summaryrefslogtreecommitdiff
path: root/testsuite/tests/codeGen/should_compile/T17334.hs
blob: 6ad6d347e8b00cb226c8a6ce601be0c98689c954 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
-- Reproducer for T17334
{-# LANGUAGE BangPatterns          #-}
{-# LANGUAGE FlexibleContexts      #-}
{-# LANGUAGE MagicHash             #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TypeFamilies          #-}
{-# LANGUAGE UnboxedTuples         #-}

--Reproducer uses 64bit literals in reverseWord.
--It's ok to truncate those in x86
{-# OPTIONS_GHC -Wno-overflowed-literals #-}

module Bug (reverseInPlace) where

import Control.Monad.ST
import Data.Bits
import GHC.Exts
import GHC.ST (ST(..))
import Data.Kind

reverseInPlace :: PrimMonad m => UMVector (PrimState m) Bit -> m ()
reverseInPlace xs | len == 0  = pure ()
                  | otherwise = loop 0
 where
  len = ulength xs

  loop !i
    | i' <= j' = do
      x <- readWord xs i
      y <- readWord xs j'

      writeWord xs i  (reverseWord y)
      writeWord xs j' (reverseWord x)

      loop i'
    | i' < j = do
      let w = (j - i) `shiftR` 1
          k = j - w
      x <- readWord xs i
      y <- readWord xs k

      writeWord xs i (meld w (reversePartialWord w y) x)
      writeWord xs k (meld w (reversePartialWord w x) y)

      loop i'
    | otherwise = do
      let w = j - i
      x <- readWord xs i
      writeWord xs i (meld w (reversePartialWord w x) x)
   where
    !j  = len - i
    !i' = i + wordSize
    !j' = j - wordSize
{-# SPECIALIZE reverseInPlace :: UMVector s Bit -> ST s () #-}

newtype Bit = Bit { unBit :: Bool }

instance Unbox Bit

data instance UMVector s Bit = BitMVec !Int !Int !(MutableByteArray s)
data instance UVector    Bit = BitVec  !Int !Int !ByteArray

readWord :: PrimMonad m => UMVector (PrimState m) Bit -> Int -> m Word
readWord !(BitMVec _ 0 _) _ = pure 0
readWord !(BitMVec off len' arr) !i' = do
  let len  = off + len'
      i    = off + i'
      nMod = modWordSize i
      loIx = divWordSize i
  loWord <- readByteArray arr loIx

  if nMod == 0
    then pure loWord
    else if loIx == divWordSize (len - 1)
      then pure (loWord `unsafeShiftR` nMod)
      else do
        hiWord <- readByteArray arr (loIx + 1)
        pure
          $   (loWord `unsafeShiftR` nMod)
          .|. (hiWord `unsafeShiftL` (wordSize - nMod))
{-# SPECIALIZE readWord :: UMVector s Bit -> Int -> ST s Word #-}
{-# INLINE readWord #-}

writeWord :: PrimMonad m => UMVector (PrimState m) Bit -> Int -> Word -> m ()
writeWord !(BitMVec _ 0 _) _ _ = pure ()
writeWord !(BitMVec off len' arr@(MutableByteArray mba)) !i' !x@(W# x#) = do
  let len    = off + len'
      lenMod = modWordSize len
      i      = off + i'
      nMod   = modWordSize i
      loIx@(I# loIx#)   = divWordSize i

  if nMod == 0
    then if len >= i + wordSize
      then primitive $ \state ->
        (# atomicWriteIntArray# mba loIx# (word2Int# x#) state, () #)
      else do
        let W# andMask# = hiMask lenMod
            W# orMask#  = x .&. loMask lenMod
        primitive $ \state ->
          let !(# state',  _ #) = fetchAndIntArray# mba loIx# (word2Int# andMask#) state  in
            let !(# state'', _ #) = fetchOrIntArray#  mba loIx# (word2Int# orMask#)  state' in
              (# state'', () #)
    else if loIx == divWordSize (len - 1)
      then do
        loWord <- readByteArray arr loIx
        if lenMod == 0
          then
            writeByteArray arr loIx
            $   (loWord .&. loMask nMod)
            .|. (x `unsafeShiftL` nMod)
          else
            writeByteArray arr loIx
            $   (loWord .&. (loMask nMod .|. hiMask lenMod))
            .|. ((x `unsafeShiftL` nMod) .&. loMask lenMod)
      else do
        loWord <- readByteArray arr loIx
        writeByteArray arr loIx
          $   (loWord .&. loMask nMod)
          .|. (x `unsafeShiftL` nMod)
        hiWord <- readByteArray arr (loIx + 1)
        writeByteArray arr (loIx + 1)
          $   (hiWord .&. hiMask nMod)
          .|. (x `unsafeShiftR` (wordSize - nMod))
{-# SPECIALIZE writeWord :: UMVector s Bit -> Int -> Word -> ST s () #-}
{-# INLINE writeWord #-}

instance GMVector UMVector Bit where
  {-# INLINE basicLength #-}
  basicLength (BitMVec _ n _) = n

instance GVector UVector Bit where

wordSize :: Int
wordSize = finiteBitSize (0 :: Word)

lgWordSize :: Int
lgWordSize = case wordSize of
  32 -> 5
  64 -> 6
  _  -> error "wordsToBytes: unknown architecture"

divWordSize :: Bits a => a -> a
divWordSize x = unsafeShiftR x lgWordSize
{-# INLINE divWordSize #-}

modWordSize :: Int -> Int
modWordSize x = x .&. (wordSize - 1)
{-# INLINE modWordSize #-}

mask :: Int -> Word
mask b = m
 where
  m | b >= finiteBitSize m = complement 0
    | b < 0                = 0
    | otherwise            = bit b - 1

meld :: Int -> Word -> Word -> Word
meld b lo hi = (lo .&. m) .|. (hi .&. complement m) where m = mask b
{-# INLINE meld #-}

reverseWord :: Word -> Word
reverseWord x0 = x6
 where
  x1 = ((x0 .&. 0x5555555555555555) `shiftL`  1) .|. ((x0 .&. 0xAAAAAAAAAAAAAAAA) `shiftR`  1)
  x2 = ((x1 .&. 0x3333333333333333) `shiftL`  2) .|. ((x1 .&. 0xCCCCCCCCCCCCCCCC) `shiftR`  2)
  x3 = ((x2 .&. 0x0F0F0F0F0F0F0F0F) `shiftL`  4) .|. ((x2 .&. 0xF0F0F0F0F0F0F0F0) `shiftR`  4)
  x4 = ((x3 .&. 0x00FF00FF00FF00FF) `shiftL`  8) .|. ((x3 .&. 0xFF00FF00FF00FF00) `shiftR`  8)
  x5 = ((x4 .&. 0x0000FFFF0000FFFF) `shiftL` 16) .|. ((x4 .&. 0xFFFF0000FFFF0000) `shiftR` 16)
  x6 = ((x5 .&. 0x00000000FFFFFFFF) `shiftL` 32) .|. ((x5 .&. 0xFFFFFFFF00000000) `shiftR` 32)

reversePartialWord :: Int -> Word -> Word
reversePartialWord n w | n >= wordSize = reverseWord w
                       | otherwise     = reverseWord w `shiftR` (wordSize - n)

loMask :: Int -> Word
loMask n = 1 `unsafeShiftL` n - 1
{-# INLINE loMask #-}

hiMask :: Int -> Word
hiMask n = complement (1 `unsafeShiftL` n - 1)
{-# INLINE hiMask #-}

class GMVector v a where
  basicLength :: v s a -> Int

glength :: GMVector v a => v s a -> Int
{-# INLINE glength #-}
glength = basicLength

type family GMutable (v :: Type -> Type) :: Type -> Type -> Type
class GMVector (GMutable v) a => GVector v a
data family UMVector s a
data family UVector    a
class (GVector UVector a, GMVector UMVector a) => Unbox a
type instance GMutable UVector = UMVector

ulength :: Unbox a => UMVector s a -> Int
{-# INLINE ulength #-}
ulength = glength

data ByteArray = ByteArray ByteArray#
data MutableByteArray s = MutableByteArray (MutableByteArray# s)

readByteArray
  :: (Prim a, PrimMonad m) => MutableByteArray (PrimState m) -> Int -> m a
{-# INLINE readByteArray #-}
readByteArray (MutableByteArray arr#) (I# i#)
  = primitive (readByteArray# arr# i#)

writeByteArray
  :: (Prim a, PrimMonad m) => MutableByteArray (PrimState m) -> Int -> a -> m ()
{-# INLINE writeByteArray #-}
writeByteArray (MutableByteArray arr#) (I# i#) x
  = primitive_ (writeByteArray# arr# i# x)

class Prim a where
  readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, a #)
  writeByteArray# :: MutableByteArray# s -> Int# -> a -> State# s -> State# s

instance Prim Word where
  readByteArray#  arr# i# s# = case readWordArray# arr# i# s# of
                                 (# s1#, x# #) -> (# s1#, W# x# #)
  writeByteArray# arr# i# (W# x#) s# = writeWordArray# arr# i# x# s#

class Monad m => PrimMonad m where
  type PrimState m
  primitive :: (State# (PrimState m) -> (# State# (PrimState m), a #)) -> m a

instance PrimMonad (ST s) where
  type PrimState (ST s) = s
  primitive = ST
  {-# INLINE primitive #-}

primitive_ :: PrimMonad m
              => (State# (PrimState m) -> State# (PrimState m)) -> m ()
{-# INLINE primitive_ #-}
primitive_ f = primitive (\s# ->
    case f s# of
        s'# -> (# s'#, () #))