summaryrefslogtreecommitdiff
path: root/arch/riscv/include/asm/cmpxchg.h
Commit message (Collapse)AuthorAgeFilesLines
* riscv/atomic: Strengthen implementations with fencesAndrea Parri2018-04-021-71/+320
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Atomics present the same issue with locking: release and acquire variants need to be strengthened to meet the constraints defined by the Linux-kernel memory consistency model [1]. Atomics present a further issue: implementations of atomics such as atomic_cmpxchg() and atomic_add_unless() rely on LR/SC pairs, which do not give full-ordering with .aqrl; for example, current implementations allow the "lr-sc-aqrl-pair-vs-full-barrier" test below to end up with the state indicated in the "exists" clause. In order to "synchronize" LKMM and RISC-V's implementation, this commit strengthens the implementations of the atomics operations by replacing .rl and .aq with the use of ("lightweigth") fences, and by replacing .aqrl LR/SC pairs in sequences such as: 0: lr.w.aqrl %0, %addr bne %0, %old, 1f ... sc.w.aqrl %1, %new, %addr bnez %1, 0b 1: with sequences of the form: 0: lr.w %0, %addr bne %0, %old, 1f ... sc.w.rl %1, %new, %addr /* SC-release */ bnez %1, 0b fence rw, rw /* "full" fence */ 1: following Daniel's suggestion. These modifications were validated with simulation of the RISC-V memory consistency model. C lr-sc-aqrl-pair-vs-full-barrier {} P0(int *x, int *y, atomic_t *u) { int r0; int r1; WRITE_ONCE(*x, 1); r0 = atomic_cmpxchg(u, 0, 1); r1 = READ_ONCE(*y); } P1(int *x, int *y, atomic_t *v) { int r0; int r1; WRITE_ONCE(*y, 1); r0 = atomic_cmpxchg(v, 0, 1); r1 = READ_ONCE(*x); } exists (u=1 /\ v=1 /\ 0:r1=0 /\ 1:r1=0) [1] https://marc.info/?l=linux-kernel&m=151930201102853&w=2 https://groups.google.com/a/groups.riscv.org/forum/#!topic/isa-dev/hKywNHBkAXM https://marc.info/?l=linux-kernel&m=151633436614259&w=2 Suggested-by: Daniel Lustig <dlustig@nvidia.com> Signed-off-by: Andrea Parri <parri.andrea@gmail.com> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Albert Ou <albert@sifive.com> Cc: Daniel Lustig <dlustig@nvidia.com> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Will Deacon <will.deacon@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: David Howells <dhowells@redhat.com> Cc: Jade Alglave <j.alglave@ucl.ac.uk> Cc: Luc Maranget <luc.maranget@inria.fr> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Akira Yokosawa <akiyks@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: linux-riscv@lists.infradead.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
* RISC-V: Atomic and Locking CodePalmer Dabbelt2017-09-261-0/+134
This contains all the code that directly interfaces with the RISC-V memory model. While this code corforms to the current RISC-V ISA specifications (user 2.2 and priv 1.10), the memory model is somewhat underspecified in those documents. There is a working group that hopes to produce a formal memory model by the end of the year, but my understanding is that the basic definitions we're relying on here won't change significantly. Reviewed-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Palmer Dabbelt <palmer@dabbelt.com>