1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
|
-- This was added a general test of compiler performance.
-- Author: Austin Seipp
{-# OPTIONS_GHC -Wall #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE InstanceSigs #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedLists #-}
{-# LANGUAGE PartialTypeSignatures #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
module Naperian where
import qualified Prelude
import Prelude hiding ( lookup, length, replicate, zipWith )
import qualified Data.IntMap as IntMap
import Data.List ( intercalate )
import Data.Kind ( Type, Constraint )
import Control.Applicative ( liftA2 )
import qualified GHC.Exts as L (IsList(..))
import GHC.Prim
import GHC.TypeLits
import qualified Data.Vector as Vector
import Data.Foldable ( toList )
--------------------------------------------------------------------------------
-- Miscellaneous
-- | The finite set of type-bounded Naturals. A value of type @'Fin' n@ has
-- exactly @n@ inhabitants, the natural numbers from @[0..n-1]@.
data Finite :: Nat -> Type where
Fin :: Int -> Finite n
deriving (Eq, Show)
-- | Create a type-bounded finite number @'Fin' n@ from a runtime integer,
-- bounded to a statically known limit. If the input value @x > n@, then
-- @'Nothing'@ is returned. Otherwise, returns @'Just' (x :: 'Fin' n)@.
finite :: forall n. KnownNat n => Int -> Maybe (Finite n)
finite x = case (x > y) of
True -> Nothing
False -> Just (Fin x)
where y = fromIntegral (natVal' (proxy# :: Proxy# n))
-- | \"'Applicative' zipping\".
azipWith :: Applicative f => (a -> b -> c) -> f a -> f b -> f c
azipWith h xs ys = (pure h <*> xs) <*> ys
-- | Format a vector to make it look nice.
showVector :: [String] -> String
showVector xs = "<" ++ intercalate "," xs ++ ">"
--------------------------------------------------------------------------------
-- Pairs
-- | The cartesian product of @'a'@, equivalent to @(a, a)@.
data Pair a = Pair a a
deriving (Show, Eq, Ord, Functor, Foldable, Traversable)
instance Applicative Pair where
pure a = Pair a a
Pair k g <*> Pair a b = Pair (k a) (g b)
--------------------------------------------------------------------------------
-- Vectors
newtype Vector (n :: Nat) a = Vector (Vector.Vector a)
deriving (Eq, Ord, Functor, Foldable, Traversable)
instance Show a => Show (Vector n a) where
show = showVector . map show . toList
instance KnownNat n => Applicative (Vector n) where
pure = replicate
(<*>) = zipWith ($)
instance (KnownNat n, Traversable (Vector n)) => L.IsList (Vector n a) where
type Item (Vector n a) = a
toList = Data.Foldable.toList
fromList xs = case fromList xs of
Nothing -> error "Demanded vector of a list that wasn't the proper length"
Just ys -> ys
tail :: Vector (n + 1) a -> Vector n a
tail (Vector v) = Vector (Vector.tail v)
fromList :: forall n a. KnownNat n => [a] -> Maybe (Vector n a)
fromList xs = case (Prelude.length xs == sz) of
False -> Nothing
True -> Just (Vector $ Vector.fromList xs)
where sz = fromIntegral (natVal' (proxy# :: Proxy# n)) :: Int
zipWith :: (a -> b -> c) -> Vector n a -> Vector n b -> Vector n c
zipWith f (Vector a) (Vector b) = Vector (Vector.zipWith f a b)
length :: forall n a. KnownNat n => Vector n a -> Int
length _ = fromIntegral $ natVal' (proxy# :: Proxy# n)
replicate :: forall n a. KnownNat n => a -> Vector n a
replicate v = Vector (Vector.replicate sz v) where
sz = fromIntegral (natVal' (proxy# :: Proxy# n)) :: Int
index :: Vector n a -> Finite n -> a
index (Vector v) (Fin n) = (Vector.!) v n
viota :: forall n. KnownNat n => Vector n (Finite n)
viota = Vector (fmap Fin (Vector.enumFromN 0 sz)) where
sz = fromIntegral (natVal' (proxy# :: Proxy# n)) :: Int
--------------------------------------------------------------------------------
-- Naperian functors
-- | Naperian functors.
-- A useful way of thinking about a Naperian functor is that if we have a value
-- of type @v :: f a@ for some @'Naperian' f@, then we can think of @f a@ as a
-- bag of objects, with the ability to pick out the @a@ values inside the bag,
-- for each and every @a@ inside @f@. For example, in order to look up a value
-- @a@ inside a list @[a]@, we could use a function @[a] -> Int -> a@, which is
-- exactly @'(Prelude.!!)'@
--
-- The lookup function acts like a logarithm of the @'Functor' f@. Intuitively,
-- a Haskell function @f :: a -> b@ acts like the exponential @b^a@ if we intuit
-- types as an algebraic quantity. The logarithm of some value @x = b^a@ is
-- defined as @log_b(x) = a@, so given @x@ and a base @b@, it finds the exponent
-- @a@. In Haskell terms, this would be like finding the input value @a@ to a
-- function @f :: a -> b@, given a @b@, so it is a reverse mapping from the
-- outputs of @f@ back to its inputs.
--
-- A @'Naperian'@ functor @f@ is precisely a functor @f@ such that for any value
-- of type @f a@, we have a way of finding every single @a@ inside.
class Functor f => Naperian f where
{-# MINIMAL lookup, (tabulate | positions) #-}
-- | The \"logarithm\" of @f@. This type represents the 'input' you use to
-- look up values inside @f a@. For example, if you have a list @[a]@, and
-- you want to look up a value, then you use an @'Int'@ to index into
-- the list. In this case, @'Log' [a] = Int@. If you have a type-bounded
-- Vector @'Vector' (n :: 'Nat') a@, then @'Log' ('Vector' n)@ is the
-- range of integers @[0..n-1]@ (represented here as @'Finite' n@.)
type Log f
-- | Look up an element @a@ inside @f a@. If you read this function type in
-- english, it says \"if you give me an @f a@, then I will give you a
-- function, so you can look up the elements of @f a@ and get back an @a@\"
lookup :: f a -> (Log f -> a)
-- | Tabulate a @'Naperian'@. This creates @f a@ values by mapping the logarithm
-- of @f@ onto every \"position\" inside @f a@
tabulate :: (Log f -> a) -> f a
tabulate h = fmap h positions
-- | Find every position in the \"space\" of the @'Naperian' f@.
positions :: f (Log f)
positions = tabulate id
-- | The transposition of two @'Naperian'@ functors @f@ and @g@.
transpose :: (Naperian f, Naperian g) => f (g a) -> g (f a)
transpose = tabulate . fmap tabulate . flip . fmap lookup . lookup
instance Naperian Pair where
type Log Pair = Bool
lookup (Pair x y) b = if b then y else x
positions = Pair False True
instance KnownNat n => Naperian (Vector n) where
type Log (Vector n) = Finite n
lookup = index
positions = viota
--------------------------------------------------------------------------------
-- Dimensions
class (Applicative f, Naperian f, Traversable f) => Dimension f where
size :: f a -> Int
size = Prelude.length . toList
instance Dimension Pair where size = const 2
instance KnownNat n => Dimension (Vector n) where size = length
inner :: (Num a, Dimension f) => f a -> f a -> a
inner xs ys = sum (liftA2 (*) xs ys)
matrix :: ( Num a
, Dimension f
, Dimension g
, Dimension h
) => f (g a)
-> g (h a)
-> f (h a)
matrix xss yss = liftA2 (liftA2 inner) (fmap pure xss) (pure (transpose yss))
--------------------------------------------------------------------------------
-- Hyper-dimensional stuff
-- | Arbitrary-rank Hypercuboids, parameterized over their dimension.
data Hyper :: [Type -> Type] -> Type -> Type where
Scalar :: a -> Hyper '[] a
Prism :: (Dimension f, Shapely fs) => Hyper fs (f a) -> Hyper (f : fs) a
point :: Hyper '[] a -> a
point (Scalar a) = a
crystal :: Hyper (f : fs) a -> Hyper fs (f a)
crystal (Prism x) = x
instance Show a => Show (Hyper fs a) where
show = showHyper . fmap show where
showHyper :: Hyper gs String -> String
showHyper (Scalar s) = s
showHyper (Prism x) = showHyper (fmap (showVector . toList) x)
{--
class HyperLift f fs where
hyper :: (Shapely fs, Dimension f) => f a -> Hyper (f : fs) a
instance HyperLift f '[] where
hyper = Prism . Scalar
instance (Shapely fs, HyperLift f fs) => HyperLift f (f : fs) where
hyper = Prism . (\x -> (hyper $ _ x))
--}
class Shapely fs where
hreplicate :: a -> Hyper fs a
hsize :: Hyper fs a -> Int
instance Shapely '[] where
hreplicate a = Scalar a
hsize = const 1
instance (Dimension f, Shapely fs) => Shapely (f : fs) where
hreplicate a = Prism (hreplicate (pure a))
hsize (Prism x) = size (first x) * hsize x
instance Functor (Hyper fs) where
fmap f (Scalar a) = Scalar (f a)
fmap f (Prism x) = Prism (fmap (fmap f) x)
instance Shapely fs => Applicative (Hyper fs) where
pure = hreplicate
(<*>) = hzipWith ($)
hzipWith :: (a -> b -> c) -> Hyper fs a -> Hyper fs b -> Hyper fs c
hzipWith f (Scalar a) (Scalar b) = Scalar (f a b)
hzipWith f (Prism x) (Prism y) = Prism (hzipWith (azipWith f) x y)
first :: Shapely fs => Hyper fs a -> a
first (Scalar a) = a
first (Prism x) = head (toList (first x))
-- | Generalized transposition over arbitrary-rank hypercuboids.
transposeH :: Hyper (f : (g : fs)) a
-> Hyper (g : (f : fs)) a
transposeH (Prism (Prism x)) = Prism (Prism (fmap transpose x))
-- | Fold over a single dimension of a Hypercuboid.
foldrH :: (a -> a -> a) -> a -> Hyper (f : fs) a -> Hyper fs a
foldrH f z (Prism x) = fmap (foldr f z) x
-- | Lift an unary function from values to hypercuboids of values.
unary :: Shapely fs => (a -> b) -> (Hyper fs a -> Hyper fs b)
unary = fmap
-- | Lift a binary function from values to two sets of hypercuboids, which can
-- be aligned properly.
binary :: ( Compatible fs gs
, Max fs gs ~ hs
, Alignable fs hs
, Alignable gs hs
) => (a -> b -> c)
-> Hyper fs a
-> Hyper gs b
-> Hyper hs c
binary f x y = hzipWith f (align x) (align y)
up :: (Shapely fs, Dimension f) => Hyper fs a -> Hyper (f : fs) a
up = Prism . fmap pure
-- | Generalized, rank-polymorphic inner product.
innerH :: ( Max fs gs ~ (f : hs)
, Alignable fs (f : hs)
, Alignable gs (f : hs)
, Compatible fs gs
, Num a
) => Hyper fs a
-> Hyper gs a
-> Hyper hs a
innerH xs ys = foldrH (+) 0 (binary (*) xs ys)
-- | Generalized, rank-polymorphic matrix product.
matrixH :: ( Num a
, Dimension f
, Dimension g
, Dimension h
) => Hyper '[ g, f ] a
-> Hyper '[ h, g ] a
-> Hyper '[ h, f ] a
matrixH x y = case (crystal x, transposeH y) of
(xs, Prism (Prism ys)) -> hzipWith inner (up xs) (Prism (up ys))
--------------------------------------------------------------------------------
-- Alignment
class (Shapely fs, Shapely gs) => Alignable fs gs where
align :: Hyper fs a -> Hyper gs a
instance Alignable '[] '[] where
align = id
instance (Dimension f, Alignable fs gs) => Alignable (f : fs) (f : gs) where
align (Prism x) = Prism (align x)
instance (Dimension f, Shapely fs) => Alignable '[] (f : fs) where
align (Scalar a) = hreplicate a
type family Max (fs :: [Type -> Type]) (gs :: [Type -> Type]) :: [Type -> Type] where
Max '[] '[] = '[]
Max '[] (f : gs) = f : gs
Max (f : fs) '[] = f : fs
Max (f : fs) (f : gs) = f : Max fs gs
type family Compatible (fs :: [Type -> Type]) (gs :: [Type -> Type]) :: Constraint where
Compatible '[] '[] = ()
Compatible '[] (f : gs) = ()
Compatible (f : fs) '[] = ()
Compatible (f : fs) (f : gs) = Compatible fs gs
Compatible a b = TypeError (
'Text "Mismatched dimensions!"
':$$: 'Text "The dimension " ':<>: 'ShowType a ':<>: 'Text " can't be aligned with"
':$$: 'Text "the dimension " ':<>: 'ShowType b)
--------------------------------------------------------------------------------
-- Flattened, sparse Hypercuboids
elements :: Shapely fs => Hyper fs a -> [a]
elements (Scalar a) = [a]
elements (Prism a) = concat (map toList (elements a))
data Flat fs a where
Flat :: Shapely fs => Vector.Vector a -> Flat fs a
instance Functor (Flat fs) where
fmap f (Flat v) = Flat (fmap f v)
instance Show a => Show (Flat fs a) where
show = showHyper . fmap show where
showHyper :: Flat gs String -> String
showHyper (Flat v) = showVector (toList v)
flatten :: Shapely fs => Hyper fs a -> Flat fs a
flatten hs = Flat (Vector.fromList (elements hs))
data Sparse fs a where
Sparse :: Shapely fs => a -> IntMap.IntMap a -> Sparse fs a
unsparse :: forall fs a. Shapely fs => Sparse fs a -> Flat fs a
unsparse (Sparse e xs) = Flat (Vector.unsafeAccum (flip const) vs as)
where
as = IntMap.assocs xs
vs = Vector.replicate l e
l = hsize (hreplicate () :: Hyper fs ())
--------------------------------------------------------------------------------
-- Examples
type Matrix n m v = Vector n (Vector m v)
example1 :: Int
example1 = inner v1 v2 where
v1 = [ 1, 2, 3 ] :: Vector 3 Int
v2 = [ 4, 5, 6 ] :: Vector 3 Int
example2 :: Matrix 2 2 Int
example2 = matrix m1 m2 where
m1 = [ [ 1, 2, 3 ]
, [ 4, 5, 6 ]
] :: Matrix 2 3 Int
m2 = [ [ 9, 8 ]
, [ 6, 5 ]
, [ 3, 2 ]
] :: Matrix 3 2 Int
example3 :: Hyper '[] Int
example3 = innerH v1 v2 where
v1 = Prism (Scalar [1, 2, 3]) :: Hyper '[Vector 3] Int
v2 = Prism (Scalar [4, 5, 6]) :: Hyper '[Vector 3] Int
example4 :: Hyper '[Vector 2, Vector 2] Int
example4 = matrixH v1 v2 where
x = [ [ 1, 2, 3 ]
, [ 4, 5, 6 ]
] :: Matrix 2 3 Int
y = [ [ 9, 8 ]
, [ 6, 5 ]
, [ 3, 2 ]
] :: Matrix 3 2 Int
v1 = Prism (Prism (Scalar x)) :: Hyper '[Vector 3, Vector 2] Int
v2 = Prism (Prism (Scalar y)) :: Hyper '[Vector 2, Vector 3] Int
|