summaryrefslogtreecommitdiff
path: root/src/cmsopt.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmsopt.c')
-rw-r--r--src/cmsopt.c374
1 files changed, 187 insertions, 187 deletions
diff --git a/src/cmsopt.c b/src/cmsopt.c
index 8d0f62f..f67aff3 100644
--- a/src/cmsopt.c
+++ b/src/cmsopt.c
@@ -4,22 +4,22 @@
// Little Color Management System
// Copyright (c) 1998-2011 Marti Maria Saguer
//
-// Permission is hereby granted, free of charge, to any person obtaining
-// a copy of this software and associated documentation files (the "Software"),
-// to deal in the Software without restriction, including without limitation
-// the rights to use, copy, modify, merge, publish, distribute, sublicense,
-// and/or sell copies of the Software, and to permit persons to whom the Software
+// Permission is hereby granted, free of charge, to any person obtaining
+// a copy of this software and associated documentation files (the "Software"),
+// to deal in the Software without restriction, including without limitation
+// the rights to use, copy, modify, merge, publish, distribute, sublicense,
+// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
-// The above copyright notice and this permission notice shall be included in
+// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
-// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
-// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
-// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
-// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
+// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
+// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//---------------------------------------------------------------------------------
@@ -39,7 +39,7 @@ typedef struct {
cmsUInt16Number rx[256], ry[256], rz[256];
cmsUInt32Number X0[256], Y0[256], Z0[256]; // Precomputed nodes and offsets for 8-bit input data
-
+
} Prelin8Data;
@@ -52,33 +52,33 @@ typedef struct {
// Number of channels
int nInputs;
int nOutputs;
-
+
// Since there is no limitation of the output number of channels, this buffer holding the connexion CLUT-shaper
// has to be dynamically allocated. This is not the case of first step shaper-CLUT, which is limited to max inputs
cmsUInt16Number* StageDEF;
- _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS]; // The maximum number of input channels is known in advance
- cmsInterpParams* ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
-
+ _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS]; // The maximum number of input channels is known in advance
+ cmsInterpParams* ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
+
_cmsInterpFn16 EvalCLUT; // The evaluator for 3D grid
const cmsInterpParams* CLUTparams; // (not-owned pointer)
-
+
_cmsInterpFn16* EvalCurveOut16; // Points to an array of curve evaluators in 16 bits (not-owned pointer)
cmsInterpParams** ParamsCurveOut16; // Points to an array of references to interpolation params (not-owned pointer)
-
+
} Prelin16Data;
-// Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
+// Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
typedef cmsInt32Number cmsS1Fixed14Number; // Note that this may hold more than 16 bits!
#define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5))
typedef struct {
-
+
cmsContext ContextID;
cmsS1Fixed14Number Shaper1R[256]; // from 0..255 to 1.14 (0.0...1.0)
@@ -88,7 +88,7 @@ typedef struct {
cmsS1Fixed14Number Mat[3][3]; // n.14 to n.14 (needs a saturation after that)
cmsS1Fixed14Number Off[3];
- cmsUInt16Number Shaper2R[16385]; // 1.14 to 0..255
+ cmsUInt16Number Shaper2R[16385]; // 1.14 to 0..255
cmsUInt16Number Shaper2G[16385];
cmsUInt16Number Shaper2B[16385];
@@ -119,10 +119,10 @@ void _RemoveElement(cmsStage** head)
cmsStageFree(mpe);
}
-// Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
+// Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
static
cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp)
-{
+{
cmsStage** pt = &Lut ->Elements;
cmsBool AnyOpt = FALSE;
@@ -132,7 +132,7 @@ cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp)
_RemoveElement(pt);
AnyOpt = TRUE;
}
- else
+ else
pt = &((*pt) -> Next);
}
@@ -142,14 +142,14 @@ cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp)
// Same, but only if two adjacent elements are found
static
cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2)
-{
+{
cmsStage** pt1;
cmsStage** pt2;
cmsBool AnyOpt = FALSE;
pt1 = &Lut ->Elements;
if (*pt1 == NULL) return AnyOpt;
-
+
while (*pt1 != NULL) {
pt2 = &((*pt1) -> Next);
@@ -160,18 +160,18 @@ cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op
_RemoveElement(pt1);
AnyOpt = TRUE;
}
- else
- pt1 = &((*pt1) -> Next);
+ else
+ pt1 = &((*pt1) -> Next);
}
return AnyOpt;
}
-// Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
+// Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
// by a v4 to v2 and vice-versa. The elements are then discarded.
static
cmsBool PreOptimize(cmsPipeline* Lut)
-{
+{
cmsBool AnyOpt = FALSE, Opt;
AnyOpt = FALSE;
@@ -204,12 +204,12 @@ cmsBool PreOptimize(cmsPipeline* Lut)
static
void Eval16nop1D(register const cmsUInt16Number Input[],
- register cmsUInt16Number Output[],
+ register cmsUInt16Number Output[],
register const struct _cms_interp_struc* p)
{
Output[0] = Input[0];
- cmsUNUSED_PARAMETER(p);
+ cmsUNUSED_PARAMETER(p);
}
static
@@ -222,14 +222,14 @@ void PrelinEval16(register const cmsUInt16Number Input[],
int i;
for (i=0; i < p16 ->nInputs; i++) {
-
+
p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]);
}
p16 ->EvalCLUT(StageABC, p16 ->StageDEF, p16 ->CLUTparams);
for (i=0; i < p16 ->nOutputs; i++) {
-
+
p16 ->EvalCurveOut16[i](&p16->StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]);
}
}
@@ -249,13 +249,13 @@ void PrelinOpt16free(cmsContext ContextID, void* ptr)
static
void* Prelin16dup(cmsContext ContextID, const void* ptr)
-{
+{
Prelin16Data* p16 = (Prelin16Data*) ptr;
Prelin16Data* Duped = _cmsDupMem(ContextID, p16, sizeof(Prelin16Data));
if (Duped == NULL) return NULL;
- Duped ->StageDEF = _cmsCalloc(ContextID, p16 ->nOutputs, sizeof(cmsUInt16Number));
+ Duped ->StageDEF = _cmsCalloc(ContextID, p16 ->nOutputs, sizeof(cmsUInt16Number));
Duped ->EvalCurveOut16 = _cmsDupMem(ContextID, p16 ->EvalCurveOut16, p16 ->nOutputs * sizeof(_cmsInterpFn16));
Duped ->ParamsCurveOut16 = _cmsDupMem(ContextID, p16 ->ParamsCurveOut16, p16 ->nOutputs * sizeof(cmsInterpParams* ));
@@ -264,9 +264,9 @@ void* Prelin16dup(cmsContext ContextID, const void* ptr)
static
-Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
- const cmsInterpParams* ColorMap,
- int nInputs, cmsToneCurve** In,
+Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
+ const cmsInterpParams* ColorMap,
+ int nInputs, cmsToneCurve** In,
int nOutputs, cmsToneCurve** Out )
{
int i;
@@ -276,7 +276,7 @@ Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
p16 ->nInputs = nInputs;
p16 -> nOutputs = nOutputs;
-
+
for (i=0; i < nInputs; i++) {
if (In == NULL) {
@@ -294,7 +294,7 @@ Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
p16 ->EvalCLUT = ColorMap ->Interpolation.Lerp16;
- p16 -> StageDEF = _cmsCalloc(ContextID, p16 ->nOutputs, sizeof(cmsUInt16Number));
+ p16 -> StageDEF = _cmsCalloc(ContextID, p16 ->nOutputs, sizeof(cmsUInt16Number));
p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16));
p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* ));
@@ -320,7 +320,7 @@ Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
#define PRELINEARIZATION_POINTS 4096
-// Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
+// Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
// almost any transform. We use floating point precision and then convert from floating point to 16 bits.
static
int XFormSampler16(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo)
@@ -333,14 +333,14 @@ int XFormSampler16(register const cmsUInt16Number In[], register cmsUInt16Number
_cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS);
// From 16 bit to floating point
- for (i=0; i < Lut ->InputChannels; i++)
+ for (i=0; i < Lut ->InputChannels; i++)
InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0);
// Evaluate in floating point
cmsPipelineEvalFloat(InFloat, OutFloat, Lut);
// Back to 16 bits representation
- for (i=0; i < Lut ->OutputChannels; i++)
+ for (i=0; i < Lut ->OutputChannels; i++)
Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0);
// Always succeed
@@ -351,11 +351,11 @@ int XFormSampler16(register const cmsUInt16Number In[], register cmsUInt16Number
static
cmsBool AllCurvesAreLinear(cmsStage* mpe)
{
- cmsToneCurve** Curves;
+ cmsToneCurve** Curves;
cmsUInt32Number i, n;
Curves = _cmsStageGetPtrToCurveSet(mpe);
- if (Curves == NULL) return FALSE;
+ if (Curves == NULL) return FALSE;
n = cmsStageOutputChannels(mpe);
@@ -405,7 +405,7 @@ cmsBool PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
p16 -> opta[1] * z0 +
p16 -> opta[0] * w0;
}
- else
+ else
if (nChannelsIn == 3) {
if (((px - x0) != 0) ||
@@ -416,12 +416,12 @@ cmsBool PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
p16 -> opta[1] * y0 +
p16 -> opta[0] * z0;
}
- else
+ else
if (nChannelsIn == 1) {
if (((px - x0) != 0)) return FALSE; // Not on exact node
- index = p16 -> opta[0] * x0;
+ index = p16 -> opta[0] * x0;
}
else {
cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
@@ -436,7 +436,7 @@ cmsBool PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
// Auxiliar, to see if two values are equal or very different
static
-cmsBool WhitesAreEqual(int n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
+cmsBool WhitesAreEqual(int n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
{
int i;
@@ -457,7 +457,7 @@ cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColor
cmsUInt16Number WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS];
cmsUInt32Number i, nOuts, nIns;
cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL;
-
+
if (!_cmsEndPointsBySpace(EntryColorSpace,
&WhitePointIn, NULL, &nIns)) return FALSE;
@@ -470,8 +470,8 @@ cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColor
cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut);
- if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
-
+ if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
+
// Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations
if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin))
if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT))
@@ -484,31 +484,31 @@ cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColor
cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin);
- for (i=0; i < nIns; i++) {
+ for (i=0; i < nIns; i++) {
WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]);
}
}
else {
- for (i=0; i < nIns; i++)
- WhiteIn[i] = WhitePointIn[i];
+ for (i=0; i < nIns; i++)
+ WhiteIn[i] = WhitePointIn[i];
}
// If any post-linearization, we need to find how is represented white before the curve, do
// a reverse interpolation in this case.
if (PostLin) {
-
+
cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin);
-
+
for (i=0; i < nOuts; i++) {
-
+
cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]);
WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]);
cmsFreeToneCurve(InversePostLin);
}
}
else {
- for (i=0; i < nOuts; i++)
- WhiteOut[i] = WhitePointOut[i];
+ for (i=0; i < nOuts; i++)
+ WhiteOut[i] = WhitePointOut[i];
}
// Ok, proceed with patching. May fail and we don't care if it fails
@@ -518,23 +518,23 @@ cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColor
}
// -----------------------------------------------------------------------------------------------------------------------------------------------
-// This function creates simple LUT from complex ones. The generated LUT has an optional set of
-// prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
-// These curves have to exist in the original LUT in order to be used in the simplified output.
+// This function creates simple LUT from complex ones. The generated LUT has an optional set of
+// prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
+// These curves have to exist in the original LUT in order to be used in the simplified output.
// Caller may also use the flags to allow this feature.
// LUTS with all curves will be simplified to a single curve. Parametric curves are lost.
// This function should be used on 16-bits LUTS only, as floating point losses precision when simplified
// -----------------------------------------------------------------------------------------------------------------------------------------------
static
-cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
+cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
{
cmsPipeline* Src;
- cmsPipeline* Dest;
- cmsStage* mpe;
- cmsStage* CLUT;
+ cmsPipeline* Dest;
+ cmsStage* mpe;
+ cmsStage* CLUT;
cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL;
- int nGridPoints;
+ int nGridPoints;
cmsColorSpaceSignature ColorSpace, OutputColorSpace;
cmsStage *NewPreLin = NULL;
cmsStage *NewPostLin = NULL;
@@ -564,7 +564,7 @@ cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt3
if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
}
- // Allocate an empty LUT
+ // Allocate an empty LUT
Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
if (!Dest) return FALSE;
@@ -580,7 +580,7 @@ cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt3
// Maybe this is a linear tram, so we can avoid the whole stuff
if (!AllCurvesAreLinear(PreLin)) {
- // All seems ok, proceed.
+ // All seems ok, proceed.
NewPreLin = cmsStageDup(PreLin);
cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin);
@@ -610,7 +610,7 @@ cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt3
// Maybe this is a linear tram, so we can avoid the whole stuff
if (!AllCurvesAreLinear(PostLin)) {
- // All seems ok, proceed.
+ // All seems ok, proceed.
NewPostLin = cmsStageDup(PostLin);
cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin);
@@ -620,7 +620,7 @@ cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt3
}
}
- // Now its time to do the sampling. We have to ignore pre/post linearization
+ // Now its time to do the sampling. We have to ignore pre/post linearization
// The source LUT whithout pre/post curves is passed as parameter.
if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) {
@@ -629,9 +629,9 @@ cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt3
if (KeepPostLin != NULL) cmsPipelineInsertStage(Src, cmsAT_END, KeepPostLin);
cmsPipelineFree(Dest);
return FALSE;
- }
+ }
- // Done.
+ // Done.
if (KeepPreLin != NULL) cmsStageFree(KeepPreLin);
if (KeepPostLin != NULL) cmsStageFree(KeepPostLin);
@@ -652,8 +652,8 @@ cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt3
}
else {
- p16 = PrelinOpt16alloc(Dest ->ContextID,
- DataCLUT ->Params,
+ p16 = PrelinOpt16alloc(Dest ->ContextID,
+ DataCLUT ->Params,
Dest ->InputChannels,
DataSetIn,
Dest ->OutputChannels,
@@ -676,13 +676,13 @@ cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt3
*Lut = Dest;
return TRUE;
- cmsUNUSED_PARAMETER(Intent);
+ cmsUNUSED_PARAMETER(Intent);
}
// -----------------------------------------------------------------------------------------------------------------------------------------------
-// Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
-// Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
+// Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
+// Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
// for RGB transforms. See the paper for more details
// -----------------------------------------------------------------------------------------------------------------------------------------------
@@ -718,12 +718,12 @@ void SlopeLimiting(cmsToneCurve* g)
Slope = (EndVal - Val) / AtBegin; // AtBegin holds the X interval, which is same in both cases
beta = Val - Slope * AtEnd;
- for (i = AtEnd; i < (int) g ->nEntries; i++)
+ for (i = AtEnd; i < (int) g ->nEntries; i++)
g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
}
-// Precomputes tables for 8-bit on input devicelink.
+// Precomputes tables for 8-bit on input devicelink.
static
Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3])
{
@@ -734,8 +734,8 @@ Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cms
p8 = _cmsMallocZero(ContextID, sizeof(Prelin8Data));
if (p8 == NULL) return NULL;
-
- // Since this only works for 8 bit input, values comes always as x * 257,
+
+ // Since this only works for 8 bit input, values comes always as x * 257,
// we can safely take msb byte (x << 8 + x)
for (i=0; i < 256; i++) {
@@ -778,13 +778,13 @@ Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cms
static
void Prelin8free(cmsContext ContextID, void* ptr)
-{
+{
_cmsFree(ContextID, ptr);
}
static
void* Prelin8dup(cmsContext ContextID, const void* ptr)
-{
+{
return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data));
}
@@ -797,17 +797,17 @@ void PrelinEval8(register const cmsUInt16Number Input[],
register cmsUInt16Number Output[],
register const void* D)
{
-
+
cmsUInt8Number r, g, b;
- cmsS15Fixed16Number rx, ry, rz;
- cmsS15Fixed16Number c0, c1, c2, c3, Rest;
+ cmsS15Fixed16Number rx, ry, rz;
+ cmsS15Fixed16Number c0, c1, c2, c3, Rest;
int OutChan;
register cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1;
Prelin8Data* p8 = (Prelin8Data*) D;
register const cmsInterpParams* p = p8 ->p;
int TotalOut = p -> nOutputs;
const cmsUInt16Number* LutTable = p -> Table;
-
+
r = Input[0] >> 8;
g = Input[1] >> 8;
b = Input[2] >> 8;
@@ -824,7 +824,7 @@ void PrelinEval8(register const cmsUInt16Number Input[],
Y1 = Y0 + ((ry == 0) ? 0 : p ->opta[1]);
Z1 = Z0 + ((rz == 0) ? 0 : p ->opta[0]);
-
+
// These are the 6 Tetrahedral
for (OutChan=0; OutChan < TotalOut; OutChan++) {
@@ -834,11 +834,11 @@ void PrelinEval8(register const cmsUInt16Number Input[],
{
c1 = DENS(X1, Y0, Z0) - c0;
c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
- c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
+ c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
}
else
if (rx >= rz && rz >= ry)
- {
+ {
c1 = DENS(X1, Y0, Z0) - c0;
c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
@@ -848,37 +848,37 @@ void PrelinEval8(register const cmsUInt16Number Input[],
{
c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
- c3 = DENS(X0, Y0, Z1) - c0;
+ c3 = DENS(X0, Y0, Z1) - c0;
}
else
if (ry >= rx && rx >= rz)
{
c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
c2 = DENS(X0, Y1, Z0) - c0;
- c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
+ c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
}
else
if (ry >= rz && rz >= rx)
{
c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
c2 = DENS(X0, Y1, Z0) - c0;
- c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
+ c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
}
else
if (rz >= ry && ry >= rx)
- {
+ {
c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
- c3 = DENS(X0, Y0, Z1) - c0;
+ c3 = DENS(X0, Y0, Z1) - c0;
}
else {
- c1 = c2 = c3 = 0;
+ c1 = c2 = c3 = 0;
}
Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
Output[OutChan] = (cmsUInt16Number)c0 + ((Rest + (Rest>>16))>>16);
-
+
}
}
@@ -909,15 +909,15 @@ cmsBool IsDegenerated(const cmsToneCurve* g)
// We need xput over here
static
-cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
+cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
{
cmsPipeline* OriginalLut;
int nGridPoints;
cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS];
- cmsUInt32Number t, i;
+ cmsUInt32Number t, i;
cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS];
cmsBool lIsSuitable, lIsLinear;
- cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
+ cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
cmsStage* OptimizedCLUTmpe;
cmsColorSpaceSignature ColorSpace, OutputColorSpace;
cmsStage* OptimizedPrelinMpe;
@@ -979,7 +979,7 @@ cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Inte
}
// Slope-limit the obtained curves
- for (t = 0; t < OriginalLut ->InputChannels; t++)
+ for (t = 0; t < OriginalLut ->InputChannels; t++)
SlopeLimiting(Trans[t]);
// Check for validity
@@ -993,7 +993,7 @@ cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Inte
// Exclude if non-monotonic
if (!cmsIsToneCurveMonotonic(Trans[t]))
- lIsSuitable = FALSE;
+ lIsSuitable = FALSE;
if (IsDegenerated(Trans[t]))
lIsSuitable = FALSE;
@@ -1020,7 +1020,7 @@ cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Inte
OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans);
- // Create and insert the curves at the beginning
+ // Create and insert the curves at the beginning
cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe);
// Allocate the CLUT for result
@@ -1048,18 +1048,18 @@ cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Inte
// Set the evaluator if 8-bit
if (_cmsFormatterIs8bit(*InputFormat)) {
- Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID,
- OptimizedPrelinCLUT ->Params,
+ Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID,
+ OptimizedPrelinCLUT ->Params,
OptimizedPrelinCurves);
if (p8 == NULL) return FALSE;
_cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup);
- }
+ }
else
{
- Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID,
- OptimizedPrelinCLUT ->Params,
+ Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID,
+ OptimizedPrelinCLUT ->Params,
3, OptimizedPrelinCurves, 3, NULL);
if (p16 == NULL) return FALSE;
@@ -1093,10 +1093,10 @@ Error:
if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
}
- if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves);
+ if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves);
if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT);
- return FALSE;
+ return FALSE;
cmsUNUSED_PARAMETER(Intent);
}
@@ -1106,12 +1106,12 @@ Error:
static
void CurvesFree(cmsContext ContextID, void* ptr)
-{
+{
Curves16Data* Data = (Curves16Data*) ptr;
int i;
for (i=0; i < Data -> nCurves; i++) {
-
+
_cmsFree(ContextID, Data ->Curves[i]);
}
@@ -1121,7 +1121,7 @@ void CurvesFree(cmsContext ContextID, void* ptr)
static
void* CurvesDup(cmsContext ContextID, const void* ptr)
-{
+{
Curves16Data* Data = _cmsDupMem(ContextID, ptr, sizeof(Curves16Data));
int i;
@@ -1136,7 +1136,7 @@ void* CurvesDup(cmsContext ContextID, const void* ptr)
return (void*) Data;
}
-// Precomputes tables for 8-bit on input devicelink.
+// Precomputes tables for 8-bit on input devicelink.
static
Curves16Data* CurvesAlloc(cmsContext ContextID, int nCurves, int nElements, cmsToneCurve** G)
{
@@ -1160,13 +1160,13 @@ Curves16Data* CurvesAlloc(cmsContext ContextID, int nCurves, int nElements, cmsT
for (j=0; j < nElements; j++) {
- c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j));
+ c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j));
}
}
else {
for (j=0; j < nElements; j++) {
- c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j);
+ c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j);
}
}
}
@@ -1175,14 +1175,14 @@ Curves16Data* CurvesAlloc(cmsContext ContextID, int nCurves, int nElements, cmsT
}
static
-void FastEvaluateCurves8(register const cmsUInt16Number In[],
- register cmsUInt16Number Out[],
+void FastEvaluateCurves8(register const cmsUInt16Number In[],
+ register cmsUInt16Number Out[],
register const void* D)
-{
+{
Curves16Data* Data = (Curves16Data*) D;
cmsUInt8Number x;
int i;
-
+
for (i=0; i < Data ->nCurves; i++) {
x = (In[i] >> 8);
@@ -1190,15 +1190,15 @@ void FastEvaluateCurves8(register const cmsUInt16Number In[],
}
}
-
+
static
-void FastEvaluateCurves16(register const cmsUInt16Number In[],
- register cmsUInt16Number Out[],
+void FastEvaluateCurves16(register const cmsUInt16Number In[],
+ register cmsUInt16Number Out[],
register const void* D)
-{
+{
Curves16Data* Data = (Curves16Data*) D;
int i;
-
+
for (i=0; i < Data ->nCurves; i++) {
Out[i] = Data -> Curves[i][In[i]];
}
@@ -1206,15 +1206,15 @@ void FastEvaluateCurves16(register const cmsUInt16Number In[],
static
-void FastIdentity16(register const cmsUInt16Number In[],
- register cmsUInt16Number Out[],
+void FastIdentity16(register const cmsUInt16Number In[],
+ register cmsUInt16Number Out[],
register const void* D)
{
cmsPipeline* Lut = (cmsPipeline*) D;
cmsUInt32Number i;
for (i=0; i < Lut ->InputChannels; i++) {
- Out[i] = In[i];
+ Out[i] = In[i];
}
}
@@ -1224,7 +1224,7 @@ void FastIdentity16(register const cmsUInt16Number In[],
static
cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
{
- cmsToneCurve** GammaTables = NULL;
+ cmsToneCurve** GammaTables = NULL;
cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
cmsUInt32Number i, j;
cmsPipeline* Src = *Lut;
@@ -1243,7 +1243,7 @@ cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUI
if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE;
}
- // Allocate an empty LUT
+ // Allocate an empty LUT
Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
if (Dest == NULL) return FALSE;
@@ -1259,7 +1259,7 @@ cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUI
// Compute 16 bit result by using floating point
for (i=0; i < PRELINEARIZATION_POINTS; i++) {
- for (j=0; j < Src ->InputChannels; j++)
+ for (j=0; j < Src ->InputChannels; j++)
InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
cmsPipelineEvalFloat(InFloat, OutFloat, Src);
@@ -1281,7 +1281,7 @@ cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUI
// Maybe the curves are linear at the end
if (!AllCurvesAreLinear(ObtainedCurves)) {
- cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves);
+ cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves);
// If the curves are to be applied in 8 bits, we can save memory
if (_cmsFormatterIs8bit(*InputFormat)) {
@@ -1299,7 +1299,7 @@ cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUI
Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves);
*dwFlags |= cmsFLAGS_NOCACHE;
- _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
+ _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
}
}
else {
@@ -1355,44 +1355,44 @@ void* DupMatShaper(cmsContext ContextID, const void* Data)
}
-// A fast matrix-shaper evaluator for 8 bits. This is a bit ticky since I'm using 1.14 signed fixed point
-// to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
+// A fast matrix-shaper evaluator for 8 bits. This is a bit ticky since I'm using 1.14 signed fixed point
+// to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
// in total about 50K, and the performance boost is huge!
static
-void MatShaperEval16(register const cmsUInt16Number In[],
- register cmsUInt16Number Out[],
+void MatShaperEval16(register const cmsUInt16Number In[],
+ register cmsUInt16Number Out[],
register const void* D)
-{
+{
MatShaper8Data* p = (MatShaper8Data*) D;
cmsS1Fixed14Number l1, l2, l3, r, g, b;
cmsUInt32Number ri, gi, bi;
- // In this case (and only in this case!) we can use this simplification since
+ // In this case (and only in this case!) we can use this simplification since
// In[] is assured to come from a 8 bit number. (a << 8 | a)
ri = In[0] & 0xFF;
gi = In[1] & 0xFF;
bi = In[2] & 0xFF;
-
+
// Across first shaper, which also converts to 1.14 fixed point
r = p->Shaper1R[ri];
g = p->Shaper1G[gi];
b = p->Shaper1B[bi];
-
+
// Evaluate the matrix in 1.14 fixed point
l1 = (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14;
l2 = (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14;
l3 = (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14;
-
- // Now we have to clip to 0..1.0 range
- ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384 : l1);
- gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384 : l2);
- bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384 : l3);
-
- // And across second shaper,
+
+ // Now we have to clip to 0..1.0 range
+ ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384 : l1);
+ gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384 : l2);
+ bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384 : l3);
+
+ // And across second shaper,
Out[0] = p->Shaper2R[ri];
Out[1] = p->Shaper2G[gi];
Out[2] = p->Shaper2B[bi];
-
+
}
// This table converts from 8 bits to 1.14 after applying the curve
@@ -1403,9 +1403,9 @@ void FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve)
cmsFloat32Number R, y;
for (i=0; i < 256; i++) {
-
+
R = (cmsFloat32Number) (i / 255.0);
- y = cmsEvalToneCurveFloat(Curve, R);
+ y = cmsEvalToneCurveFloat(Curve, R);
Table[i] = DOUBLE_TO_1FIXED14(y);
}
@@ -1422,19 +1422,19 @@ void FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8Bi
R = (cmsFloat32Number) (i / 16384.0);
Val = cmsEvalToneCurveFloat(Curve, R); // Val comes 0..1.0
-
+
if (Is8BitsOutput) {
// If 8 bits output, we can optimize further by computing the / 257 part.
// first we compute the resulting byte and then we store the byte times
// 257. This quantization allows to round very quick by doing a >> 8, but
// since the low byte is always equal to msb, we can do a & 0xff and this works!
- cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0);
+ cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0);
cmsUInt8Number b = FROM_16_TO_8(w);
Table[i] = FROM_8_TO_16(b);
}
- else Table[i] = _cmsQuickSaturateWord(Val * 65535.0);
+ else Table[i] = _cmsQuickSaturateWord(Val * 65535.0);
}
}
@@ -1463,17 +1463,17 @@ cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, c
// Convert matrix to nFixed14. Note that those values may take more than 16 bits as
for (i=0; i < 3; i++) {
- for (j=0; j < 3; j++) {
+ for (j=0; j < 3; j++) {
p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]);
}
}
-
+
for (i=0; i < 3; i++) {
- if (Off == NULL) {
+ if (Off == NULL) {
p ->Off[i] = 0;
}
- else {
+ else {
p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]);
}
}
@@ -1482,7 +1482,7 @@ cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, c
if (Is8Bits)
*OutputFormat |= OPTIMIZED_SH(1);
- // Fill function pointers
+ // Fill function pointers
_cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper);
return TRUE;
}
@@ -1499,7 +1499,7 @@ cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt3
cmsMAT3 res;
cmsBool IdentityMat;
cmsPipeline* Dest, *Src;
-
+
// Only works on RGB to RGB
if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE;
@@ -1510,8 +1510,8 @@ cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt3
Src = *Lut;
// Check for shaper-matrix-matrix-shaper structure, that is what this optimizer stands for
- if (!cmsPipelineCheckAndRetreiveStages(Src, 4,
- cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
+ if (!cmsPipelineCheckAndRetreiveStages(Src, 4,
+ cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
&Curve1, &Matrix1, &Matrix2, &Curve2)) return FALSE;
// Get both matrices
@@ -1532,26 +1532,26 @@ cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt3
IdentityMat = TRUE;
}
- // Allocate an empty LUT
+ // Allocate an empty LUT
Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
if (!Dest) return FALSE;
// Assamble the new LUT
cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1));
- if (!IdentityMat)
+ if (!IdentityMat)
cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest ->ContextID, 3, 3, (const cmsFloat64Number*) &res, Data2 ->Offset));
cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2));
// If identity on matrix, we can further optimize the curves, so call the join curves routine
if (IdentityMat) {
- OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags);
+ OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags);
}
else {
_cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1);
_cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2);
-
- // In this particular optimization, caché does not help as it takes more time to deal with
+
+ // In this particular optimization, caché does not help as it takes more time to deal with
// the caché that with the pixel handling
*dwFlags |= cmsFLAGS_NOCACHE;
@@ -1570,9 +1570,9 @@ cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt3
// List of optimizations
typedef struct _cmsOptimizationCollection_st {
-
+
_cmsOPToptimizeFn OptimizePtr;
-
+
struct _cmsOptimizationCollection_st *Next;
} _cmsOptimizationCollection;
@@ -1595,13 +1595,13 @@ cmsBool _cmsRegisterOptimizationPlugin(cmsPluginBase* Data)
{
cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data;
_cmsOptimizationCollection* fl;
-
+
if (Data == NULL) {
- OptimizationCollection = DefaultOptimization;
+ OptimizationCollection = DefaultOptimization;
return TRUE;
}
-
+
// Optimizer callback is required
if (Plugin ->OptimizePtr == NULL) return FALSE;
@@ -1610,7 +1610,7 @@ cmsBool _cmsRegisterOptimizationPlugin(cmsPluginBase* Data)
// Copy the parameters
fl ->OptimizePtr = Plugin ->OptimizePtr;
-
+
// Keep linked list
fl ->Next = OptimizationCollection;
OptimizationCollection = fl;
@@ -1620,18 +1620,18 @@ cmsBool _cmsRegisterOptimizationPlugin(cmsPluginBase* Data)
}
// The entry point for LUT optimization
-cmsBool _cmsOptimizePipeline(cmsPipeline** PtrLut,
+cmsBool _cmsOptimizePipeline(cmsPipeline** PtrLut,
int Intent,
- cmsUInt32Number* InputFormat,
+ cmsUInt32Number* InputFormat,
cmsUInt32Number* OutputFormat,
cmsUInt32Number* dwFlags)
-{
+{
_cmsOptimizationCollection* Opts;
cmsBool AnySuccess = FALSE;
-
+
// A CLUT is being asked, so force this specific optimization
if (*dwFlags & cmsFLAGS_FORCE_CLUT) {
-
+
PreOptimize(*PtrLut);
return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags);
}
@@ -1639,7 +1639,7 @@ cmsBool _cmsOptimizePipeline(cmsPipeline** PtrLut,
// Anything to optimize?
if ((*PtrLut) ->Elements == NULL) {
_cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
- return TRUE;
+ return TRUE;
}
// Try to get rid of identities and trivial conversions.
@@ -1654,19 +1654,19 @@ cmsBool _cmsOptimizePipeline(cmsPipeline** PtrLut,
// Do not optimize, keep all precision
if (*dwFlags & cmsFLAGS_NOOPTIMIZE)
return FALSE;
-
+
// Try built-in optimizations and plug-in
for (Opts = OptimizationCollection;
Opts != NULL;
Opts = Opts ->Next) {
-
+
// If one schema succeeded, we are done
if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
-
+
return TRUE; // Optimized!
}
}
-
+
// Only simple optimizations succeeded
return AnySuccess;
}