * isn't a writer. However, we hold the WRITE lock in the
+ * primary and will for as long as our new cursor lasts,
+ * and the primary and secondary share a lock file ID,
+ * so it's safe to consider this a WRITER. The close
+ * routine won't try to put anything because we don't
+ * really have a lock.
+ */
+ if (CDB_LOCKING(sdbp->dbenv)) {
+ DB_ASSERT(sdbc->mylock.off == LOCK_INVALID);
+ F_SET(sdbc, DBC_WRITER);
+ }
+
+ /*
+ * There are three cases here--
+ * 1) The secondary supports sorted duplicates.
+ * If we attempt to put a secondary/primary pair
+ * that already exists, that's a duplicate duplicate,
+ * and c_put will return DB_KEYEXIST (see __db_duperr).
+ * This will leave us with exactly one copy of the
+ * secondary/primary pair, and this is just right--we'll
+ * avoid deleting it later, as the old and new secondaries
+ * will match (since the old secondary is the dup dup
+ * that's already there).
+ * 2) The secondary supports duplicates, but they're not
+ * sorted. We need to avoid putting a duplicate
+ * duplicate, because the matching old and new secondaries
+ * will prevent us from deleting anything and we'll
+ * wind up with two secondary records that point to the
+ * same primary key. Do a c_get(DB_GET_BOTH); if
+ * that returns 0, skip the put.
+ * 3) The secondary doesn't support duplicates at all.
+ * In this case, secondary keys must be unique; if
+ * another primary key already exists for this
+ * secondary key, we have to either overwrite it or
+ * not put this one, and in either case we've
+ * corrupted the secondary index. Do a c_get(DB_SET).
+ * If the secondary/primary pair already exists, do
+ * nothing; if the secondary exists with a different
+ * primary, return an error; and if the secondary
+ * does not exist, put it.
+ */
+ if (!F_ISSET(sdbp, DB_AM_DUP)) {
+ /* Case 3. */
+ memset(&oldpkey, 0, sizeof(DBT));
+ F_SET(&oldpkey, DB_DBT_MALLOC);
+ ret = sdbc->c_real_get(sdbc,
+ &skey, &oldpkey, rmw | DB_SET);
+ if (ret == 0) {
+ cmp = __bam_defcmp(sdbp, &oldpkey, &pkey);
+ __os_ufree(sdbp->dbenv, oldpkey.data);
+ if (cmp != 0) {
+ __db_err(sdbp->dbenv, "%s%s",
+ "Put results in a non-unique secondary key in an ",
+ "index not configured to support duplicates");
+ ret = EINVAL;
+ goto skipput;
+ }
+ } else if (ret != DB_NOTFOUND && ret != DB_KEYEMPTY)
+ goto skipput;
+ } else if (!F_ISSET(sdbp, DB_AM_DUPSORT))
+ /* Case 2. */
+ if ((ret = sdbc->c_real_get(sdbc,
+ &skey, &pkey, rmw | DB_GET_BOTH)) == 0)
+ goto skipput;
+
+ ret = sdbc->c_put(sdbc, &skey, &pkey, DB_UPDATE_SECONDARY);
+
+ /*
+ * We don't know yet whether this was a put-overwrite that
+ * in fact changed nothing. If it was, we may get DB_KEYEXIST.
+ * This is not an error.
+ */
+ if (ret == DB_KEYEXIST)
+ ret = 0;
+
+skipput: FREE_IF_NEEDED(sdbp, &save_skey)
+
+ if ((t_ret = sdbc->c_close(sdbc)) != 0)
+ ret = t_ret;
+
+ if (ret != 0)
+ goto err;
+ }
+ if (ret != 0)
+ goto err;
+
+ /* If still necessary, go get the old primary key/data. (Step 4.) */
+ if (!have_oldrec) {
+ /* See the comments in step 2. This is real familiar. */
+ if ((ret = __db_c_idup(dbc_arg, &pdbc, 0)) != 0)
+ goto err;
+ DB_ASSERT(flags != DB_CURRENT);
+ pkey.data = key->data;
+ pkey.size = key->size;
+ ret = pdbc->c_get(pdbc, &pkey, &olddata, rmw | DB_SET);
+ if (ret == DB_KEYEMPTY || ret == DB_NOTFOUND) {
+ nodel = 1;
+ ret = 0;
+ }
+ if ((t_ret = pdbc->c_close(pdbc)) != 0)
+ ret = t_ret;
+ if (ret != 0)
+ goto err;
+ have_oldrec = 1;
+ }
+
+ /*
+ * If we don't follow this goto, we do in fact have an old record
+ * we may need to go delete. (Step 5).
+ */
+ if (nodel)
+ goto skip_s_update;
+
+ for (sdbp = __db_s_first(dbp);
+ sdbp != NULL && ret == 0; ret = __db_s_next(&sdbp)) {
+ /*
+ * Call the callback for this secondary to get the
+ * old secondary key.
+ */
+ memset(&oldskey, 0, sizeof(DBT));
+ if ((ret = sdbp->s_callback(sdbp,
+ &pkey, &olddata, &oldskey)) != 0) {
+ if (ret == DB_DONOTINDEX)
+ /*
+ * The callback returned a null value--there's
+ * nothing to delete. Go on to the next
+ * secondary.
+ */
+ continue;
+ else
+ goto err;
+ }
+ if ((ret = sdbp->s_callback(sdbp,
+ &pkey, ispartial ? &newdata : data, &skey)) != 0 &&
+ ret != DB_DONOTINDEX)
+ goto err;
+
+ /*
+ * If there is no new secondary key, or if the old secondary
+ * key is different from the new secondary key, then
+ * we need to delete the old one.
+ *
+ * Note that bt_compare is (and must be) set no matter
+ * what access method we're in.
+ */
+ sdbc = NULL;
+ if (ret == DB_DONOTINDEX ||
+ ((BTREE *)sdbp->bt_internal)->bt_compare(sdbp,
+ &oldskey, &skey) != 0) {
+ if ((ret = __db_icursor(sdbp, dbc_arg->txn, sdbp->type,
+ PGNO_INVALID, 0, dbc_arg->locker, &sdbc)) != 0)
+ goto err;
+ if (CDB_LOCKING(sdbp->dbenv)) {
+ DB_ASSERT(sdbc->mylock.off == LOCK_INVALID);
+ F_SET(sdbc, DBC_WRITER);
+ }
+
+ /*
+ * Don't let c_get(DB_GET_BOTH) stomp on
+ * any secondary key value that the callback
+ * function may have allocated. Use a temp
+ * DBT instead.
+ */
+ memset(&temp, 0, sizeof(DBT));
+ temp.data = oldskey.data;
+ temp.size = oldskey.size;
+ if ((ret = sdbc->c_real_get(sdbc,
+ &temp, &pkey, rmw | DB_GET_BOTH)) == 0)
+ ret = sdbc->c_del(sdbc, DB_UPDATE_SECONDARY);
+ }
+
+ FREE_IF_NEEDED(sdbp, &skey);
+ FREE_IF_NEEDED(sdbp, &oldskey);
+ if (sdbc != NULL && (t_ret = sdbc->c_close(sdbc)) != 0)
+ ret = t_ret;
+ if (ret != 0)
+ goto err;
+ }
+
+ /* Secondary index updates are now done. On to the "real" stuff. */
+
+skip_s_update:
+ /*
+ * If we have an off-page duplicates cursor, and the operation applies
+ * to it, perform the operation. Duplicate the cursor and call the
+ * underlying function.
+ *
+ * Off-page duplicate trees are locked in the primary tree, that is,
+ * we acquire a write lock in the primary tree and no locks in the
+ * off-page dup tree. If the put operation is done in an off-page
+ * duplicate tree, call the primary cursor's upgrade routine first.
+ */
+ if (dbc_arg->internal->opd != NULL &&
+ (flags == DB_AFTER || flags == DB_BEFORE || flags == DB_CURRENT)) {
+ /*
+ * A special case for hash off-page duplicates. Hash doesn't
+ * support (and is documented not to support) put operations
+ * relative to a cursor which references an already deleted
+ * item. For consistency, apply the same criteria to off-page
+ * duplicates as well.
+ */
+ if (dbc_arg->dbtype == DB_HASH && F_ISSET(
+ ((BTREE_CURSOR *)(dbc_arg->internal->opd->internal)),
+ C_DELETED)) {
+ ret = DB_NOTFOUND;
+ goto err;
+ }
+
+ if ((ret = dbc_arg->c_am_writelock(dbc_arg)) != 0)
+ return (ret);
+ if ((ret = __db_c_dup(dbc_arg, &dbc_n, DB_POSITIONI)) != 0)
+ goto err;
+ opd = dbc_n->internal->opd;
+ if ((ret = opd->c_am_put(
+ opd, key, data, flags, NULL)) != 0)
+ goto err;
+ goto done;
+ }
+
+ /*
+ * Perform an operation on the main cursor. Duplicate the cursor,
+ * and call the underlying function.
+ *
+ * XXX: MARGO
+ *
+ tmp_flags = flags == DB_AFTER ||
+ flags == DB_BEFORE || flags == DB_CURRENT ? DB_POSITIONI : 0;
+ */
+ tmp_flags = DB_POSITIONI;
+
+ /*
+ * If this cursor is going to be closed immediately, we don't
+ * need to take precautions to clean it up on error.
+ */
+ if (F_ISSET(dbc_arg, DBC_TRANSIENT))
+ dbc_n = dbc_arg;
+ else if ((ret = __db_c_idup(dbc_arg, &dbc_n, tmp_flags)) != 0)
+ goto err;
+
+ pgno = PGNO_INVALID;
+ if ((ret = dbc_n->c_am_put(dbc_n, key, data, flags, &pgno)) != 0)
+ goto err;
+
+ /*
+ * We may be referencing a new off-page duplicates tree. Acquire
+ * a new cursor and call the underlying function.
+ */
+ if (pgno != PGNO_INVALID) {
+ oldopd = dbc_n->internal->opd;
+ if ((ret = __db_c_newopd(dbc_arg, pgno, oldopd, &opd)) != 0) {
+ dbc_n->internal->opd = opd;
+ goto err;
+ }
+
+ dbc_n->internal->opd = opd;
+
+ if ((ret = opd->c_am_put(
+ opd, key, data, flags, NULL)) != 0)
+ goto err;
+ }
+
+done:
+err: /* Cleanup and cursor resolution. */
+ if ((t_ret = __db_c_cleanup(dbc_arg, dbc_n, ret)) != 0 && ret == 0)
+ ret = t_ret;
+
+ /* If newdata was used, free its buffer. */
+ if (newdata.data != NULL)
+ __os_free(dbp->dbenv, newdata.data);
+
+ CDB_LOCKING_DONE(dbp, dbc_arg);
+
+ if (sdbp != NULL && (t_ret = __db_s_done(sdbp)) != 0)
+ return (t_ret);
+
+ return (ret);
+}
+
+/*
+ * __db_duperr()
+ * Error message: we don't currently support sorted duplicate duplicates.
+ * PUBLIC: int __db_duperr __P((DB *, u_int32_t));
+ */
+int
+__db_duperr(dbp, flags)
+ DB *dbp;
+ u_int32_t flags;
+{
+
+ /*
+ * If we run into this error while updating a secondary index,
+ * don't yell--there's no clean way to pass DB_NODUPDATA in along
+ * with DB_UPDATE_SECONDARY, but we may run into this problem
+ * in a normal, non-error course of events.
+ *
+ * !!!
+ * If and when we ever permit duplicate duplicates in sorted-dup
+ * databases, we need to either change the secondary index code
+ * to check for dup dups, or we need to maintain the implicit
+ * "DB_NODUPDATA" behavior for databases with DB_AM_SECONDARY set.
+ */
+ if (flags != DB_NODUPDATA && !F_ISSET(dbp, DB_AM_SECONDARY))
+ __db_err(dbp->dbenv,
+ "Duplicate data items are not supported with sorted data");
+ return (DB_KEYEXIST);
+}
+
+/*
+ * __db_c_cleanup --
+ * Clean up duplicate cursors.
+ */
+static int
+__db_c_cleanup(dbc, dbc_n, failed)
+ DBC *dbc, *dbc_n;
+ int failed;
+{
+ DB *dbp;
+ DBC *opd;
+ DBC_INTERNAL *internal;
+ DB_MPOOLFILE *mpf;
+ int ret, t_ret;
+
+ dbp = dbc->dbp;
+ mpf = dbp->mpf;
+ internal = dbc->internal;
+ ret = 0;
+
+ /* Discard any pages we're holding. */
+ if (internal->page != NULL) {
+ if ((t_ret = mpf->put(mpf, internal->page, 0)) != 0 && ret == 0)
+ ret = t_ret;
+ internal->page = NULL;
+ }
+ opd = internal->opd;
+ if (opd != NULL && opd->internal->page != NULL) {
+ if ((t_ret =
+ mpf->put(mpf, opd->internal->page, 0)) != 0 && ret == 0)
+ ret = t_ret;
+ opd->internal->page = NULL;
+ }
+
+ /*
+ * If dbc_n is NULL, there's no internal cursor swapping to be done
+ * and no dbc_n to close--we probably did the entire operation on an
+ * offpage duplicate cursor. Just return.
+ *
+ * If dbc and dbc_n are the same, we're either inside a DB->{put/get}
+ * operation, and as an optimization we performed the operation on
+ * the main cursor rather than on a duplicated one, or we're in a
+ * bulk get that can't have moved the cursor (DB_MULTIPLE with the
+ * initial c_get operation on an off-page dup cursor). Just
+ * return--either we know we didn't move the cursor, or we're going
+ * to close it before we return to application code, so we're sure
+ * not to visibly violate the "cursor stays put on error" rule.
+ */
+ if (dbc_n == NULL || dbc == dbc_n)
+ return (ret);
+
+ if (dbc_n->internal->page != NULL) {
+ if ((t_ret =
+ mpf->put(mpf, dbc_n->internal->page, 0)) != 0 && ret == 0)
+ ret = t_ret;
+ dbc_n->internal->page = NULL;
+ }
+ opd = dbc_n->internal->opd;
+ if (opd != NULL && opd->internal->page != NULL) {
+ if ((t_ret =
+ mpf->put(mpf, opd->internal->page, 0)) != 0 && ret == 0)
+ ret = t_ret;
+ opd->internal->page = NULL;
+ }
+
+ /*
+ * If we didn't fail before entering this routine or just now when
+ * freeing pages, swap the interesting contents of the old and new
+ * cursors.
+ */
+ if (!failed && ret == 0) {
+ dbc->internal = dbc_n->internal;
+ dbc_n->internal = internal;
+ }
+
+ /*
+ * Close the cursor we don't care about anymore. The close can fail,
+ * but we only expect DB_LOCK_DEADLOCK failures. This violates our
+ * "the cursor is unchanged on error" semantics, but since all you can
+ * do with a DB_LOCK_DEADLOCK failure is close the cursor, I believe
+ * that's OK.
+ *
+ * XXX
+ * There's no way to recover from failure to close the old cursor.
+ * All we can do is move to the new position and return an error.
+ *
+ * XXX
+ * We might want to consider adding a flag to the cursor, so that any
+ * subsequent operations other than close just return an error?
+ */
+ if ((t_ret = dbc_n->c_close(dbc_n)) != 0 && ret == 0)
+ ret = t_ret;
+
+ return (ret);
+}
+
+/*
+ * __db_c_secondary_get --
+ * This wrapper function for DBC->c_pget() is the DBC->c_get() function
+ * for a secondary index cursor.
+ *
+ * PUBLIC: int __db_c_secondary_get __P((DBC *, DBT *, DBT *, u_int32_t));
+ */
+int
+__db_c_secondary_get(dbc, skey, data, flags)
+ DBC *dbc;
+ DBT *skey, *data;
+ u_int32_t flags;
+{
+
+ DB_ASSERT(F_ISSET(dbc->dbp, DB_AM_SECONDARY));
+ return (dbc->c_pget(dbc, skey, NULL, data, flags));
+}
+
+/*
+ * __db_c_pget --
+ * Get a primary key/data pair through a secondary index.
+ *
+ * PUBLIC: int __db_c_pget __P((DBC *, DBT *, DBT *, DBT *, u_int32_t));
+ */
+int
+__db_c_pget(dbc, skey, pkey, data, flags)
+ DBC *dbc;
+ DBT *skey, *pkey, *data;
+ u_int32_t flags;
+{
+ DB *pdbp, *sdbp;
+ DBC *pdbc;
+ DBT *save_rdata, nullpkey;
+ int pkeymalloc, ret, save_pkey_flags, t_ret;
+
+ sdbp = dbc->dbp;
+ pdbp = sdbp->s_primary;
+ pkeymalloc = t_ret = 0;
+
+ PANIC_CHECK(sdbp->dbenv);
+ if ((ret = __db_cpgetchk(sdbp,
+ skey, pkey, data, flags, IS_INITIALIZED(dbc))) != 0)
+ return (ret);
+
+ /*
+ * The challenging part of this function is getting the behavior
+ * right for all the various permutations of DBT flags. The
+ * next several blocks handle the various cases we need to
+ * deal with specially.
+ */
+
+ /*
+ * We may be called with a NULL pkey argument, if we've been
+ * wrapped by a 2-DBT get call. If so, we need to use our
+ * own DBT.
+ */
+ if (pkey == NULL) {
+ memset(&nullpkey, 0, sizeof(DBT));
+ pkey = &nullpkey;
+ }
+
+ /*
+ * DB_GET_RECNO is a special case, because we're interested not in
+ * the primary key/data pair, but rather in the primary's record
+ * number.
+ */
+ if ((flags & DB_OPFLAGS_MASK) == DB_GET_RECNO)
+ return (__db_c_pget_recno(dbc, pkey, data, flags));
+
+ /*
+ * If the DBTs we've been passed don't have any of the
+ * user-specified memory management flags set, we want to make sure
+ * we return values using the DBTs dbc->rskey, dbc->rkey, and
+ * dbc->rdata, respectively.
+ *
+ * There are two tricky aspects to this: first, we need to pass
+ * skey and pkey *in* to the initial c_get on the secondary key,
+ * since either or both may be looked at by it (depending on the
+ * get flag). Second, we must not use a normal DB->get call
+ * on the secondary, even though that's what we want to accomplish,
+ * because the DB handle may be free-threaded. Instead,
+ * we open a cursor, then take steps to ensure that we actually use
+ * the rkey/rdata from the *secondary* cursor.
+ *
+ * We accomplish all this by passing in the DBTs we started out
+ * with to the c_get, but having swapped the contents of rskey and
+ * rkey, respectively, into rkey and rdata; __db_ret will treat
+ * them like the normal key/data pair in a c_get call, and will
+ * realloc them as need be (this is "step 1"). Then, for "step 2",
+ * we swap back rskey/rkey/rdata to normal, and do a get on the primary
+ * with the secondary dbc appointed as the owner of the returned-data
+ * memory.
+ *
+ * Note that in step 2, we copy the flags field in case we need to
+ * pass down a DB_DBT_PARTIAL or other flag that is compatible with
+ * letting DB do the memory management.
+ */
+ /* Step 1. */
+ save_rdata = dbc->rdata;
+ dbc->rdata = dbc->rkey;
+ dbc->rkey = dbc->rskey;
+
+ /*
+ * It is correct, though slightly sick, to attempt a partial get
+ * of a primary key. However, if we do so here, we'll never find the
+ * primary record; clear the DB_DBT_PARTIAL field of pkey just
+ * for the duration of the next call.
+ */
+ save_pkey_flags = pkey->flags;
+ F_CLR(pkey, DB_DBT_PARTIAL);
+
+ /*
+ * Now we can go ahead with the meat of this call. First, get the
+ * primary key from the secondary index. (What exactly we get depends
+ * on the flags, but the underlying cursor get will take care of the
+ * dirty work.)
+ */
+ if ((ret = dbc->c_real_get(dbc, skey, pkey, flags)) != 0) {
+ /* Restore rskey/rkey/rdata and return. */
+ pkey->flags = save_pkey_flags;
+ dbc->rskey = dbc->rkey;
+ dbc->rkey = dbc->rdata;
+ dbc->rdata = save_rdata;
+ goto err;
+ }
+
+ /* Restore pkey's flags in case we stomped the PARTIAL flag. */
+ pkey->flags = save_pkey_flags;
+
+ /*
+ * Restore the cursor's rskey, rkey, and rdata DBTs. If DB
+ * is handling the memory management, we now have newly
+ * reallocated buffers and ulens in rkey and rdata which we want
+ * to put in rskey and rkey. save_rdata contains the old value
+ * of dbc->rdata.
+ */
+ dbc->rskey = dbc->rkey;
+ dbc->rkey = dbc->rdata;
+ dbc->rdata = save_rdata;
+
+ /*
+ * Now we're ready for "step 2". If either or both of pkey and
+ * data do not have memory management flags set--that is, if DB is
+ * managing their memory--we need to swap around the rkey/rdata
+ * structures so that we don't wind up trying to use memory managed
+ * by the primary database cursor, which we'll close before we return.
+ *
+ * !!!
+ * If you're carefully following the bouncing ball, you'll note
+ * that in the DB-managed case, the buffer hanging off of pkey is
+ * the same as dbc->rkey->data. This is just fine; we may well
+ * realloc and stomp on it when we return, if we're going a
+ * DB_GET_BOTH and need to return a different partial or key
+ * (depending on the comparison function), but this is safe.
+ *
+ * !!!
+ * We need to use __db_icursor here rather than simply calling
+ * pdbp->cursor, because otherwise, if we're in CDB, we'll
+ * allocate a new locker ID and leave ourselves open to deadlocks.
+ * (Even though we're only acquiring read locks, we'll still block
+ * if there are any waiters.)
+ */
+ if ((ret = __db_icursor(pdbp,
+ dbc->txn, pdbp->type, PGNO_INVALID, 0, dbc->locker, &pdbc)) != 0)
+ goto err;
+
+ /*
+ * We're about to use pkey a second time. If DB_DBT_MALLOC
+ * is set on it, we'll leak the memory we allocated the first time.
+ * Thus, set DB_DBT_REALLOC instead so that we reuse that memory
+ * instead of leaking it.
+ *
+ * !!!
+ * This assumes that the user must always specify a compatible
+ * realloc function if a malloc function is specified. I think
+ * this is a reasonable requirement.
+ */
+ if (F_ISSET(pkey, DB_DBT_MALLOC)) {
+ F_CLR(pkey, DB_DBT_MALLOC);
+ F_SET(pkey, DB_DBT_REALLOC);
+ pkeymalloc = 1;
+ }
+
+ /*
+ * Do the actual get. Set DBC_TRANSIENT since we don't care
+ * about preserving the position on error, and it's faster.
+ * SET_RET_MEM so that the secondary DBC owns any returned-data
+ * memory.
+ */
+ F_SET(pdbc, DBC_TRANSIENT);
+ SET_RET_MEM(pdbc, dbc);
+ ret = pdbc->c_get(pdbc, pkey, data, DB_SET);
+
+ /*
+ * If the item wasn't found in the primary, this is a bug;
+ * our secondary has somehow gotten corrupted, and contains
+ * elements that don't correspond to anything in the primary.
+ * Complain.
+ */
+ if (ret == DB_NOTFOUND)
+ ret = __db_secondary_corrupt(pdbp);
+
+ /* Now close the primary cursor. */
+ t_ret = pdbc->c_close(pdbc);
+
+err: if (pkeymalloc) {
+ /*
+ * If pkey had a MALLOC flag, we need to restore it;
+ * otherwise, if the user frees the buffer but reuses
+ * the DBT without NULL'ing its data field or changing
+ * the flags, we may drop core.
+ */
+ F_CLR(pkey, DB_DBT_REALLOC);
+ F_SET(pkey, DB_DBT_MALLOC);
+ }
+ return (t_ret == 0 ? ret : t_ret);
+}
+
+/*
+ * __db_c_pget_recno --
+ * Perform a DB_GET_RECNO c_pget on a secondary index. Returns
+ * the secondary's record number in the pkey field and the primary's
+ * in the data field.
+ */
+static int
+__db_c_pget_recno(sdbc, pkey, data, flags)
+ DBC *sdbc;
+ DBT *pkey, *data;
+ u_int32_t flags;
+{
+ DB *pdbp, *sdbp;
+ DB_ENV *dbenv;
+ DBC *pdbc;
+ DBT discardme, primary_key;
+ db_recno_t oob;
+ u_int32_t rmw;
+ int ret, t_ret;
+
+ sdbp = sdbc->dbp;
+ pdbp = sdbp->s_primary;
+ dbenv = sdbp->dbenv;
+ pdbc = NULL;
+ ret = t_ret = 0;
+
+ rmw = LF_ISSET(DB_RMW);
+
+ memset(&discardme, 0, sizeof(DBT));
+ F_SET(&discardme, DB_DBT_USERMEM | DB_DBT_PARTIAL);
+
+ oob = RECNO_OOB;
+
+ /*
+ * If the primary is an rbtree, we want its record number, whether
+ * or not the secondary is one too. Fetch the recno into "data".
+ *
+ * If it's not an rbtree, return RECNO_OOB in "data".
+ */
+ if (F_ISSET(pdbp, DB_AM_RECNUM)) {
+ /*
+ * Get the primary key, so we can find the record number
+ * in the primary. (We're uninterested in the secondary key.)
+ */
+ memset(&primary_key, 0, sizeof(DBT));
+ F_SET(&primary_key, DB_DBT_MALLOC);
+ if ((ret = sdbc->c_real_get(sdbc,
+ &discardme, &primary_key, rmw | DB_CURRENT)) != 0)
+ return (ret);
+
+ /*
+ * Open a cursor on the primary, set it to the right record,
+ * and fetch its recno into "data".
+ *
+ * (See __db_c_pget for a comment on the use of __db_icursor.)
+ *
+ * SET_RET_MEM so that the secondary DBC owns any returned-data
+ * memory.
+ */
+ if ((ret = __db_icursor(pdbp, sdbc->txn,
+ pdbp->type, PGNO_INVALID, 0, sdbc->locker, &pdbc)) != 0)
+ goto perr;
+ SET_RET_MEM(pdbc, sdbc);
+ if ((ret = pdbc->c_get(pdbc,
+ &primary_key, &discardme, rmw | DB_SET)) != 0)
+ goto perr;
+
+ ret = pdbc->c_get(pdbc, &discardme, data, rmw | DB_GET_RECNO);
+
+perr: __os_ufree(sdbp->dbenv, primary_key.data);
+ if (pdbc != NULL &&
+ (t_ret = pdbc->c_close(pdbc)) != 0 && ret == 0)
+ ret = t_ret;
+ if (ret != 0)
+ return (ret);
+ } else if ((ret = __db_retcopy(dbenv, data, &oob,
+ sizeof(oob), &sdbc->rkey->data, &sdbc->rkey->ulen)) != 0)
+ return (ret);
+
+ /*
+ * If the secondary is an rbtree, we want its record number, whether
+ * or not the primary is one too. Fetch the recno into "pkey".
+ *
+ * If it's not an rbtree, return RECNO_OOB in "pkey".
+ */
+ if (F_ISSET(sdbp, DB_AM_RECNUM))
+ return (sdbc->c_real_get(sdbc, &discardme, pkey, flags));
+ else
+ return (__db_retcopy(dbenv, pkey, &oob,
+ sizeof(oob), &sdbc->rdata->data, &sdbc->rdata->ulen));
+}
+
+/*
+ * __db_wrlock_err -- do not have a write lock.
+ */
+static int
+__db_wrlock_err(dbenv)
+ DB_ENV *dbenv;
+{
+ __db_err(dbenv, "Write attempted on read-only cursor");
+ return (EPERM);
+}
+
+/*
+ * __db_c_del_secondary --
+ * Perform a delete operation on a secondary index: call through
+ * to the primary and delete the primary record that this record
+ * points to.
+ *
+ * Note that deleting the primary record will call c_del on all
+ * the secondaries, including this one; thus, it is not necessary
+ * to execute both this function and an actual delete.
+ *
+ */
+static int
+__db_c_del_secondary(dbc)
+ DBC *dbc;
+{
+ DB *pdbp;
+ DBC *pdbc;
+ DBT skey, pkey;
+ int ret, t_ret;
+
+ memset(&skey, 0, sizeof(DBT));
+ memset(&pkey, 0, sizeof(DBT));
+
+ /*
+ * Get the current item that we're pointing at.
+ * We don't actually care about the secondary key, just
+ * the primary.
+ */
+ F_SET(&skey, DB_DBT_PARTIAL | DB_DBT_USERMEM);
+ if ((ret = dbc->c_real_get(dbc,
+ &skey, &pkey, DB_CURRENT)) != 0)
+ return (ret);
+
+ /*
+ * Create a cursor on the primary with our locker ID,
+ * so that when it calls back, we don't conflict.
+ *
+ * We create a cursor explicitly because there's no
+ * way to specify the same locker ID if we're using
+ * locking but not transactions if we use the DB->del
+ * interface. This shouldn't be any less efficient
+ * anyway.
+ */
+ pdbp = dbc->dbp->s_primary;
+ if ((ret = __db_icursor(pdbp, dbc->txn,
+ pdbp->type, PGNO_INVALID, 0, dbc->locker, &pdbc)) != 0)
+ return (ret);
+
+ /*
+ * See comment in __db_c_put--if we're in CDB,
+ * we already hold the locks we need, and we need to flag
+ * the cursor as a WRITER so we don't run into errors
+ * when we try to delete.
+ */
+ if (CDB_LOCKING(pdbp->dbenv)) {
+ DB_ASSERT(pdbc->mylock.off == LOCK_INVALID);
+ F_SET(pdbc, DBC_WRITER);
+ }
+
+ /*
+ * Set the new cursor to the correct primary key. Then
+ * delete it. We don't really care about the datum;
+ * just reuse our skey DBT.
+ *
+ * If the primary get returns DB_NOTFOUND, something is amiss--
+ * every record in the secondary should correspond to some record
+ * in the primary.
+ */
+ if ((ret = pdbc->c_get(pdbc, &pkey, &skey,
+ (STD_LOCKING(dbc) ? DB_RMW : 0) | DB_SET)) == 0)
+ ret = pdbc->c_del(pdbc, 0);
+ else if (ret == DB_NOTFOUND)
+ ret = __db_secondary_corrupt(pdbp);
+
+ if ((t_ret = pdbc->c_close(pdbc)) != 0 && ret != 0)
+ ret = t_ret;
+
+ return (ret);
+}
+
+/*
+ * __db_c_del_primary --
+ * Perform a delete operation on a primary index. Loop through
+ * all the secondary indices which correspond to this primary
+ * database, and delete any secondary keys that point at the current
+ * record.
+ *
+ * PUBLIC: int __db_c_del_primary __P((DBC *));
+ */
+int
+__db_c_del_primary(dbc)
+ DBC *dbc;
+{
+ DB *dbp, *sdbp;
+ DBC *sdbc;
+ DBT data, pkey, skey, temp;
+ int ret, t_ret;
+
+ dbp = dbc->dbp;
+
+ /*
+ * If we're called at all, we have at least one secondary.
+ * (Unfortunately, we can't assert this without grabbing the mutex.)
+ * Get the current record so that we can construct appropriate
+ * secondary keys as needed.
+ */
+ memset(&pkey, 0, sizeof(DBT));
+ memset(&data, 0, sizeof(DBT));
+ if ((ret = dbc->c_get(dbc, &pkey, &data, DB_CURRENT)) != 0)
+ return (ret);
+
+ for (sdbp = __db_s_first(dbp);
+ sdbp != NULL && ret == 0; ret = __db_s_next(&sdbp)) {
+ /*
+ * Get the secondary key for this secondary and the current
+ * item.
+ */
+ memset(&skey, 0, sizeof(DBT));
+ if ((ret = sdbp->s_callback(sdbp, &pkey, &data, &skey)) != 0) {
+ /*
+ * If the current item isn't in this index, we
+ * have no work to do. Proceed.
+ */
+ if (ret == DB_DONOTINDEX)
+ continue;
+
+ /* We had a substantive error. Bail. */
+ FREE_IF_NEEDED(sdbp, &skey);
+ goto done;
+ }
+
+ /* Open a secondary cursor. */
+ if ((ret = __db_icursor(sdbp, dbc->txn, sdbp->type,
+ PGNO_INVALID, 0, dbc->locker, &sdbc)) != 0)
+ goto done;
+ /* See comment above and in __db_c_put. */
+ if (CDB_LOCKING(sdbp->dbenv)) {
+ DB_ASSERT(sdbc->mylock.off == LOCK_INVALID);
+ F_SET(sdbc, DBC_WRITER);
+ }
+
+ /*
+ * Set the secondary cursor to the appropriate item.
+ * Delete it.
+ *
+ * We want to use DB_RMW if locking is on; it's only
+ * legal then, though.
+ *
+ * !!!
+ * Don't stomp on any callback-allocated buffer in skey
+ * when we do a c_get(DB_GET_BOTH); use a temp DBT instead.
+ */
+ memset(&temp, 0, sizeof(DBT));
+ temp.data = skey.data;
+ temp.size = skey.size;
+ if ((ret = sdbc->c_real_get(sdbc, &temp, &pkey,
+ (STD_LOCKING(dbc) ? DB_RMW : 0) | DB_GET_BOTH)) == 0)
+ ret = sdbc->c_del(sdbc, DB_UPDATE_SECONDARY);
+
+ FREE_IF_NEEDED(sdbp, &skey);
+
+ if ((t_ret = sdbc->c_close(sdbc)) != 0 || ret != 0) {
+ if (ret == 0)
+ ret = t_ret;
+ goto done;
+ }
+ }
+
+done: if (sdbp != NULL && (t_ret = __db_s_done(sdbp)) != 0 && ret == 0)
+ return (t_ret);
+ return (ret);
+}
+
+/*
+ * __db_s_first --
+ * Get the first secondary, if any are present, from the primary.
+ *
+ * PUBLIC: DB *__db_s_first __P((DB *));
+ */
+DB *
+__db_s_first(pdbp)
+ DB *pdbp;
+{
+ DB *sdbp;
+
+ MUTEX_THREAD_LOCK(pdbp->dbenv, pdbp->mutexp);
+ sdbp = LIST_FIRST(&pdbp->s_secondaries);
+
+ /* See __db_s_next. */
+ if (sdbp != NULL)
+ sdbp->s_refcnt++;
+ MUTEX_THREAD_UNLOCK(pdbp->dbenv, pdbp->mutexp);
+
+ return (sdbp);
+}
+
+/*
+ * __db_s_next --
+ * Get the next secondary in the list.
+ *
+ * PUBLIC: int __db_s_next __P((DB **));
+ */
+int
+__db_s_next(sdbpp)
+ DB **sdbpp;
+{
+ DB *sdbp, *pdbp, *closeme;
+ int ret;
+
+ /*
+ * Secondary indices are kept in a linked list, s_secondaries,
+ * off each primary DB handle. If a primary is free-threaded,
+ * this list may only be traversed or modified while the primary's
+ * thread mutex is held.
+ *
+ * The tricky part is that we don't want to hold the thread mutex
+ * across the full set of secondary puts necessary for each primary
+ * put, or we'll wind up essentially single-threading all the puts
+ * to the handle; the secondary puts will each take about as
+ * long as the primary does, and may require I/O. So we instead
+ * hold the thread mutex only long enough to follow one link to the
+ * next secondary, and then we release it before performing the
+ * actual secondary put.
+ *
+ * The only danger here is that we might legitimately close a
+ * secondary index in one thread while another thread is performing
+ * a put and trying to update that same secondary index. To
+ * prevent this from happening, we refcount the secondary handles.
+ * If close is called on a secondary index handle while we're putting
+ * to it, it won't really be closed--the refcount will simply drop,
+ * and we'll be responsible for closing it here.
+ */
+ sdbp = *sdbpp;
+ pdbp = sdbp->s_primary;
+ closeme = NULL;
+
+ MUTEX_THREAD_LOCK(pdbp->dbenv, pdbp->mutexp);
+ DB_ASSERT(sdbp->s_refcnt != 0);
+ if (--sdbp->s_refcnt == 0) {
+ LIST_REMOVE(sdbp, s_links);
+ closeme = sdbp;
+ }
+ sdbp = LIST_NEXT(sdbp, s_links);
+ if (sdbp != NULL)
+ sdbp->s_refcnt++;
+ MUTEX_THREAD_UNLOCK(pdbp->dbenv, pdbp->mutexp);
+
+ *sdbpp = sdbp;
+
+ /*
+ * closeme->close() is a wrapper; call __db_close explicitly.
+ */
+ ret = closeme != NULL ? __db_close(closeme, 0) : 0;
+ return (ret);
+}
+
+/*
+ * __db_s_done --
+ * Properly decrement the refcount on a secondary database handle we're
+ * using, without calling __db_s_next.
+ *
+ * PUBLIC: int __db_s_done __P((DB *));
+ */
+int
+__db_s_done(sdbp)
+ DB *sdbp;
+{
+ DB *pdbp;
+ int doclose;
+
+ pdbp = sdbp->s_primary;
+ doclose = 0;
+
+ MUTEX_THREAD_LOCK(pdbp->dbenv, pdbp->mutexp);
+ DB_ASSERT(sdbp->s_refcnt != 0);
+ if (--sdbp->s_refcnt == 0) {
+ LIST_REMOVE(sdbp, s_links);
+ doclose = 1;
+ }
+ MUTEX_THREAD_UNLOCK(pdbp->dbenv, pdbp->mutexp);
+
+ return (doclose ? __db_close(sdbp, 0) : 0);
+}
+
+/*
+ * __db_buildpartial --
+ * Build the record that will result after a partial put is applied to
+ * an existing record.
+ *
+ * This should probably be merged with __bam_build, but that requires
+ * a little trickery if we plan to keep the overflow-record optimization
+ * in that function.
+ */
+static int
+__db_buildpartial(dbp, oldrec, partial, newrec)
+ DB *dbp;
+ DBT *oldrec, *partial, *newrec;
+{
+ int ret;
+ u_int8_t *buf;
+ u_int32_t len, nbytes;
+
+ DB_ASSERT(F_ISSET(partial, DB_DBT_PARTIAL));
+
+ memset(newrec, 0, sizeof(DBT));
+
+ nbytes = __db_partsize(oldrec->size, partial);
+ newrec->size = nbytes;
+
+ if ((ret = __os_malloc(dbp->dbenv, nbytes, &buf)) != 0)
+ return (ret);
+ newrec->data = buf;
+
+ /* Nul or pad out the buffer, for any part that isn't specified. */
+ memset(buf,
+ F_ISSET(dbp, DB_AM_FIXEDLEN) ? ((BTREE *)dbp->bt_internal)->re_pad :
+ 0, nbytes);
+
+ /* Copy in any leading data from the original record. */
+ memcpy(buf, oldrec->data,
+ partial->doff > oldrec->size ? oldrec->size : partial->doff);
+
+ /* Copy the data from partial. */
+ memcpy(buf + partial->doff, partial->data, partial->size);
+
+ /* Copy any trailing data from the original record. */
+ len = partial->doff + partial->dlen;
+ if (oldrec->size > len)
+ memcpy(buf + partial->doff + partial->size,
+ (u_int8_t *)oldrec->data + len, oldrec->size - len);
+
+ return (0);
+}
+
+/*
+ * __db_partsize --
+ * Given the number of bytes in an existing record and a DBT that
+ * is about to be partial-put, calculate the size of the record
+ * after the put.
+ *
+ * This code is called from __bam_partsize.
+ *
+ * PUBLIC: u_int32_t __db_partsize __P((u_int32_t, DBT *));
+ */
+u_int32_t
+__db_partsize(nbytes, data)
+ u_int32_t nbytes;
+ DBT *data;
+{
+
+ /*
+ * There are really two cases here:
+ *
+ * Case 1: We are replacing some bytes that do not exist (i.e., they
+ * are past the end of the record). In this case the number of bytes
+ * we are replacing is irrelevant and all we care about is how many
+ * bytes we are going to add from offset. So, the new record length
+ * is going to be the size of the new bytes (size) plus wherever those
+ * new bytes begin (doff).
+ *
+ * Case 2: All the bytes we are replacing exist. Therefore, the new
+ * size is the oldsize (nbytes) minus the bytes we are replacing (dlen)
+ * plus the bytes we are adding (size).
+ */
+ if (nbytes < data->doff + data->dlen) /* Case 1 */
+ return (data->doff + data->size);
+
+ return (nbytes + data->size - data->dlen); /* Case 2 */
+}