diff options
Diffstat (limited to 'sql/handler.h')
-rw-r--r-- | sql/handler.h | 90 |
1 files changed, 89 insertions, 1 deletions
diff --git a/sql/handler.h b/sql/handler.h index 12413d6238a..02b96ebefb8 100644 --- a/sql/handler.h +++ b/sql/handler.h @@ -771,9 +771,97 @@ struct handlerton NOTE 'all' is also false in auto-commit mode where 'end of statement' and 'real commit' mean the same event. */ - int (*commit)(handlerton *hton, THD *thd, bool all); + int (*commit)(handlerton *hton, THD *thd, bool all); + /* + The commit_ordered() method is called prior to the commit() method, after + the transaction manager has decided to commit (not rollback) the + transaction. Unlike commit(), commit_ordered() is called only when the + full transaction is committed, not for each commit of statement + transaction in a multi-statement transaction. + + Not that like prepare(), commit_ordered() is only called when 2-phase + commit takes place. Ie. when no binary log and only a single engine + participates in a transaction, one commit() is called, no + commit_ordered(). So engines must be prepared for this. + + The calls to commit_ordered() in multiple parallel transactions is + guaranteed to happen in the same order in every participating + handler. This can be used to ensure the same commit order among multiple + handlers (eg. in table handler and binlog). So if transaction T1 calls + into commit_ordered() of handler A before T2, then T1 will also call + commit_ordered() of handler B before T2. + + Engines that implement this method should during this call make the + transaction visible to other transactions, thereby making the order of + transaction commits be defined by the order of commit_ordered() calls. + + The intention is that commit_ordered() should do the minimal amount of + work that needs to happen in consistent commit order among handlers. To + preserve ordering, calls need to be serialised on a global mutex, so + doing any time-consuming or blocking operations in commit_ordered() will + limit scalability. + + Handlers can rely on commit_ordered() calls to be serialised (no two + calls can run in parallel, so no extra locking on the handler part is + required to ensure this). + + Note that commit_ordered() can be called from a different thread than the + one handling the transaction! So it can not do anything that depends on + thread local storage, in particular it can not call my_error() and + friends (instead it can store the error code and delay the call of + my_error() to the commit() method). + + Similarly, since commit_ordered() returns void, any return error code + must be saved and returned from the commit() method instead. + + The commit_ordered method is optional, and can be left unset if not + needed in a particular handler (then there will be no ordering guarantees + wrt. other engines and binary log). + */ + void (*commit_ordered)(handlerton *hton, THD *thd, bool all); int (*rollback)(handlerton *hton, THD *thd, bool all); int (*prepare)(handlerton *hton, THD *thd, bool all); + /* + The prepare_ordered method is optional. If set, it will be called after + successful prepare() in all handlers participating in 2-phase + commit. Like commit_ordered(), it is called only when the full + transaction is committed, not for each commit of statement transaction. + + The calls to prepare_ordered() among multiple parallel transactions are + ordered consistently with calls to commit_ordered(). This means that + calls to prepare_ordered() effectively define the commit order, and that + each handler will see the same sequence of transactions calling into + prepare_ordered() and commit_ordered(). + + Thus, prepare_ordered() can be used to define commit order for handlers + that need to do this in the prepare step (like binlog). It can also be + used to release transaction's locks early in an order consistent with the + order transactions will be eventually committed. + + Like commit_ordered(), prepare_ordered() calls are serialised to maintain + ordering, so the intention is that they should execute fast, with only + the minimal amount of work needed to define commit order. Handlers can + rely on this serialisation, and do not need to do any extra locking to + avoid two prepare_ordered() calls running in parallel. + + Like commit_ordered(), prepare_ordered() is not guaranteed to be called + in the context of the thread handling the rest of the transaction. So it + cannot invoke code that relies on thread local storage, in particular it + cannot call my_error(). + + prepare_ordered() cannot cause a rollback by returning an error, all + possible errors must be handled in prepare() (the prepare_ordered() + method returns void). In case of some fatal error, a record of the error + must be made internally by the engine and returned from commit() later. + + Note that for user-level XA SQL commands, no consistent ordering among + prepare_ordered() and commit_ordered() is guaranteed (as that would + require blocking all other commits for an indefinite time). + + When 2-phase commit is not used (eg. only one engine (and no binlog) in + transaction), neither prepare() nor prepare_ordered() is called. + */ + void (*prepare_ordered)(handlerton *hton, THD *thd, bool all); int (*recover)(handlerton *hton, XID *xid_list, uint len); int (*commit_by_xid)(handlerton *hton, XID *xid); int (*rollback_by_xid)(handlerton *hton, XID *xid); |