1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
{-# LANGUAGE ForeignFunctionInterface, GHCForeignImportPrim,
MagicHash, UnboxedTuples, UnliftedFFITypes #-}
{-# OPTIONS_GHC -XNoImplicitPrelude #-}
{-# OPTIONS_HADDOCK hide #-}
#include "MachDeps.h"
module GHC.Integer.Internals (
Integer(..),
cmpInteger#,
cmpIntegerInt#,
plusInteger#,
minusInteger#,
timesInteger#,
quotRemInteger#,
quotInteger#,
remInteger#,
divModInteger#,
divExactInteger#,
gcdInteger#,
gcdIntegerInt#,
gcdInt#,
decodeDouble#,
int2Integer#,
integer2Int#,
word2Integer#,
integer2Word#,
andInteger#,
orInteger#,
xorInteger#,
complementInteger#,
#if WORD_SIZE_IN_BITS < 64
int64ToInteger#, integerToInt64#,
word64ToInteger#, integerToWord64#,
#endif
#ifndef WORD_SIZE_IN_BITS
#error WORD_SIZE_IN_BITS not defined!!!
#endif
) where
import GHC.Prim (Int#, Word#, Double#, ByteArray#)
#if WORD_SIZE_IN_BITS < 64
import GHC.Prim (Int64#, Word64#)
#endif
-- Double isn't available yet, and we shouldn't be using defaults anyway:
default ()
-- | Arbitrary-precision integers.
data Integer
= S# Int# -- small integers
#ifndef ILX
| J# Int# ByteArray# -- large integers
#else
| J# Void BigInteger -- .NET big ints
foreign type dotnet "BigInteger" BigInteger
#endif
-- | Returns -1,0,1 according as first argument is less than, equal to, or greater than second argument.
--
foreign import prim "integer_cmm_cmpIntegerzh" cmpInteger#
:: Int# -> ByteArray# -> Int# -> ByteArray# -> Int#
-- | Returns -1,0,1 according as first argument is less than, equal to, or greater than second argument, which
-- is an ordinary Int\#.
foreign import prim "integer_cmm_cmpIntegerIntzh" cmpIntegerInt#
:: Int# -> ByteArray# -> Int# -> Int#
-- |
--
foreign import prim "integer_cmm_plusIntegerzh" plusInteger#
:: Int# -> ByteArray# -> Int# -> ByteArray# -> (# Int#, ByteArray# #)
-- |
--
foreign import prim "integer_cmm_minusIntegerzh" minusInteger#
:: Int# -> ByteArray# -> Int# -> ByteArray# -> (# Int#, ByteArray# #)
-- |
--
foreign import prim "integer_cmm_timesIntegerzh" timesInteger#
:: Int# -> ByteArray# -> Int# -> ByteArray# -> (# Int#, ByteArray# #)
-- | Compute div and mod simultaneously, where div rounds towards negative
-- infinity and\ @(q,r) = divModInteger#(x,y)@ implies
-- @plusInteger# (timesInteger# q y) r = x@.
--
foreign import prim "integer_cmm_quotRemIntegerzh" quotRemInteger#
:: Int# -> ByteArray# -> Int# -> ByteArray# -> (# Int#, ByteArray#, Int#, ByteArray# #)
-- | Rounds towards zero.
--
foreign import prim "integer_cmm_quotIntegerzh" quotInteger#
:: Int# -> ByteArray# -> Int# -> ByteArray# -> (# Int#, ByteArray# #)
-- | Satisfies \texttt{plusInteger\# (timesInteger\# (quotInteger\# x y) y) (remInteger\# x y) == x}.
--
foreign import prim "integer_cmm_remIntegerzh" remInteger#
:: Int# -> ByteArray# -> Int# -> ByteArray# -> (# Int#, ByteArray# #)
-- | Compute div and mod simultaneously, where div rounds towards negative infinity
-- and\texttt{(q,r) = divModInteger\#(x,y)} implies \texttt{plusInteger\# (timesInteger\# q y) r = x}.
--
foreign import prim "integer_cmm_divModIntegerzh" divModInteger#
:: Int# -> ByteArray# -> Int# -> ByteArray# -> (# Int#, ByteArray#, Int#, ByteArray# #)
-- | Divisor is guaranteed to be a factor of dividend.
--
foreign import prim "integer_cmm_divExactIntegerzh" divExactInteger#
:: Int# -> ByteArray# -> Int# -> ByteArray# -> (# Int#, ByteArray# #)
-- | Greatest common divisor.
--
foreign import prim "integer_cmm_gcdIntegerzh" gcdInteger#
:: Int# -> ByteArray# -> Int# -> ByteArray# -> (# Int#, ByteArray# #)
-- | Greatest common divisor, where second argument is an ordinary {\tt Int\#}.
--
foreign import prim "integer_cmm_gcdIntegerIntzh" gcdIntegerInt#
:: Int# -> ByteArray# -> Int# -> Int#
-- |
--
foreign import prim "integer_cmm_gcdIntzh" gcdInt#
:: Int# -> Int# -> Int#
-- | Convert to arbitrary-precision integer.
-- First {\tt Int\#} in result is the exponent; second {\tt Int\#} and {\tt ByteArray\#}
-- represent an {\tt Integer\#} holding the mantissa.
--
foreign import prim "integer_cmm_decodeDoublezh" decodeDouble#
:: Double# -> (# Int#, Int#, ByteArray# #)
-- |
--
foreign import prim "integer_cmm_int2Integerzh" int2Integer#
:: Int# -> (# Int#, ByteArray# #)
-- |
--
foreign import prim "integer_cmm_integer2Intzh" integer2Int#
:: Int# -> ByteArray# -> Int#
-- |
--
foreign import prim "integer_cmm_word2Integerzh" word2Integer#
:: Word# -> (# Int#, ByteArray# #)
-- |
--
foreign import prim "integer_cmm_integer2Wordzh" integer2Word#
:: Int# -> ByteArray# -> Word#
-- |
--
foreign import prim "integer_cmm_andIntegerzh" andInteger#
:: Int# -> ByteArray# -> Int# -> ByteArray# -> (# Int#, ByteArray# #)
-- |
--
foreign import prim "integer_cmm_orIntegerzh" orInteger#
:: Int# -> ByteArray# -> Int# -> ByteArray# -> (# Int#, ByteArray# #)
-- |
--
foreign import prim "integer_cmm_xorIntegerzh" xorInteger#
:: Int# -> ByteArray# -> Int# -> ByteArray# -> (# Int#, ByteArray# #)
-- |
--
foreign import prim "integer_cmm_complementIntegerzh" complementInteger#
:: Int# -> ByteArray# -> (# Int#, ByteArray# #)
#if WORD_SIZE_IN_BITS < 64
foreign import prim "integer_cmm_int64ToIntegerzh" int64ToInteger#
:: Int64# -> (# Int#, ByteArray# #)
foreign import prim "integer_cmm_word64ToIntegerzh" word64ToInteger#
:: Word64# -> (# Int#, ByteArray# #)
foreign import ccall unsafe "hs_integerToInt64"
integerToInt64# :: Int# -> ByteArray# -> Int64#
foreign import ccall unsafe "hs_integerToWord64"
integerToWord64# :: Int# -> ByteArray# -> Word64#
#endif
|