summaryrefslogtreecommitdiff
path: root/flang/lib/Semantics/check-call.cpp
blob: 959ad3384f6117f0584677636caeccfc18498b67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
//===-- lib/Semantics/check-call.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "check-call.h"
#include "pointer-assignment.h"
#include "flang/Evaluate/characteristics.h"
#include "flang/Evaluate/check-expression.h"
#include "flang/Evaluate/shape.h"
#include "flang/Evaluate/tools.h"
#include "flang/Parser/characters.h"
#include "flang/Parser/message.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/tools.h"
#include <map>
#include <string>

using namespace Fortran::parser::literals;
namespace characteristics = Fortran::evaluate::characteristics;

namespace Fortran::semantics {

static void CheckImplicitInterfaceArg(
    evaluate::ActualArgument &arg, parser::ContextualMessages &messages) {
  if (auto kw{arg.keyword()}) {
    messages.Say(*kw,
        "Keyword '%s=' may not appear in a reference to a procedure with an implicit interface"_err_en_US,
        *kw);
  }
  if (auto type{arg.GetType()}) {
    if (type->IsAssumedType()) {
      messages.Say(
          "Assumed type argument requires an explicit interface"_err_en_US);
    } else if (type->IsPolymorphic()) {
      messages.Say(
          "Polymorphic argument requires an explicit interface"_err_en_US);
    } else if (const DerivedTypeSpec * derived{GetDerivedTypeSpec(type)}) {
      if (!derived->parameters().empty()) {
        messages.Say(
            "Parameterized derived type argument requires an explicit interface"_err_en_US);
      }
    }
  }
  if (const auto *expr{arg.UnwrapExpr()}) {
    if (auto named{evaluate::ExtractNamedEntity(*expr)}) {
      const Symbol &symbol{named->GetLastSymbol()};
      if (symbol.Corank() > 0) {
        messages.Say(
            "Coarray argument requires an explicit interface"_err_en_US);
      }
      if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
        if (details->IsAssumedRank()) {
          messages.Say(
              "Assumed rank argument requires an explicit interface"_err_en_US);
        }
      }
      if (symbol.attrs().test(Attr::ASYNCHRONOUS)) {
        messages.Say(
            "ASYNCHRONOUS argument requires an explicit interface"_err_en_US);
      }
      if (symbol.attrs().test(Attr::VOLATILE)) {
        messages.Say(
            "VOLATILE argument requires an explicit interface"_err_en_US);
      }
    }
  }
}

// When scalar CHARACTER actual arguments are known to be short,
// we extend them on the right with spaces and a warning.
static void PadShortCharacterActual(evaluate::Expr<evaluate::SomeType> &actual,
    const characteristics::TypeAndShape &dummyType,
    characteristics::TypeAndShape &actualType,
    evaluate::FoldingContext &context, parser::ContextualMessages &messages) {
  if (dummyType.type().category() == TypeCategory::Character &&
      actualType.type().category() == TypeCategory::Character &&
      dummyType.type().kind() == actualType.type().kind() &&
      GetRank(actualType.shape()) == 0) {
    if (dummyType.LEN() && actualType.LEN()) {
      auto dummyLength{ToInt64(Fold(context, common::Clone(*dummyType.LEN())))};
      auto actualLength{
          ToInt64(Fold(context, common::Clone(*actualType.LEN())))};
      if (dummyLength && actualLength && *actualLength < *dummyLength) {
        messages.Say(
            "Actual length '%jd' is less than expected length '%jd'"_en_US,
            *actualLength, *dummyLength);
        auto converted{ConvertToType(dummyType.type(), std::move(actual))};
        CHECK(converted);
        actual = std::move(*converted);
        actualType.set_LEN(SubscriptIntExpr{*dummyLength});
      }
    }
  }
}

// Automatic conversion of different-kind INTEGER scalar actual
// argument expressions (not variables) to INTEGER scalar dummies.
// We return nonstandard INTEGER(8) results from intrinsic functions
// like SIZE() by default in order to facilitate the use of large
// arrays.  Emit a warning when downconverting.
static void ConvertIntegerActual(evaluate::Expr<evaluate::SomeType> &actual,
    const characteristics::TypeAndShape &dummyType,
    characteristics::TypeAndShape &actualType,
    parser::ContextualMessages &messages) {
  if (dummyType.type().category() == TypeCategory::Integer &&
      actualType.type().category() == TypeCategory::Integer &&
      dummyType.type().kind() != actualType.type().kind() &&
      GetRank(dummyType.shape()) == 0 && GetRank(actualType.shape()) == 0 &&
      !evaluate::IsVariable(actual)) {
    auto converted{
        evaluate::ConvertToType(dummyType.type(), std::move(actual))};
    CHECK(converted);
    actual = std::move(*converted);
    if (dummyType.type().kind() < actualType.type().kind()) {
      messages.Say(
          "Actual argument scalar expression of type INTEGER(%d) was converted to smaller dummy argument type INTEGER(%d)"_en_US,
          actualType.type().kind(), dummyType.type().kind());
    }
    actualType = dummyType;
  }
}

static bool DefersSameTypeParameters(
    const DerivedTypeSpec &actual, const DerivedTypeSpec &dummy) {
  for (const auto &pair : actual.parameters()) {
    const ParamValue &actualValue{pair.second};
    const ParamValue *dummyValue{dummy.FindParameter(pair.first)};
    if (!dummyValue || (actualValue.isDeferred() != dummyValue->isDeferred())) {
      return false;
    }
  }
  return true;
}

static void CheckExplicitDataArg(const characteristics::DummyDataObject &dummy,
    const std::string &dummyName, evaluate::Expr<evaluate::SomeType> &actual,
    characteristics::TypeAndShape &actualType, bool isElemental,
    bool actualIsArrayElement, evaluate::FoldingContext &context,
    const Scope *scope, const evaluate::SpecificIntrinsic *intrinsic) {

  // Basic type & rank checking
  parser::ContextualMessages &messages{context.messages()};
  PadShortCharacterActual(actual, dummy.type, actualType, context, messages);
  ConvertIntegerActual(actual, dummy.type, actualType, messages);
  bool typesCompatible{dummy.type.type().IsTkCompatibleWith(actualType.type())};
  if (typesCompatible) {
    if (isElemental) {
    } else if (dummy.type.attrs().test(
                   characteristics::TypeAndShape::Attr::AssumedRank)) {
    } else if (!dummy.type.attrs().test(
                   characteristics::TypeAndShape::Attr::AssumedShape) &&
        (actualType.Rank() > 0 || actualIsArrayElement)) {
      // Sequence association (15.5.2.11) applies -- rank need not match
      // if the actual argument is an array or array element designator.
    } else {
      // Let CheckConformance accept scalars; storage association
      // cases are checked here below.
      CheckConformance(messages, dummy.type.shape(), actualType.shape(),
          "dummy argument", "actual argument", true, true);
    }
  } else {
    const auto &len{actualType.LEN()};
    messages.Say(
        "Actual argument type '%s' is not compatible with dummy argument type '%s'"_err_en_US,
        actualType.type().AsFortran(len ? len->AsFortran() : ""),
        dummy.type.type().AsFortran());
  }

  bool actualIsPolymorphic{actualType.type().IsPolymorphic()};
  bool dummyIsPolymorphic{dummy.type.type().IsPolymorphic()};
  bool actualIsCoindexed{ExtractCoarrayRef(actual).has_value()};
  bool actualIsAssumedSize{actualType.attrs().test(
      characteristics::TypeAndShape::Attr::AssumedSize)};
  bool dummyIsAssumedSize{dummy.type.attrs().test(
      characteristics::TypeAndShape::Attr::AssumedSize)};
  bool dummyIsAsynchronous{
      dummy.attrs.test(characteristics::DummyDataObject::Attr::Asynchronous)};
  bool dummyIsVolatile{
      dummy.attrs.test(characteristics::DummyDataObject::Attr::Volatile)};
  bool dummyIsValue{
      dummy.attrs.test(characteristics::DummyDataObject::Attr::Value)};

  if (actualIsPolymorphic && dummyIsPolymorphic &&
      actualIsCoindexed) { // 15.5.2.4(2)
    messages.Say(
        "Coindexed polymorphic object may not be associated with a polymorphic %s"_err_en_US,
        dummyName);
  }
  if (actualIsPolymorphic && !dummyIsPolymorphic &&
      actualIsAssumedSize) { // 15.5.2.4(2)
    messages.Say(
        "Assumed-size polymorphic array may not be associated with a monomorphic %s"_err_en_US,
        dummyName);
  }

  // Derived type actual argument checks
  const Symbol *actualFirstSymbol{evaluate::GetFirstSymbol(actual)};
  bool actualIsAsynchronous{
      actualFirstSymbol && actualFirstSymbol->attrs().test(Attr::ASYNCHRONOUS)};
  bool actualIsVolatile{
      actualFirstSymbol && actualFirstSymbol->attrs().test(Attr::VOLATILE)};
  if (const auto *derived{evaluate::GetDerivedTypeSpec(actualType.type())}) {
    if (dummy.type.type().IsAssumedType()) {
      if (!derived->parameters().empty()) { // 15.5.2.4(2)
        messages.Say(
            "Actual argument associated with TYPE(*) %s may not have a parameterized derived type"_err_en_US,
            dummyName);
      }
      if (const Symbol *
          tbp{FindImmediateComponent(*derived, [](const Symbol &symbol) {
            return symbol.has<ProcBindingDetails>();
          })}) { // 15.5.2.4(2)
        evaluate::SayWithDeclaration(messages, *tbp,
            "Actual argument associated with TYPE(*) %s may not have type-bound procedure '%s'"_err_en_US,
            dummyName, tbp->name());
      }
      const auto &finals{
          derived->typeSymbol().get<DerivedTypeDetails>().finals()};
      if (!finals.empty()) { // 15.5.2.4(2)
        if (auto *msg{messages.Say(
                "Actual argument associated with TYPE(*) %s may not have derived type '%s' with FINAL subroutine '%s'"_err_en_US,
                dummyName, derived->typeSymbol().name(),
                finals.begin()->first)}) {
          msg->Attach(finals.begin()->first,
              "FINAL subroutine '%s' in derived type '%s'"_en_US,
              finals.begin()->first, derived->typeSymbol().name());
        }
      }
    }
    if (actualIsCoindexed) {
      if (dummy.intent != common::Intent::In && !dummyIsValue) {
        if (auto bad{
                FindAllocatableUltimateComponent(*derived)}) { // 15.5.2.4(6)
          evaluate::SayWithDeclaration(messages, *bad,
              "Coindexed actual argument with ALLOCATABLE ultimate component '%s' must be associated with a %s with VALUE or INTENT(IN) attributes"_err_en_US,
              bad.BuildResultDesignatorName(), dummyName);
        }
      }
      if (auto coarrayRef{evaluate::ExtractCoarrayRef(actual)}) { // C1537
        const Symbol &coarray{coarrayRef->GetLastSymbol()};
        if (const DeclTypeSpec * type{coarray.GetType()}) {
          if (const DerivedTypeSpec * derived{type->AsDerived()}) {
            if (auto bad{semantics::FindPointerUltimateComponent(*derived)}) {
              evaluate::SayWithDeclaration(messages, coarray,
                  "Coindexed object '%s' with POINTER ultimate component '%s' cannot be associated with %s"_err_en_US,
                  coarray.name(), bad.BuildResultDesignatorName(), dummyName);
            }
          }
        }
      }
    }
    if (actualIsVolatile != dummyIsVolatile) { // 15.5.2.4(22)
      if (auto bad{semantics::FindCoarrayUltimateComponent(*derived)}) {
        evaluate::SayWithDeclaration(messages, *bad,
            "VOLATILE attribute must match for %s when actual argument has a coarray ultimate component '%s'"_err_en_US,
            dummyName, bad.BuildResultDesignatorName());
      }
    }
  }

  // Rank and shape checks
  const auto *actualLastSymbol{evaluate::GetLastSymbol(actual)};
  if (actualLastSymbol) {
    actualLastSymbol = GetAssociationRoot(*actualLastSymbol);
  }
  const ObjectEntityDetails *actualLastObject{actualLastSymbol
          ? actualLastSymbol->GetUltimate().detailsIf<ObjectEntityDetails>()
          : nullptr};
  int actualRank{evaluate::GetRank(actualType.shape())};
  bool actualIsPointer{(actualLastSymbol && IsPointer(*actualLastSymbol)) ||
      evaluate::IsNullPointer(actual)};
  if (dummy.type.attrs().test(
          characteristics::TypeAndShape::Attr::AssumedShape)) {
    // 15.5.2.4(16)
    if (actualRank == 0) {
      messages.Say(
          "Scalar actual argument may not be associated with assumed-shape %s"_err_en_US,
          dummyName);
    }
    if (actualIsAssumedSize && actualLastSymbol) {
      evaluate::SayWithDeclaration(messages, *actualLastSymbol,
          "Assumed-size array may not be associated with assumed-shape %s"_err_en_US,
          dummyName);
    }
  } else if (actualRank == 0 && dummy.type.Rank() > 0) {
    // Actual is scalar, dummy is an array.  15.5.2.4(14), 15.5.2.11
    if (actualIsCoindexed) {
      messages.Say(
          "Coindexed scalar actual argument must be associated with a scalar %s"_err_en_US,
          dummyName);
    }
    if (actualLastSymbol && actualLastSymbol->Rank() == 0 &&
        !(dummy.type.type().IsAssumedType() && dummyIsAssumedSize)) {
      messages.Say(
          "Whole scalar actual argument may not be associated with a %s array"_err_en_US,
          dummyName);
    }
    if (actualIsPolymorphic) {
      messages.Say(
          "Polymorphic scalar may not be associated with a %s array"_err_en_US,
          dummyName);
    }
    if (actualIsPointer) {
      messages.Say(
          "Scalar POINTER target may not be associated with a %s array"_err_en_US,
          dummyName);
    }
    if (actualLastObject && actualLastObject->IsAssumedShape()) {
      messages.Say(
          "Element of assumed-shape array may not be associated with a %s array"_err_en_US,
          dummyName);
    }
  }
  if (actualLastObject && actualLastObject->IsCoarray() &&
      IsAllocatable(*actualLastSymbol) && dummy.intent == common::Intent::Out &&
      !(intrinsic &&
          evaluate::AcceptsIntentOutAllocatableCoarray(
              intrinsic->name))) { // C846
    messages.Say(
        "ALLOCATABLE coarray '%s' may not be associated with INTENT(OUT) %s"_err_en_US,
        actualLastSymbol->name(), dummyName);
  }

  // Definability
  const char *reason{nullptr};
  if (dummy.intent == common::Intent::Out) {
    reason = "INTENT(OUT)";
  } else if (dummy.intent == common::Intent::InOut) {
    reason = "INTENT(IN OUT)";
  } else if (dummyIsAsynchronous) {
    reason = "ASYNCHRONOUS";
  } else if (dummyIsVolatile) {
    reason = "VOLATILE";
  }
  if (reason && scope) {
    bool vectorSubscriptIsOk{isElemental || dummyIsValue}; // 15.5.2.4(21)
    if (auto why{WhyNotModifiable(
            messages.at(), actual, *scope, vectorSubscriptIsOk)}) {
      if (auto *msg{messages.Say(
              "Actual argument associated with %s %s must be definable"_err_en_US, // C1158
              reason, dummyName)}) {
        msg->Attach(*why);
      }
    }
  }

  // Cases when temporaries might be needed but must not be permitted.
  bool dummyIsPointer{
      dummy.attrs.test(characteristics::DummyDataObject::Attr::Pointer)};
  bool dummyIsContiguous{
      dummy.attrs.test(characteristics::DummyDataObject::Attr::Contiguous)};
  bool actualIsContiguous{IsSimplyContiguous(actual, context)};
  bool dummyIsAssumedRank{dummy.type.attrs().test(
      characteristics::TypeAndShape::Attr::AssumedRank)};
  bool dummyIsAssumedShape{dummy.type.attrs().test(
      characteristics::TypeAndShape::Attr::AssumedShape)};
  if ((actualIsAsynchronous || actualIsVolatile) &&
      (dummyIsAsynchronous || dummyIsVolatile) && !dummyIsValue) {
    if (actualIsCoindexed) { // C1538
      messages.Say(
          "Coindexed ASYNCHRONOUS or VOLATILE actual argument may not be associated with %s with ASYNCHRONOUS or VOLATILE attributes unless VALUE"_err_en_US,
          dummyName);
    }
    if (actualRank > 0 && !actualIsContiguous) {
      if (dummyIsContiguous ||
          !(dummyIsAssumedShape || dummyIsAssumedRank ||
              (actualIsPointer && dummyIsPointer))) { // C1539 & C1540
        messages.Say(
            "ASYNCHRONOUS or VOLATILE actual argument that is not simply contiguous may not be associated with a contiguous %s"_err_en_US,
            dummyName);
      }
    }
  }

  // 15.5.2.6 -- dummy is ALLOCATABLE
  bool dummyIsAllocatable{
      dummy.attrs.test(characteristics::DummyDataObject::Attr::Allocatable)};
  bool actualIsAllocatable{
      actualLastSymbol && IsAllocatable(*actualLastSymbol)};
  if (dummyIsAllocatable) {
    if (!actualIsAllocatable) {
      messages.Say(
          "ALLOCATABLE %s must be associated with an ALLOCATABLE actual argument"_err_en_US,
          dummyName);
    }
    if (actualIsAllocatable && actualIsCoindexed &&
        dummy.intent != common::Intent::In) {
      messages.Say(
          "ALLOCATABLE %s must have INTENT(IN) to be associated with a coindexed actual argument"_err_en_US,
          dummyName);
    }
    if (!actualIsCoindexed && actualLastSymbol &&
        actualLastSymbol->Corank() != dummy.type.corank()) {
      messages.Say(
          "ALLOCATABLE %s has corank %d but actual argument has corank %d"_err_en_US,
          dummyName, dummy.type.corank(), actualLastSymbol->Corank());
    }
  }

  // 15.5.2.7 -- dummy is POINTER
  if (dummyIsPointer) {
    if (dummyIsContiguous && !actualIsContiguous) {
      messages.Say(
          "Actual argument associated with CONTIGUOUS POINTER %s must be simply contiguous"_err_en_US,
          dummyName);
    }
    if (!actualIsPointer) {
      if (dummy.intent == common::Intent::In) {
        semantics::CheckPointerAssignment(
            context, parser::CharBlock{}, dummyName, dummy, actual);
      } else {
        messages.Say(
            "Actual argument associated with POINTER %s must also be POINTER unless INTENT(IN)"_err_en_US,
            dummyName);
      }
    }
  }

  // 15.5.2.5 -- actual & dummy are both POINTER or both ALLOCATABLE
  if ((actualIsPointer && dummyIsPointer) ||
      (actualIsAllocatable && dummyIsAllocatable)) {
    bool actualIsUnlimited{actualType.type().IsUnlimitedPolymorphic()};
    bool dummyIsUnlimited{dummy.type.type().IsUnlimitedPolymorphic()};
    if (actualIsUnlimited != dummyIsUnlimited) {
      if (typesCompatible) {
        messages.Say(
            "If a POINTER or ALLOCATABLE dummy or actual argument is unlimited polymorphic, both must be so"_err_en_US);
      }
    } else if (dummyIsPolymorphic != actualIsPolymorphic) {
      if (dummy.intent == common::Intent::In && typesCompatible) {
        // extension: allow with warning, rule is only relevant for definables
        messages.Say(
            "If a POINTER or ALLOCATABLE dummy or actual argument is polymorphic, both should be so"_en_US);
      } else {
        messages.Say(
            "If a POINTER or ALLOCATABLE dummy or actual argument is polymorphic, both must be so"_err_en_US);
      }
    } else if (!actualIsUnlimited && typesCompatible) {
      if (!actualType.type().IsTkCompatibleWith(dummy.type.type())) {
        if (dummy.intent == common::Intent::In) {
          // extension: allow with warning, rule is only relevant for definables
          messages.Say(
              "POINTER or ALLOCATABLE dummy and actual arguments should have the same declared type and kind"_en_US);
        } else {
          messages.Say(
              "POINTER or ALLOCATABLE dummy and actual arguments must have the same declared type and kind"_err_en_US);
        }
      }
      if (const auto *derived{
              evaluate::GetDerivedTypeSpec(actualType.type())}) {
        if (!DefersSameTypeParameters(
                *derived, *evaluate::GetDerivedTypeSpec(dummy.type.type()))) {
          messages.Say(
              "Dummy and actual arguments must defer the same type parameters when POINTER or ALLOCATABLE"_err_en_US);
        }
      }
    }
  }

  // 15.5.2.8 -- coarray dummy arguments
  if (dummy.type.corank() > 0) {
    if (actualType.corank() == 0) {
      messages.Say(
          "Actual argument associated with coarray %s must be a coarray"_err_en_US,
          dummyName);
    }
    if (dummyIsVolatile) {
      if (!actualIsVolatile) {
        messages.Say(
            "non-VOLATILE coarray may not be associated with VOLATILE coarray %s"_err_en_US,
            dummyName);
      }
    } else {
      if (actualIsVolatile) {
        messages.Say(
            "VOLATILE coarray may not be associated with non-VOLATILE coarray %s"_err_en_US,
            dummyName);
      }
    }
    if (actualRank == dummy.type.Rank() && !actualIsContiguous) {
      if (dummyIsContiguous) {
        messages.Say(
            "Actual argument associated with a CONTIGUOUS coarray %s must be simply contiguous"_err_en_US,
            dummyName);
      } else if (!dummyIsAssumedShape && !dummyIsAssumedRank) {
        messages.Say(
            "Actual argument associated with coarray %s (not assumed shape or rank) must be simply contiguous"_err_en_US,
            dummyName);
      }
    }
  }
}

static void CheckProcedureArg(evaluate::ActualArgument &arg,
    const characteristics::DummyProcedure &proc, const std::string &dummyName,
    evaluate::FoldingContext &context) {
  parser::ContextualMessages &messages{context.messages()};
  const characteristics::Procedure &interface{proc.procedure.value()};
  if (const auto *expr{arg.UnwrapExpr()}) {
    bool dummyIsPointer{
        proc.attrs.test(characteristics::DummyProcedure::Attr::Pointer)};
    const auto *argProcDesignator{
        std::get_if<evaluate::ProcedureDesignator>(&expr->u)};
    const auto *argProcSymbol{
        argProcDesignator ? argProcDesignator->GetSymbol() : nullptr};
    if (auto argChars{characteristics::DummyArgument::FromActual(
            "actual argument", *expr, context)}) {
      if (!argChars->IsTypelessIntrinsicDummy()) {
        if (auto *argProc{
                std::get_if<characteristics::DummyProcedure>(&argChars->u)}) {
          characteristics::Procedure &argInterface{argProc->procedure.value()};
          argInterface.attrs.reset(
              characteristics::Procedure::Attr::NullPointer);
          if (!argProcSymbol || argProcSymbol->attrs().test(Attr::INTRINSIC)) {
            // It's ok to pass ELEMENTAL unrestricted intrinsic functions.
            argInterface.attrs.reset(
                characteristics::Procedure::Attr::Elemental);
          } else if (argInterface.attrs.test(
                         characteristics::Procedure::Attr::Elemental)) {
            if (argProcSymbol) { // C1533
              evaluate::SayWithDeclaration(messages, *argProcSymbol,
                  "Non-intrinsic ELEMENTAL procedure '%s' may not be passed as an actual argument"_err_en_US,
                  argProcSymbol->name());
              return; // avoid piling on with checks below
            } else {
              argInterface.attrs.reset(
                  characteristics::Procedure::Attr::NullPointer);
            }
          }
          if (!interface.IsPure()) {
            // 15.5.2.9(1): if dummy is not pure, actual need not be.
            argInterface.attrs.reset(characteristics::Procedure::Attr::Pure);
          }
          if (interface.HasExplicitInterface()) {
            if (interface != argInterface) {
              messages.Say(
                  "Actual argument procedure has interface incompatible with %s"_err_en_US,
                  dummyName);
            }
          } else { // 15.5.2.9(2,3)
            if (interface.IsSubroutine() && argInterface.IsFunction()) {
              messages.Say(
                  "Actual argument associated with procedure %s is a function but must be a subroutine"_err_en_US,
                  dummyName);
            } else if (interface.IsFunction()) {
              if (argInterface.IsFunction()) {
                if (interface.functionResult != argInterface.functionResult) {
                  messages.Say(
                      "Actual argument function associated with procedure %s has incompatible result type"_err_en_US,
                      dummyName);
                }
              } else if (argInterface.IsSubroutine()) {
                messages.Say(
                    "Actual argument associated with procedure %s is a subroutine but must be a function"_err_en_US,
                    dummyName);
              }
            }
          }
        } else {
          messages.Say(
              "Actual argument associated with procedure %s is not a procedure"_err_en_US,
              dummyName);
        }
      } else if (!(dummyIsPointer && IsNullPointer(*expr))) {
        messages.Say(
            "Actual argument associated with procedure %s is not a procedure"_err_en_US,
            dummyName);
      }
    }
    if (interface.HasExplicitInterface()) {
      if (dummyIsPointer) {
        // 15.5.2.9(5) -- dummy procedure POINTER
        // Interface compatibility has already been checked above by comparison.
        if (proc.intent != common::Intent::In && !IsVariable(*expr)) {
          messages.Say(
              "Actual argument associated with procedure pointer %s must be a POINTER unless INTENT(IN)"_err_en_US,
              dummyName);
        }
      } else { // 15.5.2.9(4) -- dummy procedure is not POINTER
        if (!argProcDesignator) {
          messages.Say(
              "Actual argument associated with non-POINTER procedure %s must be a procedure (and not a procedure pointer)"_err_en_US,
              dummyName);
        }
      }
    }
  } else {
    messages.Say(
        "Assumed-type argument may not be forwarded as procedure %s"_err_en_US,
        dummyName);
  }
}

static void CheckExplicitInterfaceArg(evaluate::ActualArgument &arg,
    const characteristics::DummyArgument &dummy,
    const characteristics::Procedure &proc, evaluate::FoldingContext &context,
    const Scope *scope, const evaluate::SpecificIntrinsic *intrinsic) {
  auto &messages{context.messages()};
  std::string dummyName{"dummy argument"};
  if (!dummy.name.empty()) {
    dummyName += " '"s + parser::ToLowerCaseLetters(dummy.name) + "='";
  }
  std::visit(
      common::visitors{
          [&](const characteristics::DummyDataObject &object) {
            if (auto *expr{arg.UnwrapExpr()}) {
              if (auto type{characteristics::TypeAndShape::Characterize(
                      *expr, context)}) {
                arg.set_dummyIntent(object.intent);
                bool isElemental{object.type.Rank() == 0 && proc.IsElemental()};
                CheckExplicitDataArg(object, dummyName, *expr, *type,
                    isElemental, IsArrayElement(*expr), context, scope,
                    intrinsic);
              } else if (object.type.type().IsTypelessIntrinsicArgument() &&
                  std::holds_alternative<evaluate::BOZLiteralConstant>(
                      expr->u)) {
                // ok
              } else if (object.type.type().IsTypelessIntrinsicArgument() &&
                  evaluate::IsNullPointer(*expr)) {
                // ok, calling ASSOCIATED(NULL())
              } else {
                messages.Say(
                    "Actual argument '%s' associated with %s is not a variable or typed expression"_err_en_US,
                    expr->AsFortran(), dummyName);
              }
            } else {
              const Symbol &assumed{DEREF(arg.GetAssumedTypeDummy())};
              if (!object.type.type().IsAssumedType()) {
                messages.Say(
                    "Assumed-type '%s' may be associated only with an assumed-type %s"_err_en_US,
                    assumed.name(), dummyName);
              } else if (const auto *details{
                             assumed.detailsIf<ObjectEntityDetails>()}) {
                if (!(details->IsAssumedShape() || details->IsAssumedRank())) {
                  messages.Say( // C711
                      "Assumed-type '%s' must be either assumed shape or assumed rank to be associated with assumed-type %s"_err_en_US,
                      assumed.name(), dummyName);
                }
              }
            }
          },
          [&](const characteristics::DummyProcedure &proc) {
            CheckProcedureArg(arg, proc, dummyName, context);
          },
          [&](const characteristics::AlternateReturn &) {
            // TODO check alternate return
          },
      },
      dummy.u);
}

static void RearrangeArguments(const characteristics::Procedure &proc,
    evaluate::ActualArguments &actuals, parser::ContextualMessages &messages) {
  CHECK(proc.HasExplicitInterface());
  if (actuals.size() < proc.dummyArguments.size()) {
    actuals.resize(proc.dummyArguments.size());
  } else if (actuals.size() > proc.dummyArguments.size()) {
    messages.Say(
        "Too many actual arguments (%zd) passed to procedure that expects only %zd"_err_en_US,
        actuals.size(), proc.dummyArguments.size());
  }
  std::map<std::string, evaluate::ActualArgument> kwArgs;
  for (auto &x : actuals) {
    if (x && x->keyword()) {
      auto emplaced{
          kwArgs.try_emplace(x->keyword()->ToString(), std::move(*x))};
      if (!emplaced.second) {
        messages.Say(*x->keyword(),
            "Argument keyword '%s=' appears on more than one effective argument in this procedure reference"_err_en_US,
            *x->keyword());
      }
      x.reset();
    }
  }
  if (!kwArgs.empty()) {
    int index{0};
    for (const auto &dummy : proc.dummyArguments) {
      if (!dummy.name.empty()) {
        auto iter{kwArgs.find(dummy.name)};
        if (iter != kwArgs.end()) {
          evaluate::ActualArgument &x{iter->second};
          if (actuals[index]) {
            messages.Say(*x.keyword(),
                "Keyword argument '%s=' has already been specified positionally (#%d) in this procedure reference"_err_en_US,
                *x.keyword(), index + 1);
          } else {
            actuals[index] = std::move(x);
          }
          kwArgs.erase(iter);
        }
      }
      ++index;
    }
    for (auto &bad : kwArgs) {
      evaluate::ActualArgument &x{bad.second};
      messages.Say(*x.keyword(),
          "Argument keyword '%s=' is not recognized for this procedure reference"_err_en_US,
          *x.keyword());
    }
  }
}

static parser::Messages CheckExplicitInterface(
    const characteristics::Procedure &proc, evaluate::ActualArguments &actuals,
    const evaluate::FoldingContext &context, const Scope *scope,
    const evaluate::SpecificIntrinsic *intrinsic) {
  parser::Messages buffer;
  parser::ContextualMessages messages{context.messages().at(), &buffer};
  RearrangeArguments(proc, actuals, messages);
  if (buffer.empty()) {
    int index{0};
    evaluate::FoldingContext localContext{context, messages};
    for (auto &actual : actuals) {
      const auto &dummy{proc.dummyArguments.at(index++)};
      if (actual) {
        CheckExplicitInterfaceArg(
            *actual, dummy, proc, localContext, scope, intrinsic);
      } else if (!dummy.IsOptional()) {
        if (dummy.name.empty()) {
          messages.Say(
              "Dummy argument #%d is not OPTIONAL and is not associated with "
              "an actual argument in this procedure reference"_err_en_US,
              index);
        } else {
          messages.Say("Dummy argument '%s=' (#%d) is not OPTIONAL and is not "
                       "associated with an actual argument in this procedure "
                       "reference"_err_en_US,
              dummy.name, index);
        }
      }
    }
  }
  return buffer;
}

parser::Messages CheckExplicitInterface(const characteristics::Procedure &proc,
    evaluate::ActualArguments &actuals, const evaluate::FoldingContext &context,
    const Scope &scope, const evaluate::SpecificIntrinsic *intrinsic) {
  return CheckExplicitInterface(proc, actuals, context, &scope, intrinsic);
}

bool CheckInterfaceForGeneric(const characteristics::Procedure &proc,
    evaluate::ActualArguments &actuals,
    const evaluate::FoldingContext &context) {
  return CheckExplicitInterface(proc, actuals, context, nullptr, nullptr)
      .empty();
}

void CheckArguments(const characteristics::Procedure &proc,
    evaluate::ActualArguments &actuals, evaluate::FoldingContext &context,
    const Scope &scope, bool treatingExternalAsImplicit,
    const evaluate::SpecificIntrinsic *intrinsic) {
  bool explicitInterface{proc.HasExplicitInterface()};
  if (explicitInterface) {
    auto buffer{
        CheckExplicitInterface(proc, actuals, context, scope, intrinsic)};
    if (treatingExternalAsImplicit && !buffer.empty()) {
      if (auto *msg{context.messages().Say(
              "Warning: if the procedure's interface were explicit, this reference would be in error:"_en_US)}) {
        buffer.AttachTo(*msg);
      }
    }
    if (auto *msgs{context.messages().messages()}) {
      msgs->Merge(std::move(buffer));
    }
  }
  if (!explicitInterface || treatingExternalAsImplicit) {
    for (auto &actual : actuals) {
      if (actual) {
        CheckImplicitInterfaceArg(*actual, context.messages());
      }
    }
  }
}
} // namespace Fortran::semantics