summaryrefslogtreecommitdiff
path: root/plugins/fast_float/src/fast_float_tethra.c
blob: 08975682319ce90b0b130248ca2d8cce3db40fdc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
//---------------------------------------------------------------------------------
//
//  Little Color Management System, fast floating point extensions
//  Copyright (c) 1998-2020 Marti Maria Saguer, all rights reserved
//
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// 
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
// 
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
//
//---------------------------------------------------------------------------------

#include "fast_float_internal.h"

// Optimization for floating point tetrahedral interpolation
typedef struct {

    cmsContext ContextID;
    const cmsInterpParams* p;   // Tetrahedrical interpolation parameters. This is a not-owned pointer.

} FloatCLUTData;

// Precomputes tables for 8-bit on input devicelink. 
static
FloatCLUTData* FloatCLUTAlloc(cmsContext ContextID, const cmsInterpParams* p)
{
    FloatCLUTData* fd;

    fd = (FloatCLUTData*) _cmsMallocZero(ContextID, sizeof(FloatCLUTData));
    if (fd == NULL) return NULL;
    
    fd ->ContextID = ContextID;
    fd ->p = p;
    return fd;
}


// Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for 
// almost any transform. We use floating point precision and then convert from floating point to 16 bits.
static
int XFormSampler(register const cmsFloat32Number In[], register cmsFloat32Number Out[], register void* Cargo)
{
    // Evaluate in 16 bits
    cmsPipelineEvalFloat(In, Out, (cmsPipeline*) Cargo);

    // Always succeed
    return TRUE;
}



// A optimized interpolation for 8-bit input.
#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])

static
void FloatCLUTEval(struct _cmstransform_struct *CMMcargo,
                      const cmsFloat32Number* Input,
                      cmsFloat32Number* Output,
                      cmsUInt32Number len,
                      cmsUInt32Number Stride)
{
    
    cmsFloat32Number        r, g, b;
    cmsFloat32Number        px, py, pz;
    int                     x0, y0, z0;
    int                     X0, Y0, Z0, X1, Y1, Z1;
    cmsFloat32Number        rx, ry, rz;
    cmsFloat32Number        c0, c1 = 0, c2 = 0, c3 = 0;

    cmsUInt32Number         OutChan;
    FloatCLUTData*          p8 = (FloatCLUTData*) _cmsGetTransformUserData(CMMcargo);

    const cmsInterpParams*  p = p8 ->p;
    cmsUInt32Number        TotalOut = p -> nOutputs;
    const cmsFloat32Number* LutTable = (const cmsFloat32Number*)p->Table;
    cmsUInt32Number        ii;
    const cmsUInt8Number*  rin;
    const cmsUInt8Number*  gin;
    const cmsUInt8Number*  bin;

    cmsUInt8Number* out[cmsMAXCHANNELS];
    cmsUInt32Number SourceStartingOrder[cmsMAXCHANNELS];
    cmsUInt32Number SourceIncrements[cmsMAXCHANNELS];
    cmsUInt32Number DestStartingOrder[cmsMAXCHANNELS];
    cmsUInt32Number DestIncrements[cmsMAXCHANNELS];

    cmsUInt32Number InputFormat  = cmsGetTransformInputFormat((cmsHTRANSFORM) CMMcargo);
    cmsUInt32Number OutputFormat = cmsGetTransformOutputFormat((cmsHTRANSFORM) CMMcargo);

    cmsUInt32Number nchans, nalpha;

    _cmsComputeComponentIncrements(InputFormat, Stride, &nchans, &nalpha, SourceStartingOrder, SourceIncrements);
    _cmsComputeComponentIncrements(OutputFormat, Stride, &nchans, &nalpha, DestStartingOrder, DestIncrements);

    // SeparateRGB(InputFormat, Stride,  SourceStartingOrder, SourceIncrements);
    // SeparateRGB(OutputFormat, Stride, DestStartingOrder, DestIncrements);

    rin = (const cmsUInt8Number*)Input + SourceStartingOrder[0];
    gin = (const cmsUInt8Number*)Input + SourceStartingOrder[1];
    bin = (const cmsUInt8Number*)Input + SourceStartingOrder[2];

    for (ii=0; ii < TotalOut; ii++) 
           out[ii] = (cmsUInt8Number*) Output + DestStartingOrder[ii];

    for (ii=0; ii < len; ii++) {
            
           r = fclamp(*(cmsFloat32Number*)rin);
           g = fclamp(*(cmsFloat32Number*)gin);
           b = fclamp(*(cmsFloat32Number*)bin);

        rin += SourceIncrements[0];
        gin += SourceIncrements[1];
        bin += SourceIncrements[2];
       
        px = r * p->Domain[0];
        py = g * p->Domain[1];
        pz = b * p->Domain[2];

        
        x0 = (int)_cmsQuickFloor(px); rx = (px - (cmsFloat32Number)x0);
        y0 = (int)_cmsQuickFloor(py); ry = (py - (cmsFloat32Number)y0);
        z0 = (int)_cmsQuickFloor(pz); rz = (pz - (cmsFloat32Number)z0);
   
        X0 = p->opta[2] * x0;
        X1 = X0 + (r >= 1.0 ? 0 : p->opta[2]);

        Y0 = p->opta[1] * y0;
        Y1 = Y0 + (g >= 1.0 ? 0 : p->opta[1]);

        Z0 = p->opta[0] * z0;
        Z1 = Z0 + (b >= 1.0 ? 0 : p->opta[0]);
      
        for (OutChan = 0; OutChan < TotalOut; OutChan++) {

               // These are the 6 Tetrahedral

               c0 = DENS(X0, Y0, Z0);

               if (rx >= ry && ry >= rz) {

                      c1 = DENS(X1, Y0, Z0) - c0;
                      c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
                      c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);

               }
               else
                      if (rx >= rz && rz >= ry) {

                             c1 = DENS(X1, Y0, Z0) - c0;
                             c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
                             c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);

                      }
                      else
                             if (rz >= rx && rx >= ry) {

                                    c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
                                    c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
                                    c3 = DENS(X0, Y0, Z1) - c0;

                             }
                             else
                                    if (ry >= rx && rx >= rz) {

                                           c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
                                           c2 = DENS(X0, Y1, Z0) - c0;
                                           c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);

                                    }
                                    else
                                           if (ry >= rz && rz >= rx) {

                                                  c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
                                                  c2 = DENS(X0, Y1, Z0) - c0;
                                                  c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);

                                           }
                                           else
                                                  if (rz >= ry && ry >= rx) {

                                                         c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
                                                         c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
                                                         c3 = DENS(X0, Y0, Z1) - c0;

                                                  }
                                                  else  {
                                                         c1 = c2 = c3 = 0;
                                                  }

                                                  *(cmsFloat32Number*) (out[OutChan]) = c0 + c1 * rx + c2 * ry + c3 * rz;
                                                 
                                                  out[OutChan] += DestIncrements[OutChan];

        }


    }
}

#undef DENS



// --------------------------------------------------------------------------------------------------------------

cmsBool OptimizeCLUTRGBTransform(_cmsTransformFn* TransformFn,
                                  void** UserData,
                                  _cmsFreeUserDataFn* FreeDataFn,
                                  cmsPipeline** Lut, 
                                  cmsUInt32Number* InputFormat, 
                                  cmsUInt32Number* OutputFormat, 
                                  cmsUInt32Number* dwFlags)      
{
    cmsPipeline* OriginalLut;
    int nGridPoints;    
    cmsPipeline* OptimizedLUT = NULL;    
    cmsStage* OptimizedCLUTmpe;
    cmsColorSpaceSignature OutputColorSpace;    
    cmsStage* mpe;
    FloatCLUTData* p8;
    cmsContext ContextID;
    _cmsStageCLutData* data;

    // For empty transforms, do nothing
    if (*Lut == NULL) return FALSE;

    // This is a loosy optimization! does not apply in floating-point cases
    if (!T_FLOAT(*InputFormat) || !T_FLOAT(*OutputFormat)) return FALSE;

    // Only on 8-bit
    if (T_BYTES(*InputFormat) != 4 || T_BYTES(*OutputFormat) != 4) return FALSE;

    // Only on RGB
    if (T_COLORSPACE(*InputFormat)  != PT_RGB) return FALSE;
    if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE;
  
    OriginalLut = *Lut;

   // Named color pipelines cannot be optimized either
   for (mpe = cmsPipelineGetPtrToFirstStage(OriginalLut);
         mpe != NULL;
         mpe = cmsStageNext(mpe)) {
            if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
    }

    ContextID = cmsGetPipelineContextID(OriginalLut);
    OutputColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*OutputFormat));
    nGridPoints      = _cmsReasonableGridpointsByColorspace(cmsSigRgbData, *dwFlags);
             
    // Create the result LUT
    OptimizedLUT = cmsPipelineAlloc(cmsGetPipelineContextID(OriginalLut), 3, cmsPipelineOutputChannels(OriginalLut));
    if (OptimizedLUT == NULL) goto Error;

    
    // Allocate the CLUT for result
    OptimizedCLUTmpe = cmsStageAllocCLutFloat(ContextID, nGridPoints, 3, cmsPipelineOutputChannels(OriginalLut), NULL);

    // Add the CLUT to the destination LUT
    cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedCLUTmpe);

    // Resample the LUT
    if (!cmsStageSampleCLutFloat(OptimizedCLUTmpe, XFormSampler, (void*)OriginalLut, 0)) goto Error;

    // Set the evaluator, copy parameters   
    data = (_cmsStageCLutData*) cmsStageData(OptimizedCLUTmpe);

    p8 = FloatCLUTAlloc(ContextID, data ->Params);
    if (p8 == NULL) return FALSE;   

    // And return the obtained LUT
    cmsPipelineFree(OriginalLut);

    *Lut = OptimizedLUT;
    *TransformFn = (_cmsTransformFn) FloatCLUTEval;
    *UserData   = p8;
    *FreeDataFn = _cmsFree;

    return TRUE;

Error:
      
    if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT);

    return FALSE;    
}