summaryrefslogtreecommitdiff
path: root/src/cmsgamma.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmsgamma.c')
-rw-r--r--src/cmsgamma.c224
1 files changed, 112 insertions, 112 deletions
diff --git a/src/cmsgamma.c b/src/cmsgamma.c
index b546fd8..da902f7 100644
--- a/src/cmsgamma.c
+++ b/src/cmsgamma.c
@@ -3,40 +3,40 @@
// Little Color Management System
// Copyright (c) 1998-2010 Marti Maria Saguer
//
-// Permission is hereby granted, free of charge, to any person obtaining
-// a copy of this software and associated documentation files (the "Software"),
-// to deal in the Software without restriction, including without limitation
-// the rights to use, copy, modify, merge, publish, distribute, sublicense,
-// and/or sell copies of the Software, and to permit persons to whom the Software
+// Permission is hereby granted, free of charge, to any person obtaining
+// a copy of this software and associated documentation files (the "Software"),
+// to deal in the Software without restriction, including without limitation
+// the rights to use, copy, modify, merge, publish, distribute, sublicense,
+// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
-// The above copyright notice and this permission notice shall be included in
+// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
-// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
-// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
-// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
-// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
+// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
+// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//---------------------------------------------------------------------------------
//
#include "lcms2_internal.h"
-// Tone curves are powerful constructs that can contain curves specified in diverse ways.
+// Tone curves are powerful constructs that can contain curves specified in diverse ways.
// The curve is stored in segments, where each segment can be sampled or specified by parameters.
-// a 16.bit simplification of the *whole* curve is kept for optimization purposes. For float operation,
-// each segment is evaluated separately. Plug-ins may be used to define new parametric schemes,
-// each plug-in may define up to MAX_TYPES_IN_LCMS_PLUGIN functions types. For defining a function,
+// a 16.bit simplification of the *whole* curve is kept for optimization purposes. For float operation,
+// each segment is evaluated separately. Plug-ins may be used to define new parametric schemes,
+// each plug-in may define up to MAX_TYPES_IN_LCMS_PLUGIN functions types. For defining a function,
// the plug-in should provide the type id, how many parameters each type has, and a pointer to
-// a procedure that evaluates the function. In the case of reverse evaluation, the evaluator will
-// be called with the type id as a negative value, and a sampled version of the reversed curve
+// a procedure that evaluates the function. In the case of reverse evaluation, the evaluator will
+// be called with the type id as a negative value, and a sampled version of the reversed curve
// will be built.
// ----------------------------------------------------------------- Implementation
-// Maxim number of nodes
+// Maxim number of nodes
#define MAX_NODES_IN_CURVE 4097
#define MINUS_INF (-1E22F)
#define PLUS_INF (+1E22F)
@@ -54,11 +54,11 @@ typedef struct _cmsParametricCurvesCollection_st {
} _cmsParametricCurvesCollection;
-// This is the default (built-in) evaluator
+// This is the default (built-in) evaluator
static cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R);
// The built-in list
-static _cmsParametricCurvesCollection DefaultCurves = {
+static _cmsParametricCurvesCollection DefaultCurves = {
9, // # of curve types
{ 1, 2, 3, 4, 5, 6, 7, 8, 108 }, // Parametric curve ID
{ 1, 3, 4, 5, 7, 4, 5, 5, 1 }, // Parameters by type
@@ -74,9 +74,9 @@ cmsBool _cmsRegisterParametricCurvesPlugin(cmsPluginBase* Data)
{
cmsPluginParametricCurves* Plugin = (cmsPluginParametricCurves*) Data;
_cmsParametricCurvesCollection* fl;
-
+
if (Data == NULL) {
-
+
ParametricCurves = &DefaultCurves;
return TRUE;
}
@@ -130,7 +130,7 @@ _cmsParametricCurvesCollection *GetParametricCurveByType(int Type, int* index)
Position = IsInSet(Type, c);
if (Position != -1) {
- if (index != NULL)
+ if (index != NULL)
*index = Position;
return c;
}
@@ -139,12 +139,12 @@ _cmsParametricCurvesCollection *GetParametricCurveByType(int Type, int* index)
return NULL;
}
-// Low level allocate, which takes care of memory details. nEntries may be zero, and in this case
+// Low level allocate, which takes care of memory details. nEntries may be zero, and in this case
// no optimation curve is computed. nSegments may also be zero in the inverse case, where only the
// optimization curve is given. Both features simultaneously is an error
static
-cmsToneCurve* AllocateToneCurveStruct(cmsContext ContextID, cmsInt32Number nEntries,
- cmsInt32Number nSegments, const cmsCurveSegment* Segments,
+cmsToneCurve* AllocateToneCurveStruct(cmsContext ContextID, cmsInt32Number nEntries,
+ cmsInt32Number nSegments, const cmsCurveSegment* Segments,
const cmsUInt16Number* Values)
{
cmsToneCurve* p;
@@ -179,7 +179,7 @@ cmsToneCurve* AllocateToneCurveStruct(cmsContext ContextID, cmsInt32Number nEntr
}
p -> nSegments = nSegments;
-
+
// This 16-bit table contains a limited precision representation of the whole curve and is kept for
// increasing xput on certain operations.
if (nEntries <= 0) {
@@ -189,13 +189,13 @@ cmsToneCurve* AllocateToneCurveStruct(cmsContext ContextID, cmsInt32Number nEntr
p ->Table16 = (cmsUInt16Number*) _cmsCalloc(ContextID, nEntries, sizeof(cmsUInt16Number));
if (p ->Table16 == NULL) goto Error;
}
-
+
p -> nEntries = nEntries;
-
+
// Initialize members if requested
if (Values != NULL && (nEntries > 0)) {
- for (i=0; i < nEntries; i++)
+ for (i=0; i < nEntries; i++)
p ->Table16[i] = Values[i];
}
@@ -227,7 +227,7 @@ cmsToneCurve* AllocateToneCurveStruct(cmsContext ContextID, cmsInt32Number nEntr
p ->Evals[i] = c ->Evaluator;
}
}
-
+
p ->InterpParams = _cmsComputeInterpParams(ContextID, p ->nEntries, 1, 1, p->Table16, CMS_LERP_FLAGS_16BITS);
return p;
@@ -249,7 +249,7 @@ cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Nu
switch (Type) {
// X = Y ^ Gamma
- case 1:
+ case 1:
if (R < 0) {
if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE)
@@ -295,14 +295,14 @@ cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Nu
// Type 2 Reversed
// X = (Y ^1/g - b) / a
- case -2:
+ case -2:
if (R < 0)
Val = 0;
else
Val = (pow(R, 1.0/Params[0]) - Params[2]) / Params[1];
if (Val < 0)
- Val = 0;
+ Val = 0;
break;
@@ -316,7 +316,7 @@ cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Nu
if (R >= disc) {
- e = Params[1]*R + Params[2];
+ e = Params[1]*R + Params[2];
if (e > 0)
Val = pow(e, Params[0]) + Params[3];
@@ -330,15 +330,15 @@ cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Nu
// Type 3 reversed
// X=((Y-c)^1/g - b)/a | (Y>=c)
- // X=-b/a | (Y<c)
+ // X=-b/a | (Y<c)
case -3:
if (R >= Params[3]) {
-
+
e = R - Params[3];
if (e > 0)
Val = (pow(e, 1/Params[0]) - Params[2]) / Params[1];
- else
+ else
Val = 0;
}
else {
@@ -395,7 +395,7 @@ cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Nu
Val = pow(e, Params[0]) + Params[5];
else
Val = 0;
- }
+ }
else
Val = R*Params[3] + Params[6];
break;
@@ -410,7 +410,7 @@ cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Nu
if (R >= disc) {
e = R - Params[5];
- if (e < 0)
+ if (e < 0)
Val = 0;
else
Val = (pow(e, 1.0/Params[0]) - Params[2]) / Params[1];
@@ -423,29 +423,29 @@ cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Nu
// Types 6,7,8 comes from segmented curves as described in ICCSpecRevision_02_11_06_Float.pdf
// Type 6 is basically identical to type 5 without d
-
+
// Y = (a * X + b) ^ Gamma + c
- case 6:
+ case 6:
e = Params[1]*R + Params[2];
- if (e < 0)
+ if (e < 0)
Val = 0;
- else
+ else
Val = pow(e, Params[0]) + Params[3];
break;
- // ((Y - c) ^1/Gamma - b) / a
+ // ((Y - c) ^1/Gamma - b) / a
case -6:
e = R - Params[3];
if (e < 0)
Val = 0;
- else
+ else
Val = (pow(e, 1.0/Params[0]) - Params[2]) / Params[1];
break;
// Y = a * log (b * X^Gamma + c) + d
- case 7:
+ case 7:
e = Params[2] * pow(R, Params[0]) + Params[3];
if (e <= 0)
@@ -456,13 +456,13 @@ cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Nu
// (Y - d) / a = log(b * X ^Gamma + c)
// pow(10, (Y-d) / a) = b * X ^Gamma + c
- // pow((pow(10, (Y-d) / a) - c) / b, 1/g) = X
+ // pow((pow(10, (Y-d) / a) - c) / b, 1/g) = X
case -7:
Val = pow((pow(10.0, (R-Params[4]) / Params[1]) - Params[3]) / Params[2], 1.0 / Params[0]);
break;
- //Y = a * b^(c*X+d) + e
+ //Y = a * b^(c*X+d) + e
case 8:
Val = (Params[0] * pow(Params[1], Params[2] * R + Params[3]) + Params[4]);
break;
@@ -471,14 +471,14 @@ cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Nu
// Y = (log((y-e) / a) / log(b) - d ) / c
// a=0, b=1, c=2, d=3, e=4,
case -8:
-
+
disc = R - Params[4];
if (disc < 0) Val = 0;
- else
- Val = (log(disc / Params[0]) / log(Params[1]) - Params[3]) / Params[2];
+ else
+ Val = (log(disc / Params[0]) / log(Params[1]) - Params[3]) / Params[2];
break;
- // S-Shaped: (1 - (1-x)^1/g)^1/g
+ // S-Shaped: (1 - (1-x)^1/g)^1/g
case 108:
Val = pow(1.0 - pow(1 - R, 1/Params[0]), 1/Params[0]);
break;
@@ -501,7 +501,7 @@ cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Nu
}
// Evaluate a segmented funtion for a single value. Return -1 if no valid segment found .
-// If fn type is 0, perform an interpolation on the table
+// If fn type is 0, perform an interpolation on the table
static
cmsFloat64Number EvalSegmentedFn(const cmsToneCurve *g, cmsFloat64Number R)
{
@@ -519,10 +519,10 @@ cmsFloat64Number EvalSegmentedFn(const cmsToneCurve *g, cmsFloat64Number R)
cmsFloat32Number Out;
// Setup the table (TODO: clean that)
- g ->SegInterp[i]-> Table = g ->Segments[i].SampledPoints;
+ g ->SegInterp[i]-> Table = g ->Segments[i].SampledPoints;
g ->SegInterp[i] -> Interpolation.LerpFloat(&R1, &Out, g ->SegInterp[i]);
-
+
return Out;
}
else
@@ -563,17 +563,17 @@ int EntriesByGamma(cmsFloat64Number Gamma)
// Create a segmented gamma, fill the table
-cmsToneCurve* CMSEXPORT cmsBuildSegmentedToneCurve(cmsContext ContextID,
+cmsToneCurve* CMSEXPORT cmsBuildSegmentedToneCurve(cmsContext ContextID,
cmsInt32Number nSegments, const cmsCurveSegment Segments[])
{
int i;
cmsFloat64Number R, Val;
cmsToneCurve* g;
int nGridPoints = 4096;
-
+
_cmsAssert(Segments != NULL);
- // Optimizatin for identity curves.
+ // Optimizatin for identity curves.
if (nSegments == 1 && Segments[0].Type == 1) {
nGridPoints = EntriesByGamma(Segments[0].Params[0]);
@@ -615,7 +615,7 @@ cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurveFloat(cmsContext ContextID, cm
// From zero to any
Seg[1].x0 = 0;
- Seg[1].x1 = 1.0;
+ Seg[1].x1 = 1.0;
Seg[1].Type = 0;
Seg[1].nGridPoints = nEntries;
@@ -639,7 +639,7 @@ cmsToneCurve* CMSEXPORT cmsBuildParametricToneCurve(cmsContext ContextID, cmsInt
_cmsAssert(Params != NULL);
if (c == NULL) {
- cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION, "Invalid parametric curve type %d", Type);
+ cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION, "Invalid parametric curve type %d", Type);
return NULL;
}
@@ -668,27 +668,27 @@ cmsToneCurve* CMSEXPORT cmsBuildGamma(cmsContext ContextID, cmsFloat64Number Gam
void CMSEXPORT cmsFreeToneCurve(cmsToneCurve* Curve)
{
cmsContext ContextID;
-
+
if (Curve == NULL) return;
ContextID = Curve ->InterpParams->ContextID;
_cmsFreeInterpParams(Curve ->InterpParams);
-
+
if (Curve -> Table16)
_cmsFree(ContextID, Curve ->Table16);
if (Curve ->Segments) {
cmsUInt32Number i;
-
+
for (i=0; i < Curve ->nSegments; i++) {
if (Curve ->Segments[i].SampledPoints) {
_cmsFree(ContextID, Curve ->Segments[i].SampledPoints);
}
- if (Curve ->SegInterp[i] != 0)
+ if (Curve ->SegInterp[i] != 0)
_cmsFreeInterpParams(Curve->SegInterp[i]);
}
@@ -718,18 +718,18 @@ void CMSEXPORT cmsFreeToneCurveTriple(cmsToneCurve* Curve[3])
// Duplicate a gamma table
cmsToneCurve* CMSEXPORT cmsDupToneCurve(const cmsToneCurve* In)
-{
+{
if (In == NULL) return NULL;
return AllocateToneCurveStruct(In ->InterpParams ->ContextID, In ->nEntries, In ->nSegments, In ->Segments, In ->Table16);
}
// Joins two curves for X and Y. Curves should be monotonic.
-// We want to get
+// We want to get
//
-// y = Y^-1(X(t))
+// y = Y^-1(X(t))
//
-cmsToneCurve* CMSEXPORT cmsJoinToneCurve(cmsContext ContextID,
+cmsToneCurve* CMSEXPORT cmsJoinToneCurve(cmsContext ContextID,
const cmsToneCurve* X,
const cmsToneCurve* Y, cmsUInt32Number nResultingPoints)
{
@@ -748,7 +748,7 @@ cmsToneCurve* CMSEXPORT cmsJoinToneCurve(cmsContext ContextID,
Res = (cmsFloat32Number*) _cmsCalloc(ContextID, nResultingPoints, sizeof(cmsFloat32Number));
if (Res == NULL) goto Error;
-
+
//Iterate
for (i=0; i < nResultingPoints; i++) {
@@ -759,7 +759,7 @@ cmsToneCurve* CMSEXPORT cmsJoinToneCurve(cmsContext ContextID,
// Allocate space for output
out = cmsBuildTabulatedToneCurveFloat(ContextID, nResultingPoints, Res);
-
+
Error:
if (Res != NULL) _cmsFree(ContextID, Res);
@@ -770,25 +770,25 @@ Error:
-// Get the surrounding nodes. This is tricky on non-monotonic tables
+// Get the surrounding nodes. This is tricky on non-monotonic tables
static
int GetInterval(cmsFloat64Number In, const cmsUInt16Number LutTable[], const struct _cms_interp_struc* p)
-{
+{
int i;
int y0, y1;
-
+
// A 1 point table is not allowed
if (p -> Domain[0] < 1) return -1;
- // Let's see if ascending or descending.
+ // Let's see if ascending or descending.
if (LutTable[0] < LutTable[p ->Domain[0]]) {
// Table is overall ascending
for (i=p->Domain[0]-1; i >=0; --i) {
- y0 = LutTable[i];
+ y0 = LutTable[i];
y1 = LutTable[i+1];
-
+
if (y0 <= y1) { // Increasing
if (In >= y0 && In <= y1) return i;
}
@@ -802,7 +802,7 @@ int GetInterval(cmsFloat64Number In, const cmsUInt16Number LutTable[], const str
// Table is overall descending
for (i=0; i < (int) p -> Domain[0]; i++) {
- y0 = LutTable[i];
+ y0 = LutTable[i];
y1 = LutTable[i+1];
if (y0 <= y1) { // Increasing
@@ -825,18 +825,18 @@ cmsToneCurve* CMSEXPORT cmsReverseToneCurveEx(cmsInt32Number nResultSamples, con
cmsFloat64Number a = 0, b = 0, y, x1, y1, x2, y2;
int i, j;
int Ascending;
-
+
_cmsAssert(InCurve != NULL);
// Try to reverse it analytically whatever possible
if (InCurve ->nSegments == 1 && InCurve ->Segments[0].Type > 0 && InCurve -> Segments[0].Type <= 5) {
- return cmsBuildParametricToneCurve(InCurve ->InterpParams->ContextID,
- -(InCurve -> Segments[0].Type),
+ return cmsBuildParametricToneCurve(InCurve ->InterpParams->ContextID,
+ -(InCurve -> Segments[0].Type),
InCurve -> Segments[0].Params);
}
- // Nope, reverse the table.
+ // Nope, reverse the table.
out = cmsBuildTabulatedToneCurve16(InCurve ->InterpParams->ContextID, nResultSamples, NULL);
if (out == NULL)
return NULL;
@@ -849,18 +849,18 @@ cmsToneCurve* CMSEXPORT cmsReverseToneCurveEx(cmsInt32Number nResultSamples, con
y = (cmsFloat64Number) i * 65535.0 / (nResultSamples - 1);
- // Find interval in which y is within.
+ // Find interval in which y is within.
j = GetInterval(y, InCurve->Table16, InCurve->InterpParams);
if (j >= 0) {
// Get limits of interval
- x1 = InCurve ->Table16[j];
+ x1 = InCurve ->Table16[j];
x2 = InCurve ->Table16[j+1];
y1 = (cmsFloat64Number) (j * 65535.0) / (InCurve ->nEntries - 1);
y2 = (cmsFloat64Number) ((j+1) * 65535.0 ) / (InCurve ->nEntries - 1);
-
+
// If collapsed, then use any
if (x1 == x2) {
@@ -869,12 +869,12 @@ cmsToneCurve* CMSEXPORT cmsReverseToneCurveEx(cmsInt32Number nResultSamples, con
} else {
- // Interpolate
+ // Interpolate
a = (y2 - y1) / (x2 - x1);
b = y2 - a * x2;
}
}
-
+
out ->Table16[i] = _cmsQuickSaturateWord(a* y + b);
}
@@ -910,7 +910,7 @@ cmsBool smooth2(cmsContext ContextID, cmsFloat32Number w[], cmsFloat32Number y[]
c = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
d = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
e = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
-
+
if (c != NULL && d != NULL && e != NULL) {
@@ -922,7 +922,7 @@ cmsBool smooth2(cmsContext ContextID, cmsFloat32Number w[], cmsFloat32Number y[]
c[2] = (-4 * lambda - d[1] * c[1] * e[1]) / d[2];
e[2] = lambda / d[2];
z[2] = w[2] * y[2] - c[1] * z[1];
-
+
for (i = 3; i < m - 1; i++) {
i1 = i - 1; i2 = i - 2;
d[i]= w[i] + 6 * lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
@@ -930,18 +930,18 @@ cmsBool smooth2(cmsContext ContextID, cmsFloat32Number w[], cmsFloat32Number y[]
e[i] = lambda / d[i];
z[i] = w[i] * y[i] - c[i1] * z[i1] - e[i2] * z[i2];
}
-
+
i1 = m - 2; i2 = m - 3;
-
+
d[m - 1] = w[m - 1] + 5 * lambda -c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
c[m - 1] = (-2 * lambda - d[i1] * c[i1] * e[i1]) / d[m - 1];
z[m - 1] = w[m - 1] * y[m - 1] - c[i1] * z[i1] - e[i2] * z[i2];
i1 = m - 1; i2 = m - 2;
-
+
d[m] = w[m] + lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
z[m] = (w[m] * y[m] - c[i1] * z[i1] - e[i2] * z[i2]) / d[m];
z[m - 1] = z[m - 1] / d[m - 1] - c[m - 1] * z[m];
-
+
for (i = m - 2; 1<= i; i--)
z[i] = z[i] / d[i] - c[i] * z[i + 1] - e[i] * z[i + 2];
@@ -956,7 +956,7 @@ cmsBool smooth2(cmsContext ContextID, cmsFloat32Number w[], cmsFloat32Number y[]
return st;
}
-// Smooths a curve sampled at regular intervals.
+// Smooths a curve sampled at regular intervals.
cmsBool CMSEXPORT cmsSmoothToneCurve(cmsToneCurve* Tab, cmsFloat64Number lambda)
{
cmsFloat32Number w[MAX_NODES_IN_CURVE], y[MAX_NODES_IN_CURVE], z[MAX_NODES_IN_CURVE];
@@ -1034,14 +1034,14 @@ cmsBool CMSEXPORT cmsIsToneCurveMonotonic(const cmsToneCurve* t)
cmsBool lDescending;
_cmsAssert(t != NULL);
-
+
// Degenerated curves are monotonic? Ok, let's pass them
n = t ->nEntries;
if (n < 2) return TRUE;
// Curve direction
- lDescending = cmsIsToneCurveDescending(t);
-
+ lDescending = cmsIsToneCurveDescending(t);
+
if (lDescending) {
last = t ->Table16[0];
@@ -1060,7 +1060,7 @@ cmsBool CMSEXPORT cmsIsToneCurveMonotonic(const cmsToneCurve* t)
last = t ->Table16[n-1];
for (i = n-2; i >= 0; --i) {
-
+
if (t ->Table16[i] - last > 2)
return FALSE;
else
@@ -1106,10 +1106,10 @@ cmsFloat32Number CMSEXPORT cmsEvalToneCurveFloat(const cmsToneCurve* Curve, cmsF
if (Curve ->nSegments == 0) {
cmsUInt16Number In, Out;
-
+
In = (cmsUInt16Number) _cmsQuickSaturateWord(v * 65535.0);
Out = cmsEvalToneCurve16(Curve, In);
-
+
return (cmsFloat32Number) (Out / 65535.0);
}
@@ -1129,21 +1129,21 @@ cmsUInt16Number CMSEXPORT cmsEvalToneCurve16(const cmsToneCurve* Curve, cmsUInt1
// Least squares fitting.
-// A mathematical procedure for finding the best-fitting curve to a given set of points by
-// minimizing the sum of the squares of the offsets ("the residuals") of the points from the curve.
-// The sum of the squares of the offsets is used instead of the offset absolute values because
-// this allows the residuals to be treated as a continuous differentiable quantity.
+// A mathematical procedure for finding the best-fitting curve to a given set of points by
+// minimizing the sum of the squares of the offsets ("the residuals") of the points from the curve.
+// The sum of the squares of the offsets is used instead of the offset absolute values because
+// this allows the residuals to be treated as a continuous differentiable quantity.
//
// y = f(x) = x ^ g
//
// R = (yi - (xi^g))
// R2 = (yi - (xi^g))2
// SUM R2 = SUM (yi - (xi^g))2
-//
-// dR2/dg = -2 SUM x^g log(x)(y - x^g)
-// solving for dR2/dg = 0
-//
-// g = 1/n * SUM(log(y) / log(x))
+//
+// dR2/dg = -2 SUM x^g log(x)(y - x^g)
+// solving for dR2/dg = 0
+//
+// g = 1/n * SUM(log(y) / log(x))
cmsFloat64Number CMSEXPORT cmsEstimateGamma(const cmsToneCurve* t, cmsFloat64Number Precision)
{
@@ -1155,13 +1155,13 @@ cmsFloat64Number CMSEXPORT cmsEstimateGamma(const cmsToneCurve* t, cmsFloat64Num
sum = sum2 = n = 0;
- // Excluding endpoints
+ // Excluding endpoints
for (i=1; i < (MAX_NODES_IN_CURVE-1); i++) {
x = (cmsFloat64Number) i / (MAX_NODES_IN_CURVE-1);
y = (cmsFloat64Number) cmsEvalToneCurveFloat(t, (cmsFloat32Number) x);
- // Avoid 7% on lower part to prevent
+ // Avoid 7% on lower part to prevent
// artifacts due to linear ramps
if (y > 0. && y < 1. && x > 0.07) {