summaryrefslogtreecommitdiff
path: root/virt
Commit message (Collapse)AuthorAgeFilesLines
...
| | * irqchip/gic-v4.1: Move doorbell management to the GICv4 abstraction layerMarc Zyngier2020-03-242-21/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In order to hide some of the differences between v4.0 and v4.1, move the doorbell management out of the KVM code, and into the GICv4-specific layer. This allows the calling code to ask for the doorbell when blocking, and otherwise to leave the doorbell permanently disabled. This matches the v4.1 code perfectly, and only results in a minor refactoring of the v4.0 code. Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Zenghui Yu <yuzenghui@huawei.com> Link: https://lore.kernel.org/r/20200304203330.4967-14-maz@kernel.org
| * | KVM: arm64: Use the correct timer structure to access the physical counterKarimAllah Ahmed2020-03-161-1/+1
| |/ | | | | | | | | | | | | | | | | | | | | | | | | | | Use the physical timer structure when reading the physical counter instead of using the virtual timer structure. Thankfully, nothing is accessing this code path yet (at least not until we enable save/restore of the physical counter). It doesn't hurt for this to be correct though. Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de> [maz: amended commit log] Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Zenghui Yu <yuzenghui@huawei.com> Fixes: 84135d3d18da ("KVM: arm/arm64: consolidate arch timer trap handlers") Link: https://lore.kernel.org/r/1584351546-5018-1-git-send-email-karahmed@amazon.de
| * Merge tag 'kvmarm-fixes-5.6-1' of ↵Paolo Bonzini2020-02-282-2/+1
| |\ | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm fixes for 5.6, take #1 - Fix compilation on 32bit - Move VHE guest entry/exit into the VHE-specific entry code - Make sure all functions called by the non-VHE HYP code is tagged as __always_inline
| | * kvm: arm/arm64: Fold VHE entry/exit work into kvm_vcpu_run_vhe()Mark Rutland2020-02-171-2/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With VHE, running a vCPU always requires the sequence: 1. kvm_arm_vhe_guest_enter(); 2. kvm_vcpu_run_vhe(); 3. kvm_arm_vhe_guest_exit() ... and as we invoke this from the shared arm/arm64 KVM code, 32-bit arm has to provide stubs for all three functions. To simplify the common code, and make it easier to make further modifications to the arm64-specific portions in the near future, let's fold kvm_arm_vhe_guest_enter() and kvm_arm_vhe_guest_exit() into kvm_vcpu_run_vhe(). The 32-bit stubs for kvm_arm_vhe_guest_enter() and kvm_arm_vhe_guest_exit() are removed, as they are no longer used. The 32-bit stub for kvm_vcpu_run_vhe() is left as-is. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20200210114757.2889-1-mark.rutland@arm.com
| | * KVM: arm/arm64: Fix up includes for trace.hJeremy Cline2020-02-051-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Fedora kernel builds on armv7hl began failing recently because kvm_arm_exception_type and kvm_arm_exception_class were undeclared in trace.h. Add the missing include. Fixes: 0e20f5e25556 ("KVM: arm/arm64: Cleanup MMIO handling") Signed-off-by: Jeremy Cline <jcline@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20200205134146.82678-1-jcline@redhat.com
* | | KVM: Fix out of range accesses to memslotsSean Christopherson2020-03-261-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Reset the LRU slot if it becomes invalid when deleting a memslot to fix an out-of-bounds/use-after-free access when searching through memslots. Explicitly check for there being no used slots in search_memslots(), and in the caller of s390's approximation variant. Fixes: 36947254e5f9 ("KVM: Dynamically size memslot array based on number of used slots") Reported-by: Qian Cai <cai@lca.pw> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Message-Id: <20200320205546.2396-2-sean.j.christopherson@intel.com> Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | | KVM: Drop largepages_enabled and its accessor/mutatorSean Christopherson2020-03-161-13/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Drop largepages_enabled, kvm_largepages_enabled() and kvm_disable_largepages() now that all users are gone. Note, largepages_enabled was an x86-only flag that got left in common KVM code when KVM gained support for multiple architectures. No functional change intended. Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | | KVM: Drop gfn_to_pfn_atomic()Peter Xu2020-03-161-6/+0
| | | | | | | | | | | | | | | | | | | | | It's never used anywhere now. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | | KVM: x86: enable dirty log gradually in small chunksJay Zhou2020-03-161-7/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It could take kvm->mmu_lock for an extended period of time when enabling dirty log for the first time. The main cost is to clear all the D-bits of last level SPTEs. This situation can benefit from manual dirty log protect as well, which can reduce the mmu_lock time taken. The sequence is like this: 1. Initialize all the bits of the dirty bitmap to 1 when enabling dirty log for the first time 2. Only write protect the huge pages 3. KVM_GET_DIRTY_LOG returns the dirty bitmap info 4. KVM_CLEAR_DIRTY_LOG will clear D-bit for each of the leaf level SPTEs gradually in small chunks Under the Intel(R) Xeon(R) Gold 6152 CPU @ 2.10GHz environment, I did some tests with a 128G windows VM and counted the time taken of memory_global_dirty_log_start, here is the numbers: VM Size Before After optimization 128G 460ms 10ms Signed-off-by: Jay Zhou <jianjay.zhou@huawei.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | | KVM: Remove unnecessary asm/kvm_host.h includesPeter Xu2020-03-161-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Remove includes of asm/kvm_host.h from files that already include linux/kvm_host.h to make it more obvious that there is no ordering issue between the two headers. linux/kvm_host.h includes asm/kvm_host.h to pick up architecture specific settings, and this will never change, i.e. including asm/kvm_host.h after linux/kvm_host.h may seem problematic, but in practice is simply redundant. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | | KVM: Dynamically size memslot array based on number of used slotsSean Christopherson2020-03-161-3/+28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that the memslot logic doesn't assume memslots are always non-NULL, dynamically size the array of memslots instead of unconditionally allocating memory for the maximum number of memslots. Note, because a to-be-deleted memslot must first be invalidated, the array size cannot be immediately reduced when deleting a memslot. However, consecutive deletions will realize the memory savings, i.e. a second deletion will trim the entry. Tested-by: Christoffer Dall <christoffer.dall@arm.com> Tested-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | | KVM: Terminate memslot walks via used_slotsSean Christopherson2020-03-162-54/+165
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Refactor memslot handling to treat the number of used slots as the de facto size of the memslot array, e.g. return NULL from id_to_memslot() when an invalid index is provided instead of relying on npages==0 to detect an invalid memslot. Rework the sorting and walking of memslots in advance of dynamically sizing memslots to aid bisection and debug, e.g. with luck, a bug in the refactoring will bisect here and/or hit a WARN instead of randomly corrupting memory. Alternatively, a global null/invalid memslot could be returned, i.e. so callers of id_to_memslot() don't have to explicitly check for a NULL memslot, but that approach runs the risk of introducing difficult-to- debug issues, e.g. if the global null slot is modified. Constifying the return from id_to_memslot() to combat such issues is possible, but would require a massive refactoring of arch specific code and would still be susceptible to casting shenanigans. Add function comments to update_memslots() and search_memslots() to explicitly (and loudly) state how memslots are sorted. Opportunistically stuff @hva with a non-canonical value when deleting a private memslot on x86 to detect bogus usage of the freed slot. No functional change intended. Tested-by: Christoffer Dall <christoffer.dall@arm.com> Tested-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | | KVM: Ensure validity of memslot with respect to kvm_get_dirty_log()Sean Christopherson2020-03-161-8/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Rework kvm_get_dirty_log() so that it "returns" the associated memslot on success. A future patch will rework memslot handling such that id_to_memslot() can return NULL, returning the memslot makes it more obvious that the validity of the memslot has been verified, i.e. precludes the need to add validity checks in the arch code that are technically unnecessary. To maintain ordering in s390, move the call to kvm_arch_sync_dirty_log() from s390's kvm_vm_ioctl_get_dirty_log() to the new kvm_get_dirty_log(). This is a nop for PPC, the only other arch that doesn't select KVM_GENERIC_DIRTYLOG_READ_PROTECT, as its sync_dirty_log() is empty. Ideally, moving the sync_dirty_log() call would be done in a separate patch, but it can't be done in a follow-on patch because that would temporarily break s390's ordering. Making the move in a preparatory patch would be functionally correct, but would create an odd scenario where the moved sync_dirty_log() would operate on a "different" memslot due to consuming the result of a different id_to_memslot(). The memslot couldn't actually be different as slots_lock is held, but the code is confusing enough as it is, i.e. moving sync_dirty_log() in this patch is the lesser of all evils. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | | KVM: Provide common implementation for generic dirty log functionsSean Christopherson2020-03-162-64/+75
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Move the implementations of KVM_GET_DIRTY_LOG and KVM_CLEAR_DIRTY_LOG for CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT into common KVM code. The arch specific implemenations are extremely similar, differing only in whether the dirty log needs to be sync'd from hardware (x86) and how the TLBs are flushed. Add new arch hooks to handle sync and TLB flush; the sync will also be used for non-generic dirty log support in a future patch (s390). The ulterior motive for providing a common implementation is to eliminate the dependency between arch and common code with respect to the memslot referenced by the dirty log, i.e. to make it obvious in the code that the validity of the memslot is guaranteed, as a future patch will rework memslot handling such that id_to_memslot() can return NULL. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | | KVM: Clean up local variable usage in __kvm_set_memory_region()Sean Christopherson2020-03-161-24/+26
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Clean up __kvm_set_memory_region() to achieve several goals: - Remove local variables that serve no real purpose - Improve the readability of the code - Better show the relationship between the 'old' and 'new' memslot - Prepare for dynamically sizing memslots - Document subtle gotchas (via comments) Note, using 'tmp' to hold the initial memslot is not strictly necessary at this juncture, e.g. 'old' could be directly copied from id_to_memslot(), but keep the pointer usage as id_to_memslot() will be able to return a NULL pointer once memslots are dynamically sized. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | | KVM: Simplify kvm_free_memslot() and all its descendentsSean Christopherson2020-03-162-13/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that all callers of kvm_free_memslot() pass NULL for @dont, remove the param from the top-level routine and all arch's implementations. No functional change intended. Tested-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | | KVM: Move memslot deletion to helper functionSean Christopherson2020-03-161-29/+46
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Move memslot deletion into its own routine so that the success path for other memslot updates does not need to use kvm_free_memslot(), i.e. can explicitly destroy the dirty bitmap when necessary. This paves the way for dropping @dont from kvm_free_memslot(), i.e. all callers now pass NULL for @dont. Add a comment above the code to make a copy of the existing memslot prior to deletion, it is not at all obvious that the pointer will become stale during sorting and/or installation of new memslots. Note, kvm_arch_commit_memory_region() allows an architecture to free resources when moving a memslot or changing its flags, e.g. x86 frees its arch specific memslot metadata during commit_memory_region(). Acked-by: Christoffer Dall <christoffer.dall@arm.com> Tested-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | | KVM: Drop "const" attribute from old memslot in commit_memory_region()Sean Christopherson2020-03-162-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Drop the "const" attribute from @old in kvm_arch_commit_memory_region() to allow arch specific code to free arch specific resources in the old memslot without having to cast away the attribute. Freeing resources in kvm_arch_commit_memory_region() paves the way for simplifying kvm_free_memslot() by eliminating the last usage of its @dont param. Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | | KVM: Move setting of memslot into helper routineSean Christopherson2020-03-161-43/+63
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Split out the core functionality of setting a memslot into a separate helper in preparation for moving memslot deletion into its own routine. Tested-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | | KVM: Refactor error handling for setting memory regionSean Christopherson2020-03-161-22/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Replace a big pile o' gotos with returns to make it more obvious what error code is being returned, and to prepare for refactoring the functional, i.e. post-checks, portion of __kvm_set_memory_region(). Reviewed-by: Janosch Frank <frankja@linux.ibm.com> Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | | KVM: Explicitly free allocated-but-unused dirty bitmapSean Christopherson2020-03-161-3/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Explicitly free an allocated-but-unused dirty bitmap instead of relying on kvm_free_memslot() if an error occurs in __kvm_set_memory_region(). There is no longer a need to abuse kvm_free_memslot() to free arch specific resources as arch specific code is now called only after the common flow is guaranteed to succeed. Arch code can still fail, but it's responsible for its own cleanup in that case. Eliminating the error path's abuse of kvm_free_memslot() paves the way for simplifying kvm_free_memslot(), i.e. dropping its @dont param. Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | | KVM: Drop kvm_arch_create_memslot()Sean Christopherson2020-03-162-20/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Remove kvm_arch_create_memslot() now that all arch implementations are effectively nops. Removing kvm_arch_create_memslot() eliminates the possibility for arch specific code to allocate memory prior to setting a memslot, which sets the stage for simplifying kvm_free_memslot(). Cc: Janosch Frank <frankja@linux.ibm.com> Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | | KVM: Don't free new memslot if allocation of said memslot failsSean Christopherson2020-03-161-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The two implementations of kvm_arch_create_memslot() in x86 and PPC are both good citizens and free up all local resources if creation fails. Return immediately (via a superfluous goto) instead of calling kvm_free_memslot(). Note, the call to kvm_free_memslot() is effectively an expensive nop in this case as there are no resources to be freed. No functional change intended. Acked-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | | KVM: Reinstall old memslots if arch preparation failsSean Christopherson2020-03-161-11/+12
|/ / | | | | | | | | | | | | | | | | | | | | | | | | | | | | Reinstall the old memslots if preparing the new memory region fails after invalidating a to-be-{re}moved memslot. Remove the superfluous 'old_memslots' variable so that it's somewhat clear that the error handling path needs to free the unused memslots, not simply the 'old' memslots. Fixes: bc6678a33d9b9 ("KVM: introduce kvm->srcu and convert kvm_set_memory_region to SRCU update") Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | KVM: Disable preemption in kvm_get_running_vcpu()Marc Zyngier2020-02-122-15/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Accessing a per-cpu variable only makes sense when preemption is disabled (and the kernel does check this when the right debug options are switched on). For kvm_get_running_vcpu(), it is fine to return the value after re-enabling preemption, as the preempt notifiers will make sure that this is kept consistent across task migration (the comment above the function hints at it, but lacks the crucial preemption management). While we're at it, move the comment from the ARM code, which explains why the whole thing works. Fixes: 7495e22bb165 ("KVM: Move running VCPU from ARM to common code"). Cc: Paolo Bonzini <pbonzini@redhat.com> Reported-by: Zenghui Yu <yuzenghui@huawei.com> Tested-by: Zenghui Yu <yuzenghui@huawei.com> Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/318984f6-bc36-33a3-abc6-bf2295974b06@huawei.com Message-id: <20200207163410.31276-1-maz@kernel.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | KVM: fix overflow of zero page refcount with ksm runningZhuang Yanying2020-02-051-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We are testing Virtual Machine with KSM on v5.4-rc2 kernel, and found the zero_page refcount overflow. The cause of refcount overflow is increased in try_async_pf (get_user_page) without being decreased in mmu_set_spte() while handling ept violation. In kvm_release_pfn_clean(), only unreserved page will call put_page. However, zero page is reserved. So, as well as creating and destroy vm, the refcount of zero page will continue to increase until it overflows. step1: echo 10000 > /sys/kernel/pages_to_scan/pages_to_scan echo 1 > /sys/kernel/pages_to_scan/run echo 1 > /sys/kernel/pages_to_scan/use_zero_pages step2: just create several normal qemu kvm vms. And destroy it after 10s. Repeat this action all the time. After a long period of time, all domains hang because of the refcount of zero page overflow. Qemu print error log as follow: … error: kvm run failed Bad address EAX=00006cdc EBX=00000008 ECX=80202001 EDX=078bfbfd ESI=ffffffff EDI=00000000 EBP=00000008 ESP=00006cc4 EIP=000efd75 EFL=00010002 [-------] CPL=0 II=0 A20=1 SMM=0 HLT=0 ES =0010 00000000 ffffffff 00c09300 DPL=0 DS [-WA] CS =0008 00000000 ffffffff 00c09b00 DPL=0 CS32 [-RA] SS =0010 00000000 ffffffff 00c09300 DPL=0 DS [-WA] DS =0010 00000000 ffffffff 00c09300 DPL=0 DS [-WA] FS =0010 00000000 ffffffff 00c09300 DPL=0 DS [-WA] GS =0010 00000000 ffffffff 00c09300 DPL=0 DS [-WA] LDT=0000 00000000 0000ffff 00008200 DPL=0 LDT TR =0000 00000000 0000ffff 00008b00 DPL=0 TSS32-busy GDT= 000f7070 00000037 IDT= 000f70ae 00000000 CR0=00000011 CR2=00000000 CR3=00000000 CR4=00000000 DR0=0000000000000000 DR1=0000000000000000 DR2=0000000000000000 DR3=0000000000000000 DR6=00000000ffff0ff0 DR7=0000000000000400 EFER=0000000000000000 Code=00 01 00 00 00 e9 e8 00 00 00 c7 05 4c 55 0f 00 01 00 00 00 <8b> 35 00 00 01 00 8b 3d 04 00 01 00 b8 d8 d3 00 00 c1 e0 08 0c ea a3 00 00 01 00 c7 05 04 … Meanwhile, a kernel warning is departed. [40914.836375] WARNING: CPU: 3 PID: 82067 at ./include/linux/mm.h:987 try_get_page+0x1f/0x30 [40914.836412] CPU: 3 PID: 82067 Comm: CPU 0/KVM Kdump: loaded Tainted: G OE 5.2.0-rc2 #5 [40914.836415] RIP: 0010:try_get_page+0x1f/0x30 [40914.836417] Code: 40 00 c3 0f 1f 84 00 00 00 00 00 48 8b 47 08 a8 01 75 11 8b 47 34 85 c0 7e 10 f0 ff 47 34 b8 01 00 00 00 c3 48 8d 78 ff eb e9 <0f> 0b 31 c0 c3 66 90 66 2e 0f 1f 84 00 0 0 00 00 00 48 8b 47 08 a8 [40914.836418] RSP: 0018:ffffb4144e523988 EFLAGS: 00010286 [40914.836419] RAX: 0000000080000000 RBX: 0000000000000326 RCX: 0000000000000000 [40914.836420] RDX: 0000000000000000 RSI: 00004ffdeba10000 RDI: ffffdf07093f6440 [40914.836421] RBP: ffffdf07093f6440 R08: 800000424fd91225 R09: 0000000000000000 [40914.836421] R10: ffff9eb41bfeebb8 R11: 0000000000000000 R12: ffffdf06bbd1e8a8 [40914.836422] R13: 0000000000000080 R14: 800000424fd91225 R15: ffffdf07093f6440 [40914.836423] FS: 00007fb60ffff700(0000) GS:ffff9eb4802c0000(0000) knlGS:0000000000000000 [40914.836425] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [40914.836426] CR2: 0000000000000000 CR3: 0000002f220e6002 CR4: 00000000003626e0 [40914.836427] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [40914.836427] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [40914.836428] Call Trace: [40914.836433] follow_page_pte+0x302/0x47b [40914.836437] __get_user_pages+0xf1/0x7d0 [40914.836441] ? irq_work_queue+0x9/0x70 [40914.836443] get_user_pages_unlocked+0x13f/0x1e0 [40914.836469] __gfn_to_pfn_memslot+0x10e/0x400 [kvm] [40914.836486] try_async_pf+0x87/0x240 [kvm] [40914.836503] tdp_page_fault+0x139/0x270 [kvm] [40914.836523] kvm_mmu_page_fault+0x76/0x5e0 [kvm] [40914.836588] vcpu_enter_guest+0xb45/0x1570 [kvm] [40914.836632] kvm_arch_vcpu_ioctl_run+0x35d/0x580 [kvm] [40914.836645] kvm_vcpu_ioctl+0x26e/0x5d0 [kvm] [40914.836650] do_vfs_ioctl+0xa9/0x620 [40914.836653] ksys_ioctl+0x60/0x90 [40914.836654] __x64_sys_ioctl+0x16/0x20 [40914.836658] do_syscall_64+0x5b/0x180 [40914.836664] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [40914.836666] RIP: 0033:0x7fb61cb6bfc7 Signed-off-by: LinFeng <linfeng23@huawei.com> Signed-off-by: Zhuang Yanying <ann.zhuangyanying@huawei.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | Merge branch 'cve-2019-3016' into kvm-next-5.6Paolo Bonzini2020-01-301-17/+96
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | From Boris Ostrovsky: The KVM hypervisor may provide a guest with ability to defer remote TLB flush when the remote VCPU is not running. When this feature is used, the TLB flush will happen only when the remote VPCU is scheduled to run again. This will avoid unnecessary (and expensive) IPIs. Under certain circumstances, when a guest initiates such deferred action, the hypervisor may miss the request. It is also possible that the guest may mistakenly assume that it has already marked remote VCPU as needing a flush when in fact that request had already been processed by the hypervisor. In both cases this will result in an invalid translation being present in a vCPU, potentially allowing accesses to memory locations in that guest's address space that should not be accessible. Note that only intra-guest memory is vulnerable. The five patches address both of these problems: 1. The first patch makes sure the hypervisor doesn't accidentally clear a guest's remote flush request 2. The rest of the patches prevent the race between hypervisor acknowledging a remote flush request and guest issuing a new one. Conflicts: arch/x86/kvm/x86.c [move from kvm_arch_vcpu_free to kvm_arch_vcpu_destroy]
| * | x86/kvm: Cache gfn to pfn translationBoris Ostrovsky2020-01-301-19/+79
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | __kvm_map_gfn()'s call to gfn_to_pfn_memslot() is * relatively expensive * in certain cases (such as when done from atomic context) cannot be called Stashing gfn-to-pfn mapping should help with both cases. This is part of CVE-2019-3016. Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Reviewed-by: Joao Martins <joao.m.martins@oracle.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
| * | x86/kvm: Introduce kvm_(un)map_gfn()Boris Ostrovsky2020-01-301-5/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | kvm_vcpu_(un)map operates on gfns from any current address space. In certain cases we want to make sure we are not mapping SMRAM and for that we can use kvm_(un)map_gfn() that we are introducing in this patch. This is part of CVE-2019-3016. Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Reviewed-by: Joao Martins <joao.m.martins@oracle.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | | Merge tag 'kvmarm-5.6' of ↵Paolo Bonzini2020-01-309-132/+228
|\ \ \ | | |/ | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm updates for Linux 5.6 - Fix MMIO sign extension - Fix HYP VA tagging on tag space exhaustion - Fix PSTATE/CPSR handling when generating exception - Fix MMU notifier's advertizing of young pages - Fix poisoned page handling - Fix PMU SW event handling - Fix TVAL register access - Fix AArch32 external abort injection - Fix ITS unmapped collection handling - Various cleanups
| * | KVM: arm64: Treat emulated TVAL TimerValue as a signed 32-bit integerAlexandru Elisei2020-01-281-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | According to the ARM ARM, registers CNT{P,V}_TVAL_EL0 have bits [63:32] RES0 [1]. When reading the register, the value is truncated to the least significant 32 bits [2], and on writes, TimerValue is treated as a signed 32-bit integer [1, 2]. When the guest behaves correctly and writes 32-bit values, treating TVAL as an unsigned 64 bit register works as expected. However, things start to break down when the guest writes larger values, because (u64)0x1_ffff_ffff = 8589934591. but (s32)0x1_ffff_ffff = -1, and the former will cause the timer interrupt to be asserted in the future, but the latter will cause it to be asserted now. Let's treat TVAL as a signed 32-bit register on writes, to match the behaviour described in the architecture, and the behaviour experimentally exhibited by the virtual timer on a non-vhe host. [1] Arm DDI 0487E.a, section D13.8.18 [2] Arm DDI 0487E.a, section D11.2.4 Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com> [maz: replaced the read-side mask with lower_32_bits] Signed-off-by: Marc Zyngier <maz@kernel.org> Fixes: 8fa761624871 ("KVM: arm/arm64: arch_timer: Fix CNTP_TVAL calculation") Link: https://lore.kernel.org/r/20200127103652.2326-1-alexandru.elisei@arm.com
| * | KVM: arm64: pmu: Only handle supported event countersEric Auger2020-01-281-5/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Let the code never use unsupported event counters. Change kvm_pmu_handle_pmcr() to only reset supported counters and kvm_pmu_vcpu_reset() to only stop supported counters. Other actions are filtered on the supported counters in kvm/sysregs.c Signed-off-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20200124142535.29386-5-eric.auger@redhat.com
| * | KVM: arm64: pmu: Fix chained SW_INCR countersEric Auger2020-01-281-13/+30
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | At the moment a SW_INCR counter always overflows on 32-bit boundary, independently on whether the n+1th counter is programmed as CHAIN. Check whether the SW_INCR counter is a 64b counter and if so, implement the 64b logic. Fixes: 80f393a23be6 ("KVM: arm/arm64: Support chained PMU counters") Signed-off-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20200124142535.29386-4-eric.auger@redhat.com
| * | KVM: arm64: pmu: Don't mark a counter as chained if the odd one is disabledEric Auger2020-01-281-29/+33
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | At the moment we update the chain bitmap on type setting. This does not take into account the enable state of the odd register. Let's make sure a counter is never considered as chained if the high counter is disabled. We recompute the chain state on enable/disable and type changes. Also let create_perf_event() use the chain bitmap and not use kvm_pmu_idx_has_chain_evtype(). Suggested-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20200124142535.29386-3-eric.auger@redhat.com
| * | KVM: arm64: pmu: Don't increment SW_INCR if PMCR.E is unsetEric Auger2020-01-281-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The specification says PMSWINC increments PMEVCNTR<n>_EL1 by 1 if PMEVCNTR<n>_EL0 is enabled and configured to count SW_INCR. For PMEVCNTR<n>_EL0 to be enabled, we need both PMCNTENSET to be set for the corresponding event counter but we also need the PMCR.E bit to be set. Fixes: 7a0adc7064b8 ("arm64: KVM: Add access handler for PMSWINC register") Signed-off-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Andrew Murray <andrew.murray@arm.com> Acked-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20200124142535.29386-2-eric.auger@redhat.com
| * | KVM: arm: Make inject_abt32() inject an external abort insteadJames Morse2020-01-231-3/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | KVM's inject_abt64() injects an external-abort into an aarch64 guest. The KVM_CAP_ARM_INJECT_EXT_DABT is intended to do exactly this, but for an aarch32 guest inject_abt32() injects an implementation-defined exception, 'Lockdown fault'. Change this to external abort. For non-LPAE we now get the documented: | Unhandled fault: external abort on non-linefetch (0x008) at 0x9c800f00 and for LPAE: | Unhandled fault: synchronous external abort (0x210) at 0x9c800f00 Fixes: 74a64a981662a ("KVM: arm/arm64: Unify 32bit fault injection") Reported-by: Beata Michalska <beata.michalska@linaro.org> Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20200121123356.203000-3-james.morse@arm.com
| * | KVM: arm: Fix DFSR setting for non-LPAE aarch32 guestsJames Morse2020-01-231-3/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Beata reports that KVM_SET_VCPU_EVENTS doesn't inject the expected exception to a non-LPAE aarch32 guest. The host intends to inject DFSR.FS=0x14 "IMPLEMENTATION DEFINED fault (Lockdown fault)", but the guest receives DFSR.FS=0x04 "Fault on instruction cache maintenance". This fault is hooked by do_translation_fault() since ARMv6, which goes on to silently 'handle' the exception, and restart the faulting instruction. It turns out, when TTBCR.EAE is clear DFSR is split, and FS[4] has to shuffle up to DFSR[10]. As KVM only does this in one place, fix up the static values. We now get the expected: | Unhandled fault: lock abort (0x404) at 0x9c800f00 Fixes: 74a64a981662a ("KVM: arm/arm64: Unify 32bit fault injection") Reported-by: Beata Michalska <beata.michalska@linaro.org> Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20200121123356.203000-2-james.morse@arm.com
| * | KVM: arm/arm64: Fix young bit from mmu notifierGavin Shan2020-01-231-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | kvm_test_age_hva() is called upon mmu_notifier_test_young(), but wrong address range has been passed to handle_hva_to_gpa(). With the wrong address range, no young bits will be checked in handle_hva_to_gpa(). It means zero is always returned from mmu_notifier_test_young(). This fixes the issue by passing correct address range to the underly function handle_hva_to_gpa(), so that the hardware young (access) bit will be visited. Fixes: 35307b9a5f7e ("arm/arm64: KVM: Implement Stage-2 page aging") Signed-off-by: Gavin Shan <gshan@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20200121055659.19560-1-gshan@redhat.com
| * | KVM: arm/arm64: Cleanup MMIO handlingMarc Zyngier2020-01-232-49/+22
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Our MMIO handling is a bit odd, in the sense that it uses an intermediate per-vcpu structure to store the various decoded information that describe the access. But the same information is readily available in the HSR/ESR_EL2 field, and we actually use this field to populate the structure. Let's simplify the whole thing by getting rid of the superfluous structure and save a (tiny) bit of space in the vcpu structure. [32bit fix courtesy of Olof Johansson <olof@lixom.net>] Signed-off-by: Marc Zyngier <maz@kernel.org>
| * | KVM: arm/arm64: vgic: Drop the kvm_vgic_register_mmio_region()Zenghui Yu2020-01-191-5/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | kvm_vgic_register_mmio_region() was introduced in commit 4493b1c4866a ("KVM: arm/arm64: vgic-new: Add MMIO handling framework") but never used, and even never implemented. Remove it to avoid confusing readers. Reported-by: Haibin Wang <wanghaibin.wang@huawei.com> Signed-off-by: Zenghui Yu <yuzenghui@huawei.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20200119090604.398-1-yuzenghui@huawei.com
| * | KVM: arm/arm64: vgic-its: Properly check the unmapped coll in DISCARD handlerZenghui Yu2020-01-191-2/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Discard is supposed to fail if the collection is not mapped to any target redistributor. We currently check if the collection is mapped by "ite->collection" but this is incomplete (e.g., mapping a LPI to an unmapped collection also results in a non NULL ite->collection). What actually needs to be checked is its_is_collection_mapped(), let's turn to it. Also take this chance to remove an extra blank line. Signed-off-by: Zenghui Yu <yuzenghui@huawei.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Eric Auger <eric.auger@redhat.com> Link: https://lore.kernel.org/r/20200114112212.1411-1-yuzenghui@huawei.com
| * | KVM: arm/arm64: Correct AArch32 SPSR on exception entryMark Rutland2020-01-191-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Confusingly, there are three SPSR layouts that a kernel may need to deal with: (1) An AArch64 SPSR_ELx view of an AArch64 pstate (2) An AArch64 SPSR_ELx view of an AArch32 pstate (3) An AArch32 SPSR_* view of an AArch32 pstate When the KVM AArch32 support code deals with SPSR_{EL2,HYP}, it's either dealing with #2 or #3 consistently. On arm64 the PSR_AA32_* definitions match the AArch64 SPSR_ELx view, and on arm the PSR_AA32_* definitions match the AArch32 SPSR_* view. However, when we inject an exception into an AArch32 guest, we have to synthesize the AArch32 SPSR_* that the guest will see. Thus, an AArch64 host needs to synthesize layout #3 from layout #2. This patch adds a new host_spsr_to_spsr32() helper for this, and makes use of it in the KVM AArch32 support code. For arm64 we need to shuffle the DIT bit around, and remove the SS bit, while for arm we can use the value as-is. I've open-coded the bit manipulation for now to avoid having to rework the existing PSR_* definitions into PSR64_AA32_* and PSR32_AA32_* definitions. I hope to perform a more thorough refactoring in future so that we can handle pstate view manipulation more consistently across the kernel tree. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20200108134324.46500-4-mark.rutland@arm.com
| * | KVM: arm/arm64: Correct CPSR on exception entryMark Rutland2020-01-191-10/+101
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When KVM injects an exception into a guest, it generates the CPSR value from scratch, configuring CPSR.{M,A,I,T,E}, and setting all other bits to zero. This isn't correct, as the architecture specifies that some CPSR bits are (conditionally) cleared or set upon an exception, and others are unchanged from the original context. This patch adds logic to match the architectural behaviour. To make this simple to follow/audit/extend, documentation references are provided, and bits are configured in order of their layout in SPSR_EL2. This layout can be seen in the diagram on ARM DDI 0487E.a page C5-426. Note that this code is used by both arm and arm64, and is intended to fuction with the SPSR_EL2 and SPSR_HYP layouts. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20200108134324.46500-3-mark.rutland@arm.com
| * | KVM: arm/arm64: Re-check VMA on detecting a poisoned pageJames Morse2020-01-191-11/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When we check for a poisoned page, we use the VMA to tell userspace about the looming disaster. But we pass a pointer to this VMA after having released the mmap_sem, which isn't a good idea. Instead, stash the shift value that goes with this pfn while we are holding the mmap_sem. Reported-by: Marc Zyngier <maz@kernel.org> Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Link: https://lore.kernel.org/r/20191211165651.7889-3-maz@kernel.org Link: https://lore.kernel.org/r/20191217123809.197392-1-james.morse@arm.com
| * | KVM: arm: Remove duplicate includeYueHaibing2020-01-191-2/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | Remove duplicate header which is included twice. Signed-off-by: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Steven Price <steven.price@arm.com> Link: https://lore.kernel.org/r/20191113014045.15276-1-yuehaibing@huawei.com
| * | KVM: ARM: Call hyp_cpu_pm_exit at the right placeShannon Zhao2020-01-191-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It doesn't needs to call hyp_cpu_pm_exit() in init_hyp_mode() when some error occurs. hyp_cpu_pm_exit() only needs to be called in kvm_arch_init() if init_subsystems() fails. So move hyp_cpu_pm_exit() out from teardown_hyp_mode() and call it directly in kvm_arch_init(). Signed-off-by: Shannon Zhao <shannon.zhao@linux.alibaba.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/1575272531-3204-1-git-send-email-shannon.zhao@linux.alibaba.com
| * | KVM: arm/arm64: vgic: Handle GICR_PENDBASER.PTZ filed as RAZZenghui Yu2020-01-191-1/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Although guest will hardly read and use the PTZ (Pending Table Zero) bit in GICR_PENDBASER, let us emulate the architecture strictly. As per IHI 0069E 9.11.30, PTZ field is WO, and reads as 0. Signed-off-by: Zenghui Yu <yuzenghui@huawei.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Eric Auger <eric.auger@redhat.com> Link: https://lore.kernel.org/r/20191220111833.1422-1-yuzenghui@huawei.com
| * | KVM: arm/arm64: vgic-its: Fix restoration of unmapped collectionsEric Auger2020-01-191-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Saving/restoring an unmapped collection is a valid scenario. For example this happens if a MAPTI command was sent, featuring an unmapped collection. At the moment the CTE fails to be restored. Only compare against the number of online vcpus if the rdist base is set. Fixes: ea1ad53e1e31a ("KVM: arm64: vgic-its: Collection table save/restore") Signed-off-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Zenghui Yu <yuzenghui@huawei.com> Link: https://lore.kernel.org/r/20191213094237.19627-1-eric.auger@redhat.com
| * | KVM: arm64: Only sign-extend MMIO up to register widthChristoffer Dall2020-01-191-0/+6
| |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On AArch64 you can do a sign-extended load to either a 32-bit or 64-bit register, and we should only sign extend the register up to the width of the register as specified in the operation (by using the 32-bit Wn or 64-bit Xn register specifier). As it turns out, the architecture provides this decoding information in the SF ("Sixty-Four" -- how cute...) bit. Let's take advantage of this with the usual 32-bit/64-bit header file dance and do the right thing on AArch64 hosts. Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20191212195055.5541-1-christoffer.dall@arm.com
* | KVM: Play nice with read-only memslots when querying host page sizeSean Christopherson2020-01-271-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Avoid the "writable" check in __gfn_to_hva_many(), which will always fail on read-only memslots due to gfn_to_hva() assuming writes. Functionally, this allows x86 to create large mappings for read-only memslots that are backed by HugeTLB mappings. Note, the changelog for commit 05da45583de9 ("KVM: MMU: large page support") states "If the largepage contains write-protected pages, a large pte is not used.", but "write-protected" refers to pages that are temporarily read-only, e.g. read-only memslots didn't even exist at the time. Fixes: 4d8b81abc47b ("KVM: introduce readonly memslot") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> [Redone using kvm_vcpu_gfn_to_memslot_prot. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>