summaryrefslogtreecommitdiff
path: root/libusb/os/windows_nt_common.c
blob: d99e3b8aa30d853859448b9ef1be65d67f576e7b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
/*
 * windows backend for libusb 1.0
 * Copyright © 2009-2012 Pete Batard <pete@akeo.ie>
 * With contributions from Michael Plante, Orin Eman et al.
 * Parts of this code adapted from libusb-win32-v1 by Stephan Meyer
 * HID Reports IOCTLs inspired from HIDAPI by Alan Ott, Signal 11 Software
 * Hash table functions adapted from glibc, by Ulrich Drepper et al.
 * Major code testing contribution by Xiaofan Chen
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include <config.h>
#include <stdio.h>
#include <inttypes.h>
#include <process.h>


#include "libusbi.h"
#include "windows_common.h"
#include "windows_nt_common.h"

// Global variables
const uint64_t epoch_time = UINT64_C(116444736000000000);	// 1970.01.01 00:00:000 in MS Filetime

// Global variables for clock_gettime mechanism
uint64_t hires_ticks_to_ps;
uint64_t hires_frequency;

#define WM_TIMER_REQUEST       (WM_USER + 1)
#define WM_TIMER_EXIT          (WM_USER + 2)

// used for monotonic clock_gettime()
struct timer_request {
    struct timespec *tp;
    HANDLE event;
};

// Timer thread
HANDLE timer_thread = NULL;
DWORD timer_thread_id = 0;

/* User32 dependencies */
DLL_DECLARE_PREFIXED(WINAPI, BOOL, p, GetMessageA, (LPMSG, HWND, UINT, UINT));
DLL_DECLARE_PREFIXED(WINAPI, BOOL, p, PeekMessageA, (LPMSG, HWND, UINT, UINT, UINT));
DLL_DECLARE_PREFIXED(WINAPI, BOOL, p, PostThreadMessageA, (DWORD, UINT, WPARAM, LPARAM));

static unsigned __stdcall windows_clock_gettime_threaded(void* param);

/*
* Converts a windows error to human readable string
* uses retval as errorcode, or, if 0, use GetLastError()
*/
#if defined(ENABLE_LOGGING)
char *windows_error_str(uint32_t retval)
{
    static char err_string[ERR_BUFFER_SIZE];

    DWORD size;
    ssize_t i;
    uint32_t error_code, format_error;

    error_code = retval ? retval : GetLastError();

    safe_sprintf(err_string, ERR_BUFFER_SIZE, "[%u] ", error_code);

    // Translate codes returned by SetupAPI. The ones we are dealing with are either
    // in 0x0000xxxx or 0xE000xxxx and can be distinguished from standard error codes.
    // See http://msdn.microsoft.com/en-us/library/windows/hardware/ff545011.aspx
    switch (error_code & 0xE0000000) {
    case 0:
        error_code = HRESULT_FROM_WIN32(error_code);	// Still leaves ERROR_SUCCESS unmodified
        break;
    case 0xE0000000:
        error_code = 0x80000000 | (FACILITY_SETUPAPI << 16) | (error_code & 0x0000FFFF);
        break;
    default:
        break;
    }

    size = FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM, NULL, error_code,
        MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), &err_string[safe_strlen(err_string)],
        ERR_BUFFER_SIZE - (DWORD)safe_strlen(err_string), NULL);
    if (size == 0) {
        format_error = GetLastError();
        if (format_error)
            safe_sprintf(err_string, ERR_BUFFER_SIZE,
            "Windows error code %u (FormatMessage error code %u)", error_code, format_error);
        else
            safe_sprintf(err_string, ERR_BUFFER_SIZE, "Unknown error code %u", error_code);
    }
    else {
        // Remove CR/LF terminators
        for (i = safe_strlen(err_string) - 1; (i >= 0) && ((err_string[i] == 0x0A) || (err_string[i] == 0x0D)); i--) {
            err_string[i] = 0;
        }
    }
    return err_string;
}
#endif

/* Hash table functions - modified From glibc 2.3.2:
   [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
   [Knuth]            The Art of Computer Programming, part 3 (6.4)  */
typedef struct htab_entry {
	unsigned long used;
	char* str;
} htab_entry;
htab_entry* htab_table = NULL;
usbi_mutex_t htab_write_mutex = NULL;
unsigned long htab_size, htab_filled;

/* For the used double hash method the table size has to be a prime. To
   correct the user given table size we need a prime test.  This trivial
   algorithm is adequate because the code is called only during init and
   the number is likely to be small  */
static int isprime(unsigned long number)
{
	// no even number will be passed
	unsigned int divider = 3;

	while((divider * divider < number) && (number % divider != 0))
		divider += 2;

	return (number % divider != 0);
}

/* Before using the hash table we must allocate memory for it.
   We allocate one element more as the found prime number says.
   This is done for more effective indexing as explained in the
   comment for the hash function.  */
int htab_create(struct libusb_context *ctx, unsigned long nel)
{
	if (htab_table != NULL) {
		usbi_err(ctx, "hash table already allocated");
	}

	// Create a mutex
	usbi_mutex_init(&htab_write_mutex, NULL);

	// Change nel to the first prime number not smaller as nel.
	nel |= 1;
	while(!isprime(nel))
		nel += 2;

	htab_size = nel;
	usbi_dbg("using %lu entries hash table", nel);
	htab_filled = 0;

	// allocate memory and zero out.
	htab_table = (htab_entry*) calloc(htab_size + 1, sizeof(htab_entry));
	if (htab_table == NULL) {
		usbi_err(ctx, "could not allocate space for hash table");
		return 0;
	}

	return 1;
}

/* After using the hash table it has to be destroyed.  */
void htab_destroy(void)
{
	size_t i;
	if (htab_table == NULL) {
		return;
	}

	for (i=0; i<htab_size; i++) {
		if (htab_table[i].used) {
			safe_free(htab_table[i].str);
		}
	}
	usbi_mutex_destroy(&htab_write_mutex);
	safe_free(htab_table);
}

/* This is the search function. It uses double hashing with open addressing.
   We use an trick to speed up the lookup. The table is created with one
   more element available. This enables us to use the index zero special.
   This index will never be used because we store the first hash index in
   the field used where zero means not used. Every other value means used.
   The used field can be used as a first fast comparison for equality of
   the stored and the parameter value. This helps to prevent unnecessary
   expensive calls of strcmp.  */
unsigned long htab_hash(char* str)
{
	unsigned long hval, hval2;
	unsigned long idx;
	unsigned long r = 5381;
	int c;
	char* sz = str;

	if (str == NULL)
		return 0;

	// Compute main hash value (algorithm suggested by Nokia)
	while ((c = *sz++) != 0)
		r = ((r << 5) + r) + c;
	if (r == 0)
		++r;

	// compute table hash: simply take the modulus
	hval = r % htab_size;
	if (hval == 0)
		++hval;

	// Try the first index
	idx = hval;

	if (htab_table[idx].used) {
		if ( (htab_table[idx].used == hval)
		  && (safe_strcmp(str, htab_table[idx].str) == 0) ) {
			// existing hash
			return idx;
		}
		usbi_dbg("hash collision ('%s' vs '%s')", str, htab_table[idx].str);

		// Second hash function, as suggested in [Knuth]
		hval2 = 1 + hval % (htab_size - 2);

		do {
			// Because size is prime this guarantees to step through all available indexes
			if (idx <= hval2) {
				idx = htab_size + idx - hval2;
			} else {
				idx -= hval2;
			}

			// If we visited all entries leave the loop unsuccessfully
			if (idx == hval) {
				break;
			}

			// If entry is found use it.
			if ( (htab_table[idx].used == hval)
			  && (safe_strcmp(str, htab_table[idx].str) == 0) ) {
				return idx;
			}
		}
		while (htab_table[idx].used);
	}

	// Not found => New entry

	// If the table is full return an error
	if (htab_filled >= htab_size) {
		usbi_err(NULL, "hash table is full (%d entries)", htab_size);
		return 0;
	}

	// Concurrent threads might be storing the same entry at the same time
	// (eg. "simultaneous" enums from different threads) => use a mutex
	usbi_mutex_lock(&htab_write_mutex);
	// Just free any previously allocated string (which should be the same as
	// new one). The possibility of concurrent threads storing a collision
	// string (same hash, different string) at the same time is extremely low
	safe_free(htab_table[idx].str);
	htab_table[idx].used = hval;
	htab_table[idx].str = (char*) malloc(safe_strlen(str)+1);
	if (htab_table[idx].str == NULL) {
		usbi_err(NULL, "could not duplicate string for hash table");
		usbi_mutex_unlock(&htab_write_mutex);
		return 0;
	}
	memcpy(htab_table[idx].str, str, safe_strlen(str)+1);
	++htab_filled;
	usbi_mutex_unlock(&htab_write_mutex);

	return idx;
}

static int windows_init_dlls(void)
{
    DLL_LOAD_PREFIXED(User32.dll, p, GetMessageA, TRUE);
    DLL_LOAD_PREFIXED(User32.dll, p, PeekMessageA, TRUE);
    DLL_LOAD_PREFIXED(User32.dll, p, PostThreadMessageA, TRUE);
    return LIBUSB_SUCCESS;
}

bool windows_init_clock(struct libusb_context *ctx)
{
    DWORD_PTR affinity, dummy;
    HANDLE event = NULL;
    LARGE_INTEGER li_frequency;
    int i;

    if (QueryPerformanceFrequency(&li_frequency)) {
        // Load DLL imports
        if (windows_init_dlls() != LIBUSB_SUCCESS) {
            usbi_err(ctx, "could not resolve DLL functions");
            return false;
        }

        // The hires frequency can go as high as 4 GHz, so we'll use a conversion
        // to picoseconds to compute the tv_nsecs part in clock_gettime
        hires_frequency = li_frequency.QuadPart;
        hires_ticks_to_ps = UINT64_C(1000000000000) / hires_frequency;
        usbi_dbg("hires timer available (Frequency: %"PRIu64" Hz)", hires_frequency);

        // Because QueryPerformanceCounter might report different values when
        // running on different cores, we create a separate thread for the timer
        // calls, which we glue to the first available core always to prevent timing discrepancies.
        if (!GetProcessAffinityMask(GetCurrentProcess(), &affinity, &dummy) || (affinity == 0)) {
            usbi_err(ctx, "could not get process affinity: %s", windows_error_str(0));
            return false;
        }
        // The process affinity mask is a bitmask where each set bit represents a core on
        // which this process is allowed to run, so we find the first set bit
        for (i = 0; !(affinity & (DWORD_PTR)(1 << i)); i++);
        affinity = (DWORD_PTR)(1 << i);

        usbi_dbg("timer thread will run on core #%d", i);

        event = CreateEvent(NULL, FALSE, FALSE, NULL);
        if (event == NULL) {
            usbi_err(ctx, "could not create event: %s", windows_error_str(0));
            return false;
        }
        timer_thread = (HANDLE)_beginthreadex(NULL, 0, windows_clock_gettime_threaded, (void *)event,
            0, (unsigned int *)&timer_thread_id);
        if (timer_thread == NULL) {
            usbi_err(ctx, "unable to create timer thread - aborting");
            CloseHandle(event);
            return false;
        }
        if (!SetThreadAffinityMask(timer_thread, affinity)) {
            usbi_warn(ctx, "unable to set timer thread affinity, timer discrepancies may arise");
        }

        // Wait for timer thread to init before continuing.
        if (WaitForSingleObject(event, INFINITE) != WAIT_OBJECT_0) {
            usbi_err(ctx, "failed to wait for timer thread to become ready - aborting");
            CloseHandle(event);
            return false;
        }

        CloseHandle(event);
    } else {
        usbi_dbg("no hires timer available on this platform");
        hires_frequency = 0;
        hires_ticks_to_ps = UINT64_C(0);
    }

    return true;
}

void windows_destroy_clock(void)
{
    if (timer_thread) {
        // actually the signal to quit the thread.
        if (!pPostThreadMessageA(timer_thread_id, WM_TIMER_EXIT, 0, 0) ||
            (WaitForSingleObject(timer_thread, INFINITE) != WAIT_OBJECT_0)) {
            usbi_dbg("could not wait for timer thread to quit");
            TerminateThread(timer_thread, 1);
            // shouldn't happen, but we're destroying
            // all objects it might have held anyway.
        }
        CloseHandle(timer_thread);
        timer_thread = NULL;
        timer_thread_id = 0;
    }
}

/*
* Monotonic and real time functions
*/
static unsigned __stdcall windows_clock_gettime_threaded(void* param)
{
    struct timer_request *request;
    LARGE_INTEGER hires_counter;
    MSG msg;

    // The following call will create this thread's message queue
    // See https://msdn.microsoft.com/en-us/library/windows/desktop/ms644946.aspx
    pPeekMessageA(&msg, NULL, WM_USER, WM_USER, PM_NOREMOVE);

    // Signal windows_init() that we're ready to service requests
    if (!SetEvent((HANDLE)param)) {
        usbi_dbg("SetEvent failed for timer init event: %s", windows_error_str(0));
    }
    param = NULL;

    // Main loop - wait for requests
    while (1) {

        if (pGetMessageA(&msg, NULL, WM_TIMER_REQUEST, WM_TIMER_EXIT) == -1) {
            usbi_err(NULL, "GetMessage failed for timer thread: %s", windows_error_str(0));
            return 1;
        }

        switch (msg.message) {
        case WM_TIMER_REQUEST:
            // Requests to this thread are for hires always
            // Microsoft says that this function always succeeds on XP and later
            // See https://msdn.microsoft.com/en-us/library/windows/desktop/ms644904.aspx
            request = (struct timer_request *)msg.lParam;
            QueryPerformanceCounter(&hires_counter);
            request->tp->tv_sec = (long)(hires_counter.QuadPart / hires_frequency);
            request->tp->tv_nsec = (long)(((hires_counter.QuadPart % hires_frequency) / 1000) * hires_ticks_to_ps);
            if (!SetEvent(request->event)) {
                    usbi_err(NULL, "SetEvent failed for timer request: %s", windows_error_str(0));
            }
            break;

        case WM_TIMER_EXIT:
            usbi_dbg("timer thread quitting");
            return 0;
        }

    }
}

int windows_clock_gettime(int clk_id, struct timespec *tp)
{
    struct timer_request request;
    FILETIME filetime;
    ULARGE_INTEGER rtime;
    DWORD r;
    switch (clk_id) {
    case USBI_CLOCK_MONOTONIC:
        if (timer_thread) {
            request.tp = tp;
            request.event = CreateEvent(NULL, FALSE, FALSE, NULL);
            if (request.event == NULL) {
                return LIBUSB_ERROR_NO_MEM;
            }

            if (!pPostThreadMessageA(timer_thread_id, WM_TIMER_REQUEST, 0, (LPARAM)&request)) {
                usbi_err(NULL, "PostThreadMessage failed for timer thread: %s", windows_error_str(0));
                CloseHandle(request.event);
                return LIBUSB_ERROR_OTHER;
            }

            do {
                r = WaitForSingleObject(request.event, TIMER_REQUEST_RETRY_MS);
                if (r == WAIT_TIMEOUT) {
                    usbi_dbg("could not obtain a timer value within reasonable timeframe - too much load?");
                }
                else if (r == WAIT_FAILED) {
                    usbi_err(NULL, "WaitForSingleObject failed: %s", windows_error_str(0));
                }
            } while (r == WAIT_TIMEOUT);
            CloseHandle(request.event);

            if (r == WAIT_OBJECT_0) {
                return LIBUSB_SUCCESS;
            } else {
                return LIBUSB_ERROR_OTHER;
            }
        }
        // Fall through and return real-time if monotonic was not detected @ timer init
    case USBI_CLOCK_REALTIME:
        // We follow http://msdn.microsoft.com/en-us/library/ms724928%28VS.85%29.aspx
        // with a predef epoch_time to have an epoch that starts at 1970.01.01 00:00
        // Note however that our resolution is bounded by the Windows system time
        // functions and is at best of the order of 1 ms (or, usually, worse)
        GetSystemTimeAsFileTime(&filetime);
        rtime.LowPart = filetime.dwLowDateTime;
        rtime.HighPart = filetime.dwHighDateTime;
        rtime.QuadPart -= epoch_time;
        tp->tv_sec = (long)(rtime.QuadPart / 10000000);
        tp->tv_nsec = (long)((rtime.QuadPart % 10000000) * 100);
        return LIBUSB_SUCCESS;
    default:
        return LIBUSB_ERROR_INVALID_PARAM;
    }
}

static void windows_transfer_callback(struct usbi_transfer *itransfer, uint32_t io_result, uint32_t io_size)
{
    int status, istatus;

    usbi_dbg("handling I/O completion with errcode %u, size %u", io_result, io_size);

    switch (io_result) {
    case NO_ERROR:
        status = windows_copy_transfer_data(itransfer, io_size);
        break;
    case ERROR_GEN_FAILURE:
        usbi_dbg("detected endpoint stall");
        status = LIBUSB_TRANSFER_STALL;
        break;
    case ERROR_SEM_TIMEOUT:
        usbi_dbg("detected semaphore timeout");
        status = LIBUSB_TRANSFER_TIMED_OUT;
        break;
    case ERROR_OPERATION_ABORTED:
        istatus = windows_copy_transfer_data(itransfer, io_size);
        if (istatus != LIBUSB_TRANSFER_COMPLETED) {
            usbi_dbg("Failed to copy partial data in aborted operation: %d", istatus);
        }
        if (itransfer->flags & USBI_TRANSFER_TIMED_OUT) {
            usbi_dbg("detected timeout");
            status = LIBUSB_TRANSFER_TIMED_OUT;
        }
        else {
            usbi_dbg("detected operation aborted");
            status = LIBUSB_TRANSFER_CANCELLED;
        }
        break;
    default:
        usbi_err(ITRANSFER_CTX(itransfer), "detected I/O error %u: %s", io_result, windows_error_str(io_result));
        status = LIBUSB_TRANSFER_ERROR;
        break;
    }
    windows_clear_transfer_priv(itransfer);	// Cancel polling
    usbi_handle_transfer_completion(itransfer, (enum libusb_transfer_status)status);
}

void windows_handle_callback(struct usbi_transfer *itransfer, uint32_t io_result, uint32_t io_size)
{
    struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);

    switch (transfer->type) {
    case LIBUSB_TRANSFER_TYPE_CONTROL:
    case LIBUSB_TRANSFER_TYPE_BULK:
    case LIBUSB_TRANSFER_TYPE_INTERRUPT:
    case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS:
        windows_transfer_callback(itransfer, io_result, io_size);
        break;
    case LIBUSB_TRANSFER_TYPE_BULK_STREAM:
        usbi_warn(ITRANSFER_CTX(itransfer), "bulk stream transfers are not yet supported on this platform");
        break;
    default:
        usbi_err(ITRANSFER_CTX(itransfer), "unknown endpoint type %d", transfer->type);
    }
}

int windows_handle_events(struct libusb_context *ctx, struct pollfd *fds, POLL_NFDS_TYPE nfds, int num_ready)
{
    POLL_NFDS_TYPE i = 0;
    bool found = false;
    struct usbi_transfer *transfer;
    struct winfd *pollable_fd = NULL;
    DWORD io_size, io_result;

    usbi_mutex_lock(&ctx->open_devs_lock);
    for (i = 0; i < nfds && num_ready > 0; i++) {

        usbi_dbg("checking fd %d with revents = %04x", fds[i].fd, fds[i].revents);

        if (!fds[i].revents) {
            continue;
        }

        num_ready--;

        // Because a Windows OVERLAPPED is used for poll emulation,
        // a pollable fd is created and stored with each transfer
        usbi_mutex_lock(&ctx->flying_transfers_lock);
        found = false;
        list_for_each_entry(transfer, &ctx->flying_transfers, list, struct usbi_transfer) {
            pollable_fd = windows_get_fd(transfer);
            if (pollable_fd->fd == fds[i].fd) {
                found = true;
                break;
            }
        }
        usbi_mutex_unlock(&ctx->flying_transfers_lock);

        if (found) {
            windows_get_overlapped_result(transfer, pollable_fd, &io_result, &io_size);

            usbi_remove_pollfd(ctx, pollable_fd->fd);
            // let handle_callback free the event using the transfer wfd
            // If you don't use the transfer wfd, you run a risk of trying to free a
            // newly allocated wfd that took the place of the one from the transfer.
            windows_handle_callback(transfer, io_result, io_size);
        } else {
            usbi_mutex_unlock(&ctx->open_devs_lock);
            usbi_err(ctx, "could not find a matching transfer for fd %d", fds[i]);
            return LIBUSB_ERROR_NOT_FOUND;
        }
    }

    usbi_mutex_unlock(&ctx->open_devs_lock);
    return LIBUSB_SUCCESS;
}

int windows_common_init(struct libusb_context *ctx)
{
    static const unsigned long HTAB_SIZE = 1021;

    if (!windows_init_clock(ctx)){
        goto error_roll_back;
    }

    if (!htab_create(ctx, HTAB_SIZE)) {
        goto error_roll_back;
    }

    return LIBUSB_SUCCESS;

error_roll_back:
    windows_common_exit();

    return LIBUSB_ERROR_NO_MEM;
}

void windows_common_exit(void)
{
    htab_destroy();
    windows_destroy_clock();
}