summaryrefslogtreecommitdiff
path: root/sql/uniques.cc
diff options
context:
space:
mode:
Diffstat (limited to 'sql/uniques.cc')
-rw-r--r--sql/uniques.cc477
1 files changed, 476 insertions, 1 deletions
diff --git a/sql/uniques.cc b/sql/uniques.cc
index d060965aa66..367aed2d113 100644
--- a/sql/uniques.cc
+++ b/sql/uniques.cc
@@ -63,12 +63,255 @@ Unique::Unique(qsort_cmp2 comp_func, void * comp_func_fixed_arg,
comp_func_fixed_arg);
/* If the following fail's the next add will also fail */
my_init_dynamic_array(&file_ptrs, sizeof(BUFFPEK), 16, 16);
+ /*
+ If you change the following, change it in get_max_elements function, too.
+ */
max_elements= max_in_memory_size / ALIGN_SIZE(sizeof(TREE_ELEMENT)+size);
open_cached_file(&file, mysql_tmpdir,TEMP_PREFIX, DISK_BUFFER_SIZE,
MYF(MY_WME));
}
+/*
+ Calculate log2(n!)
+
+ NOTES
+ Stirling's approximate formula is used:
+
+ n! ~= sqrt(2*M_PI*n) * (n/M_E)^n
+
+ Derivation of formula used for calculations is as follows:
+
+ log2(n!) = log(n!)/log(2) = log(sqrt(2*M_PI*n)*(n/M_E)^n) / log(2) =
+
+ = (log(2*M_PI*n)/2 + n*log(n/M_E)) / log(2).
+*/
+
+inline double log2_n_fact(double x)
+{
+ return (log(2*M_PI*x)/2 + x*log(x/M_E)) / M_LN2;
+}
+
+
+/*
+ Calculate cost of merge_buffers function call for given sequence of
+ input stream lengths and store the number of rows in result stream in *last.
+
+ SYNOPSIS
+ get_merge_buffers_cost()
+ buff_elems Array of #s of elements in buffers
+ elem_size Size of element stored in buffer
+ first Pointer to first merged element size
+ last Pointer to last merged element size
+
+ RETURN
+ Cost of merge_buffers operation in disk seeks.
+
+ NOTES
+ It is assumed that no rows are eliminated during merge.
+ The cost is calculated as
+
+ cost(read_and_write) + cost(merge_comparisons).
+
+ All bytes in the sequences is read and written back during merge so cost
+ of disk io is 2*elem_size*total_buf_elems/IO_SIZE (2 is for read + write)
+
+ For comparisons cost calculations we assume that all merged sequences have
+ the same length, so each of total_buf_size elements will be added to a sort
+ heap with (n_buffers-1) elements. This gives the comparison cost:
+
+ total_buf_elems* log2(n_buffers) / TIME_FOR_COMPARE_ROWID;
+*/
+
+static double get_merge_buffers_cost(uint *buff_elems, uint elem_size,
+ uint *first, uint *last)
+{
+ uint total_buf_elems= 0;
+ for (uint *pbuf= first; pbuf <= last; pbuf++)
+ total_buf_elems+= *pbuf;
+ *last= total_buf_elems;
+
+ int n_buffers= last - first + 1;
+
+ /* Using log2(n)=log(n)/log(2) formula */
+ return 2*((double)total_buf_elems*elem_size) / IO_SIZE +
+ total_buf_elems*log((double) n_buffers) / (TIME_FOR_COMPARE_ROWID * M_LN2);
+}
+
+
+/*
+ Calculate cost of merging buffers into one in Unique::get, i.e. calculate
+ how long (in terms of disk seeks) the two calls
+ merge_many_buffs(...);
+ merge_buffers(...);
+ will take.
+
+ SYNOPSIS
+ get_merge_many_buffs_cost()
+ buffer buffer space for temporary data, at least
+ Unique::get_cost_calc_buff_size bytes
+ maxbuffer # of full buffers
+ max_n_elems # of elements in first maxbuffer buffers
+ last_n_elems # of elements in last buffer
+ elem_size size of buffer element
+
+ NOTES
+ maxbuffer+1 buffers are merged, where first maxbuffer buffers contain
+ max_n_elems elements each and last buffer contains last_n_elems elements.
+
+ The current implementation does a dumb simulation of merge_many_buffs
+ function actions.
+
+ RETURN
+ Cost of merge in disk seeks.
+*/
+
+static double get_merge_many_buffs_cost(uint *buffer,
+ uint maxbuffer, uint max_n_elems,
+ uint last_n_elems, int elem_size)
+{
+ register int i;
+ double total_cost= 0.0;
+ uint *buff_elems= buffer; /* #s of elements in each of merged sequences */
+
+ /*
+ Set initial state: first maxbuffer sequences contain max_n_elems elements
+ each, last sequence contains last_n_elems elements.
+ */
+ for (i = 0; i < (int)maxbuffer; i++)
+ buff_elems[i]= max_n_elems;
+ buff_elems[maxbuffer]= last_n_elems;
+
+ /*
+ Do it exactly as merge_many_buff function does, calling
+ get_merge_buffers_cost to get cost of merge_buffers.
+ */
+ if (maxbuffer >= MERGEBUFF2)
+ {
+ while (maxbuffer >= MERGEBUFF2)
+ {
+ uint lastbuff= 0;
+ for (i = 0; i <= (int) maxbuffer - MERGEBUFF*3/2; i += MERGEBUFF)
+ {
+ total_cost+=get_merge_buffers_cost(buff_elems, elem_size,
+ buff_elems + i,
+ buff_elems + i + MERGEBUFF-1);
+ lastbuff++;
+ }
+ total_cost+=get_merge_buffers_cost(buff_elems, elem_size,
+ buff_elems + i,
+ buff_elems + maxbuffer);
+ maxbuffer= lastbuff;
+ }
+ }
+
+ /* Simulate final merge_buff call. */
+ total_cost += get_merge_buffers_cost(buff_elems, elem_size,
+ buff_elems, buff_elems + maxbuffer);
+ return total_cost;
+}
+
+
+/*
+ Calculate cost of using Unique for processing nkeys elements of size
+ key_size using max_in_memory_size memory.
+
+ SYNOPSIS
+ Unique::get_use_cost()
+ buffer space for temporary data, use Unique::get_cost_calc_buff_size
+ to get # bytes needed.
+ nkeys #of elements in Unique
+ key_size size of each elements in bytes
+ max_in_memory_size amount of memory Unique will be allowed to use
+
+ RETURN
+ Cost in disk seeks.
+
+ NOTES
+ cost(using_unqiue) =
+ cost(create_trees) + (see #1)
+ cost(merge) + (see #2)
+ cost(read_result) (see #3)
+
+ 1. Cost of trees creation
+ For each Unique::put operation there will be 2*log2(n+1) elements
+ comparisons, where n runs from 1 tree_size (we assume that all added
+ elements are different). Together this gives:
+
+ n_compares = 2*(log2(2) + log2(3) + ... + log2(N+1)) = 2*log2((N+1)!)
+
+ then cost(tree_creation) = n_compares*ROWID_COMPARE_COST;
+
+ Total cost of creating trees:
+ (n_trees - 1)*max_size_tree_cost + non_max_size_tree_cost.
+
+ Approximate value of log2(N!) is calculated by log2_n_fact function.
+
+ 2. Cost of merging.
+ If only one tree is created by Unique no merging will be necessary.
+ Otherwise, we model execution of merge_many_buff function and count
+ #of merges. (The reason behind this is that number of buffers is small,
+ while size of buffers is big and we don't want to loose precision with
+ O(x)-style formula)
+
+ 3. If only one tree is created by Unique no disk io will happen.
+ Otherwise, ceil(key_len*n_keys) disk seeks are necessary. We assume
+ these will be random seeks.
+*/
+
+double Unique::get_use_cost(uint *buffer, uint nkeys, uint key_size,
+ ulong max_in_memory_size)
+{
+ ulong max_elements_in_tree;
+ ulong last_tree_elems;
+ int n_full_trees; /* number of trees in unique - 1 */
+ double result;
+
+ max_elements_in_tree=
+ max_in_memory_size / ALIGN_SIZE(sizeof(TREE_ELEMENT)+key_size);
+
+ n_full_trees= nkeys / max_elements_in_tree;
+ last_tree_elems= nkeys % max_elements_in_tree;
+
+ /* Calculate cost of creating trees */
+ result= 2*log2_n_fact(last_tree_elems + 1.0);
+ if (n_full_trees)
+ result+= n_full_trees * log2_n_fact(max_elements_in_tree + 1.0);
+ result /= TIME_FOR_COMPARE_ROWID;
+
+ DBUG_PRINT("info",("unique trees sizes: %u=%u*%lu + %lu", nkeys,
+ n_full_trees, n_full_trees?max_elements_in_tree:0,
+ last_tree_elems));
+
+ if (!n_full_trees)
+ return result;
+
+ /*
+ There is more then one tree and merging is necessary.
+ First, add cost of writing all trees to disk, assuming that all disk
+ writes are sequential.
+ */
+ result += DISK_SEEK_BASE_COST * n_full_trees *
+ ceil(((double) key_size)*max_elements_in_tree / IO_SIZE);
+ result += DISK_SEEK_BASE_COST * ceil(((double) key_size)*last_tree_elems / IO_SIZE);
+
+ /* Cost of merge */
+ double merge_cost= get_merge_many_buffs_cost(buffer, n_full_trees,
+ max_elements_in_tree,
+ last_tree_elems, key_size);
+ if (merge_cost < 0.0)
+ return merge_cost;
+
+ result += merge_cost;
+ /*
+ Add cost of reading the resulting sequence, assuming there were no
+ duplicate elements.
+ */
+ result += ceil((double)key_size*nkeys/IO_SIZE);
+
+ return result;
+}
+
Unique::~Unique()
{
close_cached_file(&file);
@@ -84,6 +327,7 @@ bool Unique::flush()
elements+= tree.elements_in_tree;
file_ptr.count=tree.elements_in_tree;
file_ptr.file_pos=my_b_tell(&file);
+
if (tree_walk(&tree, (tree_walk_action) unique_write_to_file,
(void*) this, left_root_right) ||
insert_dynamic(&file_ptrs, (gptr) &file_ptr))
@@ -94,6 +338,237 @@ bool Unique::flush()
/*
+ Clear the tree and the file.
+ You must call reset() if you want to reuse Unique after walk().
+*/
+
+void
+Unique::reset()
+{
+ reset_tree(&tree);
+ /*
+ If elements != 0, some trees were stored in the file (see how
+ flush() works). Note, that we can not count on my_b_tell(&file) == 0
+ here, because it can return 0 right after walk(), and walk() does not
+ reset any Unique member.
+ */
+ if (elements)
+ {
+ reset_dynamic(&file_ptrs);
+ reinit_io_cache(&file, WRITE_CACHE, 0L, 0, 1);
+ }
+ elements= 0;
+}
+
+/*
+ The comparison function, passed to queue_init() in merge_walk() must
+ use comparison function of Uniques::tree, but compare members of struct
+ BUFFPEK.
+*/
+
+struct BUFFPEK_COMPARE_CONTEXT
+{
+ qsort_cmp2 key_compare;
+ void *key_compare_arg;
+};
+
+C_MODE_START
+
+static int buffpek_compare(void *arg, byte *key_ptr1, byte *key_ptr2)
+{
+ BUFFPEK_COMPARE_CONTEXT *ctx= (BUFFPEK_COMPARE_CONTEXT *) arg;
+ return ctx->key_compare(ctx->key_compare_arg,
+ *((byte **) key_ptr1), *((byte **)key_ptr2));
+}
+
+C_MODE_END
+
+
+/*
+ DESCRIPTION
+ Function is very similar to merge_buffers, but instead of writing sorted
+ unique keys to the output file, it invokes walk_action for each key.
+ This saves I/O if you need to pass through all unique keys only once.
+ SYNOPSIS
+ merge_walk()
+ All params are 'IN' (but see comment for begin, end):
+ merge_buffer buffer to perform cached piece-by-piece loading
+ of trees; initially the buffer is empty
+ merge_buffer_size size of merge_buffer. Must be aligned with
+ key_length
+ key_length size of tree element; key_length * (end - begin)
+ must be less or equal than merge_buffer_size.
+ begin pointer to BUFFPEK struct for the first tree.
+ end pointer to BUFFPEK struct for the last tree;
+ end > begin and [begin, end) form a consecutive
+ range. BUFFPEKs structs in that range are used and
+ overwritten in merge_walk().
+ walk_action element visitor. Action is called for each unique
+ key.
+ walk_action_arg argument to walk action. Passed to it on each call.
+ compare elements comparison function
+ compare_arg comparison function argument
+ file file with all trees dumped. Trees in the file
+ must contain sorted unique values. Cache must be
+ initialized in read mode.
+ RETURN VALUE
+ 0 ok
+ <> 0 error
+*/
+
+static bool merge_walk(uchar *merge_buffer, uint merge_buffer_size,
+ uint key_length, BUFFPEK *begin, BUFFPEK *end,
+ tree_walk_action walk_action, void *walk_action_arg,
+ qsort_cmp2 compare, void *compare_arg,
+ IO_CACHE *file)
+{
+ BUFFPEK_COMPARE_CONTEXT compare_context = { compare, compare_arg };
+ QUEUE queue;
+ if (end <= begin ||
+ merge_buffer_size < key_length * (end - begin + 1) ||
+ init_queue(&queue, end - begin, offsetof(BUFFPEK, key), 0,
+ buffpek_compare, &compare_context))
+ return 1;
+ /* we need space for one key when a piece of merge buffer is re-read */
+ merge_buffer_size-= key_length;
+ uchar *save_key_buff= merge_buffer + merge_buffer_size;
+ uint max_key_count_per_piece= merge_buffer_size/(end-begin)/key_length;
+ /* if piece_size is aligned reuse_freed_buffer will always hit */
+ uint piece_size= max_key_count_per_piece * key_length;
+ uint bytes_read; /* to hold return value of read_to_buffer */
+ BUFFPEK *top;
+ int res= 1;
+ /*
+ Invariant: queue must contain top element from each tree, until a tree
+ is not completely walked through.
+ Here we're forcing the invariant, inserting one element from each tree
+ to the queue.
+ */
+ for (top= begin; top != end; ++top)
+ {
+ top->base= merge_buffer + (top - begin) * piece_size;
+ top->max_keys= max_key_count_per_piece;
+ bytes_read= read_to_buffer(file, top, key_length);
+ if (bytes_read == (uint) (-1))
+ goto end;
+ DBUG_ASSERT(bytes_read);
+ queue_insert(&queue, (byte *) top);
+ }
+ top= (BUFFPEK *) queue_top(&queue);
+ while (queue.elements > 1)
+ {
+ /*
+ Every iteration one element is removed from the queue, and one is
+ inserted by the rules of the invariant. If two adjacent elements on
+ the top of the queue are not equal, biggest one is unique, because all
+ elements in each tree are unique. Action is applied only to unique
+ elements.
+ */
+ void *old_key= top->key;
+ /*
+ read next key from the cache or from the file and push it to the
+ queue; this gives new top.
+ */
+ top->key+= key_length;
+ if (--top->mem_count)
+ queue_replaced(&queue);
+ else /* next piece should be read */
+ {
+ /* save old_key not to overwrite it in read_to_buffer */
+ memcpy(save_key_buff, old_key, key_length);
+ old_key= save_key_buff;
+ bytes_read= read_to_buffer(file, top, key_length);
+ if (bytes_read == (uint) (-1))
+ goto end;
+ else if (bytes_read > 0) /* top->key, top->mem_count are reset */
+ queue_replaced(&queue); /* in read_to_buffer */
+ else
+ {
+ /*
+ Tree for old 'top' element is empty: remove it from the queue and
+ give all its memory to the nearest tree.
+ */
+ queue_remove(&queue, 0);
+ reuse_freed_buff(&queue, top, key_length);
+ }
+ }
+ top= (BUFFPEK *) queue_top(&queue);
+ /* new top has been obtained; if old top is unique, apply the action */
+ if (compare(compare_arg, old_key, top->key))
+ {
+ if (walk_action(old_key, 1, walk_action_arg))
+ goto end;
+ }
+ }
+ /*
+ Applying walk_action to the tail of the last tree: this is safe because
+ either we had only one tree in the beginning, either we work with the
+ last tree in the queue.
+ */
+ do
+ {
+ do
+ {
+ if (walk_action(top->key, 1, walk_action_arg))
+ goto end;
+ top->key+= key_length;
+ }
+ while (--top->mem_count);
+ bytes_read= read_to_buffer(file, top, key_length);
+ if (bytes_read == (uint) (-1))
+ goto end;
+ }
+ while (bytes_read);
+ res= 0;
+end:
+ delete_queue(&queue);
+ return res;
+}
+
+
+/*
+ DESCRIPTION
+ Walks consecutively through all unique elements:
+ if all elements are in memory, then it simply invokes 'tree_walk', else
+ all flushed trees are loaded to memory piece-by-piece, pieces are
+ sorted, and action is called for each unique value.
+ Note: so as merging resets file_ptrs state, this method can change
+ internal Unique state to undefined: if you want to reuse Unique after
+ walk() you must call reset() first!
+ SYNOPSIS
+ Unique:walk()
+ All params are 'IN':
+ action function-visitor, typed in include/my_tree.h
+ function is called for each unique element
+ arg argument for visitor, which is passed to it on each call
+ RETURN VALUE
+ 0 OK
+ <> 0 error
+ */
+
+bool Unique::walk(tree_walk_action action, void *walk_action_arg)
+{
+ if (elements == 0) /* the whole tree is in memory */
+ return tree_walk(&tree, action, walk_action_arg, left_root_right);
+
+ /* flush current tree to the file to have some memory for merge buffer */
+ if (flush())
+ return 1;
+ if (flush_io_cache(&file) || reinit_io_cache(&file, READ_CACHE, 0L, 0, 0))
+ return 1;
+ uchar *merge_buffer= (uchar *) my_malloc(max_in_memory_size, MYF(0));
+ if (merge_buffer == 0)
+ return 1;
+ int res= merge_walk(merge_buffer, max_in_memory_size, size,
+ (BUFFPEK *) file_ptrs.buffer,
+ (BUFFPEK *) file_ptrs.buffer + file_ptrs.elements,
+ action, walk_action_arg,
+ tree.compare, tree.custom_arg, &file);
+ x_free(merge_buffer);
+ return res;
+}
+
+/*
Modify the TABLE element so that when one calls init_records()
the rows will be read in priority order.
*/
@@ -114,7 +589,7 @@ bool Unique::get(TABLE *table)
return 0;
}
}
- /* Not enough memory; Save the result to file */
+ /* Not enough memory; Save the result to file && free memory used by tree */
if (flush())
return 1;