summaryrefslogtreecommitdiff
path: root/crypto/apr_md5.c
blob: 691cc8787c624db6103b3f7d4941f1bd072c5520 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
/*
 * This is work is derived from material Copyright RSA Data Security, Inc.
 *
 * The RSA copyright statement and Licence for that original material is
 * included below. This is followed by the Apache copyright statement and
 * licence for the modifications made to that material.
 */

/* MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
 */

/* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
   rights reserved.

   License to copy and use this software is granted provided that it
   is identified as the "RSA Data Security, Inc. MD5 Message-Digest
   Algorithm" in all material mentioning or referencing this software
   or this function.

   License is also granted to make and use derivative works provided
   that such works are identified as "derived from the RSA Data
   Security, Inc. MD5 Message-Digest Algorithm" in all material
   mentioning or referencing the derived work.

   RSA Data Security, Inc. makes no representations concerning either
   the merchantability of this software or the suitability of this
   software for any particular purpose. It is provided "as is"
   without express or implied warranty of any kind.

   These notices must be retained in any copies of any part of this
   documentation and/or software.
 */

/* Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * The apr_md5_encode() routine uses much code obtained from the FreeBSD 3.0
 * MD5 crypt() function, which is licenced as follows:
 * ----------------------------------------------------------------------------
 * "THE BEER-WARE LICENSE" (Revision 42):
 * <phk@login.dknet.dk> wrote this file.  As long as you retain this notice you
 * can do whatever you want with this stuff. If we meet some day, and you think
 * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
 * ----------------------------------------------------------------------------
 */
#include "apr_strings.h"
#include "apr_md5.h"
#include "apr_lib.h"
#include "apu_config.h"
#include "apr_sha1.h"

#if APR_HAVE_STRING_H
#include <string.h>
#endif
#if APR_HAVE_CRYPT_H
#include <crypt.h>
#endif
#if APR_HAVE_UNISTD_H
#include <unistd.h>
#endif
#if APR_HAVE_PTHREAD_H
#include <pthread.h>
#endif

/* Constants for MD5Transform routine.
 */

#define S11 7
#define S12 12
#define S13 17
#define S14 22
#define S21 5
#define S22 9
#define S23 14
#define S24 20
#define S31 4
#define S32 11
#define S33 16
#define S34 23
#define S41 6
#define S42 10
#define S43 15
#define S44 21

static void MD5Transform(apr_uint32_t state[4], const unsigned char block[64]);
static void Encode(unsigned char *output, const apr_uint32_t *input,
                   unsigned int len);
static void Decode(apr_uint32_t *output, const unsigned char *input,
                   unsigned int len);

static const unsigned char PADDING[64] =
{
    0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

#if APR_CHARSET_EBCDIC
static apr_xlate_t *xlate_ebcdic_to_ascii; /* used in apr_md5_encode() */
#endif
#define DO_XLATE 0
#define SKIP_XLATE 1

/* F, G, H and I are basic MD5 functions.
 */
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | (~z)))

/* ROTATE_LEFT rotates x left n bits.
 */
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))

/* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
 * Rotation is separate from addition to prevent recomputation.
 */
#define FF(a, b, c, d, x, s, ac) { \
 (a) += F ((b), (c), (d)) + (x) + (apr_uint32_t)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \
 (a) += (b); \
  }
#define GG(a, b, c, d, x, s, ac) { \
 (a) += G ((b), (c), (d)) + (x) + (apr_uint32_t)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \
 (a) += (b); \
  }
#define HH(a, b, c, d, x, s, ac) { \
 (a) += H ((b), (c), (d)) + (x) + (apr_uint32_t)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \
 (a) += (b); \
  }
#define II(a, b, c, d, x, s, ac) { \
 (a) += I ((b), (c), (d)) + (x) + (apr_uint32_t)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \
 (a) += (b); \
  }

/* MD5 initialization. Begins an MD5 operation, writing a new context.
 */
APU_DECLARE(apr_status_t) apr_md5_init(apr_md5_ctx_t *context)
{
    context->count[0] = context->count[1] = 0;
    
    /* Load magic initialization constants. */
    context->state[0] = 0x67452301;
    context->state[1] = 0xefcdab89;
    context->state[2] = 0x98badcfe;
    context->state[3] = 0x10325476;
    context->xlate = NULL;
    
    return APR_SUCCESS;
}

/* MD5 translation setup.  Provides the APR translation handle
 * to be used for translating the content before calculating the
 * digest.
 */
APU_DECLARE(apr_status_t) apr_md5_set_xlate(apr_md5_ctx_t *context, 
                                            apr_xlate_t *xlate)
{
#if APR_HAS_XLATE
    apr_status_t rv;
    int is_sb;

    /* TODO: remove the single-byte-only restriction from this code
     */
    rv = apr_xlate_sb_get(xlate, &is_sb);
    if (rv != APR_SUCCESS) {
        return rv;
    }
    if (!is_sb) {
        return APR_EINVAL;
    }
    context->xlate = xlate;
    return APR_SUCCESS;
#else
    return APR_ENOTIMPL;
#endif /* APR_HAS_XLATE */
}

/* MD5 block update operation. Continues an MD5 message-digest
 * operation, processing another message block, and updating the
 * context.
 */
static apr_status_t md5_update_buffer(apr_md5_ctx_t *context,
                                      const void *vinput,
                                      apr_size_t inputLen,
                                      int xlate_buffer)
{
    const unsigned char *input = vinput;
    unsigned int i, idx, partLen;
#if APR_HAS_XLATE
    apr_size_t inbytes_left, outbytes_left;
#endif

    /* Compute number of bytes mod 64 */
    idx = (unsigned int)((context->count[0] >> 3) & 0x3F);

    /* Update number of bits */
    if ((context->count[0] += ((apr_uint32_t)inputLen << 3)) 
            < ((apr_uint32_t)inputLen << 3))
        context->count[1]++;
    context->count[1] += (apr_uint32_t)inputLen >> 29;

    partLen = 64 - idx;

    /* Transform as many times as possible. */
#if !APR_HAS_XLATE
    if (inputLen >= partLen) {
        memcpy(&context->buffer[idx], input, partLen);
        MD5Transform(context->state, context->buffer);

        for (i = partLen; i + 63 < inputLen; i += 64)
            MD5Transform(context->state, &input[i]);

        idx = 0;
    }
    else
        i = 0;

    /* Buffer remaining input */
    memcpy(&context->buffer[idx], &input[i], inputLen - i);
#else /*APR_HAS_XLATE*/
    if (inputLen >= partLen) {
        if (context->xlate && (xlate_buffer == DO_XLATE)) {
            inbytes_left = outbytes_left = partLen;
            apr_xlate_conv_buffer(context->xlate, (const char *)input, 
                                  &inbytes_left,
                                  (char *)&context->buffer[idx], 
                                  &outbytes_left);
        }
        else {
            memcpy(&context->buffer[idx], input, partLen);
        }
        MD5Transform(context->state, context->buffer);

        for (i = partLen; i + 63 < inputLen; i += 64) {
            if (context->xlate && (xlate_buffer == DO_XLATE)) {
                unsigned char inp_tmp[64];
                inbytes_left = outbytes_left = 64;
                apr_xlate_conv_buffer(context->xlate, (const char *)&input[i], 
                                      &inbytes_left, (char *)inp_tmp, 
                                      &outbytes_left);
                MD5Transform(context->state, inp_tmp);
            }
            else {
                MD5Transform(context->state, &input[i]);
            }
        }

        idx = 0;
    }
    else
        i = 0;

    /* Buffer remaining input */
    if (context->xlate && (xlate_buffer == DO_XLATE)) {
        inbytes_left = outbytes_left = inputLen - i;
        apr_xlate_conv_buffer(context->xlate, (const char *)&input[i], 
                              &inbytes_left, (char *)&context->buffer[idx], 
                              &outbytes_left);
    }
    else {
        memcpy(&context->buffer[idx], &input[i], inputLen - i);
    }
#endif /*APR_HAS_XLATE*/
    return APR_SUCCESS;
}

/* MD5 block update operation. API with the default setting 
 * for EBCDIC translations
 */  
APU_DECLARE(apr_status_t) apr_md5_update(apr_md5_ctx_t *context,
                                         const void *input,
                                         apr_size_t inputLen)
{
    return md5_update_buffer(context, input, inputLen, DO_XLATE);
}

/* MD5 finalization. Ends an MD5 message-digest operation, writing the
 * the message digest and zeroizing the context.
 */
APU_DECLARE(apr_status_t) apr_md5_final(unsigned char digest[APR_MD5_DIGESTSIZE],
                                        apr_md5_ctx_t *context)
{
    unsigned char bits[8];
    unsigned int idx, padLen;

    /* Save number of bits */
    Encode(bits, context->count, 8);

#if APR_HAS_XLATE
    /* apr_md5_update() should not translate for this final round. */
    context->xlate = NULL;
#endif /*APR_HAS_XLATE*/

    /* Pad out to 56 mod 64. */
    idx = (unsigned int)((context->count[0] >> 3) & 0x3f);
    padLen = (idx < 56) ? (56 - idx) : (120 - idx);
    apr_md5_update(context, PADDING, padLen);

    /* Append length (before padding) */
    apr_md5_update(context, bits, 8);

    /* Store state in digest */
    Encode(digest, context->state, APR_MD5_DIGESTSIZE);

    /* Zeroize sensitive information. */
    memset(context, 0, sizeof(*context));
    
    return APR_SUCCESS;
}

/* MD5 in one step (init, update, final)
 */
APU_DECLARE(apr_status_t) apr_md5(unsigned char digest[APR_MD5_DIGESTSIZE],
                                  const void *_input,
                                  apr_size_t inputLen)
{
    const unsigned char *input = _input;
    apr_md5_ctx_t ctx;
    apr_status_t rv;

    apr_md5_init(&ctx);

    if ((rv = apr_md5_update(&ctx, input, inputLen)) != APR_SUCCESS)
        return rv;

    return apr_md5_final(digest, &ctx);
}

/* MD5 basic transformation. Transforms state based on block. */
static void MD5Transform(apr_uint32_t state[4], const unsigned char block[64])
{
    apr_uint32_t a = state[0], b = state[1], c = state[2], d = state[3],
                 x[APR_MD5_DIGESTSIZE];

    Decode(x, block, 64);

    /* Round 1 */
    FF(a, b, c, d, x[0],  S11, 0xd76aa478); /* 1 */
    FF(d, a, b, c, x[1],  S12, 0xe8c7b756); /* 2 */
    FF(c, d, a, b, x[2],  S13, 0x242070db); /* 3 */
    FF(b, c, d, a, x[3],  S14, 0xc1bdceee); /* 4 */
    FF(a, b, c, d, x[4],  S11, 0xf57c0faf); /* 5 */
    FF(d, a, b, c, x[5],  S12, 0x4787c62a); /* 6 */
    FF(c, d, a, b, x[6],  S13, 0xa8304613); /* 7 */
    FF(b, c, d, a, x[7],  S14, 0xfd469501); /* 8 */
    FF(a, b, c, d, x[8],  S11, 0x698098d8); /* 9 */
    FF(d, a, b, c, x[9],  S12, 0x8b44f7af); /* 10 */
    FF(c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
    FF(b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
    FF(a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
    FF(d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
    FF(c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
    FF(b, c, d, a, x[15], S14, 0x49b40821); /* 16 */

    /* Round 2 */
    GG(a, b, c, d, x[1],  S21, 0xf61e2562); /* 17 */
    GG(d, a, b, c, x[6],  S22, 0xc040b340); /* 18 */
    GG(c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
    GG(b, c, d, a, x[0],  S24, 0xe9b6c7aa); /* 20 */
    GG(a, b, c, d, x[5],  S21, 0xd62f105d); /* 21 */
    GG(d, a, b, c, x[10], S22, 0x2441453);  /* 22 */
    GG(c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
    GG(b, c, d, a, x[4],  S24, 0xe7d3fbc8); /* 24 */
    GG(a, b, c, d, x[9],  S21, 0x21e1cde6); /* 25 */
    GG(d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
    GG(c, d, a, b, x[3],  S23, 0xf4d50d87); /* 27 */
    GG(b, c, d, a, x[8],  S24, 0x455a14ed); /* 28 */
    GG(a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
    GG(d, a, b, c, x[2],  S22, 0xfcefa3f8); /* 30 */
    GG(c, d, a, b, x[7],  S23, 0x676f02d9); /* 31 */
    GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */

    /* Round 3 */
    HH(a, b, c, d, x[5],  S31, 0xfffa3942); /* 33 */
    HH(d, a, b, c, x[8],  S32, 0x8771f681); /* 34 */
    HH(c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
    HH(b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
    HH(a, b, c, d, x[1],  S31, 0xa4beea44); /* 37 */
    HH(d, a, b, c, x[4],  S32, 0x4bdecfa9); /* 38 */
    HH(c, d, a, b, x[7],  S33, 0xf6bb4b60); /* 39 */
    HH(b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
    HH(a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
    HH(d, a, b, c, x[0],  S32, 0xeaa127fa); /* 42 */
    HH(c, d, a, b, x[3],  S33, 0xd4ef3085); /* 43 */
    HH(b, c, d, a, x[6],  S34, 0x4881d05);  /* 44 */
    HH(a, b, c, d, x[9],  S31, 0xd9d4d039); /* 45 */
    HH(d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
    HH(c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
    HH(b, c, d, a, x[2],  S34, 0xc4ac5665); /* 48 */

    /* Round 4 */
    II(a, b, c, d, x[0],  S41, 0xf4292244); /* 49 */
    II(d, a, b, c, x[7],  S42, 0x432aff97); /* 50 */
    II(c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
    II(b, c, d, a, x[5],  S44, 0xfc93a039); /* 52 */
    II(a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
    II(d, a, b, c, x[3],  S42, 0x8f0ccc92); /* 54 */
    II(c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
    II(b, c, d, a, x[1],  S44, 0x85845dd1); /* 56 */
    II(a, b, c, d, x[8],  S41, 0x6fa87e4f); /* 57 */
    II(d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
    II(c, d, a, b, x[6],  S43, 0xa3014314); /* 59 */
    II(b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
    II(a, b, c, d, x[4],  S41, 0xf7537e82); /* 61 */
    II(d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
    II(c, d, a, b, x[2],  S43, 0x2ad7d2bb); /* 63 */
    II(b, c, d, a, x[9],  S44, 0xeb86d391); /* 64 */

    state[0] += a;
    state[1] += b;
    state[2] += c;
    state[3] += d;

    /* Zeroize sensitive information. */
    memset(x, 0, sizeof(x));
}

/* Encodes input (apr_uint32_t) into output (unsigned char). Assumes len is
 * a multiple of 4.
 */
static void Encode(unsigned char *output, const apr_uint32_t *input,
                   unsigned int len)
{
    unsigned int i, j;
    apr_uint32_t k;

    for (i = 0, j = 0; j < len; i++, j += 4) {
        k = input[i];
        output[j]     = (unsigned char)(k & 0xff);
        output[j + 1] = (unsigned char)((k >> 8) & 0xff);
        output[j + 2] = (unsigned char)((k >> 16) & 0xff);
        output[j + 3] = (unsigned char)((k >> 24) & 0xff);
    }
}

/* Decodes input (unsigned char) into output (apr_uint32_t). Assumes len is
 * a multiple of 4.
 */
static void Decode(apr_uint32_t *output, const unsigned char *input,
                   unsigned int len)
{
    unsigned int i, j;

    for (i = 0, j = 0; j < len; i++, j += 4)
        output[i] = ((apr_uint32_t)input[j])             |
                    (((apr_uint32_t)input[j + 1]) << 8)  |
                    (((apr_uint32_t)input[j + 2]) << 16) |
                    (((apr_uint32_t)input[j + 3]) << 24);
}

#if APR_CHARSET_EBCDIC
APU_DECLARE(apr_status_t) apr_MD5InitEBCDIC(apr_xlate_t *xlate)
{
    xlate_ebcdic_to_ascii = xlate;
    return APR_SUCCESS;
}
#endif

/*
 * Define the Magic String prefix that identifies a password as being
 * hashed using our algorithm.
 */
static const char *apr1_id = "$apr1$";

/*
 * The following MD5 password encryption code was largely borrowed from
 * the FreeBSD 3.0 /usr/src/lib/libcrypt/crypt.c file, which is
 * licenced as stated at the top of this file.
 */

static void to64(char *s, unsigned long v, int n)
{
    static unsigned char itoa64[] =         /* 0 ... 63 => ASCII - 64 */
        "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";

    while (--n >= 0) {
        *s++ = itoa64[v&0x3f];
        v >>= 6;
    }
}

APU_DECLARE(apr_status_t) apr_md5_encode(const char *pw, const char *salt,
                             char *result, apr_size_t nbytes)
{
    /*
     * Minimum size is 8 bytes for salt, plus 1 for the trailing NUL,
     * plus 4 for the '$' separators, plus the password hash itself.
     * Let's leave a goodly amount of leeway.
     */

    char passwd[120], *p;
    const char *sp, *ep;
    unsigned char final[APR_MD5_DIGESTSIZE];
    apr_ssize_t sl, pl, i;
    apr_md5_ctx_t ctx, ctx1;
    unsigned long l;

    /* 
     * Refine the salt first.  It's possible we were given an already-hashed
     * string as the salt argument, so extract the actual salt value from it
     * if so.  Otherwise just use the string up to the first '$' as the salt.
     */
    sp = salt;

    /*
     * If it starts with the magic string, then skip that.
     */
    if (!strncmp(sp, apr1_id, strlen(apr1_id))) {
        sp += strlen(apr1_id);
    }

    /*
     * It stops at the first '$' or 8 chars, whichever comes first
     */
    for (ep = sp; (*ep != '\0') && (*ep != '$') && (ep < (sp + 8)); ep++) {
        continue;
    }

    /*
     * Get the length of the true salt
     */
    sl = ep - sp;

    /*
     * 'Time to make the doughnuts..'
     */
    apr_md5_init(&ctx);
#if APR_CHARSET_EBCDIC
    apr_md5_set_xlate(&ctx, xlate_ebcdic_to_ascii);
#endif
    
    /*
     * The password first, since that is what is most unknown
     */
    apr_md5_update(&ctx, pw, strlen(pw));

    /*
     * Then our magic string
     */
    apr_md5_update(&ctx, apr1_id, strlen(apr1_id));

    /*
     * Then the raw salt
     */
    apr_md5_update(&ctx, sp, sl);

    /*
     * Then just as many characters of the MD5(pw, salt, pw)
     */
    apr_md5_init(&ctx1);
#if APR_CHARSET_EBCDIC
    apr_md5_set_xlate(&ctx1, xlate_ebcdic_to_ascii);
#endif
    apr_md5_update(&ctx1, pw, strlen(pw));
    apr_md5_update(&ctx1, sp, sl);
    apr_md5_update(&ctx1, pw, strlen(pw));
    apr_md5_final(final, &ctx1);
    for (pl = strlen(pw); pl > 0; pl -= APR_MD5_DIGESTSIZE) {
        md5_update_buffer(&ctx, final,
                      (pl > APR_MD5_DIGESTSIZE) ? APR_MD5_DIGESTSIZE : pl, SKIP_XLATE);
    }

    /*
     * Don't leave anything around in vm they could use.
     */
    memset(final, 0, sizeof(final));

    /*
     * Then something really weird...
     */
    for (i = strlen(pw); i != 0; i >>= 1) {
        if (i & 1) {
            md5_update_buffer(&ctx, final, 1, SKIP_XLATE);
        }
        else {
            apr_md5_update(&ctx, pw, 1);
        }
    }

    /*
     * Now make the output string.  We know our limitations, so we
     * can use the string routines without bounds checking.
     */
    strcpy(passwd, apr1_id);
    strncat(passwd, sp, sl);
    strcat(passwd, "$");

    apr_md5_final(final, &ctx);

    /*
     * And now, just to make sure things don't run too fast..
     * On a 60 Mhz Pentium this takes 34 msec, so you would
     * need 30 seconds to build a 1000 entry dictionary...
     */
    for (i = 0; i < 1000; i++) {
        apr_md5_init(&ctx1);
         /*
          * apr_md5_final clears out ctx1.xlate at the end of each loop,
          * so need to to set it each time through
          */
#if APR_CHARSET_EBCDIC
        apr_md5_set_xlate(&ctx1, xlate_ebcdic_to_ascii);
#endif
        if (i & 1) {
            apr_md5_update(&ctx1, pw, strlen(pw));
        }
        else {
            md5_update_buffer(&ctx1, final, APR_MD5_DIGESTSIZE, SKIP_XLATE);
        }
        if (i % 3) {
            apr_md5_update(&ctx1, sp, sl);
        }

        if (i % 7) {
            apr_md5_update(&ctx1, pw, strlen(pw));
        }

        if (i & 1) {
            md5_update_buffer(&ctx1, final, APR_MD5_DIGESTSIZE, SKIP_XLATE);
        }
        else {
            apr_md5_update(&ctx1, pw, strlen(pw));
        }
        apr_md5_final(final,&ctx1);
    }

    p = passwd + strlen(passwd);

    l = (final[ 0]<<16) | (final[ 6]<<8) | final[12]; to64(p, l, 4); p += 4;
    l = (final[ 1]<<16) | (final[ 7]<<8) | final[13]; to64(p, l, 4); p += 4;
    l = (final[ 2]<<16) | (final[ 8]<<8) | final[14]; to64(p, l, 4); p += 4;
    l = (final[ 3]<<16) | (final[ 9]<<8) | final[15]; to64(p, l, 4); p += 4;
    l = (final[ 4]<<16) | (final[10]<<8) | final[ 5]; to64(p, l, 4); p += 4;
    l =                    final[11]                ; to64(p, l, 2); p += 2;
    *p = '\0';

    /*
     * Don't leave anything around in vm they could use.
     */
    memset(final, 0, sizeof(final));

    apr_cpystrn(result, passwd, nbytes - 1);
    return APR_SUCCESS;
}

#if !defined(WIN32) && !defined(BEOS) && !defined(NETWARE)
#if defined(APU_CRYPT_THREADSAFE) || !APR_HAS_THREADS || \
    defined(CRYPT_R_CRYPTD) || defined(CRYPT_R_STRUCT_CRYPT_DATA)

#define crypt_mutex_lock()
#define crypt_mutex_unlock()

#elif APR_HAVE_PTHREAD_H && defined(PTHREAD_MUTEX_INITIALIZER)

static pthread_mutex_t crypt_mutex = PTHREAD_MUTEX_INITIALIZER;
static void crypt_mutex_lock(void)
{
    pthread_mutex_lock(&crypt_mutex);
}

static void crypt_mutex_unlock(void)
{
    pthread_mutex_unlock(&crypt_mutex);
}

#else

#error apr_password_validate() is not threadsafe.  rebuild APR without thread support.

#endif
#endif

/*
 * Validate a plaintext password against a smashed one.  Uses either
 * crypt() (if available) or apr_md5_encode() or apr_sha1_base64(), depending
 * upon the format of the smashed input password.  Returns APR_SUCCESS if
 * they match, or APR_EMISMATCH if they don't.  If the platform doesn't
 * support crypt, then the default check is against a clear text string.
 */
APU_DECLARE(apr_status_t) apr_password_validate(const char *passwd, 
                                                const char *hash)
{
    char sample[120];
#if !defined(WIN32) && !defined(BEOS) && !defined(NETWARE)
    char *crypt_pw;
#endif
    if (!strncmp(hash, apr1_id, strlen(apr1_id))) {
        /*
         * The hash was created using our custom algorithm.
         */
        apr_md5_encode(passwd, hash, sample, sizeof(sample));
    }
    else if (!strncmp(hash, APR_SHA1PW_ID, APR_SHA1PW_IDLEN)) {
         apr_sha1_base64(passwd, (int)strlen(passwd), sample);
    }
    else {
        /*
         * It's not our algorithm, so feed it to crypt() if possible.
         */
#if defined(WIN32) || defined(BEOS) || defined(NETWARE)
        apr_cpystrn(sample, passwd, sizeof(sample) - 1);
#elif defined(CRYPT_R_CRYPTD)
        CRYPTD buffer;

        crypt_pw = crypt_r(passwd, hash, &buffer);
        apr_cpystrn(sample, crypt_pw, sizeof(sample) - 1);
#elif defined(CRYPT_R_STRUCT_CRYPT_DATA)
        struct crypt_data buffer;

        /* having to clear this seems bogus... GNU doc is
         * confusing...  user report found from google says
         * the crypt_data struct had to be cleared to get
         * the same result as plain crypt()
         */
        memset(&buffer, 0, sizeof(buffer));
        crypt_pw = crypt_r(passwd, hash, &buffer);
        apr_cpystrn(sample, crypt_pw, sizeof(sample) - 1);
#else
        /* Do a bit of sanity checking since we know that crypt_r()
         * should always be used for threaded builds on AIX, and
         * problems in configure logic can result in the wrong
         * choice being made.
         */
#if defined(_AIX) && APR_HAS_THREADS
#error Configuration error!  crypt_r() should have been selected!
#endif

        /* Handle thread safety issues by holding a mutex around the
         * call to crypt().
         */
        crypt_mutex_lock();
        crypt_pw = crypt(passwd, hash);
        apr_cpystrn(sample, crypt_pw, sizeof(sample) - 1);
        crypt_mutex_unlock();
#endif
    }
    return (strcmp(sample, hash) == 0) ? APR_SUCCESS : APR_EMISMATCH;
}